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ABSTRACT 

 Plates and shells are important parts of several engineering applications. Therefore analysis 

and design of these elements are always of interest to the engineering community. Accurate and 

conservative assessments of the maximum load the structure can carry, along with the equilibrium 

path followed in elastic and inelastic range are of utmost importance to understand accurate 

behavior of structures. The elasto-plastic behavior of structural elements can be modelled 

following mathematical theory of plasticity involving various failure criteria like von Mises , 

Tresca criteria. 

 The present study is made to investigate the effect of material nonlinearity on static 

behavior of plate with and without cutout. A finite element formulation for plate bending problem 

involving isotropic hardening material following von Mises criteria has been presented. The 

formulations have incorporated the shear deformation of the plate. The numerical approach has 

been formulated in incremental form and based on the tangent stiffness concept. The analysis has 

been carried out following modified Newton Raphson solution technique. The coding based on the 

formulation has been written in MATLAB environment. A non-layered and layered plate models 

have been adapted to understand the real elasto-plastic behavior of the plate. The complex 

nonlinear behavior was graphically traced through load deflection diagrams, plastic flow diagrams 

at different load factors and first yield and collapse loads.  

 The same plate problems were analyzed by using commercial software ABAQUS and 

results were compared and found to be in good agreement. In ABAQUS analysis were performed 

by taking quadrilateral shell element S8R5 with through the thickness stress integration (with three 

integration points) and von Mises yield criterion. The effect of shape and size of cutout on the 

yield, collapse loads and plastic flow patterns have been included in the research. 

Keywords: perfectly plastic, isotropic hardening, von Mises yield criterion, yield load, collapse 

load, plastic flow 
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CHAPTER-1 

INTRODUCTION 
 

1.1 Introduction: 

The introduction of geometric nonlinearity arises in situations where it is no longer 

sufficient to consider the strain displacement relations as being linear. Obviously every structure 

exhibits a degree of geometric nonlinearity because, even the smallest load modifies the geometry, 

but in a linear analysis this small change is ignored.  

The two basic hypotheses of the linear first order analysis of structures are: 

1. Displacements are so small that all computations may be referred to the undeformed 

configuration, 

2. Materials behave according to Hooke's law of linear elasticity. 

If one or both hypotheses are not satisfied, nonlinear analysis must be performed. In a vast majority 

of cases it is entirely appropriate to assume linearity, but as technology seeks greater exploitation 

of materials and coherent design to achieve, a true account of the likely nonlinear behavior 

becomes necessary during analysis. An optimum design will always be such that the result of the 

most accurate assessment and response to a certain environment. In other words, with the success 

in manufacturing stronger, lighter weight and more flexible materials,safety and economy become 

the main goals to be achieved with the help of nonlinear analysis.The importance of plate and shell 

structures and their generic complexities in nonlinear analysis have naturally led to a reliance on 

the finite element method for the solution to many types of problems.  

Nonlinear structural behavior can usually be classified as being caused by: 

1. Material nonlinearity: The constitutive equations relating stresses and strains are 

nonlinear. 

2. Geometric nonlinearity: The strain-displacement equations include higher-order terms, 

resulting in nonlinear relationships. 

3. Force nonlinearity: The direction and magnitude of applied forces change with 

deformations. 

4.Kinematic nonlinearity: The specified displacement boundary conditions depend on the 

deformations of the structure. The contact problems fall into this category 
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                                         2. Nonlinear strain-displacement                                        1.Nonlinear stress-strain            

 

 

 

                4. Nonlinear Displacement be                                                                  3.Nonlinear force be 

 

 

 

                                  Figure 1: Nonlinear types. 

The most general case is, of course, when all four nonlinearities are present in a problem 

at the same time. However, this may result in a very complex formulation and the cost of 

computations could be prohibitive. In practical problems, usually only one or two types of 

nonlinearities are considered at any one time. 

Classical approach to solve this problem leads to a set of nonlinear partial differential 

equations which requires intricate mathematical techniques to achieve a general solution. With the 

advent of computer alternative numerical approaches to solve the nonlinear problem have been 

developed, namely the finite difference method and the finite element method. The finite 

difference method transforms the governing partial differential equations into their nonlinear finite 

difference equivalents, and the resulting difference equations are solved by iterative procedures. 

Although the two alternative approaches are readily adaptable to a variety of boundary conditions, 

the finite element method is considered to be more versatile because of its ability in modelling 

plates of arbitrary shapes and a to achieve better convergence rate. 

Although various researchers have adopted quite a number of different formulation 

strategies and procedures in the context of geometrically nonlinear plate analysis, the subject is 

still of considerable interest and practical importance. However elastic behavior of plates has been 

very closely investigated, whereas inelastic analysis has received less attention from the 

researchers. 

  

        Displacement Strains Stresses 

Specified Displacement Specified Forces 
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CHAPTER-2 

REVIEW OF LITERATURE 

 

2.1 REVIEW OF LITERATURE: 

Owen D.R.J.et al .  (1980) ’Finite Element  in Plas tici ty’ Pineridge Press Limited,  

U.K. demonstrate the use of finite element based methods for the solution of problems involving 

plasticity.  They have given theory and algorithm in detail  to solve different  

problems.  

 

Arthur D.et al. (1983) have use triangular element for elasto plastic analysis of plates. This 

element presents triangular geometry and is the result of a coupling between a plate in bending 

element and a plane stress element, based on the free formulation (FF). 

 

Owen D.R.J.et al .  ( 1 9 8 3 )  h a v e  g i v e n  thick shell formulation accounting f o r  shear 

d e f o r m a t i o n  based o n  a d e g e n e r a t e  three-dimensional continuum element. A 

numerical model applicable to both thick and thin plates and shells a nine - node heterosis 

element is introduced. To incorporate anisotropic parameter plasticity Huber-Mises yield 

criteria has been adopted. 

