
Analysis and Development of Efficient
Task Scheduling Strategies in
Heterogeneous Cloud Environment

Shailendra Singh

Department of Computer Science and Engineering
National Institute of Technology Rourkela

Analysis and Development of Efficient
Task Scheduling Strategies in

Heterogeneous Cloud Environment
Thesis submitted in partial fulfillment

of the requirements of the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Computer Science)

by

Shailendra Singh
(Roll Number: 711CS1095)

based on research carried out

under the supervision of

Prof. Dr. Pabitra Mohan Khilar

May, 2016

Department of Computer Science and Engineering
National Institute of Technology Rourkela

Department of Computer Science and Engineering
National Institute of Technology Rourkela

Prof. Dr. Pabitra Mohan Khilar

May 19, 2016

Supervisor’s Certificate

This is to certify that the work presented in the dissertation entitled Analysis and
Development of Efficient Task Scheduling Strategies in Heterogeneous Cloud Environment
submitted by Shailendra Singh, Roll Number 711CS1095, is a record of original research
carried out by him under my supervision and guidance in partial fulfillment of the
requirements of the degree of Master of Technology in Computer Science and Engineering.
Neither this thesis nor any part of it has been submitted earlier for any degree or diploma to
any institute or university in India or abroad.

Dr. Pabitra Mohan Khilar

Dedication

dedicated to my beloved parents and siblings ...

Declaration of Originality

I, Shailendra Singh, Roll Number 711CS1095 hereby declare that this dissertation entitled
Analysis and Development of Efficient Task Scheduling Strategies in Heterogeneous Cloud
Environment presents my original work carried out as a postgraduate student of NIT
Rourkela and, to the best of my knowledge, contains no material previously published
or written by another person, nor any material presented by me for the award of any
degree or diploma of NIT Rourkela or any other institution. Any contribution made to this
research by others, with whom I have worked at NIT Rourkela or elsewhere, is explicitly
acknowledged in the dissertation. Works of other authors cited in this dissertation have been
duly acknowledged under the sections “Reference” or “Bibliography”. I have also submitted
my original research records to the scrutiny committee for evaluation of my dissertation.

I am fully aware that in case of any non-compliance detected in future, the Senate of NIT
Rourkela may withdraw the degree awarded to me on the basis of the present dissertation.

May 19, 2016
NIT Rourkela

Shailendra Singh

Acknowledgment

I want to express my most profound feeling of appreciation to my guide Prof. Dr. Pabitra
Mohan Khilar, Department of, NIT Rourkela, for his significant direction and help all
through the consummation of this project. I express gratitude toward him for his capable
direction and effective advice in enhancing my comprehension of this project. I state my
feeling of utmost respect towards those whose names are taken in the reference section.
I recognize my obligation to every one of them. Finally, I feel special to have such a
companion circle who provided a wide range of assistance for effectively completing this
project. —

May 19, 2016
NIT Rourkela

Shailendra Singh
Roll Number: 711CS1095

Abstract

In recent years, Cloud computing has become the integral part of information technology.
Lots of research is being done from academic level to industry level. Cloud computing
provides service to the users through internet and other distributed network environment on
pay as you use basis and user demand basis. It provides an virtual environment of computing
resources which can be utilized by cloud users and cloud applications. Cloud technologies
are efficient, low cost and reliable that is why cloud computing has become very interesting
and emerging computing paradigm for innovations. Scheduling in cloud systems is one
of the biggest challenge. An efficient task scheduler is that which is flexible according to
the changing environment of clouds and complexity of the submitted tasks. Efficient use
of system and getting highest performance of the system is the primary goal of any task
scheduling algorithm.

Cloud service providers always struggles with problems such as load balancing, Task
completion time and wastage of resources. This thesis basically focuses on Task completion
time of tasks submitted to the virtual Machines (VMs). Multiple experiments has been
performed in CloudSim 3.0.3 simulation toolkit. All the experimental results have
been obtained from CloudSim by using base classes and libraries provided in toolkit.
Without using any single physical machine CloudSim library gives an full environment for
development and research the different techniques for simulation and modelling.

Few most generic task scheduling strategies have been studied for this thesis. Based
on the study a new strategy has been proposed. This new strategy is named as SCHFMC
algorithm, it’s description and study has been provided in chapter 4. SCHFMC algorithm
helps in allocating the tasks to the virtual machines (VMs) with varying processing capacity.
It has an efficient way to utilise the full processing power of machine so that system can be
active and alive without any failure. This algorithm reduces the total completion time of all
tasks submitted to the virtual machines. This algorithm has performed better than generic
task scheduling methods. This new scheduling technique has reduces the total execution
time of all task by upto 30% than generic methods.

Keywords:CloudComputing;Task Scheduling;Minimizing Task completion time;Virtual
Machines; Load Balancing; CloudSim; Cloudlets.

Contents

Supervisor’s Certificate ii

Dedication iii

Declaration of Originality iv

Acknowledgment v

Abstract vi

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Introduction to Cloud Computing . 1
1.2 Task Scheduling in Cloud Computing . 2
1.3 Motivation . 3
1.4 The Problem Statement . 4
1.5 Structure of thesis . 4
1.6 Conclusion . 5

2 Literature Review 6
2.1 Cloud Computing: Overview . 6
2.2 Features of Cloud Computing . 6

2.2.1 Fast Implementation . 6
2.2.2 Less Cost . 6
2.2.3 Scalability . 7
2.2.4 Maintenance . 7
2.2.5 Accessibility . 7
2.2.6 Security and Privacy . 7

2.3 NIST Cloud Model: Essential Characteristics 7
2.3.1 On-demand self service . 8

vii

2.3.2 Broad Network Access . 8
2.3.3 Resource Pooling . 8
2.3.4 Rapid Elasticity . 8
2.3.5 Measured Service . 9

2.4 NIST Cloud Model: Service Models . 9
2.4.1 Cloud Software as a Service (SaaS) 9
2.4.2 Cloud Platform as a Service (PaaS) 9
2.4.3 Cloud Infrastructure as a Service (IaaS) 9

2.5 NIST Cloud Model: Deployment Model 10
2.5.1 Public Cloud . 10
2.5.2 Private Cloud . 10
2.5.3 Hybrid Cloud . 10
2.5.4 Community Cloud . 10

2.6 Cloud Computing with CloudSim . 11
2.7 Layered Design of CloudSim . 11

2.7.1 User Level Middleware (SaaS) . 11
2.7.2 Core Middle ware (PaaS) . 11
2.7.3 System Level (IaaS) . 12
2.7.4 Cloud Application . 12

2.8 Implementing Clouds in CloudSim 3.0.3 12
2.9 Task Scheduling Strategy and Simulation in CloudSim 13
2.10 Conclusion . 14

3 Implementation of Generic Task Scheduling Strategies in Clouds 15
3.1 Introduction . 15
3.2 Static and Dynamic Scheduling . 15
3.3 System Configuration . 16
3.4 Input for Algorithms and their Implementations 16
3.5 Existing Common Algorithms Implementation 18

3.5.1 First Come First Serve (FCFS) 18
3.5.2 Round Robin Scheduling (RR) 19
3.5.3 Generalized Priority Scheduling 20
3.5.4 Min-Min Task Scheduling . 20
3.5.5 Max-Min Task Scheduling . 21
3.5.6 Largest Cloudlets to Fastest Processor (LCFP) 21
3.5.7 Smaller Cloudlets to Fastest Processor (SCFP) 22

3.6 Conclusion . 24

viii

4 Proposed Work 25
4.1 Introduction . 25
4.2 Notations and Performance Parameters . 25

4.2.1 Task Execution Time (ET) . 26
4.2.2 Task Start Time (ST) . 26
4.2.3 Task Finish Time (FT) . 26
4.2.4 Fractional Task Length (FTL) . 26
4.2.5 Fractional Machine Capacity (FMC) 26

4.3 Algorithm . 27
4.4 Breif Explantion . 28
4.5 Implementation and Results . 28
4.6 Comparative Study: FCFS,LCFP,SCFP,SCHFMC 31

4.6.1 Experiment 1 . 31
4.6.2 Experiment 2 . 33
4.6.3 Experiment 3 . 34

4.7 Conclusion . 35

5 Conclusion 36
5.1 Conclusion . 36
5.2 Scope for Future Research . 36

ix

List of Figures

1.1 Phases of Task Scheduling . 3

2.1 NIST Standard Cloud Computing Model 8
2.2 Layered Design of CloudSim . 12
2.3 Class Diagram of CloudSim 3.0.3 . 13

3.1 Graphical representation of FCFS results 19
3.2 Graphical representation of LCFP results 22
3.3 Graphical representation of SCFP results 23
3.4 Graphical representation of Comparison of FCFS,SCFP,LCFP results . . . 24

