
sensors

Article

A Smart Sensor for Defending against Clock
Glitching Attacks on the I2C Protocol in
Robotic Applications

Raúl Jiménez-Naharro, Fernando Gómez-Bravo *, Jonathan Medina-García,
Manuel Sánchez-Raya and Juan Antonio Gómez-Galán

Department of Electronic Engineering, Computers, and Automation, University of Huelva, Ctra Huelva-La
Rábida, s/n, 21819 Huelva, Spain; naharro@diesia.uhu.es (R.J.-N.); jonathan.medina@diesia.uhu.es (J.M.-G.);
msraya@diesia.uhu.es (M.S.-R.); jgalan@diesia.uhu.es (J.A.G.-G.)
* Correspondence: fernando.gomez@diesia.uhu.es; Tel.: +34-959-217-638; Fax: +34-959-217-348

Academic Editor: Gonzalo Pajares Martinsanz
Received: 26 January 2017; Accepted: 17 March 2017; Published: 25 March 2017

Abstract: This paper presents a study about hardware attacking and clock signal vulnerability.
It considers a particular type of attack on the clock signal in the I2C protocol, and proposes the
design of a new sensor for detecting and defending against this type of perturbation. The analysis
of the attack and the defense is validated by means of a configurable experimental platform that
emulates a differential drive robot. A set of experimental results confirm the interest of the studied
vulnerabilities and the efficiency of the proposed sensor in defending against this type of situation.

Keywords: smart sensor for robots; hardware vulnerability; mobile robot attack; clock signal defense

1. Introduction

Over the last recent years, the study of vulnerability in electronic devices has attracted the
attention of the scientific community [1–4]. Among electronics systems, robotic platforms are one of
the most widely used today. Currently, robots are responsible for executing many critical tasks such as
rescue, surveillance, industrial processes, and different operations in general day life [5–8].

Robot control is traditionally implemented by a computer-based architecture, so the study of
security issues regarding computer vulnerability represents a relevant matter to develop secure robots.
Security analysis involves the study of the effects of voluntary actions with the aim of violating
or modifying the system behaviour. These types of actions are usually known as attacks, and the
weakness exploited by the attacker is known as a vulnerability.

Moreover, not only it is important to detect vulnerabilities, but also to define mechanisms for
a feasible defense. Some strategies have been developed for defending computed systems. On the
one hand, masking the transmitted information in order to preserve communication privacy can be a
defense objective; several methodologies have been applied for this purpose, like for instance the use
of encryption algorithms [9] or synchronized chaotic systems [10]. On the other hand, another strategy
is to develop a device to detect the attack and avoid the intentions of the attackers [1,2].

This paper deals with the study of a specific vulnerability that affects mobile robots and presents
the design of a sensor for defending against this particular type of attack. Many different works
have addressed the study of vulnerability of computer-based systems from the point of view of
software [11,12] and hardware [1–3,13]. The attacks that exploit the hardware vulnerabilities are
known as hardware attacks.

Although reliability and fault tolerance of robots are open issues recently discussed by the
scientific community [14,15], the vulnerability of robotic systems has not been frequently considered.
Hardware and software attacks directly decrease robots’ reliability.

Sensors 2017, 17, 677; doi:10.3390/s17040677 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 677 2 of 17

The study of the effect of software attacks can be easily extended to a robotic platform. However,
the effects of hardware attacks should be particularly considered, by taking into account the specific
sensors and actuators applied in the robotics field [16,17].

An important question regarding this matter is the communication between the control system
and the peripherals. In this context, the Inter-Integrated Circuit (I2C) protocol is a commonly used
mechanism to establish this communication process. In fact, the use of I2C low level controllers in
mobile robotics has spread in the last years. I2C is a synchronous protocol, where the clock signal
plays a relevant role. Clock synchronization heavily depends on the applied synchronization protocol
and algorithm; a detailed overview of the state of the art about this matter can be found in [18–20].

This paper aims to discuss the possibility of attacking a robotic system by interfering with the
clock signal of the I2C protocol and proposes a defense strategy for this attack. Though this work is
focused on the I2C protocol, other different types of protocols can also be objectives of clock attacking.
In fact, the strategy presented in this work is based on detecting anomalies in the clock frequency.
Therefore, this solution is suitable for defending any protocol vulnerable to an attack that injects
frequency variations in the clock signal, as for instance: CAN-bus, SPI protocol, etc.

The case study presented in this work is related with autonomous mobile robot navigation.
Namely, it is supposed that the robot navigates by applying a path tracking algorithm, so that it is
capable of visiting certain areas of interest defined by the user. Typical mobile robotics applications use
this type of navigation strategy [5,6,21,22]. In this context the paper studies the possibility of attacking
the communication process between the high level controller and low level controller using the I2C
protocol, and evaluates the efficiency of the proposed defending device.

The paper is organized as follows: Section 2 is devoted to presenting the basis of clock attacking
and to explain vulnerabilities of the I2C protocol. Section 3 shows details about the proposed
countermeasure strategy. Section 4 introduces the case study and describes the experimental platform.
In Section 5 several experimental results that validate the authors’ hypothesis are shown. Finally, some
conclusions are drawn in Section 6.

2. The Clock Signal: A Possible Source of Attacks

The main objective of many attacks is the interference with the clock signal due to its importance
in the system operation. More particularly, the perturbation may consist in modifying the frequency or
the period of the clock signal.

In Figure 1, several attacks using clock signals are shown. In this figure, signal nominal clk is the
clock signal free of attack (with the correct period), and signal attack clk is the clock signal with attack
(with the altered period).

In Figure 1a, an attack increasing the clock period is shown. The outcome of this attack is a
decrease in the operation speed. This interference can be used, for instance, to monitor the main
signals (using the monitoring clock signal) for applying reverse engineering [23]. In Figure 1b, an attack
decreasing the clock period is shown. The decrement must be lower than the minimum period to
guarantee the correct operation (as seen from its minimum period). The effect of this attack is a global
malfunction of the system that can be used, as an example, to cause a denial of service. In Figure 1c,
an attack decreasing the clock period, focused on a certain operation, is shown. In this case, the effect of
the attack consists in avoiding a certain operation (as seen from the delay of this operation). This attack
is usually known as a clock glitching attack.

This last attack can be used, for instance, against cryptocircuits implementing an encryption
algorithm. The aim of the attack is to avoid the complete cycle of the encryption causing a vulnerability
in the circuit. This fact can be achieved independently on the implementation platform (processor,
ASIC, FPGA, . . .) because all of them require a clock signal. This situation is discussed in [24].

Sensors 2017, 17, 677 3 of 17
Sensors 2017, 17, 677 3 of 17

Figure 1. Examples of attack using clock signal. (a) Attack increasing the clock period; (b) attack

decreasing the clock period; (c) attack to a certain instruction: clock glitching attack.

2.1. Attack on the Protocol I2C

I2C vulnerability has not been frequently addressed [25,26]. This protocol is widely used in

robotics platforms to connect the controllers with actuating elements like motors and sensors. This

section is devoted to the study of clock glitching attacks in the I2C protocol. They are easy to

implement, and very difficult to detect (this fact increases the danger), so it is important to study the

effect and the solutions to this threat in a so frequently used protocol.