 

Chung, Wai-cheong (1986)  have presented formulation for geometric non linear  

analysis of mindlin Plate adopting higher order  finite elements.  A number of 

examples have been carried out in the analyses of square, rectangular, skewed and circular plates 

as well as shallow shells under different kinds of loading pattern, with a wide range of boundary 

conditions 

 

Voyiadjis George Z., WoelkePawel (2005) a non-linear finite element analysis is presented, for 

the elasto-plastic behaviour of thick shells and plates including the effect of large rotations. Shell 

element based on the refined theory for thick spherical shells is extended here to account for 

geometric and material non-linearities. The small strain geometric non-linearities are taken into 

account by means of the updated Lagrangian method. A mathematical representation of multi axial 
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Bauschinger effect is taken care by means of a quasi-conforming technique, shear and membrane 

locking are prevented and the tangent stiffness matrix is given explicitly, i.e., no numerical 

integration is employed which makes the current formulation not only mathematically consistent 

and accurate. 

 

Murat Yazici (2007) an elasto-plastic theoretical analysis of stresses around a square perforated 

isotropic plate is studied. The boundary of the plastic stress field around the conformally mapped 

square holes is obtained by using Savin’s complex elastic equations. The elasto-plastic theoretical 

and FE solutions are compared for isotropic plates, with rounded corner square openings.  

 

Ireneusz Kreja.et al. (2007) have given a computational model for a large rotation analysis of 

elastic laminated shells including a Finite Element Method implementation of the proposed 

algorithm. The main part of his work deals to examine the relevance of various approximation 

decisions in the large deformation analysis of plate and shell problems. A number of sample 

problems of non-linear, large rotation response of composite laminated structures are discussed. 

 

Ki-Du Kim.et al. (2008) has taken 4-node quasi shell element for which they had incorporated 

geometric non linearity and studied the behaviour of FGM plates and shells. The material 

properties are assumed to be varied in the thickness direction according to a sigmoid function in 

terms of the volume fraction of the constituents. The series solutions of sigmoid FGM (S-FGM) 

plates, based on the first-order shear deformation theory and Fourier series expansion are provided 

as the reference solution for the numerical results. 

 

Hong-xueJia , Xi-la Liu (2014)  adopted  a force based Large Increment Method (LIM) for the 

elastoplastic analysis of plates using a force based 4-node quadrilateral plate element which is 

based on Mindlin–Reissner plate theory. The consistent elastoplastic flexibility matrix of plate 

element is derived and implemented to solve elastoplastic plate problems. Two simple elastoplastic 

plate problems are presented to illustrate the accuracy and the computational efficiency of LIM by 

comparing with the results from the FEM software ABAQUS. 
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Humberto b coda.et al. (2015) proposed a new enhancement strategy which can be applied to the 

calculated strain field in the analyses of shells by the unconstrained-vector finite element approach, 

a Solid-Shell-like formulation. This new enhancement is proposed to satisfy the continuity of the 

shear and normal stresses fields in the transverse direction. The kinematic enhancement is based 

on the in-plane longitudinal stress equilibrium that is associated with maintaining the elastic strain 

energy potential in the transverse direction of the shell or plate. Moreover, in contrast to typical 

elastoplastic procedures, they proposed an alternative plastic flow rule, which includes a new 

concept of the hardening parameter that depends on the orthotropic directions of the material and 

a general failure surface that degenerates into the von-Mises or Drucker Prager criteria for isotropic 

materials. 

 

Rohan Gourav Ray, Patel A (2015) perform analysis of Mindlin plate involving only material 

nonlinearity incorporating isotropic hardening behavior. The two cases of material behavior, 

perfectly plastic and linear strain hardening (bilinear) behavior are considered for analysis. The 

effect of thickness and different boundary conditions on load carrying capacity, load deflection 

and spread or flow of plastic deformations are studied 
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CHAPTER-3 

NONLINEARITY 

 

3.1 Nonlinearity: 

Nonlinearity in the structures means the stiffness of the structure varies as the deflection 

does not linearly vary with the load. It means that the stiffness is not found by simply dividing the 

load with the deflection. Generally all our physical structures exhibit non linearity but as an 

approximation we conveniently transform it to linear methods but it is not possible in every case 

to convert to the linear analysis. Also structures where the accuracy is of paramount importance 

we have to go for the nonlinear analysis only. 

3.1.1. Geometric Nonlinearity: 

If a structure experiences large deformations, its changing geometric configuration can 

cause the structure to respond nonlinearly. An example would be the fishing rod shown in Figure.2 

Geometric nonlinearity is characterized by "large" displacements and/or rotations. 

 

Figure 2: Geometric Nonlinearity 

 

 

3.1.2. Material Nonlinearity: 

Nonlinear stress-strain relationships are a common cause of nonlinear structural behavior. 

Many factors can influence a material's stress-strain properties, including load history (as in elasto-

plastic response), environmental conditions (such as temperature), and the amount of time that a 

load is applied (as in creep response). 

It can be of following ways  
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a) Perfectly Plastic 

An elasto-plastic material model does not account for strain hardening of the material. 

The stress increases linearly until the yield strength is reached, and then the material offers no 

further resistance to deformation. 

 

 

 Figure 3: Perfectly plastic 

 

b) Elastic Plastic Strain Hardening: 

In some materials after the yield point (or elastic limit) the stress strain curve rises up with 

increase in the strain values. This is called strain Hardening. 

 

Figure 4: Elasto Plastic Strain Hardening 
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It is sub divided into two types 

1. Isotropic Hardening: 

 

Figure 5: Isotropic Hardening Material Model (Uniaxial) 

 If the part is taken beyond the yield stress, it begins to deform plastically. If taken to a 

maximum stress (point A) and the load is released, it unloads along the dashed line. If the part 

isloaded again, no additional plastic deformation occurs until the stress reaches point A. 