4.1 Graph for results of Experiment-1 . 32
4.2 Graph for results of experiment 2 . 34
4.3 Graph for results of Experiment 3 . 35

x

List of Tables

3.1 VMs configuration used in experiments 17
3.2 Cloudlets configuration used in experiments 17
3.3 Comparison of FCFS, LCFP, FCFP with input vmList and cloudletList . . . 23

4.1 Cloudlet/Task list with FTL value . 29
4.2 Cloudlet/Task list in sorted order according to FTL value 29
4.3 VM list with their FMC value . 29
4.4 VM list in sorted order according to FMC value 29
4.5 Graphical representation of Proposed algorithm results 30
4.6 Final allocation table with assigned VM and Execution Time (TE) 30
4.7 VM list with MIPS capacity for Experiment-1 31
4.8 Cloudlet list with MI length for Experiment-1 31
4.9 Results of Experiment-1 . 32
4.10 VM list with MIPS capacity for Experiment-2 33
4.11 Cloudlet list with MI length for Experiment-2 33
4.12 Results of experiment 2 . 33
4.13 Performance of Proposed Algorithm(SCHFMC) 35

xi

Chapter 1

Introduction

1.1 Introduction to Cloud Computing

Cloud computing provides the infrastructure, platform and numerous software services,
which is a pay-as-you-go model to provide consumers with a subscription-based
service[1-3]. Formerly these services are known as Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS). The importance of these
services, highlighted in the recent report of Berkeley[1]: ”Cloud computing, long-held dream
of computing as a tool, it is possible to change a large part of the IT industry, making the
software more attractive as a potential services ”. Creating efficient and reliable Datacenters
by giving them capabilities of virtual services like hardware, web applications, databases,
web storages is the main aim of the cloud computing system. User from all around globe who
can access internet can also use these utilities to create their own application and make them
public over internet or they can create their own virtual computer system and can perform
all computation which they can do in their local computer system.

Users do not have to spend anything for physical infrastructure. They only have to pay
a small pre-agreed amount according to the Quality of Service requirements. It helps the
organisation to maintain their primary focus on the innovation and smooth development. In
cloud computing environment cloud infrastructure like hardware resources, storage, content
delivery etc. or other services is provided by cloud service provider like Amazon, Google,
Microsoft. A remote user who has access to these cloud providers can use available service
as he needs and can make them free once no more use of those services. To meet the goal
of delivering on-demand and high performance computing resources and services few the
favourite research areas of cloud computing are –

• Efficient Datacenter organisation

• Virtualization

• Resource allocation

• Task scheduling

1

Chapter 1 Introduction

• Reliability of Quality of service (QoS)

• Security and Privacy

Hosting web services, delivering content to the other web applications and other real time
data processing and applications are the few of the most benefited cloud based application.
Practically all of these applications has different requirements of resources and need different
kind of processing machine for execution in different kind of processing environment.

Maintaining the performance of the resource allocation and task scheduling policies in
the real cloud system for application of varying configuration and service requirements, is
very challenging due to -

• Clouds experiences the frequently changing pattern of demand of services and delivery
of services, and size of the requested system.

• Highly competing QoS need and large variation in requirements.

This chapter has five other sections. Section 1.2 gives very short description about task
scheduling in cloud environment. Section 1.3 demonstrate the motivation for further part of
this thesis. Section 1.4 shows the actual problem statement for this thesis and finally Section
1.6 concludes the chapter.

1.2 Task Scheduling in Cloud Computing

Task scheduling is one the most important area of research to explore. In cloud computing
point of view, scheduling problem is related to assign virtual machines (VMs) to the
submitted tasks/jobs. An efficient task scheduler takes the task and assigns it to the such
virtual machine (VM) which reduces the overall executing time and fully utilises machine.
An optimal task scheduler in cloud system has responsibility that total system requirements
reduces and overall cost of processing should also be decreased significantly.

Task scheduling in cloud computing system is divided into three phases [18] as shown
in Figure 1.1.

• Getting the available resources (VMs) and refine them

• Select the most suitable resource according to heuristic approaches

• Allocate the task to this resource (VM).

2

Chapter 1 Introduction

Figure 1.1: Phases of Task Scheduling

1.3 Motivation

Cloud computing has become one the most important field of computer science. Resource
allocation and Task scheduling are two of the most challenging issues in any cloud system.
Resource allocation consist of the two phases

• Creating virtual machine and allocating to the hosts

• Optimising the allocation so that hosts in Datacenters can be fully utilised.

The efficiency of any Task scheduling strategy depends upon the resource allocation
in that cloud system. If a very small task has been submitted to the machine with large
processing power than that machine will sit idle for a while. This leads to the bad utilisation
of resources. Every task scheduling methodology must consider the these following
protocols –

• Must improve the proper utilisation of resources (VMs) which are assigned to execute
the task.

• There must be a priority in assigning certain task so that they can be executed properly
and fast.

• Must increase the overall system utilisation.

• Minimizes the execution time of each task and overall completion (Make Span) of the
total task submitted to cloud system.

• There must be very less faults during processing and self re-allocation of resources in
case of failures.

3

Chapter 1 Introduction

1.4 The Problem Statement

The overall problem of task scheduling is to assign a virtual machine (VM) to the submitted
tasks such that overall utilisation of the system increases and task completion time decreases.
This is the main aim in cloud computing environment to allocate machines to the task
effectively.

This mathematical formula is given for any task scheduler[14]. A new scheduling
heuristic must be developed taking parameters of this formula in consideration –

n∑
i=1

m∑
j=1

Xij ∗ Tij +Xij ∗ Cij +Xij ∗ Sij ≤ Fmin

Where each of the symbol represents -
M = 1,2,3, n are the n virtual machines (Resources)
N = 1,2,3 m are the m task which are to be assigned to VMs
Fmin = Objective function with minimum completion time of all tasks
Xij : Task i occupies the virtual machine j
Tij : Execution time of task i by the virtual machine j
Cij : Cost of task i during execution by the virtual machine j
Sij : Resource utilisation of of machine j by task i

Every task scheduling algorithm is developed by taking one the above three parameter
(Tij, Cij or Sij) into consideration. Every scheduler has to decrease Tij and Cij as much as
possible and have to increase Sij upto greater extent.

The main problem statement for this thesis can be briefed in following points:

• Let VMlist = VM1, VM2, VM3 VMn which is stored into a list and can be used
in future during allocation.

• Let Jlist = J1, J2, J3 Jm is the list of the m jobs and stored into a list.

• We have to map Jlist =⇒ Vmlist in such a way that overall completion time of all the
job reduces and the use of the resources reduced so that they can serve other jobs in
same time with using any other resource.

1.5 Structure of thesis

This thesis has 6 chapters including this introduction chapter. Chapter 2 gives the brief
introduction of cloud computing, CloudSim and related terminology. It also gives the main
characteristics and issues in development of the scheduling algorithms. Chapter 3 contains
the previous work and algorithms of assigning task into the virtual machines. Chapter 4 has

4

detailed description of proposed algorithm for new task scheduling algorithm for assigning
jobs into virtual machines. This chapter also contains comparison of the proposed algorithm
with the various other algorithms and explains the goodness of the algorithm. Chapter 5
covers the simulation and results. It contains graphs and tables of the results of comparison
with other algorithms. Chapter 6 concludes the work and proposes some future work.

1.6 Conclusion

The overall motive of a cloud system is to reduce overall processing cost and efficient use
of the resources. Scheduling techniques should be developed in such a way that there is an
even distribution of the load into the virtual machines. Primary goal of task allocation is
to reduce the overall completion time and proper utilisation of virtual machines. Proposed
algorithm has been developed by taking these two issues into consideration. This proposed
algorithm has performed better than many algorithm discussed in chapter 3.

Chapter 2

Literature Review

2.1 Cloud Computing: Overview

The clouds are changing the way computer system being used. It has been explored from
business uses to the academic uses to the personal uses. Hence without cloud computing
technologies our today’s life would not have been like this. All services like facebook, gmail,
whatsapp etc would not been possible without cloud technologies. Cloud technologies has
transformed the business section tremendously. Today numerous organisation rely on cloud
services from online meeting to project collaboration and content sharing. Few of the most
exciting features of cloud computing are listed below.[8-9]

This chapter gives complete literature review for this thesis. Section 2.2 gives description
of available features of current cloud computing environment. Section 2.3, Section 2.4 and
Section 2.5 gives the brief information about standard cloud model given by NIST, America.
Section 2.6, Section 2.7. Section 2.8 and Section 2.9 has proper description about Cloudsim
and how actual cloud environment can be simulated in Cloudsim. Finally Section 2.10
concludes this chapter.

2.2 Features of Cloud Computing

2.2.1 Fast Implementation

Previously there used to be various phases to develop any software or any applications. It
used to takes month and even years to become public and usable. But today we can create
required application using built in tools, utilities ans services available in clouds and can
create applications within weeks and even in hours.

2.2.2 Less Cost

There used to be various type of expenses in building even small application from
development to the deployment. But in cloud computing technologies the cost is

6

Chapter 2 Literature Review

dramatically decreased and sometimes its completely free. We may have to pay some
monthly subscription fee and at any time we can use any services available at cloud provider.