This protocol uses two different signals: a scl signal that has the synchronization information;

and a sda signal that has the data information. The communication process involves the transmission

of three different types of data: slave address, with a maximum of 128 slaves (or 1024 slaves in the

extended version); register address, indicating the register to interact; and register value, indicating

the transmitted value. One of the main characteristics of this protocol is the signaling: the high logic

level is in a situation of high impedance; and the low logic level is the reference voltage. Therefore,

the communication involves the connection of ground to scl and sda signals in the low logic level

case. Due to the high impedance, both master and slave can write in scl and sda signals. Also, the

high impedance is a source of attack because any element can access and write on sda and scl signals

without causing any conflict.

As an example of the behavior of the I2C protocol, Figure 2a shows a write operation (the black

color identifies that the value is written by a master, and blue color identifies that the value is written

by a slave). This operation works as follows. Firstly, the communication begins in idle state

(identified by scl and sda signals to the high level). The communication is controlled by the master

and starts with a start condition (identified by a falling transition in the sda signal while the scl signal

is high). Next, the address of the slave to communicate is sent (A6:A0 signals). After that, RW signal

is sent (the write operation is identified by a low level signal). Following, the slave sends an

acknowledgement (identified by a low level in the sda signal in the 8th scl pulse) indicating that the

slave has acknowledged its participation in the communication process. The next step is to send the

register address of the slave in which the master will write the transmitted value (R7:R0 signals), and

the slave sends the acknowledgement in the 17th pulse of the scl signal. Finally, the master sends the

value that will be written in the register of the slave, and the slave acknowledges the writing

operation (in the 26th pulse of the scl signal). The communication process finishes with a stop

condition (identified by a rising transition in the sda signal while the scl signal is at a high level

recovering the idle state).

The characteristics of this protocol allow to perform focused attacks, i.e., to attack the

communication with a particular slave or the communication with a certain register of a specific

slave. In this paper, the attacks involve the variation of the period in the scl signal of the protocol. An

Figure 1. Examples of attack using clock signal. (a) Attack increasing the clock period; (b) attack
decreasing the clock period; (c) attack to a certain instruction: clock glitching attack.

2.1. Attack on the Protocol I2C

I2C vulnerability has not been frequently addressed [25,26]. This protocol is widely used
in robotics platforms to connect the controllers with actuating elements like motors and sensors.
This section is devoted to the study of clock glitching attacks in the I2C protocol. They are easy to
implement, and very difficult to detect (this fact increases the danger), so it is important to study the
effect and the solutions to this threat in a so frequently used protocol.

This protocol uses two different signals: a scl signal that has the synchronization information;
and a sda signal that has the data information. The communication process involves the transmission
of three different types of data: slave address, with a maximum of 128 slaves (or 1024 slaves in the
extended version); register address, indicating the register to interact; and register value, indicating
the transmitted value. One of the main characteristics of this protocol is the signaling: the high logic
level is in a situation of high impedance; and the low logic level is the reference voltage. Therefore,
the communication involves the connection of ground to scl and sda signals in the low logic level
case. Due to the high impedance, both master and slave can write in scl and sda signals. Also, the
high impedance is a source of attack because any element can access and write on sda and scl signals
without causing any conflict.

As an example of the behavior of the I2C protocol, Figure 2a shows a write operation (the
black color identifies that the value is written by a master, and blue color identifies that the value
is written by a slave). This operation works as follows. Firstly, the communication begins in idle
state (identified by scl and sda signals to the high level). The communication is controlled by the
master and starts with a start condition (identified by a falling transition in the sda signal while the
scl signal is high). Next, the address of the slave to communicate is sent (A6:A0 signals). After that,
RW signal is sent (the write operation is identified by a low level signal). Following, the slave sends
an acknowledgement (identified by a low level in the sda signal in the 8th scl pulse) indicating that
the slave has acknowledged its participation in the communication process. The next step is to send
the register address of the slave in which the master will write the transmitted value (R7:R0 signals),
and the slave sends the acknowledgement in the 17th pulse of the scl signal. Finally, the master sends
the value that will be written in the register of the slave, and the slave acknowledges the writing
operation (in the 26th pulse of the scl signal). The communication process finishes with a stop condition
(identified by a rising transition in the sda signal while the scl signal is at a high level recovering the
idle state).

Sensors 2017, 17, 677 4 of 17

Sensors 2017, 17, 677 4 of 17

example is shown in Figure 2b. This figure illustrates an attack in the communication process of a

certain slave (the black color identifies the value written by the master, and the red color identifies

the value written by the attacker). In this process, three modules are involved: a master, a slave and

the attack module.

Figure 2. Behavior of I2C protocol. (a) Write operation; (b) attacked write operation.

The communication process begins normally, that is, in the start state with the transmission of

the slave address. Till this moment, the behavior of the attack module consists in monitoring the

communication in order to decide when to perform the attack, depending on the transmitted

address. If the attack must begin, the clock signal is flattened, i.e., it is forced to keep a low value

during the communication process. Then, the attack module writes a low level in the scl signal, and

as a consequence, no sda signal value will be seen by any slave module, thus, the message will be

lost. Before that, the attack module generates an acknowledgement signal so that the master does not

identify an anomalous situation.

3. Countermeasures

If a system responsible of a critical task is at risk of being attacked, a defense strategy must be

included in the system design. The main purpose of this strategy should consist in thwarting the

objectives of the attacker. When a vulnerability source is the clock signal, any defense strategy

should include a frequency sensor in order to detect anomalous period values. In this approach,

clock glitching attacks are detected by means of this type of sensor. A particular implementation of a

digital frequency sensor is cited in [27]. As mentioned in that paper, the standard detection solutions

are usually based on analog filters, such as the one included in [28]. The comparison between that

solution and the use of a digital frequency sensor has been also presented in [27]. That result is not

affected by the modifications implemented on the sensor in this new application.

Although the sensor can be materialized by using VLSI [27] or FPGA techniques, in this paper a

FPGA implementation has been considered so that a rapid prototype is achieved. The basic

architecture of this sensor is shown in Figure 3a. The sensor consists of four blocks: a transition

detector, to detect a new transition during signal monitoring and to begin the measurement of the

frequency; a local oscillator, to avoid similar attacks on the sensor; a measurement block, to measure

the frequency as pulses of the local oscillator; and an output block, to generate the response of the

sensor. The response of this sensor is to regenerate the clock signal when its frequency is out of the

allowed range. Though the concept of the sensor presented in [27] is valid for the situation shown in

Figure 2 (the attack to the I2C protocol), its implementation is not valid for different reasons:

 The idle state of the protocol (with a frequency equal to zero) would be identified as an attack.

 The low frequency of some slaves requires excessive hardware resources in the implementation

of the local oscillator.

 The response of the sensor is the same than the objective of attack, that is, to flatten the scl

signal. Therefore, a new response must be generated.

Figure 2. Behavior of I2C protocol. (a) Write operation; (b) attacked write operation.