 If the part is put into compression, it compresses elastically along the dashed line until it 

reaches point B, and then it yields in compression. With isotropic hardening, the change in stress 

from point A to point B is twice the maximum stress obtained. 

 

 

 

Figure 6: Isotropic Hardening Material Model (Biaxial) 



9 
 

In the biaxial case, any combination of stress inside the initial yield surface (surface A) is 

in the elastic region. Once the part is taken beyond the initial yield surface, the part experiences 

plastic deformation. 

With isotropic hardening, the center of the yield surface remains fixed but the size of the 

surface increases. Any stress state inside the new yield surface (surface B) will experience elastic 

deformation. New plastic deformation occurs when the stress state reaches surface B. 

 

2. Kinematic Hardening: 

 

 

Figure 7: Kinematic Hardening Material Model (Uniaxial) 

If the part is taken beyond the yield stress, it begins to deform plastically. If taken to a 

maximum stress (point A) and the load is released, it unloads along the dashed line. If the part is 

loaded again, no additional plastic deformation occurs until the stress reaches point A.  

If the part is put into compression, it compresses elastically along the dashed line until it 

reaches point B, and then it yields in compression. With kinematic hardening, the change in stress 

from point A to point B is twice the yield stress. 
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Figure 8: Kinematic Hardening Material Model (Biaxial) 

In the biaxial case, any combination of stress inside the initial yield surface (surface A) is 

in the elastic region. Once the part is taken beyond the initial yield surface, the part experiences 

plastic deformation. 

With kinematic hardening, the center of the yield surface moves but the size of the surface 

remains constant. Any stress state inside the new yield surface (surface B) will experience elastic 

deformation. New plastic deformation occurs when the stress state reaches surface B. 
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CHAPTER-4 

AIM 

4.1 Aim: 

  Aim of the proposed work is to study the elasto-plastic analysis of plate using perfectly 

plastic material. A modified version of the Newton-Raphson method is used to solve the nonlinear 

equations in the analysis. A non-layered and layered model are used in analysis and results were 

compared in terms of load deflection and plastic flow diagrams. A non-layered plate with different 

shapes and percentage of area of concentric cut-outs is analyzed to depict the flow behavior. The 

analysis is performed for perfectly plastic material. To illustrate the accuracy of numerical model 

the results are compared with the results obtained from the ‘ABAQUS’ software. 
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CHAPTER-5 

Formulation for Finite Element Method 

 

5.1 Formulation for Finite Element Method: 

Equilibrium equations  

                                                [K] δ + P = ψ(δ)  ≠ 0            (1) 

Where [K] is assembled stiffness matrix  

 P is vector of applied load 

 δ is vector of basic unknown i.e. defections d 

 ψ(δ) is vector of residual force. 

If the coefficients of the matrix K depend on the unknowns δ or their derivatives, the problem 

clearly becomes nonlinear. In this case, direct solution of equation system (1) is generally 

impossible and an iterative scheme must be adopted. For nonlinear situations, in which the stiffness 

depends on the degree of displacement in some manner, K is equal to the local gradient of the 

force-displacement relationship of the structure at any point and is termed the tangential stiffness. 

The analysis of such problems must proceed in an incremental manner since the solution at any 

stage may not only depend on the current displacements of the structure, but also on the previous 

loading history. In present study Newton-Raphson technique following the tangential stiffness 

method is adopted for nonlinear analysis of Mindlin plate. 

 

5.2 Discretization: 

The arbitrary shape of the whole plate is mapped into a Master Plate of square region [-1, +1] in 

the ξ-η plane with the help of the relationship given by 

                      x =∑ 𝑁𝑖(𝜉, 𝜂)𝑥𝑖
8
𝑖=1                               (2)   

and   y =∑ 𝑁𝑖(𝜉, 𝜂)𝑦𝑖
8
𝑖=1                        (3)   



13 
 

Where (𝑥𝑖,𝑦𝑖) are the coordinates of the 𝑖𝑡ℎ node on the boundary of the plate in the x-y plane and 

𝑁𝑖 (𝜉, 𝜂) are the corresponding cubic Serendipity shape functions presented below. 

 

Figure 9: 8 Noded Serendipity element 

 

N1 = 1 4⁄   (η – 1) (1- ξ) (η + ξ + 1) 

N2 = 1 2⁄   (1 –η) (1- ξ 2) 

N3 = 1 4⁄   (η – 1) (1- ξ) (η–ξ + 1) 

N4 = 1 2⁄   (1 –η2) (1 + ξ) 

N5 = 1 4⁄   (1 + η) (1 + ξ) (η + ξ– 1) 

N6 = 1 2⁄   (1 + η) (1- ξ 2) 

N7 = 1 4⁄   (1 + η) (1 – ξ) (η–ξ– 1) 

N8 = 1 2⁄   (1 –η2) (1 –ξ) 

[N] = [N1 N2 N3 N4 N5 N6 N7 N8]                      (4) 
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5.3 Plate element formulation: 

The displacement field at any point within the element is given by  

    {𝑈} = [

𝑢 − 𝑧 θₓ(x, y)

𝑢 − z θy(x, y)
w(x, y)

]                                          (5)  

Owing to the shear deformations, certain warping in the section occurs as shown in Fig.10. 