2.2.3 Scalability

There was a time when if we have to increase our system requirement we had to start from
scratch. For example an any instant our used databases overflowed, than we have to use new
storage infrastructure and have to take care the old data by own. But in cloud technology we
do not have to do anything just have to inform the provider and pay extra cost if applicable
and within minutes our storage is expanded.

2.2.4 Maintenance

This is fact that in software industry maintenance cost of any software is way higher
than production cost. Cloud computing technology has proved it self the perfect solution
for maintenance problem. You get regular notification of your application, statistics and
vulnerabilities. It also suggests the proper methods to make application up and running
smoothly.

2.2.5 Accessibility

This is one of the most important feature of the cloud technology that we do not have to
find any particular place with some resources, simply if we have access to the cloud service
provided we can access anything about application.

2.2.6 Security and Privacy

Most business organisation have great concern about security and privacy of their application
and its data. But their has been developed many techniques to secure the data. Even today
end-to-end encryption techniques has been developed which means that even cloud service
provider does not have any information about data store.

The USNational Institute of Standards and Technologies (NIST) has developed anmodel
for cloud computing which contains 4 deployment models, 5 characteristics and 3 service
models as shown in Figure 2.1 [4].

2.3 NIST Cloud Model: Essential Characteristics

NIST cloud model has proposed five characteristics of any cloud system[4].

7

Chapter 2 Literature Review

Figure 2.1: NIST Standard Cloud Computing Model

2.3.1 On-demand self service

User can request for any service available and which comes under service level agreement
between user and cloud provider. And cloud must be able to deliver requested services
without any human intervention.

2.3.2 Broad Network Access

Cloud services must be available through range of available network for example it must be
access through mobile phone with same convenience as it is accessed via laptop or PCs.

2.3.3 Resource Pooling

The resources available on clouds are utilised in such a way that they can serve multiple
users at a time. This process work on multi-tenant model. Different resources over different
locations are used and re-used according to demand at that time. Customer has no knowledge
about that where physical systems are. CPU, bandwidth, virtual machines ans storage are
few resources.

2.3.4 Rapid Elasticity

In current information age when million of users are using services at same time there is
possibility that user needs some large amount of service within limited amount of time.
Cloud provider must be able to deliver the unlimited amount of service to unlimited number
of user at the same time.

8

Chapter 2 Literature Review

2.3.5 Measured Service

Cloud system should have capability to automate the process of resource optimization and its
uses. There must be a transparency between cloud provider and the customer over resource
utilization.

2.4 NIST Cloud Model: Service Models

NIST cloud model has proposed three service of any cloud system[4].

2.4.1 Cloud Software as a Service (SaaS)

Cloud provider has various applications running on servers. Cloud user can use these
application via their web browsers of mobile or laptops. Customer does not have to
care about background function or other infrastructure like operating system, memory and
servers. User can start using these services simply authenticating the service. For example:
Gmail service. There is no loss of information or data because everything is stored and
processed over clouds if local device (mobile or laptops) stops working or lost than do not
have to worry, simply login again with other device and start working from where left last
time. Services can be extensively scaled as consumer needs.

2.4.2 Cloud Platform as a Service (PaaS)

This service provides all in one package to develop and deploy the cloud based (Web based)
application. By taking simple example of a ASP.Net based website with MySQL Server
as database. Cloud provider like Amazon Web Services (AWS) gives all in one package
like web templates in HTML and CSS, Integrated Development Environment (IDE) to write
ASP code with HTML, CSS and JavaScript. And access to a database based on MySQL
server with latest version available. And great thing about PaaS is that all these things are
made available through web browser. We do not have to go anywhere or we do not have
to install MicroSoft Visual Studio to for development. Once the development is done AWS
gives cheap hosting services to host our ASP website. This is the power of PasS of Cloud
Service. It reduces the complexity of the middle ware from development to deployment.

2.4.3 Cloud Infrastructure as a Service (IaaS)

This service of cloud computing basically has been developed taking big organisation into
consideration. This service provide the organisation the huge processing resources like Data
Centres, large network storage and servers as pay per use basis. It reduces huge cost by

9

Chapter 2 Literature Review

zero investment in hardware infrastructure. The whole infrastructure scales as demanded by
customer to help the varying workload of cloud system

2.5 NIST Cloud Model: Deployment Model

Deployment model considers that when and where these cloud will be available ans who will
be the owner of the cloud. According to these parameters cloud has been derided into four
categories. NIST cloud model has proposed four service of any cloud system[4].

2.5.1 Public Cloud

Public clouds are the proprietary of companies which has frequent access to the public
network and processing resources in low cost. User do not have to worry about supporting
resources or they do not have to buy any hardware and software, they are managed and
owned by cloud providers. SaaS application from CRM to data analytics systems. It also
has powerful PaaS for web based application development and deployment model. It also
provided elastic and scalable IaaS services.

2.5.2 Private Cloud

The sole purpose of private cloud is to serve single organisation. It may be managed by
same organisation or by some third party provider. These clouds can be hosted either inside
the same organisation or at some external sources. There is an automated interface which
controls the services. It allows organisation staff ro allocate and re-allocate the resources.
It has special security and administrative protocols designed for special requirement of the
company.

2.5.3 Hybrid Cloud

A hybrid cloud utilises the foundation of the private cloud attached with planned connection
and takes advantage of public cloud services. The problem is that private clouds of any
organisation can not be survive alone mean isolated with the organisation’s resources. Hence
most of the organisations with private clouds takes advantage of hybrid clouds to manage
the loads across the public and private clouds and the datacenters. These clouds helps
organisations to keep sensitive data in private clouds. It enables to use Public clouds as well
as private cloud from same environment and resources. It also has feature of portability.

2.5.4 Community Cloud

This cloud infrastructure is allocated for use by particular community of users from some
group or organisation who has shared requirements. It might be governed by same group of

10

Chapter 2 Literature Review

community or some third party.

2.6 Cloud Computing with CloudSim

Every cloud service provider has responsibility to keep on changing their allocation,
scheduling and other security related issues at certain interval of time. The developer has
to develop the algorithms and application hence to test them they need a fully functional
cloud computing environment. This is not practical to all level of development. It is not
realistic to carry out regular experiments in repeatable and scalable environments using real
world cloud systems. Hence a simulation toolkit like CloudSim can be highly useful for
performing real cloud experiments into the simulation tool. CloudSim is a library written in
Java language. The Cloudsim toolkit facilitates the system level and behaviour modelling
of the cloud computing elements like VMs, Datacenters, hosts, resource and task allocation
policies. It implements most common policies which can be further extended as developer
need. Current version 3.0.3 of CloudSim supports the simulation modelling of the clouds
environment having single and federation of clouds[5-6].

2.7 Layered Design of CloudSim

CloudSim toolkit is developed by taking four layers into consideration. SaaS, PaaS and IaaS
and End Users are directly related to each of the layer of Cloudsim. It is shown in Figure
2.2. Each level represents the different service offering of the real cloud systems.

2.7.1 User Level Middleware (SaaS)

This layer consist of framework and web interfaces to help programmers and developers for
developing and creating rich and effective application and interfaces for application running
on the upper level. This layer supports other modules like programming, libraries which
helps in distributed programming to create application development and deployment.

2.7.2 Core Middle ware (PaaS)

Services of platform level are implemented by this layer which helps in running and
managing the user level applications. The services provided by this layer is accessed by
both layer upper layer i.e. SaaS and lower layer i.e. IaaS. Real cloud example of this layer
is Amazon’s EC2 and Google’s App Engine. Workload balance, monitoring the running
services are the few of the functions of this layer. For example Amazon provides Cloudwatch
(Amonitoring service) for EC2 developers andMicrosoft Azure’s service provides the .NET
service bus for message passing mechanism.

11

Chapter 2 Literature Review

Figure 2.2: Layered Design of CloudSim

2.7.3 System Level (IaaS)

This can be called as physical resources layer. This layers helps in creating hosts and
machines which helps in creating the data centres which create the foundation of cloud
computing. All other layers are totally dependent upon this layer. PaaS layer uses this
layer to create different policies for running the applications. Many storage and application
servers are powered by this layer because this layer has massive physical resources and they
are managed by higher level virtualization.

2.7.4 Cloud Application

This is upper most layer and directly communicates with User level middle layer (SaaS).
These applications are directly used by end users. May be these application provided on
pay per basis or some monthly/annually subscription basis. For example Amazon gives
an web based platform where user can sign up and subscribe the services and start using
services directly from the browser. Similarly other cloud provider like Salesforce someCRM
softwares, Social networks and some content delivery networks.

2.8 Implementing Clouds in CloudSim 3.0.3

Cloudsim is a java library which provides many mini libraries, classes and abstract classes
which can be extended as we need. The overall class design is shown in below Figure 2.3.
Few of the frequently used classes during experiments for this thesis are explained below.