The characteristics of this protocol allow to perform focused attacks, i.e., to attack the
communication with a particular slave or the communication with a certain register of a specific
slave. In this paper, the attacks involve the variation of the period in the scl signal of the protocol.
An example is shown in Figure 2b. This figure illustrates an attack in the communication process of a
certain slave (the black color identifies the value written by the master, and the red color identifies the
value written by the attacker). In this process, three modules are involved: a master, a slave and the
attack module.

The communication process begins normally, that is, in the start state with the transmission of
the slave address. Till this moment, the behavior of the attack module consists in monitoring the
communication in order to decide when to perform the attack, depending on the transmitted address.
If the attack must begin, the clock signal is flattened, i.e., it is forced to keep a low value during
the communication process. Then, the attack module writes a low level in the scl signal, and as a
consequence, no sda signal value will be seen by any slave module, thus, the message will be lost.
Before that, the attack module generates an acknowledgement signal so that the master does not
identify an anomalous situation.

3. Countermeasures

If a system responsible of a critical task is at risk of being attacked, a defense strategy must be
included in the system design. The main purpose of this strategy should consist in thwarting the
objectives of the attacker. When a vulnerability source is the clock signal, any defense strategy should
include a frequency sensor in order to detect anomalous period values. In this approach, clock glitching
attacks are detected by means of this type of sensor. A particular implementation of a digital frequency
sensor is cited in [27]. As mentioned in that paper, the standard detection solutions are usually based
on analog filters, such as the one included in [28]. The comparison between that solution and the
use of a digital frequency sensor has been also presented in [27]. That result is not affected by the
modifications implemented on the sensor in this new application.

Although the sensor can be materialized by using VLSI [27] or FPGA techniques, in this paper a
FPGA implementation has been considered so that a rapid prototype is achieved. The basic architecture
of this sensor is shown in Figure 3a. The sensor consists of four blocks: a transition detector, to detect
a new transition during signal monitoring and to begin the measurement of the frequency; a local
oscillator, to avoid similar attacks on the sensor; a measurement block, to measure the frequency as
pulses of the local oscillator; and an output block, to generate the response of the sensor. The response
of this sensor is to regenerate the clock signal when its frequency is out of the allowed range. Though
the concept of the sensor presented in [27] is valid for the situation shown in Figure 2 (the attack to the
I2C protocol), its implementation is not valid for different reasons:

Sensors 2017, 17, 677 5 of 17

• The idle state of the protocol (with a frequency equal to zero) would be identified as an attack.
• The low frequency of some slaves requires excessive hardware resources in the implementation of

the local oscillator.
• The response of the sensor is the same than the objective of attack, that is, to flatten the scl signal.

Therefore, a new response must be generated.

Sensors 2017, 17, 677 5 of 17

Then a new implementation for the detector of transition, the local oscillator, and the output

blocks must be done.

Figure 3. Architecture of the frequency sensor as countermeasure against an attack based on clock

signal. (a) Basic architecture in [27]; (b) New architecture adapted to I2C protocol.

3.1. Transition Detector

The main function of the transition detector is to identify the beginning of a new operation, a

transition of the scl signal. However, while in the early implementation, the reset signals are only

active due to the transition (see Figure 4); the actual implementation maintains a reset condition

during the idle state in the transmission, and so, the idle state is not considered as an attack.

The behavior of the transition detector is shown in Figure 4. During the idle state of the

protocol, the sensor waits for a new communication process resetting the local oscillator. This

waiting finishes when a start condition arrives. In this moment, the reset cycle is completed and a

new measurement begins. Following, all scl signal pulses are measured by the sensor until the

arrival of a stop condition or the detection of an attack. In the case of a detected attack, the sensor

would activate its response (busy signal is activated). During the response, the transition detector is

disabled until the response has finished (busy signal is deactivated) and the current communication

process finishes (the arrival of a stop condition). Following that, the local oscillator is reset until a

new start condition arrives.

Figure 4. Behavior of the transition detector. The following cases are considered: a start condition; a

detected attack; a stop condition; and a new start condition.

The early behavior is implemented asynchronously because the clock signal is flattened during

its operation. The implementation of the transition detector consists of three sections, shown in

Figure 5. Firstly, there is a reset circuitry whose main function is the initialization of the block. This

section identifies the arrival of a new event in the scl signal and the start and stop conditions.

Secondly, a chain of delay elements whose main function consists in generating the adequate delays.

Thirdly, a section to generate the initialization of the rest of sensor blocks with the adequate

sequence.

Figure 3. Architecture of the frequency sensor as countermeasure against an attack based on clock
signal. (a) Basic architecture in [27]; (b) New architecture adapted to I2C protocol.

Then a new implementation for the detector of transition, the local oscillator, and the output
blocks must be done.

3.1. Transition Detector

The main function of the transition detector is to identify the beginning of a new operation,
a transition of the scl signal. However, while in the early implementation, the reset signals are only
active due to the transition (see Figure 4); the actual implementation maintains a reset condition during
the idle state in the transmission, and so, the idle state is not considered as an attack.

Sensors 2017, 17, 677 5 of 17

Then a new implementation for the detector of transition, the local oscillator, and the output

blocks must be done.

Figure 3. Architecture of the frequency sensor as countermeasure against an attack based on clock

signal. (a) Basic architecture in [27]; (b) New architecture adapted to I2C protocol.

3.1. Transition Detector

The main function of the transition detector is to identify the beginning of a new operation, a

transition of the scl signal. However, while in the early implementation, the reset signals are only

active due to the transition (see Figure 4); the actual implementation maintains a reset condition

during the idle state in the transmission, and so, the idle state is not considered as an attack.

The behavior of the transition detector is shown in Figure 4. During the idle state of the

protocol, the sensor waits for a new communication process resetting the local oscillator. This

waiting finishes when a start condition arrives. In this moment, the reset cycle is completed and a

new measurement begins. Following, all scl signal pulses are measured by the sensor until the

arrival of a stop condition or the detection of an attack. In the case of a detected attack, the sensor

would activate its response (busy signal is activated). During the response, the transition detector is

disabled until the response has finished (busy signal is deactivated) and the current communication

process finishes (the arrival of a stop condition). Following that, the local oscillator is reset until a

new start condition arrives.

Figure 4. Behavior of the transition detector. The following cases are considered: a start condition; a

detected attack; a stop condition; and a new start condition.

The early behavior is implemented asynchronously because the clock signal is flattened during

its operation. The implementation of the transition detector consists of three sections, shown in

Figure 5. Firstly, there is a reset circuitry whose main function is the initialization of the block. This

section identifies the arrival of a new event in the scl signal and the start and stop conditions.

Secondly, a chain of delay elements whose main function consists in generating the adequate delays.

Thirdly, a section to generate the initialization of the rest of sensor blocks with the adequate

sequence.

Figure 4. Behavior of the transition detector. The following cases are considered: a start condition; a
detected attack; a stop condition; and a new start condition.