However, considering the rotations θx and θy as the average and linear variation along the 

thickness of the plate, the angles ϕx and ϕy denoting the average shear deformation in and x-y 

 

Figure 10:  warping in plate section 

 

{
𝛳𝑥
𝛳𝑦
} = {

𝜕𝑤

𝜕𝑥
+ 𝜑𝑥

𝜕𝑤

𝜕𝑦
+ 𝜑𝑦

}                                   (6) 

 

The plate strains are described in terms of middle surface displacements i. e. x-y plane coincides 

with the middle surface .The strain matrix is given by 

{𝜖} = {
𝜖𝑓
𝜖𝑠
} =

{
 
 

 
 
𝜖𝑥
𝜖𝑦
ϒ𝑥𝑦
ϒ𝑥𝑧
ϒ𝑦𝑧}

 
 

 
 

                                       (7) 
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And stress matrix is given by 

{𝜎} = {
𝜎𝑓
𝜎𝑠
} =

{
 
 

 
 
𝜎𝑥
𝜎𝑦
τ𝑥𝑦
τ𝑥𝑧
τ𝑦𝑧}

 
 

 
 

                                                   

For non-layer approach 

We interpret   

[𝜎𝑓] = [ 𝑀𝑥 𝑀𝑦 𝑀𝑥𝑦]T                              (9) 

and    [𝜎𝑠 = [ 𝑄𝑥    𝑄𝑦]
T                (10) 

For layered approach 

𝜎𝑓
′ = ∫ 𝑧𝜎𝑓𝑑𝑧

−𝑡/2

−𝑡/2
                                                   (11) 

𝜎𝑠
′ = ∫ 𝑧𝜎𝑠𝑑𝑧

−𝑡/2

−𝑡/2
                                                   (12) 

Since iterative method is for analysis, the corresponding relations in incremental form can be 

written as 

{𝛿𝜖} = {
𝛿𝜖𝑓
𝛿𝜖𝑠

} =

{
 
 

 
 
𝛿𝜖𝑥
𝛿𝜖𝑦
𝛿γ𝑥𝑦
𝛿γ𝑥𝑧
𝛿γ𝑦𝑧}

 
 

 
 

                                       (13) 

𝛿𝜖𝑓 = 𝑧 [−
𝜕𝛿𝛳𝑥

𝜕𝑥
−
𝜕𝛿𝛳𝑦

𝜕𝑦
−(

𝜕𝛿𝛳𝑦

𝜕𝑥
+
𝜕𝛿𝛳𝑥

𝜕𝑦
)]T              (14) 

𝛿𝜖𝑠 = [
𝜕𝛿𝑤

𝜕𝑥
− 𝛿𝛳𝑥,

𝜕𝛿𝑤

𝜕𝑦
− 𝛿𝛳𝑦]

T                              (15) 
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5.4 Strain displacement relationship: 

For an isotropic material the displacement can be written as 

U=∑ 𝑁𝑖(𝜉, 𝜂)𝑢𝑖
8
𝑖=1                              (16) 

Where ui is nodal displacement vector at ith node may be represented as 

ui = [wi, 𝛳𝑥𝑖, 𝛳𝑦𝑖]
T                             (17) 

U = [w, 𝛳𝑥, 𝛳𝑦]T                             (18) 

The flexural strain –displacement equation in incremental form is given as 

𝛿𝜖𝑓 =∑ 𝐵𝑓𝑖𝛿𝑢𝑖
8
𝑖=1                              (19) 

Where     𝐵𝑓𝑖 =

[
 
 
 
 0 −

𝜕𝑁𝑖

𝜕𝑥
0

0 0 −
𝜕𝑁𝑖

𝜕𝑦

0 −
𝜕𝑁𝑖

𝜕𝑦
−
𝜕𝑁𝑖

𝜕𝑥 ]
 
 
 
 

                               (20) 

The incremental shear strain displacement equation is 

𝛿𝜖𝑠 =∑ 𝐵𝑠𝑖𝛿𝑢𝑖
8
𝑖=1                                      (21) 

Where            𝐵𝑠𝑖 = [

𝜕𝑁𝑖

𝜕𝑥
−𝑁𝑖 0

𝜕𝑁𝑖

𝜕𝑦
0 −𝑁𝑖

]                            (22) 

5.5 Virtual work Equation: 

Giving a virtual displacement 𝛿𝑢 to the system the virtual work statement may be written as 

∑ [𝛿𝑢𝑖]
𝑇 {∫𝐴 ∫ [𝐵𝑓𝑖]

𝑇
𝜎′𝑓𝑧 + [𝐵𝑠𝑖]

𝑇𝜎𝑠′𝑧 − [𝑁𝑖]
𝑇𝑞

𝑡/2

−𝑡/2
} 𝑑𝑧 𝑑𝐴𝑛

𝑖=1 = 0                            (23) 

Or  ∑ ψi(u) = 0𝑛
𝑖=1  

where ψi is residual force vector at ith node. 
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Since equation (23) must be true for any set of virtual displacements we get (for layered model) 

{∫ 𝐴 ∫ [𝐵𝑓𝑖]
𝑇
𝜎′𝑓𝑧 + [𝐵𝑠𝑖]

𝑇𝜎′𝑠𝑧 − [𝑁𝑖]
𝑇𝑞

𝑡/2

−𝑡/2
} 𝑑𝑧 𝑑𝐴 = 0                 (24) 

For layered model 

{∫ 𝐴 ∫ [𝐵𝑓𝑖]
𝑇
𝜎′𝑓𝑧 + [𝐵𝑠𝑖]

𝑇𝜎′𝑠𝑧 − [𝑁𝑖]
𝑇𝑞

𝑡/2

−𝑡/2
} 𝑑𝑧𝑑𝐴 = 0                  (25) 

For nonlayer model  

∫ [[𝐵𝑓𝑖]
𝑇
𝜎𝑓 + [𝐵𝑠𝑖]

𝑇𝜎𝑠 − [𝑁𝑖]
𝑇𝑞] 𝑑𝐴 = 0                                     

𝐴
(26) 

ψ= [ψ1, ψ2,ψ3,………ψn]
T                                                 (27) 

Contribution to residual force vector is evaluated at element level and then assembled to for 

residual force vector ψ. 