• Cloudlet : This class is most frequently used in this project. A cloudlet in CloudSim
is equivalent to a task/job in real cloud system. It has many elements like file size,
length, output size etc. But most commonly used element is length. When we create
object of this class we have to supply length. Length of Cloudlet actually represent
the size of the task. It is represented in Million Instructions (MI).

12

Chapter 2 Literature Review

Figure 2.3: Class Diagram of CloudSim 3.0.3

• Vm: This class is also most frequently used class. A vm object represent the real
virtual machine in clouds. It has components like ram, size, bandwidth and mips out
of these mips is frequently used. Mips stands for million instruction per second we
can directly relate it with MI of cloudlet.

• CloudletScheduler: This is an abstract class which can be extended for
creating our own scheduling policies for scheduling Cloudlets into VMs.
CloudletSchedulerSpaceShared and CloudletSchedulerTimeShared are the two
type of scheduling policies has been offered in this class.

• Host: This class models a host. We can create any number of objects of this class each
one will represent an actual physical machine with its own processing power, storage,
bandwidth, storage cost etc.

• Datacenter: This class is provided to model core infrastructure. This class works
with host class to create the fully function datacenters. Hosts can be heterogeneous or
homogeneous according to their configuration of the MIPS, Storage and RAM etc.

• DatacenterBroker: This class work as mediator between the SaaS and the Cloud
service provider. It finds most suitable clouds and ask for efficiently used resource
allocation policies which can meet application requirements.

2.9 Task Scheduling Strategy and Simulation in CloudSim

The main aim of this thesis to analyse the different existing task scheduling strategies
and develop new technique. All algorithms discussed in next chapter of this thesis has
been implemented in this CloudSim toolkit. Most of experiment carried out for this thesis
has utilises the classes discussed earlier. CloudSim made quite easy to carry out such an

13

experiment for variety of inputs. Multiple experiment has been carried out with changing
the processing power of VMs and length of Cloudlets.[8][10-11]

2.10 Conclusion

This chapter has covered most of the literature, tools and libraries used for this project.
This helps in understanding the upcoming algorithm and techniques which can be easily
implemented in CloudSim. Moreover all experimental results has been generated from
CloudSIm.

Chapter 3

Implementation of Generic Task
Scheduling Strategies in Clouds

3.1 Introduction

Task scheduling is the method to map virtual machines to the tasks (Cloudlets). We can
also say that scheduler has to choose most suitable VM for a particular cloudlet so that
overall execution time for all the Cloudlets decreased and all the virtual machines do not
sit idle during execution of the Cloudlets. Hence every task scheduling technique must
consider the execution time of cloudlets and utilisation of VMs. The performance of the
datacenters is dependent upon these assignment of VMs to the Cloudlets. Task scheduling is
the NP-Complete problem. Hence task scheduling has high importance in cloud computing.
There has been lot of research and many algorithms and techniques has been developed in
task scheduling field[7-11].

This chapter contains five other section than this. Section 3.2 gives brief introduction
about two types of scheduling used in clouds. Section 3.3 contains input data for upcoming
implementation of various algorithm later in this chapter. Section 3.4 gives the system
configuration of the cloud environment for simulation in Cloudsim. Section 3.5 has detailed
description and their implementation of various algorithms. Finally section 3.6 concludes
the chapter.

3.2 Static and Dynamic Scheduling

In cloud computing environment variety of the task scheduling algorithms has been
developed. Most of them can be categorised into two types Static and Dynamic schedulers.
Static schedulers has all information about task and available machines where task has to be
executed. Hence scheduling is done after processing the pre-fetched information. While
Dynamic schedulers do not have any information until they starts the execution of the
task[15]. They can not do any pre-processing. All logic works on run time while tasks has
been started executing. Run time overhead of the static schedulers is less than the dynamic

15

Chapter 3 Implementation of Generic Task Scheduling Strategies in Clouds

schedulers because of pre-processing phase of static schedulers. All of the studied strategies
for this thesis are static scheduling techniques because all the information of the cloudlets
(Task) and VMs (Resource) is already provided before starting execution phase of the cloud
information service (CIS).

This thesis has explanation of few of the most common scheduling techniques, their
algorithms and their experimental results on CloudSim 3.0.3. These algorithms has been
implemented in CloudSim. Input for each implementation has been taken same for better
understanding and comparison with each other -

3.3 System Configuration

For all algorithm which are implemented in CloudSim has following system configuration.

Two Datacenters with 2 host on each Datacenters. One of the host has quad-core
processor i.e. it has four processing elements (Pe) and each Pe has processing power of
25000 MIPS. While second host is dual-core mean it has two Pes each with processing
power of 25000 MIPS. Each host has RAM of 8 GB. Other parameter has been taken
as default as provided into CloudSim because they are irrelevant to these experiments.
Datacenter broker starts from first Datacenter for creating virtual machines. If it does not
enough processing units in first Datacenter (DC) it requests to second DC and creates the
virtual machine of requested configuration. At last if both DCs can not provide enough
processing units to create VM of desired configuration that VM will not be created.

As creation of VM is the part of Resource Allocation problem of cloud computing, hence
All experiment rely on default resource allocation mechanism provided in CloudSim, Also
to avoid any case where some requested VM is not created because not enough processing
units available at host level (DC). Hence enough MIPS and multi core processors has been
created for performing experiments.

In next part of thesis there are few of the task scheduling strategies has been studied and
few of them has been experimented fully on CloudSim. Their algorithms and experimental
results are shown with their explanation in further part of this thesis. Inputs for all the
experiments is given in next part of this thesis.

3.4 Input for Algorithms and their Implementations

Each experiment has been implemented in CloudSim toolkit 3.0.3. Their system
configuration is same as given in section 3.2 of this thesis. Every algorithm is implemented
with one broker which requests both DCs to create 6 VMs on available hosts. Their is
one user which creates 20 Cloudlets (Tasks) to be executed by those 6 VMs. The full
configuration of VMs and Cloudlets has been shown in following table.

16

Chapter 3 Implementation of Generic Task Scheduling Strategies in Clouds

Table 3.1: VMs configuration used in experiments

VM Id MIPS RAM(MB) No of Pe
0 1000 512 1
1 600 512 1
2 300 512 1
3 800 512 1
4 1200 512 1
5 400 512 1

Table 3.2: Cloudlets configuration used in experiments

Cloudlet Id MI No of Pe
0 8000 1
1 6000 1
2 4000 1
3 6500 1
4 1200 1
5 3300 1
6 2500 1
7 4400 1
8 7700 1
9 3900 1
10 5400 1
11 1900 1
12 2300 1
13 7100 1
14 5100 1
15 4300 1
16 3500 1
17 2600 1
18 6100 1
19 8500 1

17

Chapter 3 Implementation of Generic Task Scheduling Strategies in Clouds

Following are the task scheduling strategies has been studied before writing this thesis.
Few of them are most common techniques. Few of them are implemented in CloudSim and
experimented for the range of inputs apart from the input given in this thesis.

• First Come First Serve (FCFS)

• Round Robin Scheduling (RR)

• Generalized Priority Scheduling (GPS)

• Min-Min Scheduling

• Max-Min Scheduling

• Shortest Cloudlets to Fastest Processor (SCFP)

• Longest Cloudlets to Fastest Processor (LCFP)

• Proposed Algorithm - SCHFMC

3.5 Existing Common Algorithms Implementation

3.5.1 First Come First Serve (FCFS)

This is most commonly used task scheduling strategy. As soon as any cloudlet is received in
clouds it is sent to next available VMs. It does not worry about processing speed of machine
or size of the task. Neither it care about execution time of the task. First task received is
bind to the first machine, second task to the second machine until all machines are occupied.
In such case upcoming task are schedules from first machine again. One previous task is
completed by that machine this new task will be executed.
For example: 6 tasks (J1,J2, J3,)J4,J5,J6 will be scheduled to 3 machine (VM1,VM2,VM3)
in FCFS in following way -
(J1 =⇒ VM1) , (J2 =⇒ VM2) , (J3 =⇒ VM3) , (J4 =⇒ VM1) , (J5 =⇒ VM2) , (J6 =⇒
VM3)

Results of FCFS: For the given input of Cloudlets and VMs as given in Table 3.1 and
Table 3.2. The final results of allocation of VM to the Cloudlets and execution time has
been given in given in the final comparison Table 3.3. The graph for the results of the FCFS
algorithm has been shown in Figure 3.1.

Disadvantage of this technique is that small task which are stored after long task in the
scheduled queue of a VM have to wait till all task before them in queue has been executed.
In above example Task J4 will be executed only when Task J1 has been executed completely.
So if size of task J4 is significantly less that task J1 still it has to wait for long time till task
J1 is completed executing.