The behavior of the transition detector is shown in Figure 4. During the idle state of the protocol,
the sensor waits for a new communication process resetting the local oscillator. This waiting finishes
when a start condition arrives. In this moment, the reset cycle is completed and a new measurement
begins. Following, all scl signal pulses are measured by the sensor until the arrival of a stop condition
or the detection of an attack. In the case of a detected attack, the sensor would activate its response
(busy signal is activated). During the response, the transition detector is disabled until the response
has finished (busy signal is deactivated) and the current communication process finishes (the arrival of
a stop condition). Following that, the local oscillator is reset until a new start condition arrives.

Sensors 2017, 17, 677 6 of 17

The early behavior is implemented asynchronously because the clock signal is flattened during its
operation. The implementation of the transition detector consists of three sections, shown in Figure 5.
Firstly, there is a reset circuitry whose main function is the initialization of the block. This section
identifies the arrival of a new event in the scl signal and the start and stop conditions. Secondly, a chain
of delay elements whose main function consists in generating the adequate delays. Thirdly, a section
to generate the initialization of the rest of sensor blocks with the adequate sequence.

Sensors 2017, 17, 677 6 of 17

It is worth mentioning that the chain of delay must guarantee that the sequence of the reset

signals of the different blocks is correct. This sequence is detailed in [27], and a short description is as

follows: first the oscillator is reset, then the output block is reset and activated, after that the

measurement block is reset and activated, and finally, the oscillator is activated. In this case, the

sequence requires ten delay elements. The main component of the delay element is a buffer (shown

in Figure 5), which is implemented by using a transparent latch.

Figure 5. Schematic of the transition detector, identifying the three main sections: (a) reset circuitry;

(b) the chain of delay elements; and (c) the initialization of the sensor blocks (local oscillator,

measurement block and output block).

3.2. Local Oscillator

Though the function of this block is independent on the application, the use of low frequency

can require an excessive number of resources (basically flip-flops). A comparison in hardware

resources considering an upper limit of frequency of 12.5 kHz is shown in Table 1. This table shows a

comparative study concerning the number of flip-flops used in different implementations of the

sensor. The differences are due to the different implementations of the local oscillator generating

different periods.

The total number of flip-flops is determined by the sum of the number of flip-flops in the

following building blocks: the local oscillator, the transition detector, the measurement block and the

output block. In the case of the local oscillator, this number is equal to the relation between its period

and the delay of one element. In the case of the transition detector, the number is fixed and equal to

8. In the case of the measurement block, the number is equal to the relation between the upper limit

of the allowed period and the oscillator period. In the case of the output block, the number is equal

to the half of the flip-flops of the measurement block plus the necessary elements to implement the

I2C order (that is fixed).

Table 1 shows that the implementation with a minimum number of flip-flops involves a

trade-off between a low and a high frequency in the local oscillator. As a consequence of these

reasoning, two alternatives can be used: a high frequency local oscillator, with a high number of

flip-flops in the measurement and output blocks; or a low frequency local oscillator, with a high

number of flip-flops in the local oscillator. However, the optimal solution involves a trade-off

between a low and a high frequency in the local oscillator.

Figure 5. Schematic of the transition detector, identifying the three main sections: (a) reset circuitry;
(b) the chain of delay elements; and (c) the initialization of the sensor blocks (local oscillator,
measurement block and output block).

It is worth mentioning that the chain of delay must guarantee that the sequence of the reset signals
of the different blocks is correct. This sequence is detailed in [27], and a short description is as follows:
first the oscillator is reset, then the output block is reset and activated, after that the measurement
block is reset and activated, and finally, the oscillator is activated. In this case, the sequence requires
ten delay elements. The main component of the delay element is a buffer (shown in Figure 5), which is
implemented by using a transparent latch.

3.2. Local Oscillator

Though the function of this block is independent on the application, the use of low frequency can
require an excessive number of resources (basically flip-flops). A comparison in hardware resources
considering an upper limit of frequency of 12.5 kHz is shown in Table 1. This table shows a comparative
study concerning the number of flip-flops used in different implementations of the sensor. The
differences are due to the different implementations of the local oscillator generating different periods.

The total number of flip-flops is determined by the sum of the number of flip-flops in the following
building blocks: the local oscillator, the transition detector, the measurement block and the output
block. In the case of the local oscillator, this number is equal to the relation between its period and
the delay of one element. In the case of the transition detector, the number is fixed and equal to 8.
In the case of the measurement block, the number is equal to the relation between the upper limit of
the allowed period and the oscillator period. In the case of the output block, the number is equal to the
half of the flip-flops of the measurement block plus the necessary elements to implement the I2C order
(that is fixed).

Sensors 2017, 17, 677 7 of 17

Table 1. Study of the flip-flop numbers varying the period oscillator considering a delay element of
1.91 ns. The upper limit of period is 80 µs (12.5 kHz).

Oscillator Period
Flip-Flops

Total FF
Oscillator Detector Measurement Output

4 ns 3 8 20,000 10,000 30,003
40 ns 21 8 2000 1000 3021
90 ns 48 8 889 445 1390
200 ns 105 8 400 200 713
400 ns 210 8 200 100 518
900 ns 472 8 89 45 614
4 µs 2095 8 20 10 2133

Table 1 shows that the implementation with a minimum number of flip-flops involves a trade-off
between a low and a high frequency in the local oscillator. As a consequence of these reasoning, two
alternatives can be used: a high frequency local oscillator, with a high number of flip-flops in the
measurement and output blocks; or a low frequency local oscillator, with a high number of flip-flops
in the local oscillator. However, the optimal solution involves a trade-off between a low and a high
frequency in the local oscillator.

Though it is possible to find an optimal configuration, the minimum number of flip-flops is
considerable. A new implementation is going to be designed in order to reduce the hardware resources.
This new solution consists of two different strategies: a ring oscillator and a binary counter as frequency
divider; as shown in Figure 6. The ring oscillator will generate a precision period, while the frequency
divider will multiply the period without necessity of many hardware resources. Therefore, the new
implementation will use two configuration parameters: the number of delay element in the ring
oscillator (num_delay), and the number of the flip-flops in the divider (num_multiply).

Sensors 2017, 17, 677 7 of 17

Table 1. Study of the flip-flop numbers varying the period oscillator considering a delay element of

1.91 ns. The upper limit of period is 80 s (12.5 kHz).

Oscillator Period
Flip-Flops

Total FF
Oscillator Detector Measurement Output

4 ns 3 8 20,000 10,000 30,003

40 ns 21 8 2000 1000 3021

90 ns 48 8 889 445 1390

200 ns 105 8 400 200 713

400 ns 210 8 200 100 518

900 ns 472 8 89 45 614

4 s 2095 8 20 10 2133

Though it is possible to find an optimal configuration, the minimum number of flip-flops is

considerable. A new implementation is going to be designed in order to reduce the hardware

resources. This new solution consists of two different strategies: a ring oscillator and a binary

counter as frequency divider; as shown in Figure 6. The ring oscillator will generate a precision

period, while the frequency divider will multiply the period without necessity of many hardware

resources. Therefore, the new implementation will use two configuration parameters: the number of

delay element in the ring oscillator (num_delay), and the number of the flip-flops in the divider

(num_multiply).