 

5.6 Formulation in inelastic region: 

In this study material non linearity due to an elasto-plastic material response is considered and 

isotropic effects are included in the yielding behavior. To model elasto-plastic material behavior 

in inelastic region two conditions have to be met: 

1. A yield criterion representing the stress level at which plastic flow commences must be 

postulated, 

2. A relationship between stress and strain must be developed for post yielding behavior. 

Before onset of yielding the relationship between stress and strain is given by       

                         σ = D*ε                                          (28) 

D   is rigidity matrix 

𝐷 = [
𝐷𝑓
𝐷𝑠
]                                         (29) 
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𝐷𝑓 =
𝐸𝑡3

12(1−𝜈2)
[

1 𝜈 0
𝜈 1 0

0 0
(1−𝜈)

2

]                            (30) 

                                         𝐷𝑠 =
𝐸𝑡

2.4(1 + 𝜈)
[
1 0
0 1

] 

For the isotropic material the yield criteria adopted is a generalization of the Von Mises law. 

5.7 The Von Mises Yield Criterion: 

In general form yield criterion is written as  

    F (σ, χ) = f (σ) –Y (χ) = 0        (31)         

Where f is some function of the deviatoric stress invariants and Y is yield level which is function 

of hardening parameter χ. 

Defining the effective stress σ for isotropic Von Mises material as  

       σ = √3𝑘                          (32) 

   

 Where    𝑘  = (J2′)
1/2                                        (33) 

 

and J2′ is the second deviatoric stress invariants  

 

J2′= 
1

6
 [(σ1 – σ2)

2 + [(σ2 – σ3)
2 + [(σ3 – σ1)

2]                     (34) 

σ1,σ2,σ3 are principal stresses            

      = 
1

2
 [σx’

2 + σy’
2 + σz’

2] + τxy
2 + τyz

2 + τzx
2     (35) 

 

5.8 Elasto-plastic stress strain relation: 

After initial yielding the material behavior will be partly elastic and partly plastic. During any 

increment of stress, the changes of strain are assumed to be divisible into elastic and plastic 

components, so that 
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dε = dεe + dεp                                       (36) 

The elastic strain increment is given by the incremental form of  

  dεe = [D]-1dσ                                                 (37) 

 

And the plastic strain increment by the flow rule  

dεp =  𝑑𝜆
𝜕𝑄

𝜕χ
                                         (38) 

where Q is defined as plastic potential and 𝑑𝜆 is a proportional constant called plastic multiplier. 

The assumption Q≡  fgives rise to an associated plasticity theory, in which case equation (38) 

represents the normality condition; since 
𝜕𝑓

𝜕σ
 is a vector directed normal to the yield surface in a 

stress space geometrical interpretation. 

 

Figure 11: Geometrical representation of the normality rule of associated plasticity 

 

The differential form of eq. (31) is 

 

  dF =
𝜕𝐹

𝜕σ
dσ +

𝜕𝐹

𝜕χ
dχ = 0                                       (39) 

or aTdσ – Adλ = 0     (40) 

in which the flow vector aT is define as 
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  aT = 
𝜕𝐹

𝜕σ
 = [

𝜕𝐹

𝜕σx
 ,
𝜕𝐹

𝜕σy
  ,

𝜕𝐹

𝜕τxy
 ,

𝜕𝐹

𝜕τyz
 ,

𝜕𝐹

𝜕τzx
]        (41) 

Equation (39) & (40) can be reduced to get 

                 A = -
1

𝑑𝜆

𝜕𝐹

𝜕χ
dχ                              (42) 

Total incremental strain is 

    dε = [D]-1dσ + 𝑑𝜆 
𝜕𝐹

𝜕χ
                                     (43) 

 

Pre-multiplying both sides by aT D and eliminating aTdσ by using eq. (42), we get 𝑑𝜆  to be 

𝑑𝜆 = 
1

[𝐴+aT 𝐷 a]
aT DT a dε     (44) 

 

Manipulation of equation (36) to equation (44) will give elastoplastic incremental stress strain 

relationship 

     dσ= Depdε                                   (45) 

Where  

     Dep =  𝐷 −
𝐷 a aT D

[𝐴+aT 𝐷 a]
     (46) 

The hardening parameter A can be deduced from uniaxial conditions as 

     A = H′ =  
𝜕𝜎

𝜕𝜖𝑝
                                                           (47) 

Thus A is obtained to be the local slope of the uniaxial stress/plastic strain curve and can be 

determined experimentally from Fig.12 
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Figure 12: Elasto-plastic strain hardening behavior for the uniaxial case 

 

 A= H′ = 
𝐸𝑇

1−  
𝐸𝑇

𝐸⁄
                                               (48) 

The incremental stress-strain resultant relationship is given as 

 

[
𝑑𝜎𝑓
𝑑𝜎𝑠

] = [
(𝐷𝑒𝑝)𝑓 0

0 𝐷𝑠
] [
𝑑𝜀𝑓
𝑑𝜀𝑠

]                                       (49) 

  

For the analysis, yield function F is assumed to be function of 𝜎𝑓, the direct stresses associated 

with flexure only hence 𝐷𝑠 always remain elastic. 

5.9 Tangential Stiffness matrix: 

From equation (24),the tangential stiffness matrix can be written as 

𝐾𝑇 = ∫ [[𝐵𝑓]
𝑇
(𝐷𝑒𝑝)𝑓 𝐵𝑓 +

[𝐵𝑠]
𝑇𝐷𝑠𝐵𝑠] 𝑑𝐴𝐴

                              (50) 
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5.10 Equation solving technique for non-layered plate: 

1. Begin new load increment,  𝑓 = ∆𝑓. 

2. Set ∆𝑓 equal to the current load increment vector. 

3. Set 𝑑0 equal to 0 for the first increment or equal to the total displacement vector at the end 

of the last load increment. 