18

Chapter 3 Implementation of Generic Task Scheduling Strategies in Clouds

Figure 3.1: Graphical representation of FCFS results

3.5.2 Round Robin Scheduling (RR)

The main disadvantage of FCFS scheduling was that in many cases small task has to wait for
long task to complete first if they are in last of the waiting queue. Round Robin scheduling
technique overcome this problem by using a small concept of giving fair chance to all tasks
in scheduled queue of a particular VM to be executed for equal amount of time. By using
this concept the finish time of small task at the end of the queue reduces significantly. Unlike
the FCFS a task is not executed completely while it is pre-empted after certain amount of
time (time slice) and next task in that queue is executed for the same time (time slice). This
process continues until all the tasks in the queue has been executed.

For example: 9 tasks (J1, J2 , J3,, J9) has to be scheduled into 3 VMs (VM1,VM2

and VM3) than waiting queue for each of the VM is -
Queue for VM1 =⇒ J1—-J4—-J7

Queue for VM2 =⇒ J2—-J5—-J8
Queue for VM3 =⇒ J3—-J6—-J9

Let’s suppose Size of Tasks in Queue for VM1. (J1, 1000) (J4, 100) (J7, 10) and
execution time is 1 unit for each size unit of tasks. Hence in simple FCFS approach the
finish time of J1 will be 1000 unit , for J4 will 1100 unit and for J7 finish time will be 1110
time unit. As we can see that J7 will only take 10 unit of time. It could have been finished
execution at 10 unit time after start of VM1.

In round robin technique lets suppose time slice is 1 unit. Hence after execution of 1
size of task execution is pre-empted and next task in queue starts executing. Hence using
this mechanism J7 will finish after 30 unit time (10*3), J4 will finished by 210 (30 + 90 *
2) time unit. And J1 will be finished by 1110 (900 + 210) time unit.

As from comparison from both algorithm we can see that total execution time of all
the task is same. But the finish time of the tasks in queues decreases significantly. Hence
Round Robin scheduler has advantage if we have to take care of small job which some how

19

Chapter 3 Implementation of Generic Task Scheduling Strategies in Clouds

submitted later than bigger jobs.

3.5.3 Generalized Priority Scheduling

This is not an individual algorithms. This is an approach which cover many aspect
of scheduling and helps developing new strategies. Every Cloudlet and VM has many
characteristics. User has many requirements. In cloud environment every aspect of task
and machine is important either it is processing time or resource used or which task finish
first or howmuchmemory task is taking to execute. Hence it is user’s call what is his priority
for execution. There are many characteristic comes into picture. Some of them are –

• MET: Minimum execution time of the task in VMs

• MCT: Minimum Completion/Finish time of tasks in VMs

• Memory: Less memory used by task for execution

• CPU Utilisation: Which task utilizes CPU more

• Overall Execution Time: Minimize total execution time of all submitted task.

There may be other parameters to prioritise the task to be executed. For example Round
Robin technique priority the MCT of the task that is why concept of pre-emption and time
slicing came into picture. Upcoming algorithm of this thesis like SCFP, LCFP , Min-Min,
Max-Min and proposed algorithm has given some priority to the execution time and MCT. It
may be MET or overall execution time, depends upon individual algorithm and its approach.

3.5.4 Min-Min Task Scheduling

This strategy does not bother about configuration of VMs because it does an exhaustive
pre-processing of task execution. This algorithm can be seen as just next approach after
Round Robin. In Round Robin approach we basically consider the finish time of the task
and we do not worry about small task executed first or last[25]. But min-min algorithm
takes care of execution of small task in small time as well as they executed first. Hence both
problem is solved using this algorithm without introducing concept of time slice

Following Min-Min Algorithms has an ETC a matrix created for execution time of
completion. This matrix stores the execution time of each task (Ji) in each virtual machine
(VMj).

Min-min algorithm takes remaining task in each mapping of the tasks till all the tasks
are not assigned. Hence this algorithm will execute small task first followed by larger tasks.
There is high possibility that there may be an load imbalance if majority of the tasks are
larger. The time complexity of this algorithm reaches to O(J2m) where j is number of tasks
and m is number of VMs. This algorithm give great results if ETC matrix has very less
bigger execution time value or in direct words if there less larger jobs to be executed.

20

Chapter 3 Implementation of Generic Task Scheduling Strategies in Clouds

Algorithm 1
1: procedureM -M A
2: cloudletList(CL)⇐= CL1, CL2, CL3, ,CLn
3: vmList(VM)⇐= VM1,VM2,VM3, VMm
4: while notEmpty(cloudletList) do
5: for each Task(CLi) in cloudletList(CL) do
6: for each machine(VMj) in vmList(VM) do
7: Execij⇐= Calclulate execution time of task CLi in machine VMj
8: ETCij⇐= Execij
9: end for
10: end for
11: Find Minimum value(ETCij) in ETC matrix
12: Assign CLi⇐= VMj
13: Delete CLi From cloudletList(CL)
14: end while
15: end procedure

3.5.5 Max-Min Task Scheduling

This algorithm is same as Min-min algorithm except one stage of the algorithm. This
algorithms gives priority to the execution time of the task as well as bigger task executed first.
It also does not takes care about any system configuration of virtual machines. It also does
the same pre-processing as min-min does that is creation of the ETC matrix where execution
time of each task on each machine is calculate. This matrix is refined after every mapping
step of the algorithm[23-24]. ETC matrix is same as explained in min-min algorithm. We
just select maximum completion time on each mapping of task because this algorithm gives
priority to the larger jobs first, small jobs are executed later than bigger jobs.

Max-min algorithm takes remaining task in each mapping of the tasks till all the tasks
are not assigned. Hence this algorithm will execute larger task first followed by smaller
tasks. There is high possibility that there may be an load imbalance if majority of the tasks
are smaller. The time complexity of this algorithm reaches to O(J2m) where j is number of
tasks and m is number of VMs. This algorithm give great results if ETC matrix has very less
smaller execution time value or in direct words if there less smaller jobs to be executed.

Hence min-min and max-min algorithm are almost same and should be used according
the input jobs. If priority is to given to smaller jobs than Min-min strategy should be used
while if larger job has to executed first than Max-min algorithm should be used.

3.5.6 Largest Cloudlets to Fastest Processor (LCFP)

All algorithmswhich has been discussed till now have not taken caremuch about information
related to machine configuration. There has been series of experiment has been carried out
and found that if we give priority to the processing power of the VMs and than after we

21

Figure 3.2: Graphical representation of LCFP results

schedule the task to them in FCFSmanner than this simple approach give much better results
than normal FCFS algorithm. Also in series of experiment it also has been observed that if
we use faster machines first than overall execution time decreases and utilisation of machine
is increases. Hence two basic approaches can be tested. One them is LCFP which targets
tasks with large size should be scheduled to faster machines. The result of this algorithms
are better than normal algorithm.
Step for this approach are -

• Sort in Descending cloudletList according to the size (MI) of cloudlet.

• Sort in Descending vmList according to the processing power (MIPS) of VMs

• Allocate sorted cloudlets to the sorted VMs in FCFS way.

3.5.7 Smaller Cloudlets to Fastest Processor (SCFP)

In other experiment when we schedule smaller tasks into faster machines than every time it
gave better results than LCFP and much better results than FCFS algorithm. Following are
the three basic step for implementation of this algorithm.

• Sort in Ascending cloudletList according to the size (MI) of cloudlet.

• Sort in Descending vmList according to the processing power (MIPS) of VMs

• Allocate sorted cloudlets to the sorted VMs in FCFS way.

Chapter 3 Implementation of Generic Task Scheduling Strategies in Clouds

Figure 3.3: Graphical representation of SCFP results

Table 3.3: Comparison of FCFS, LCFP, FCFP with input vmList and cloudletList

Cloudlet Id MI FCFS FCFS LCFP LCFP FCFP LCFP
0 8000 0 18.92 0 18.1 4 15.12
1 6000 1 37.33 4 14.83 0 17.8
2 4000 2 40 2 34.33 3 12.87
3 6500 3 18.37 5 33.24 1 22.16
4 1200 4 3 0 4.8 4 4
5 3300 5 19.5 3 12.37 2 32.99
6 2500 0 9.86 5 18.74 1 12.5
7 4400 1 29.33 1 19 5 28.49
8 7700 2 56 3 20.12 2 53.66
9 3900 3 14.62 4 11.33 0 13.61
10 5400 4 8.42 0 15.5 4 12.98
11 1900 5 14.24 4 6.33 0 7.6
12 2300 0 9.2 2 22.99 3 8.62
13 7100 1 41 1 23.5 5 35.24
14 5100 2 47.33 3 16.87 2 45
15 4300 3 15.62 5 27.74 1 18.5
16 3500 4 6.83 0 11.7 4 9.75
17 2600 5 17.75 1 13 5 19.49
18 6100 0 17.02 2 41.33 3 15.5
19 8500 1 43.33 4 16.98 0 20.3
Total 94,300 467.67 382.82 406.18

23

Chapter 3 Implementation of Generic Task Scheduling Strategies in Clouds

Figure 3.4: Graphical representation of Comparison of FCFS,SCFP,LCFP results

3.6 Conclusion

Previously discussed generic task scheduling methods gives priority to the task and its
completion time. Problem of small task being executed at last in FCFS is solved by Round
Robinmethod by introducing the time slicemethod. Min-min andMax-minmethods takes of
small job and bigger jobs schedules first respectively. Only LCFP and SCFP methods only
considers VMs capacity. So task scheduling method has been introduced in next chapter
which not only takes care about smaller task schedules first while to distribute the load to
each VM properly.