Figure 6. New implementation of the local oscillator based on a ring oscillator and a frequency

divider.

The following step will be to compare the two implementations. This comparison is shown in

Table 2, where delayelement is the delay of one delay element, num_delay is the number of delay

elements and num_multiply is the number of counter bits. Therefore, the period of the local oscillator

and the number of flip-flops in the local oscillator are shown in (1):

period of local oscillator = [(delayelement + delayrouting) * num_delay] * 2num_multiply,

number of flip-flops = num_delay + num_multiply,
(1)

The first equation indicates that the period of the local oscillator depends on the period of the

ring oscillator (expression between the brackets) multiplied by the frequency divider factor

(expression at the right of the brackets). Also, the number of flip flops depends on the number of

elements needed for the implementation of both the ring oscillator and the frequency divider.

Table 2 shows a study of the optimal configuration of the oscillator (using a ring configuration

determined by num_delay and a frequency divider determined by num_multiply). Three

configurations for a same nominal period are considered: minimizing num_delay; minimizing

num_multiply; minimizing the sum of num_delay and num_multipy. Due to the quantization of the

period with the delay elements, the period obtained cannot be equal to the nominal period, and

hence there will be an error between the nominal and the obtained period. The optimal

Figure 6. New implementation of the local oscillator based on a ring oscillator and a frequency divider.

The following step will be to compare the two implementations. This comparison is shown in
Table 2, where delayelement is the delay of one delay element, num_delay is the number of delay elements
and num_multiply is the number of counter bits. Therefore, the period of the local oscillator and the
number of flip-flops in the local oscillator are shown in (1):

period of local oscillator = [(delayelement + delayrouting) * num_delay] * 2num_multiply,
number of flip-flops = num_delay + num_multiply,

(1)

The first equation indicates that the period of the local oscillator depends on the period of the ring
oscillator (expression between the brackets) multiplied by the frequency divider factor (expression at

Sensors 2017, 17, 677 8 of 17

the right of the brackets). Also, the number of flip flops depends on the number of elements needed
for the implementation of both the ring oscillator and the frequency divider.

Table 2 shows a study of the optimal configuration of the oscillator (using a ring configuration
determined by num_delay and a frequency divider determined by num_multiply). Three configurations
for a same nominal period are considered: minimizing num_delay; minimizing num_multiply;
minimizing the sum of num_delay and num_multipy. Due to the quantization of the period with
the delay elements, the period obtained cannot be equal to the nominal period, and hence there
will be an error between the nominal and the obtained period. The optimal configuration will be a
trade-off between hardware resources (sum of num_delay and num_multiply) and error, that is, the third
configuration: minimizing the sum of parameters.

Table 2. Study of the flip-flop numbers varying the period oscillator considering a delayelement of 1.91 ns.
The upper limit of period is 80 µs (12.5 kHz).

Nom. Period
(ns)

Ring-Divisor Oscillator Error
Period (%)

Ring Oscillator Error Period
(%)num_delay num_multiply Period (ns) num_delay Period (ns)

4 1 1 3.82 4.5% 2 3.82 4.5%

400
105 1 401.1 0.3%

210 401.1 0.3%1 8 489.0 22%
3 6 366.7 8.3%

4000
1048 1 4003 0.07%

2095 4001.5 0.04%1 12 7823 96%
4 9 3912 2.2%

3.3. Output Block

The main function of the output block is to generate the response of the sensor, which has to be
particularly defined in each application. In this case, the response is going to be divided into two
different actions. Firstly, when no attack is detected, the response of the sensor will be to allow the
passage of the protocol signals (sda and scl signals). On the other hand, when an attack is detected,
the response of the sensor will be to disconnect the slave from the sda and scl attacked channel and to
induce a certain defense behavior in the slave in order to avoid the possible objectives of the attacker.

A block scheme of the output block is shown in Figure 7. There, the two different actions can
be identified. The selection between both actions comes from the measurement block that identifies
the arrival of an attack. Firstly, the pass of the protocol signals is identified by the direct connection
to the multiplex units. This direct pass avoids possible desynchronizations between both the scl and
sda signals.

In the second case, depending on the location of the sensor, the attack response can be different.
On the one hand, if the sensor is on the same substrate (and hence in the same security region), the
sensor will have direct access to the register included in the I2C transmission. Therefore, it will be able
to write directly a certain value in the register in order to induce the defense behavior. On the other
hand, if the sensor is in the same security region but on a different substrate, it does not have direct
access to the register. Therefore, the response of the sensor will be sending a secure clock signal and a
specific sequence of I2C messages in a particular order, so that the defense behavior is initiated. In this
case, the sensor will supplant the master functions. In this paper, the second option is applied.

In Figure 7, this strategy is implemented in two different blocks. Firstly, the sensor must regenerate
the scl signal from the master to maintain the same timing as in the rest of transactions. This
regeneration is done in the scl regenerator element. This element is similar to the element in the
sensor referenced in [27], and it needs information from the local oscillator (the period of the local
clock signal), the transition detector (to initiate its operation) and the measurement block (the period
of the original scl signal and the signal to start the sensor order). Once the scl signal is regenerated, the
sda signal is generated to send the defense order by the response order element. This order can represent
one or several I2C transactions (because it may be necessary to write in several registers of the slave).

Sensors 2017, 17, 677 9 of 17

The transactions must include the address of the slave, the address of the registers and the value to
write in the registers. The behavior of this element is fixed, and hence, the only information that it
needs comes from the measurement block (the signal to initiate the transaction).Sensors 2017, 17, 677 9 of 17

Figure 7. New implementation of the output block based on the multiplexing of the bus signals.

3.4. Sensor Simulations

The elements described above have been implemented in a FPGA device using a VHDL model.

The use of a ring oscillator involves that the clock period depends on the delay of the ring, and

hence, it is necessary a post-routed simulation to consider the delay of the implementation. The

implementation requires the use of a determined device, and in this work, a Spartan 3AN700 device

is considered. However, the VHDL model allows implementing this design in any platform (any

FPGA device or a VLSI system).

Figure 8 shows a simulation of a normal transaction with no attack. In this figure, the oscillator

reset is active during the idle state and the sensor begins the initialization sequence when a start

condition arrives. This sequence begins again when a new cycle of scl signal begins. No attack is

identified because the attack (busy) signal is not activated. In this case, sda_out and scl_out signals are

copies of the sda and scl signals to avoid synchronization problems in the communication.

Figure 8. Waveform of a simulation of a normal I2C communication process with no attack. This

communication is performed between the master and the slave whose address is X”B0”. The master

will write the value X”10” in the register X”00”.

Figure 9 shows a zoom of the waveform shown in Figure 8. Concretely, it shows the operation

of a cycle in scl signal. It can be appreciated that the compare signal is active when the period enters

the allowed range, and it is deactivated when a new cycle arrives such that it is ready for a new

verification. Also, it shows a detail of the initialization sequence in resets signals.

Figure 7. New implementation of the output block based on the multiplexing of the bus signals.