4. Set 𝜓0 equal to the residual force vector at the end of the last increment or equal to 0 for 

the first increment. 

5. Set  𝜓0 = 𝜓0 + ∆𝑓. 

6. Solve  ∆𝑑0 = −[𝐾𝑇]
−1𝜓0. (Use old or updated value 𝐾𝑇 ) 

7. Set  𝑑1 = 𝑑0 + ∆𝑑0. 

8. Evaluate 𝜓1(𝑑1) 

9. If solution has converged go to 11; otherwise continue. 

10. Iterate until solution has converged. 

11. If this is not the last increment go to 1; otherwise stop  

 

5.11 The iteration loop for elasto-plastic non-layered plate: 

1. Set iteration number  𝑖 = 1. 

2. Solve  ∆𝑑𝑖 = −[𝐾𝑇]
−1𝜓𝑖 . (Use old or updated value 𝐾𝑇 ) 

3. Set  𝑑𝑖+1 = 𝑑𝑖 + ∆𝑑𝑖. 

4. For each Gauss point, evaluate the increments in strain resultants  

∆𝜖�̂�
𝑖 = 𝐵𝑓∆𝑑

𝑖 

∆𝜖�̂�
𝑖 = 𝐵𝑠∆𝑑

𝑖 

5. Using the elastic rigidities estimate, at each Gauss point, the increments in stress resultants 

and hence the total stress resultants 

∆�̂�𝑓
𝑖 = �̂�𝑓∆𝜖�̂�

𝑖    Hence   �̂�𝑓
𝑖+1 = �̂�𝑓

𝑖 + ∆�̂�𝑓
𝑖 

∆�̂�𝑠
𝑖 = �̂�𝑠∆𝜖�̂�

𝑖    Hence   �̂�𝑠
𝑖+1 = �̂�𝑠

𝑖 + ∆�̂�𝑠
𝑖 

 

6. At each Gauss point, depending on the states of  �̂�𝑓
𝑖and �̂�𝑓

𝑖+1, adjust �̂�𝑓
𝑖+1 to satisfy the yield 

criterion and preserve the normality condition. 
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7. Evaluate the residual force vector  

𝜓𝑖+1 =∬{[𝐵𝑓]
𝑇
�̂�𝑓 + [𝐵𝑠]

𝑇�̂�𝑠} 𝑑𝑥 𝑑𝑦 − 𝑓 

 

8. If the solution has converged, continue, otherwise set 𝑖 = 𝑖 + 1 and go to 2. 

9. Move to next load increment. 

 

5.12 Plates with cutout: 

 The same formulation with modifications in element numbers, node numbers etc. 

 Were adopted for the analysis of plate with cutout. 
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No 
yes 

Inputs data defining geometry, boundary conditions and material 

propererties 

Reads loading data and evaluates the equivalent nodal forces  

Start 

Increments the applied load according to the specified load factors 

Set iteration 

number 

Calculate element stiffness matrices for non-layered/layered                  

elasto-plastic plate 

Solve the simultaneous equations for the incremental displacement 

Calculate total nodal displacements 

Evaluate the residual force vector for the non-layered/layeredelasto-

plastic plate 

Check whether solution has converged using a residual force or 

displacement norm  

Print outs the displacements, reactions and stress resultants for the load 

increment 

End 
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CHAPTER-6 

MODELING AND ANALYSIS 

6.1 Abaqus Modeling and analysis: 

In Abaqus modeling and analysis includes following three steps: 

1. Preprocessing 

2. Simulation 

3. Postprocessing 

6.2 Preprocessing: 

It is the initial step to analyze the physical problem. In this step model of the physical problem is 

defined and a Abaqus input file (job.inp) in generated. Basic key points are assigned here 

1. Planar 3D shell element was taken and geometry will be assigned. 

2. Material properties were defined and section was created. 

3. Created shell section has to be assigned to the part. 

4. Step was created as per the load factor and the iterative method was adopted. 

5. Boundary conditions ,load was given and finally meshing will be done with S8R5 element  

6.3 Simulation: 

The simulation is normally run as a background process. In this step already generated 

abacus input file solves the numerical problem defined in the model. For example, output from a 

stress analysis problem includes displacement and stress values which stored in binary files in 

simulation which are further to be used in postprocessing. The output file is generated as job.odb. 

During simulation Abaqus uses Newton Raphson method to solve the non-linear type 

problems. Unlike linear analysis, load application to the system is incremental in non-linear case. 

Abaqus breaks the simulation stage into number of load increments and at the end of each load 

increment it finds approximate equilibrium configuration. Sometimes Abaqus/standard takes 

number iterations to find an acceptable solution for a particular load increment. Finally the 

cumulative summation of all load incremental responses is the approximate solution to that non-
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linear problem. Abaqus uses both incremental and iterative methods to solve the non-linear 

problems.  

There are three phases in simulation stage 

a) Analysis step 

b) Load increment 

c) Iteration  

In first phase, steps should be defined which consists of loading option, output request. 

Output request describes the values of required parameters like displacement, stress, strain, 

reaction force, bending moment etc. 

Second phase is the increment step, in which load increments has to be defined by user and 

the subsequent increments will be chosen by Abaqus automatically. After each load increment the 

structure will be in equilibrium and corresponding output request values were written to the output 

database file. 

In iteration step, approximate equilibrium solution in each increment is found out. If the 

structure is not in equilibrium after iteration, Abaqus tries further iteration till closest possible 

equilibrium is obtained or the residual force is less than the given tolerance value.  