24

Chapter 4

Proposed Work

4.1 Introduction

All previously discussed task scheduling strategies are being used in current cloud computing
system according to requirement and priority of the task defined by the end user requesting
cloud services. All of the algorithms discussed in last chapter only consider one aspect of
QoS at a time. Either it reduces execution time of tasks or it improves the utilisation and load
balance of the VMs. A new task scheduling strategy has been proposed which decreases total
execution time of all tasks submitted to VMs and at the same time utilisation of VMs is also
improved. The VM utilisation is studied in terms of makespan which is the total time VMs
has executed task till all tasks in all VMs get executed. Hence makespan of the all VMs is
different and becomes one of the most important parameter to improve to overall Quality
of Service of any Cloud Provider. In other words better makespan of machines represents
that VMs did not sit idle during execution process of tasks. Makespan is also defined and
explained in next part of this chapter.

This chapter is divided into 6 sections excluding this introduction section. Section
4.2 contains the different notations and parameters to understand the proposed
algorithm(SCHFMC). Section 4.3 contains actual algorithm. Section 4.4 briefly explains
the SCHFMC algorithm and its working. Section 4.5 contains information about
implementation in Cloudsim 3.0.3. Section 4.6 has detailed comparative study of four
algorithm SCHFMC,FCFS,SCFP,LCFP with simulation results in Cloudsim and at the end
Section 4.7 Concludes the chapter.

4.2 Notations and Performance Parameters

For better understanding of proposed algorithm following are the different term and their
explanation used in the proposed work:

25

Chapter 4 Proposed Work

4.2.1 Task Execution Time (ET)

Task execution time (ET) is the execution time of any task by a VM which has processed
it. It is also the ratio of the size of the task by the processing power of the VM. As this
experiment is carried out in CloudSim. If task(Cloudlet) i is executed by VM j than it can
be defined as below
ETi = Task Execution time of the Taski in VMj = MI of the Cloudleti / MIPS of the VMj

4.2.2 Task Start Time (ST)

As there are many tasks are scheduled at time to the VMs. So tasks are stored in Queue and
one by one tasks are executed hence start time for the each task varies. The first task which
began executing has Starting Time (ST) as zero. Next task in queue has Start time is same
as finished time of previously executed task in the queue.

4.2.3 Task Finish Time (FT)

As VMs execute task one at a time. Hence tasks which are in queue has different finished
time. Which task executed first has less FT than which is execute later.
FT = ST + TE

4.2.4 Fractional Task Length (FTL)

FTL of any task in clouds represents the contribution to the total size of all task submitted
for processing at given time for the execution by the virtual machines. Suppose there are n
task (Cloudlet) having length of L1, L2 , L3 Ln.

Hence, FTLi = Fractional Task Length of Task i = Li * 100 / (L1 + L2 + L3 + Ln)
Where Li represent Length or size of task i.

4.2.5 Fractional Machine Capacity (FMC)

FMC of a Virtual Machine represents the contribution of its capacity to the the total
processing capacity of all the VMs combined. Suppose there are m VMs with processing
power of P1, P2, P3 Pm respectively. Then
FMCj = Fractional Machine Capacity of Virtual Machine j = Pj * 100 / (P1 + P2+P3 +
...........+ Pm) Where Pj represent the processing power of Virtual Machine j.

26

Chapter 4 Proposed Work

4.3 Algorithm

Algorithm 2
1: procedure P A - SCHFMC
2: cloudletList(CL)⇐= CL1, CL2, CL3, ,CLn

3: CLtotal⇐= CL1 + CL2 + CL3 + +CLn

4: vmList(VM)⇐= VM1,VM2,VM3, VMm

5: VMtotal⇐= VM1 + VM2 + VM3 + + VMm

6: FTLlist = CreateFTLlist(CL,CLtotal)
7: FMClist = CreateFMClist(VM,VMtotal)
8: SortedFTLlist = Sort FTLlist in Ascending order of FTL value of each Cloudlet
9: if (n == 1 AND m == 1) then
10: CL1 ← VM1

11: else
12: for each Cloudlet(CLi) in SortedFTLlist do
13: Find the VMj corresponding to maximum FMC value from FMClist
14: Assign the Cloudlet(CLi)⇐= VMj

15: Update FMClist (FMCj = FMCj - FTLi)
16: Where FTLi is FTL value of Cloudlet CLi

17: end for
18: end if
19:

20: function C FTL (CL,CLtotal)
21: CLlist⇐= A New List
22: for each Cloudlet in CL do
23: FTLlisti⇐= CLi / CLtotal
24: end for
25: return FTLlist
26: end function
27:

28: function C FMC (VM, VMtotal)
29: VMlist⇐= A New List
30: for each Vm in VM do
31: FMClisti⇐= VMi / VMtotal
32: end for
33: return FMClist
34: end function
35: End
36: end procedure

27

Chapter 4 Proposed Work

4.4 Breif Explantion

SCHFMC algorithm is based on the concept, Execute as many tasks as possible in same
Machine. This scheduling technique finds the FTL of each task and FMC of each VMs.
Here
FTLi = (MI of the Cloudlet i * 100) / Sum of MI of all the Cloudlets
FMCj = (MIPS of virtual machine j * 100) / Sum of MIPS of all VMs

First of all, Cloudlets are sorted in ascending order so that smaller task can be scheduled
first. Than cloudlets are scheduld in FCFSmanner with pre-processing steps. First task from
the sorted cloudlet list is assigned to th VM with the highest FMC. Next the FTL of this task
is subtracted from the FMC of that VM. FMC list is updated again and VM with highest
FMC value id found for second task in sorted cloudlet list. These steps keep on repeating
until all the task is assigned to some VMs. As it is clear that in each task mapping stage the
FMC value of the VMwhich is involved in that step is decreased and the FMC of other VMs
is not touched. By this approach load of each machine is equally distributed according to
the submitted tasks.

4.5 Implementation and Results

00 Proposed algorithm(SCHFMC) has been implemented in Cloudsim 3.0.3 with same
inputs as in Table 3.1 and Table 3.2. Hence according to algorithm FTL list has been created
in Table 4.1 while the sorted list has been show in Table 4.2. FMC list has been created
in Table 4.3 and Table 4.4 represents the sorted version of Table 4.3 according to the FMC
value of each VM.

Table 4.6 represents the final allocation table for the given input to the proposed
algorithm. The graphical form of results has been shown in Table 4.5. From the results Table
3.3 of FCFS,FCFP and LCFP it is clear that proposed algorithm(SCHFMC) has performed
much better than all the algorithms.

Proposed algorithm(SCHFMC) get 9% improvement over FCFP algorithm, 15%
improvement over LCFP algorithm and almost 26% improvement over FCFS results because
of the fact that proposed algorithm(SCHFMC) utilises the FMC value of each VM before
assigning each task to VM. The load of all the task has been equally distributed to the each
VM. Each VM gets a cloudlet until its FMC value does not become lower than other VMs.

28

Chapter 4 Proposed Work

Table 4.1: Cloudlet/Task list with FTL value

Cloudlet Id MI FTL
0 8000 8.48
1 6000 6.36
2 4000 4.24
3 6500 6.89
4 1200 1.21
5 3300 3.51
6 2500 2.65
7 4400 4.67
8 7700 8.17
9 3900 4.14
10 5400 5.73
11 1900 2.03
12 2300 2.44
13 7100 7.53
14 5100 5.41
15 4300 4.56
16 3500 3.72
17 2600 2.76
18 6100 6.47
19 8500 9.03
Total 94,300 100%

Table 4.2: Cloudlet/Task list in sorted order
according to FTL value

Cloudlet Id MI FTL
19 8500 9.03
0 8000 8.48
8 7700 8.17
13 7100 7.53
3 6500 6.89
18 6100 6.47
1 6000 6.36
10 5400 5.73
14 5100 5.41
7 4400 4.67
15 4300 4.56
2 4000 4.24
9 3900 4.14
16 3500 3.72
5 3300 3.51
17 2600 2.76
6 2500 2.65
12 2300 2.44
11 1900 2.03
4 1200 1.21