3.4. Sensor Simulations

The elements described above have been implemented in a FPGA device using a VHDL
model. The use of a ring oscillator involves that the clock period depends on the delay of the
ring, and hence, it is necessary a post-routed simulation to consider the delay of the implementation.
The implementation requires the use of a determined device, and in this work, a Spartan 3AN700
device is considered. However, the VHDL model allows implementing this design in any platform
(any FPGA device or a VLSI system).

Figure 8 shows a simulation of a normal transaction with no attack. In this figure, the oscillator
reset is active during the idle state and the sensor begins the initialization sequence when a start
condition arrives. This sequence begins again when a new cycle of scl signal begins. No attack is
identified because the attack (busy) signal is not activated. In this case, sda_out and scl_out signals are
copies of the sda and scl signals to avoid synchronization problems in the communication.

Sensors 2017, 17, 677 9 of 17

Figure 7. New implementation of the output block based on the multiplexing of the bus signals.

3.4. Sensor Simulations

The elements described above have been implemented in a FPGA device using a VHDL model.

The use of a ring oscillator involves that the clock period depends on the delay of the ring, and

hence, it is necessary a post-routed simulation to consider the delay of the implementation. The

implementation requires the use of a determined device, and in this work, a Spartan 3AN700 device

is considered. However, the VHDL model allows implementing this design in any platform (any

FPGA device or a VLSI system).

Figure 8 shows a simulation of a normal transaction with no attack. In this figure, the oscillator

reset is active during the idle state and the sensor begins the initialization sequence when a start

condition arrives. This sequence begins again when a new cycle of scl signal begins. No attack is

identified because the attack (busy) signal is not activated. In this case, sda_out and scl_out signals are

copies of the sda and scl signals to avoid synchronization problems in the communication.

Figure 8. Waveform of a simulation of a normal I2C communication process with no attack. This

communication is performed between the master and the slave whose address is X”B0”. The master

will write the value X”10” in the register X”00”.

Figure 9 shows a zoom of the waveform shown in Figure 8. Concretely, it shows the operation

of a cycle in scl signal. It can be appreciated that the compare signal is active when the period enters

the allowed range, and it is deactivated when a new cycle arrives such that it is ready for a new

verification. Also, it shows a detail of the initialization sequence in resets signals.

Figure 8. Waveform of a simulation of a normal I2C communication process with no attack.
This communication is performed between the master and the slave whose address is X”B0”. The master
will write the value X”10” in the register X”00”.

Sensors 2017, 17, 677 10 of 17

Figure 9 shows a zoom of the waveform shown in Figure 8. Concretely, it shows the operation of
a cycle in scl signal. It can be appreciated that the compare signal is active when the period enters the
allowed range, and it is deactivated when a new cycle arrives such that it is ready for a new verification.
Also, it shows a detail of the initialization sequence in resets signals.Sensors 2017, 17, 677 10 of 17

Figure 9. Waveform of a zoom of the simulation shown in Figure 8, and a detail of the initialization

sequence.

Figure 10 shows the simulation of a communication process with an attack in cycle number

eight. In it, the first seven cycles have the correct period, and hence, scl and sda signals pass to scl_out

and sda_out signals. The 8th cycle does not arrive because the attacker wants to disable the

communication. This action is identified because attack signal is activated, and hence, the sensor

sends the response to the slave. This response begins by sending a stop condition, so that the slave

closes the previous communication process, and starts listening the sda signal in order to check if it is

the receiver of the following communication. After that, a start condition and the address X”B0”

(corresponding to the secured slave) are sent. Following, the register address is sent (X”00”); and

finally the value to write is sent (X”10”). Once data have finished, the sensor sends a stop condition

to finish the communication process.

Figure 10. Waveform of a simulation of an attacked I2C communication process with the

implemented defense.

4. Case Study: the Navigation of a Mobile Robot

This section illustrates a real case of attack against the clock of an I2C communication process in

a robotic system. Later sections will clearly demonstrate the efficiency of the proposed sensor in

defending real systems against this type of attacks. The interest in attacking robots is justified by the

use of these systems in a huge variety of contexts. The application presented in this paper is related

with mobile robot navigation along a previously defined path. It represents a typical situation in

many of the current robotic applications (industry, agriculture, service, etc.), performed whether in

outdoor or indoor scenarios [21,22,29,30].

It is supposed that user’s intentions involve visiting certain areas of interest by the robot. For

this purpose, a planning algorithm has provided a path that goes through these areas. It is also

assumed that a path-tracking algorithm is applied so that the robot follows this trajectory with

precision.

Figure 9. Waveform of a zoom of the simulation shown in Figure 8, and a detail of the
initialization sequence.

Figure 10 shows the simulation of a communication process with an attack in cycle number eight.
In it, the first seven cycles have the correct period, and hence, scl and sda signals pass to scl_out and
sda_out signals. The 8th cycle does not arrive because the attacker wants to disable the communication.
This action is identified because attack signal is activated, and hence, the sensor sends the response
to the slave. This response begins by sending a stop condition, so that the slave closes the previous
communication process, and starts listening the sda signal in order to check if it is the receiver of
the following communication. After that, a start condition and the address X”B0” (corresponding
to the secured slave) are sent. Following, the register address is sent (X”00”); and finally the value
to write is sent (X”10”). Once data have finished, the sensor sends a stop condition to finish the
communication process.

Sensors 2017, 17, 677 10 of 17

Figure 9. Waveform of a zoom of the simulation shown in Figure 8, and a detail of the initialization

sequence.

Figure 10 shows the simulation of a communication process with an attack in cycle number

eight. In it, the first seven cycles have the correct period, and hence, scl and sda signals pass to scl_out

and sda_out signals. The 8th cycle does not arrive because the attacker wants to disable the

communication. This action is identified because attack signal is activated, and hence, the sensor

sends the response to the slave. This response begins by sending a stop condition, so that the slave

closes the previous communication process, and starts listening the sda signal in order to check if it is

the receiver of the following communication. After that, a start condition and the address X”B0”

(corresponding to the secured slave) are sent. Following, the register address is sent (X”00”); and

finally the value to write is sent (X”10”). Once data have finished, the sensor sends a stop condition

to finish the communication process.

Figure 10. Waveform of a simulation of an attacked I2C communication process with the

implemented defense.

4. Case Study: the Navigation of a Mobile Robot

This section illustrates a real case of attack against the clock of an I2C communication process in

a robotic system. Later sections will clearly demonstrate the efficiency of the proposed sensor in

defending real systems against this type of attacks. The interest in attacking robots is justified by the

use of these systems in a huge variety of contexts. The application presented in this paper is related

with mobile robot navigation along a previously defined path. It represents a typical situation in

many of the current robotic applications (industry, agriculture, service, etc.), performed whether in

outdoor or indoor scenarios [21,22,29,30].

It is supposed that user’s intentions involve visiting certain areas of interest by the robot. For

this purpose, a planning algorithm has provided a path that goes through these areas. It is also

assumed that a path-tracking algorithm is applied so that the robot follows this trajectory with

precision.

Figure 10. Waveform of a simulation of an attacked I2C communication process with the
implemented defense.