6.4 Postprocessing: 

Once the simulation was done and the fundamental variables like stress, displacement, 

reaction forces were calculated, the results can be evaluated using Visualization module of Abaqus. 

The visualization module has variety of options to display the results such as animation, color 

contour plots, deformed shape plots and X-Y plots. 

Deflection, true and plastic strain, true stress and yield stress values at desired nodes can 

be found by this module. So all these values can be obtained from the visualization module of 

Abaqus. From the XY data one has to select Field output for getting the deflection variables at 

different increments. Once XY data was found, it can import to excel to get load deflection curve. 
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CHAPTER-7 

RESULTS AND DISCUSSION 

The finite element formulation of elasto-plastic analysis of plate has been presented in 

Chaptor-5. A computer program based on the formulation has been written in MATLAB. 

Examples have been solved to validate the proposed approach. Examples include square plate with 

and without cutout. Only concentric cutout has been considered. The material type has been 

perfectly plastic only. 

7.1 Problem Statement: 

To demonstrate the effectiveness of the present formulation for elasto-plastic plate problem 

under monotonic loading, simply supported square plate of perfectly plastic material under 

uniform loading is analyzed. The non-dimensional parameters are as follows 

The plate side length L=1, 

The thickness t =0.01,  

Young’s modulus E=10.92, 

Poisson’s ratio ν=0.3 and  

The yield stress σy=1600 

7.2 Convergence study: 

A convergence study for mesh size was performed based on elastic analysis 

Convergence study of deflection at mid-point with varying mesh size  

Table 1: convergence study 

Deflection 

Value at mid-

point 

(*103) 

Mesh division 

2x2 4x4 6x6 8x8 12x12 15x15 

3.850 4.118 4.091 4.085 4.079 4.079 

Hence for analysis 12x12 mesh size has been adopted. 
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7.3 Plate: Non-layered model: 

The non-linear analysis was performed numerically, using finite element method in 

MATLAB environment  

The results obtained was compared to those published by Owen & Hinton (1980), for the  

non-layered model .The values on center node deflection for  two load factors were given in the 

Table 

Table 2: comparison of deflection values 

Load factor Present study Owen & Hinton (1980) 

0.5 2020.89 2020.89 

0.856 3501.28 3496.31 

 

The results were further validated by using ABAQUS. The results are compared in terms 

of load vs. central node displacement and plastic flow and found in good agreement. 

 

Figure 13: Load Vs. deflection diagram for non-layered model 

The deflections are same till the plate is in elastic stage i.e. till yield load.  Bifurcation starts at 

the onset of yielding.  The collapse load obtained from ABAQUS is more than that is obtained 
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from MATLAB. Because modeling perfect plastic material in ABAQUS can be done by adopting 

small gradient and analysis doesn’t get aborted when same yield stress is defined against various 

plastic strain, to avoid this a minimal increase in yield stress has been given against plastic strain 

values. The slight increase in yield value results in higher value of collapse load. 

Plastic Flow: 

A study of plastic flow is important to understand the yielding behavior of the element. 

This can be observed by plotting stress contours. The stress contours were plotted at 

different load increments. The results obtained from ABAQUS and MATLAB were 

compared and found to be similar.  

 

 

 

LF = 0.45 

LF = 0.60 

LF = 0.75 
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Figure 14: Plastic Flow (Stress Contour) Diagram at different Load Factors 

7.4 Plate: Layered model 

The non-linear analysis was performed numerically, using finite element method in 

following the formulation given in chapter 5 for layered plate. The convergence study has been 

conducted for number of layers and results were found to be converged for eight layers. The results 

are presented graphically as load deflection diagram and plastic flow diagram along thickness. The 

pattern of yield zone through thickness were observed at each increment of load and presented in 

Fig.13 the same model has been analyzed in ABAQUS and load deflection (central node) diagram 

is presented in Fig.15 

 

Figure 15: Load vs. deflection diagram for non-layered and layered model 
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The assumption used in FEM formulation implies that the whole section becomes plastic 

as soon as the bending moment reaches its yield value i.e. Plastic moment value𝑀𝑝 =
𝜎𝑦𝑡

2

4
. 

The whole cross section is assumed to have yielded when the bending moment at that 

section has exceeded Mp. In fact at this condition stresses in extreme fibers only have exceeded 

the actual yield stress value and the whole section has not yielded. Hence, unless steps are taken 

to improve this problem, the cross section may only be either fully elastic or fully plastic, without 

any intermediate states 

 

Figure 16: Load vs. deflection (central node) diagram for non-layered model 

The deflections are same till the plate is in elastic stage i.e. till yield load.  Bifurcation starts at 

the onset of yielding.  The collapse load obtained from ABAQUS is more than that is obtained 

from MATLAB. Because ABAQUS abort the analysis when same yield stress is defined for 

various plastic strain, to avoid this a minimal increase in yield stress is input against plastic strain 

values. The slight increase in yield value results in higher value of collapse load. 
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Plastic Flow: 

In a layered model development of plastic deformations can be tracked directly, since stresses 

are calculated at several different layers in the model and the plastic bending moment is calculated 

for a fully plastic cross section. The layered model provides a good approximation of plastic strain 

growing gradually from the outer layers to middle layers. This transition is depicted as smooth 

load deflection curved as shown in Fig.17 
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Figure 17: Plastic flow through the thickness 

 

7.5 Comparison between Layered and Non-layered Models: 

The load deflection diagram obtained from Abaqus and Matlab are shown in fig. Compared 

with non-layered model, the layered model exhibit more deflection at a particular load increment. 