Total 94,300 100%

Table 4.3: VM list with their FMC value

VM Id MIPS FMC (%)
0 1000 23.26
1 600 13.95
2 300 6.97
3 800 18.61
4 1200 27.91
5 400 9.30

Total 4300 100%

Table 4.4: VM list in sorted order according
to FMC value

VM Id MIPS FMC (%)
4 1200 27.91
0 1000 23.26
3 800 18.61
1 600 13.95
5 400 9.30
2 300 6.97

Total 4300 100

29

Chapter 4 Proposed Work

Table 4.5: Graphical representation of Proposed algorithm results

Table 4.6: Final allocation table with assigned VM and Execution Time (TE)

Cloudlet Id MI FTL VM id TE
19 8500 9.03 4 22.26
0 8000 8.48 0 21.5
8 7700 8.17 4 21.61
13 7100 7.53 3 23.12
3 6500 6.89 0 20
18 6100 6.47 1 21.61
1 6000 6.36 3 21.75
10 5400 5.73 4 17.75
14 5100 5.41 5 21
7 4400 4.67 0 15.8
15 4300 4.56 1 18.5
2 4000 4.24 2 21
9 3900 4.14 4 14
16 3500 3.72 3 15.5
5 3300 3.51 5 16.5
17 2600 2.76 0 10.4
6 2500 2.65 1 12.5
12 2300 2.44 2 15.33
11 1900 2.03 3 9.5
4 1200 1.21 4 5

Total 94,300 100% 344.63

30

Chapter 4 Proposed Work

4.6 Comparative Study: FCFS,LCFP,SCFP,SCHFMC

In this section, Proposed algorithm(SCHFMC) along with FCFS,LCFP and FCFP is
compared for same input data. In previous section all algorithms has been studied and their
simulation results also has been demonstrated separately but here results are compared with
each other. There are three experiments have been carried out with different input data
for algorithms. Experiment-1 is simulated for 5 VMs and 20 Cloudlets, Experiment-2 is
simulated for 10 VMs and 50 Cloudlets and Experiment-3 is simulated for 20 VMs and 200
Cloudlets. For Experiment-1 and Experiment-2 final results are shown as allocation table
with execution time and graphical representation of results. While for Experiment-3 only
graphical representation is given.

4.6.1 Experiment 1

This experiment is carried out for the 5 virtual machines and 20 cloudlets. All four algorithms
have been implemented for the same set of inputs of VMs and Cloudlets. The configuration
of VMs and Cloudlets has been give in Table 4.7 and Table 4.8 respectively. Final results
with execution time of each task from algorithm has been given in Table 4.9. The graph of
final results is shown in Figure 4.1.

With only 20 cloudlets proposed algorithm(SCHFMC) performed better than previous
algorithms. It has improved total execution time of all the cloudlets by 15% compared to
FCFS algorithm. Also it has improved time by 25% than FCFP and by 11% over LCFP
algorithm.

Table 4.7: VM list with MIPS capacity for Experiment-1

VM Id 0 1 2 3 4
MIPS 1390 103 217 1279 1029

Table 4.8: Cloudlet list with MI length for Experiment-1

CLID 0 1 2 3 4 5 6 7 8 9
MI 2773 9706 6839 4087 8324 10405 11566 6130 6197 9175
CLID 10 11 12 13 14 15 16 17 18 19
MI 3098 10347 2966 9354 5229 3726 11045 6393 6748 8815

31

Chapter 4 Proposed Work

Figure 4.1: Graph for results of Experiment-1

Table 4.9: Results of Experiment-1

CLID Size FCFS LCFP SCFP Proposed
0 2773 7.98 107.68 7.98 25.55
1 9706 376.9 238.3 17.66 34.49
2 6839 102.88 210.47 15.59 30.12
3 4087 12.78 11.76 158.71 19.86
4 8324 29.35 118.62 20.13 30.64
5 10405 14.45 27.71 27.71 34.38
6 11566 414.18 22.84 308.28 35.21
7 6130 98.41 98.41 16.69 26.28
8 6197 17.77 21.08 21.08 24.52
9 9175 30.75 22.26 131.18 34.66
10 3098 8.75 12.04 12.04 13.39
11 10347 395.57 127.95 21.71 35.8
12 2966 54.66 54.66 9.27 13.91
13 9354 20.64 21.25 286.81 32.86
14 5229 20.32 179.21 13.28 36.87
15 3726 9.69 11.65 68.67 36.17
16 11045 409.13 23.72 139.8 35.52
17 6393 100.83 17.91 105.54 28.82
18 6748 18.6 17.5 236.2 28.21
19 8815 30.3 26.16 26.16 33.06
Total 2173.94 1371.20 1644.5 590.32

32

Chapter 4 Proposed Work

4.6.2 Experiment 2

This experiment is carried out with 10 VMs and 50 Cloudlets as inputs. The configuration
of virtual machines are given in Table 4.10 and the configuration of the cloudlets has been
given in Table 4.11. The final total time to execute all the cloudlets by each of the algorithm
has been provided in Table 4.12. Figure 4.2 represents the graphical form of the results.

In this experiment proposed algorithm(SCHFMC) performed much better than other
algorithm. Here proposed algorithm(SCHFMC) improved the total execution by upto 39%
of the FCFS algorithm, 37% of the SCFP algorithm and upto 24% improvement over FCFP
algorithm. This experiment explains that proposed algorithm(SCHFMC) performs in much
better way as number of cloudlets increases.

Table 4.10: VM list with MIPS capacity for Experiment-2

VMID 0 1 2 3 4 5 6 7 8 9
MIPD 1095 24 796 1973 346 1802 1923 1794 1878 961

Table 4.11: Cloudlet list with MI length for Experiment-2

CLID MI CLID MI CLID MI CLID MI CLID MI
0 3470 10 7518 20 7565 30 4262 40 8952
1 2929 11 2554 21 4862 31 7039 41 6738
2 8050 12 8122 22 5768 32 2469 42 1863
3 7713 13 1571 23 6900 33 3756 43 6654
4 4442 14 8357 24 5135 34 1347 44 4043
5 4850 15 7743 25 2935 35 4186 45 2727
6 1451 16 7034 26 2219 36 4755 46 4597
7 3536 17 3391 27 6846 37 7428 47 6269
8 6695 18 2037 28 8943 38 4157 48 8186
9 4099 19 7921 29 6914 39 6736 49 5904

Table 4.12: Results of experiment 2

Algorithm FCFS FCFP LCFP Proposed
Total Execution Time 4836.45 4270.7 5944.5 802.87

33

Chapter 4 Proposed Work

Figure 4.2: Graph for results of experiment 2

4.6.3 Experiment 3

In this experiment, Series of random variations has been studied. It is consist of 5
experiments and its graphical representation each with 10 VMs and 50 Cloudlets. Graphical
results has been shown from Figure 4.3
MI of each cloudlet lies some random value between 1000 to 9000 and
MIPS of each VM lie some random value between 0 to 2000
One experiment with 20 VMs and 200 Cloudlets has been carried out and as prevous
experiment proposed algorithm(SCHFMC) performs much better than other algorithms.
Results has been shown in last image of Figure 4.3.

In multiple simulation with 20 VMs and 200 Cloudlets proposed algorithm(SCHFMC)
has improved total execution time of all 200 Cloudlets by 25% over FCFS algorithm, 27%
over SCFP and over 21% over LCFP algorithm.

34

Figure 4.3: Graph for results of Experiment 3

4.7 Conclusion

This proposed algorithm(SCHFMC) has proper load balancing mechanism which improved
makespan of each VM significantly. Moreover overall task completion time also decreases
gradually. Multiple experiment with various input has been carried out and in all it perform
very well. In all three experiments proposed algorithm has improved total execution time
of all the cloudlets by VMs by 26% over FCFS assignment, 30% over SCFP scheduling
while 19% improvement over LCFP scheduling. Table 4.13 shown the performance
of the proposed algorithm(SCHFMC) compared to other algorithm as found in previous
experiments.

Table 4.13: Performance of Proposed Algorithm(SCHFMC)

Algorithms Experiment-1 Experiment-2 Experiment-3 Average
FCFS 15 38 25 26
FCFP 25 37 27 30
LCFP 11 25 21 19

Chapter 5

Conclusion

5.1 Conclusion

Task Scheduling is one of the major issue in cloud computing environment. Because it is
responsible for the execution of the tasks also better utilization of the resources is analysed
by task scheduling methods. Task scheduling policies must take care that task is executed
according to the priority set by user. If user want that his task must executed according
to completion time of task than scheduler must take care of completion time by keeping
in mind that utilization of resources like VMs improves. From the thesis it is clear that
proposed task scheduling algorithms performs much better than algorithm discussed and
analysed in previous chapter of thesis. Proposed algorithm takes care that load on each
machine is equally distributed hence it has proper load balancing schemes. In the end total
completion time of all task significantly decreased and make span of each VM is improved
significantly.

The proposed algorithm of this thesis has proper load balancing strategies that is why
it has performed very well. This algorithm is scales and gives same improvement. As
increment of the cloudlets to the same number of virtual machines, it gives more better
results and improved makespan of each virtual machine.