4. Case Study: the Navigation of a Mobile Robot

This section illustrates a real case of attack against the clock of an I2C communication process
in a robotic system. Later sections will clearly demonstrate the efficiency of the proposed sensor in
defending real systems against this type of attacks. The interest in attacking robots is justified by the
use of these systems in a huge variety of contexts. The application presented in this paper is related
with mobile robot navigation along a previously defined path. It represents a typical situation in many

Sensors 2017, 17, 677 11 of 17

of the current robotic applications (industry, agriculture, service, etc.), performed whether in outdoor
or indoor scenarios [21,22,29,30].

It is supposed that user’s intentions involve visiting certain areas of interest by the robot. For this
purpose, a planning algorithm has provided a path that goes through these areas. It is also assumed
that a path-tracking algorithm is applied so that the robot follows this trajectory with precision.

Hence, those who want to interfere with the user’s intentions would try to modify the course of
the robot, but ensuring that the user does not realize the robot is under attack (apart from the course
modification). Accordingly, the planned path should remain invariable, and the external interference
may be applied to the low level actuator, for a short period of time, so that the disturbance takes place
temporarily leaving no traces.

The following sections describe the details of a real implementation of the aforementioned
situations. Attacking and defending strategies have been tested in a platform that emulates a mobile
robot allowing the authors to validate their hypothesis about clock hacking.

4.1. A robotic Experimental Platform

An experimental platform has been built in order to emulate the motion of a differential drive
robot in virtual environments, so that digital and analogical instrumentation can be used in order to
measure and characterize the behaviors of the hardware against attacks (see Figure 11).

Sensors 2017, 17, 677 11 of 17

Hence, those who want to interfere with the user’s intentions would try to modify the course of

the robot, but ensuring that the user does not realize the robot is under attack (apart from the course

modification). Accordingly, the planned path should remain invariable, and the external

interference may be applied to the low level actuator, for a short period of time, so that the

disturbance takes place temporarily leaving no traces.

The following sections describe the details of a real implementation of the aforementioned

situations. Attacking and defending strategies have been tested in a platform that emulates a mobile

robot allowing the authors to validate their hypothesis about clock hacking.

4.1. A robotic Experimental Platform

An experimental platform has been built in order to emulate the motion of a differential drive

robot in virtual environments, so that digital and analogical instrumentation can be used in order to

measure and characterize the behaviors of the hardware against attacks (see Figure 11).

Figure 11. The experimental platform.

In [31] authors have detailed the characteristic of the platform. It implements a control

architecture that includes a high level controller and a low level controller. The high level controller

is the responsible of taking decision about the robot motion, as well as to set the correspondent

actions to be executed by the actuators. In the case of mobile robot applications, the high level

controller defines the motors’ speed. Then, these values are transferred to the low level controller so

that motors make the robot move in a correct way. In the current application, the high level

controller is based on a very well-known path tracking algorithm: Pure Pursuit [21,22,29,32], and the

low level control implements a traditional PID controller that transmits orders to the motors driver

by using I2C protocol.

The experimental platform is divided into three different zones (see Figure 12): a Personal

Computer (PC) that executes Matlab software routines to implement the high level controller; a

FPGA device to implement hardware modules (such as the low level controller and the attack

module), and a standard slave device (more concretely an MD23 motor controller [33]).

Figure 12. Scheme of the experimental platform.

Figure 11. The experimental platform.

In [31] authors have detailed the characteristic of the platform. It implements a control architecture
that includes a high level controller and a low level controller. The high level controller is the
responsible of taking decision about the robot motion, as well as to set the correspondent actions to be
executed by the actuators. In the case of mobile robot applications, the high level controller defines the
motors’ speed. Then, these values are transferred to the low level controller so that motors make the
robot move in a correct way. In the current application, the high level controller is based on a very
well-known path tracking algorithm: Pure Pursuit [21,22,29,32], and the low level control implements
a traditional PID controller that transmits orders to the motors driver by using I2C protocol.

The experimental platform is divided into three different zones (see Figure 12): a Personal
Computer (PC) that executes Matlab software routines to implement the high level controller; a FPGA
device to implement hardware modules (such as the low level controller and the attack module), and a
standard slave device (more concretely an MD23 motor controller [33]).

The FPGA device is aimed to implement the hardware modules to obtain a better control of the
signals. These modules are an UART based on the RS232 protocol (to communicate with Matlab in
a PC), a low level controller (to adapt the orders from Matlab to the rest of modules), an I2C master
(to control the communication through I2C protocol), an I2C slave (to test the system inside the FPGA
device) and the attack module (to implement the attacks to I2C communications). The platform also
includes several measurement elements, highlighted in red in Figure 11: a logic analyzer that monitors
the main signals in the communication process, the same PC that monitors the velocity of the motors,

Sensors 2017, 17, 677 12 of 17

and a current measuring device (between the supply source and the motor controller) that monitors
the current consumed by the motors.

Sensors 2017, 17, 677 11 of 17

Hence, those who want to interfere with the user’s intentions would try to modify the course of

the robot, but ensuring that the user does not realize the robot is under attack (apart from the course

modification). Accordingly, the planned path should remain invariable, and the external

interference may be applied to the low level actuator, for a short period of time, so that the

disturbance takes place temporarily leaving no traces.

The following sections describe the details of a real implementation of the aforementioned

situations. Attacking and defending strategies have been tested in a platform that emulates a mobile

robot allowing the authors to validate their hypothesis about clock hacking.

4.1. A robotic Experimental Platform

An experimental platform has been built in order to emulate the motion of a differential drive

robot in virtual environments, so that digital and analogical instrumentation can be used in order to

measure and characterize the behaviors of the hardware against attacks (see Figure 11).

Figure 11. The experimental platform.

In [31] authors have detailed the characteristic of the platform. It implements a control

architecture that includes a high level controller and a low level controller. The high level controller

is the responsible of taking decision about the robot motion, as well as to set the correspondent

actions to be executed by the actuators. In the case of mobile robot applications, the high level

controller defines the motors’ speed. Then, these values are transferred to the low level controller so

that motors make the robot move in a correct way. In the current application, the high level

controller is based on a very well-known path tracking algorithm: Pure Pursuit [21,22,29,32], and the

low level control implements a traditional PID controller that transmits orders to the motors driver

by using I2C protocol.

The experimental platform is divided into three different zones (see Figure 12): a Personal

Computer (PC) that executes Matlab software routines to implement the high level controller; a

FPGA device to implement hardware modules (such as the low level controller and the attack

module), and a standard slave device (more concretely an MD23 motor controller [33]).

Figure 12. Scheme of the experimental platform.
Figure 12. Scheme of the experimental platform.

The Matlab application has been configured to work with different virtual scenarios and
predefined paths. The application receives information from the FPGA regarding the velocity of
the motors, and simulates the motion of the robot within the virtual scenario. The high level controller
executes an iterative loop that considers this virtual motion and defines control references so that the
robot follows a specific path accurately.