 

Table 3: Yield Load and Collapse Load for non-layered and layered s/s plate 

Thickness(m) 

0.01 

ABAQUS MATLAB 

Yield load Collapse load Yield load Collapse load 

Non-layered 0.57 0.99 0.54 0.94 

Layered 0.59 0.99 0.55 0.866 

 

The yield load in non-layered model has been found more than layered model whereas the 

collapse load was less for layered model. This is because in a layered model stress resultants are 

calculated layer wise which allow for redistribution of stresses. Therefore a smooth curve have 

been obtained for layered model.  

LF = 0.776  

Collapse occur  

 

i 
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To proof this plates with different boundary conditions have been analysed in ABAQUS for both 

non-layered and layered models. The summary of yield and collapse loads are given in Table 3. 

and respective load deflection graphs are shown in Fig.18-Fig.22 

Table 4: Yield Load and Collapse Load for plate with different boundary conditions 

 

S.NO: Boundary Condition First yield load Collapse Load 

1. Fixed 0.76 1.88 

2. Simply Supported 0.57 0.99 

3. Three Sides Fixed And One Free 0.40 1.12 

4. Two Opposite Sides Fixed And Other 

Free 

0.61 0.80 

5. Two Opposite Sides Simply Supported 

And Other Free 

0.22 0.35 

 

Figure 18: Load vs. deflection (central node) diagram for Fixed Supports 
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Figure 19: Load vs. deflection (central node) diagram for all sides simply supported. 

 

 

Figure 20: Load vs. deflection (central node) diagram for three sides fixed and one free 
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Figure 21: Load vs. deflection (central node) diagram for two opposite sides fixed and others free 

 

Figure 22: Load vs. deflection (central node) diagram for two opposite sides simply supported and 

others free 
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7.5.1 Load Vs. Plastic strain curves for layered and non-layered s/s plate 

 

Figure23: Load vs. Plastic strain diagram for layered and non-layered s/s plate 

 

7.6 Comparison between total strain and plastic strain for a s/s non-layered 

model 

 

Figure 24: Load vs. total strain and plastic strain for a simply supported non-layered model 
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7.7 Plate with concentric cutout: 

   Another problem a plate with concentric rectangular cutout has been analyzed. The 

computer program based on the presented finite element formulation has been modified to 

incorporate the hole in the plate.  The cutout area is 6.25% of plate area. A non-layered model has 

been adopted for the analysis. The nonlinear behavior was observed through load deflection 

diagram, plastic flow, first yield and collapse loads.  For validation of results the same problem 

has been analyzed in ABAQUS and results were found in good agreement. 

Load deflection diagrams 

 

Figure 25: Load vs. deflection diagram at corner of the cut out 

The first yielding has been observed at corner nodes of the cutout and second yielding were 

observed at corner ends of the plate as anticipated.  The first yielding has been observed at load 

factor 0.54 in numerical analysis and collapse load at load factor =0.706. 

Plastic flow: 

The plastic flow has started at corner points of cutout due to high stress concentration at 

these points and the from corner ends of the simply supported ends of the plate. 

The flow occurred along the diagonals of the plate. All these nonlinear behavior are clearly 

portrayed in the plastic flow diagrams shown in Fig.26 
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Figure 26: Plastic Flow (Stress Contour) Diagram at different Load Factors 

 

To study the effect of shape on elasto-plastic behavior, three different cutouts of same area 

have been analyzed in ABAQUS.  The first yield load and collapse load were observed to be 

minimum for square cutout, then for elliptical and maximum for circular cutout as represented 

in the Table.  This is because of smoothening of the edges of the cutout which reduced the stress 

concentration. The plastic flow diagrams also upkeep these outcomes. 
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Table 5: Load at first yield and collapse load for a plate of 0.01m thickness for different cutouts 

Sl. No. Type of cutout LOAD AT FIRST 

YIELD 

COLLAPSE LOAD 

1 Plate without cutout 0.57 0.99 

2 Square 0.37 0.90 

3 Circular 0.51 0.94 

4 Ellipse 0.50 0.93 

 

 

 

Figure 27: Load vs. deflection curve at corner of the cut out for various shapes of cut out 
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deflection at cutout corner point was decreased hence causing less stresses there.  Therefore   

more load is required to attain the first yield load and collapse load. 

 

 

Figure 28: Load vs. deflection curve at corner of the cut out for different percentage of cut outs 
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CHAPTER-8 

CONCLUSIONS 

 

8.1 Conclusions: 

  

1. In non-layered model the assumption used in formulation implies that whole cross 

section becomes plastic as soon as the moment reaches its yield value i.e. plastic 

moment value which is unrealistic whereas layered model captured the correct load at 

which first yield occurred and plastic flow begins. 

2. Therefore layered model exhibited less yield load and collapse loads compared with 

non-layered model. 

3. The layered model approach provides information of plastic flow along the thickness a 

hence realistic model but requires smaller increments for convergence of solution and 

thereby more computational time.  

4. The plate with cutout exhibited beginning of yielding at corner points due to high 

stress concentration there.  

5. The rectangular cutout reduced the first yield load and collapse load to maximum 

while the circular cutout exhibited less reduction, whereas elliptical cutout showed 

reduction in between. 

6. The observation described that with increase in area of central hole first yield load and 

collapse load increase owing to less deflection at corner points of hole. 

7. It is found that the presented FEM approach can be used to trace the complex 

nonlinear behavior like progressive yielding, collapse etc. effectively for plate bending 

problem. 

8. In problems dealing material non-linearity convergence are required to satisfy the 

equilibrium condition and  the stress conditions , since the method follow step by step 

incremental approach with repetitive computations, this may lead to the error 

accumulations . Therefore the procedure is very sensitive and results depend on adopted 

incremental load (time step) and tolerance value.  
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9. The other source of limitation of this FEM formulation is inaccuracy in calculation of 

stress. The stresses are calculated using the differentiation from the displacement, which 

may cause numerical errors in stress predictions and thereby in converging the solution. 
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