5.2 Scope for Future Research

In this work, fault tolerance is not considered. If some VM become faulty during allocation
or during execution that proposed algorithm will start giving random results. Hence during
allocation algorithm should also takes care of fault or some future error in machine. Fault
tolerance can create more problem during execution and can increase cost of execution
unnecessarily. Hence this algorithm can be further extended.

36

Bibliography

[1] Fox, Armando and Griffith, Rean and Joseph, Anthony andKatz, Randy and Konwinski,
Andrew and Lee, Gunho and Patterson, David and Rabkin, Ariel and Stoica, Ion Above
the clouds: A Berkeley view of cloud computing, Dept. Electrical Eng. and Comput.
Sciences, University of California, Berkeley, Rep. UCB/EECS, 2009.

[2] Dikaiakos, Marios D and Katsaros, Dimitrios and Mehra, Pankaj and Pallis, George and
Vakali, Athena ; Cloud computing: Distributed internet computing for IT and scientific
research, Internet Computing, IEEE, 2009.

[3] Zhang, Qi and Cheng, Lu and Boutaba, Raouf ; Cloud computing: state-of-the-art and
research challenges; Journal of internet services and applications, 2010.

[4] Peter Mell, Timothy Grance The NIST Definition of Cloud Computing, National
Institute of Standards and Technology, Special Publication 800-145, 2009.

[5] Calheiros Rodrigo N and Ranjan Rajiv and Beloglazov, Anton and De Rose, Buyya
Rajkumar ; CloudSim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms; Software: Practice
and Experience, Vol 41, no 2, p23-50, 2011.

[6] Calheiros Rodrigo N and Ranjan Rajiv and Buyya Rajkumar ; Cloudsim: A novel
framework for modeling and simulation of cloud computing infrastructures and services;
arXiv preprint arXiv:0903.2525, 2009.

[7] Amalarethinam, DI George and Muthulakshmi, Palaniandy; An Overview of the
scheduling policies and algorithms in Grid Computing; International Journal of Research
and Reviews in Computer Science, vol 2, no 2, p280-294 2011.

[8] Sun, Hong and Chen, Shi-ping and Jin, Chen and Guo, Kai ; Research and simulation
of task scheduling algorithm in cloud computing; TELKOMNIKA Indonesian Journal of
Electrical Engineering, Vol 11, No 11, p6664-6672 2013.

[9] Bala, Anju and Chana, Inderveer ; A survey of various workflow scheduling algorithms
in cloud environment; 2nd National Conference on Information and Communication
Technology (NCICT), pages 26-30, 2011.

37

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Tilak, Sujit and Patil, Dipti ; A survey of various scheduling algorithms in cloud
environment; International Journal of Engineering Inventions, Vol 1, No 2, P36-39,
2012.

[11] Chawla, Yogita and Bhonsle, Mansi ; A study on scheduling methods in cloud
computing; International Journal of Emerging Trends&Technology in Computer Science
(IJETTCS), Vol 1, No 3, p12–17, 2012.

[12] Wu, Xiaonian and Deng, Mengqing and Zhang, Runlian and Zeng, Bing and Zhou,
Shengyuan ; A task scheduling algorithm based on QoS-driven in cloud computing;
Procedia Computer Science, Vol 17, P1162-1169 2013.

[13] Tripathy, Lipsa and Patra, Rasmi Ranjan; Scheduling in cloud computing; International
Journal on Cloud Computing: Services and Architecture (IJCCSA), Vol 4, No 5, p21–7,
2014.

[14] Wu Ju-Hua; Research of Resource Allocation in Cloud Computing Based on Improved
Dual Bee Colony Algorithm; International Journal of Grid Distribution Computing, Vol.
8, No 5, p117-126, 2015.

[15] Agarwal, Dr and Jain, Saloni and others ; Efficient optimal algorithm of task scheduling
in cloud computing environment; arXiv preprint arXiv:1404.2076, 2014.

[16] Singh, Lal Shri Vratt and Ahmed, Jawed ; A GREEDY ALGORITHM FOR
TASK SCHEDULING & RESOURCE ALLOCATION PROBLEMS IN CLOUD
COMPUTING; International Journal of Research & Development in Technology and
Management Science–Kailash, Vol 21, No 1, 2014.

[17] Chang, Fangzhe and Ren, Jennifer and Viswanathan, Ramesh ; Optimal resource
allocation in clouds; Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on, p418-425, 2010.

[18] Reddy, J Geetha and others ; A Review Work On Task Scheduling In Cloud
ComputingUsingGenetic Algorithm; International Journal of Technology Enhancements
and Emerging Engineering Research, Vol 2, No 8, P241–245, 2013.

[19] Shimpy, Er and Sidhu, Mr Jagandeep ; Different Scheduling Algorithms In Different
Cloud Environment; algorithms, Vol 3, No 9, 2014.

[20] Gulati, Ajay and Chopra, Ranjeev K ; Dynamic round robin for load balancing in a
cloud computing; International Journal of Computer Science andMobile Computing, Vol
2, No 6, p274–278, 2013.

38

BIBLIOGRAPHY BIBLIOGRAPHY

[21] Guo, Lizheng and Zhao, Shuguang and Shen, Shigen and Jiang, Changyuan ; Task
scheduling optimization in cloud computing based on heuristic algorithm; Journal of
Networks, Vol 7, No 3, p547–553, 2012.

[22] Li, Kai and Wang, Yong and Liu, Meilin ; A Task Allocation Schema Based on
Response Time Optimization in Cloud Computing; arXiv preprint arXiv:1404.1124,
2014.

[23] Bhoi, Upendra and Ramanuj, Purvi N ; Enhanced max-min task scheduling algorithm
in cloud computing; International Journal of Application or Innovation in Engineering
and Management, Vol 2, No 4, p259–264, 2013.

[24] Elzeki, OM and Reshad, MZ and Elsoud, MA ; Improved max-min algorithm in Cloud
computing; International Journal of Computer Applications, Vol 50, No 12, 2012.

[25] Liu, Gang and Li, Jing and Xu, Jianchao ; An improved min-min algorithm in cloud
computing; Proceedings of the 2012 International Conference of Modern Computer
Science and Applications, p47–52, 2013.
Zhao, Chenhong and Zhang, Shanshan and Liu, Qingfeng and Xie, Jian and Hu,

Jicheng; Independent tasks scheduling based on genetic algorithm in cloud computing;
Wireless Communications, Networking and Mobile Computing, 2009. WiCom’09. 5th
International Conference , p1–4, 2010.

[26] Shah, MRManan D and Kariyani, MR Amit A and Agrawal, MR Dipak L; Allocation
Of Virtual Machines In Cloud Computing Using Load Balancing Algorithm; IJCSITS),
ISSN, p2249–9555, 2013.

[27] Das, Pranesh and Khilar, Pabitra Mohan ; LBVFT: A Load Balancing Technique
for Virtualization and Fault Tolerance in Cloud Computing; International Journal of
Computer Applications, Vol 69, No 28, p14-18, 2010.

[28] Kaur, Rajwinder and Luthra, Pawan; Load Balancing in Cloud Computing;
Proceedings of International Conference on Recent Trends in Information,
Telecommunication and Computing, ITC, 2012.

[29] Katyal, Mayanka and Mishra, Atul ; A Comparative Study of Load Balancing
Algorithms in Cloud Computing Environment; arXiv preprint arXiv:1403.6918, 2014.

[30] Ma, Tinghuai and Chu, Ya and Zhao, Licheng and Ankhbayar, Otgonbayar ; Resource
allocation and scheduling in cloud computing: Policy and algorithm; IETE Technical
Review, Vol 31, No 1, p4–16, 2014.

[31] Piraghaj, Sareh Fotuhi and Calheiros, Rodrigo N and Chan, Jeffrey and Dastjerdi,
Amir Vahid and Buyya, Rajkumar ; Virtual Machine Customization and Task Mapping

39

Architecture for Efficient Allocation of Cloud Data Center Resources; The Computer
Journal, 2015.

[32] Somani, Rajkumar and Ojha, Jyotsana ; A Hybrid Approach for VM Load Balancing
in Cloud Using CloudSim; International Journal of Science, Engineering and Technology
Research (IJSETR), Vol 3, No 6, 2014.

[33] Ray, Soumya and De Sarkar, Ajanta ; Execution analysis of load balancing algorithms
in cloud computing environment; International Journal on Cloud Computing: Services
and Architecture (IJCCSA), Vol 2, No 5, p1–13, 2012.

[34] Parsa, Saeed and Entezari-Maleki, Reza ; RASA: A new task scheduling algorithm in
grid environment; World Applied sciences journal, Vol 7, p152–160, 2009.

[35] Rawat, Pradeep Singh and Saroha, GP and Barthwal, Varun ; Quality of service
evaluation of SaaS modeler (Cloudlet) running on virtual cloud computing environment
using CloudSim; International Journal of Computer Applications, Vol 53, No 13, 2012.