Communications with the FPGA are performed by the RS232 protocol. The UART implemented
in the FPGA receives the speeds references from the PC, and encodes and inserts them in the I2C bus
through the I2C master. This module generates SCL and SDA signals as information goes out the
FPGA to the motors driver. This driver reads the orders by I2C protocol and changes the speed of the
motors consequently. The MD23 controller allows measuring the angular velocities of the motors axes.
This value is sent from motors’ driver to the I2C master. The low level controller encodes these values,
which are sent to the PC. In Matlab, this information is translated to Cartesian motion by applying
dead reckoning techniques, so that the position of the robot is estimated. Hence, new reference values
for the motors speeds are generated by the path-tracking algorithm that takes into account the new
estimated position and the reference path. This flow is repeated until the robot arrives to the final
position of the path. Obviously, this platform is a perfect scenario to test the attacking and defending
techniques described in Sections 2 and 3.

4.2. Attacking and Defending Strategies

4.2.1. Attacking Strategy

The main idea is to attack the clock signal of the I2C bus in order to interfere with the task of the
robot. In this application, the path that the robot follows has been generated in order to ensure that the
vehicle goes over some places in a certain order. As a consequence, a first objective for an attacking
strategy would be to modify the course of the robot. At a selected moment, when the master tries to
communicate with the engines, the attack module acts on the clock, preventing such communication.
After that, it sends the acknowledgment. Due of this fact, the attack achieves two effects:

• The master module believes that there has been no problem and that the motor follows
the references.

• The slave module receives nothing and maintains the previous speed value.

The consequences of these effects can be dramatic. While the path tracking algorithm orders the
robot to follow a collision-free trajectory, the vehicle could go straight ahead and crash into an obstacle.
Another way to carry out the attack consists of modifying the robot trajectory without endangering
the robot (avoiding possible collisions) but preventing it from correctly performing its task. This most
elaborate situation is the one authors have considered. According to this criteria, a successful attack
must meet the following set of constraints:

Sensors 2017, 17, 677 13 of 17

(1) Both during and after the attack, the robot should keep navigating in a safe way.
(2) The consequence of the attack is one of these options:

(a) The robot will not reach a specified location.
(b) The robot will repeat the route to visit a certain area.

All of these requirements can be accomplished by an appropriate attack that follows the
prescriptions detailed in Section 2.1. As it will be shown in the experimental section, a properly
executed attack has a high likelihood of succeeding. The success only depends on selecting the
optimum moment for implementing the clock attack. Reverse engineering techniques can be used to
determine the moment and duration of the clock signal interference.

4.2.2. Defending Strategy

The strategy for avoiding this type of attack consists on developing a motor driver that
incorporates a sensor similar to the one presented in Section 3 (see Figure 13). Each time the sensor
detects a clock attack, it is programmed to generate a sequence of speed commands that order the
motors to stop. Once the clock attack has finished, the sensor detects that the clock signal is free of
interferences and makes the slave follow again the commands received from the I2C master. Then,
the robot can start its navigation again and safely accomplish the predefined tasks.

Sensors 2017, 17, 677 13 of 17

All of these requirements can be accomplished by an appropriate attack that follows the

prescriptions detailed in Section 2.1. As it will be shown in the experimental section, a properly

executed attack has a high likelihood of succeeding. The success only depends on selecting the

optimum moment for implementing the clock attack. Reverse engineering techniques can be used to

determine the moment and duration of the clock signal interference.

4.2.2. Defending Strategy

The strategy for avoiding this type of attack consists on developing a motor driver that

incorporates a sensor similar to the one presented in Section 3 (see Figure 13). Each time the sensor

detects a clock attack, it is programmed to generate a sequence of speed commands that order the

motors to stop. Once the clock attack has finished, the sensor detects that the clock signal is free of

interferences and makes the slave follow again the commands received from the I2C master. Then,

the robot can start its navigation again and safely accomplish the predefined tasks.

Figure 13. Scheme of the defending strategy.

5. Experimental Results

Many experiments have been performed in different virtual environments. The idea was to find

those types of paths and scenarios in which temporary attacks can accomplish the constraints

defined in Section 4.2. In [31], it was demonstrated that an appropriate selection for the attack

moment results in a modification of the robot trajectory that prevents it from accomplishing a

predefined task.

(a) (b)

Figure 14. Experiment without attack: (a) planned and followed trajectory; (b) wheels velocity

references and signals from the encoders.

Figure 13. Scheme of the defending strategy.

5. Experimental Results

Many experiments have been performed in different virtual environments. The idea was to find
those types of paths and scenarios in which temporary attacks can accomplish the constraints defined
in Section 4.2. In [31], it was demonstrated that an appropriate selection for the attack moment results
in a modification of the robot trajectory that prevents it from accomplishing a predefined task.

One of the most interesting results was found in the scenario of the experiment shown in
Figure 14a. This figure indicates with arrows the initial and final positions. In this experiment,
the robot evolves describing what can be called a roundabout-like trajectory, in which the robot
moves around a specific area (marked also in Figure 14a). In this first experiment, navigation was
implemented without any attack, the path-tracking algorithm succeeded in controlling the motion of
the robot very close to the planned trajectory. Figure 14b illustrates, in a red line, the reference for the
wheels’ speed, provided by the high level controller, and in a blue line, the wheels’ speed provided by
the encoder signals (up right motor, down left motor).

Sensors 2017, 17, 677 14 of 17

Sensors 2017, 17, 677 13 of 17

All of these requirements can be accomplished by an appropriate attack that follows the

prescriptions detailed in Section 2.1. As it will be shown in the experimental section, a properly

executed attack has a high likelihood of succeeding. The success only depends on selecting the

optimum moment for implementing the clock attack. Reverse engineering techniques can be used to

determine the moment and duration of the clock signal interference.

4.2.2. Defending Strategy

The strategy for avoiding this type of attack consists on developing a motor driver that

incorporates a sensor similar to the one presented in Section 3 (see Figure 13). Each time the sensor

detects a clock attack, it is programmed to generate a sequence of speed commands that order the

motors to stop. Once the clock attack has finished, the sensor detects that the clock signal is free of

interferences and makes the slave follow again the commands received from the I2C master. Then,

the robot can start its navigation again and safely accomplish the predefined tasks.

Figure 13. Scheme of the defending strategy.

5. Experimental Results

Many experiments have been performed in different virtual environments. The idea was to find

those types of paths and scenarios in which temporary attacks can accomplish the constraints

defined in Section 4.2. In [31], it was demonstrated that an appropriate selection for the attack

moment results in a modification of the robot trajectory that prevents it from accomplishing a

predefined task.

(a) (b)

Figure 14. Experiment without attack: (a) planned and followed trajectory; (b) wheels velocity

references and signals from the encoders.
Figure 14. Experiment without attack: (a) planned and followed trajectory; (b) wheels velocity
references and signals from the encoders.

In the following experiment (see Figure 15), an attack was implemented on both motors. Figure 15a
shows in red the path executed by the robot. Figure 15b represents the wheels’ velocity references
(red), and the wheels’ velocity provided by the encoder signals of both motors (blue). A black line
delimits the moment of the attack. In this case, the clock attack took place before navigating around the
roundabout, and disappeared at the moment when the robot was closer to the end of the roundabout.
During the attack, the robot navigates straight ahead, and exits the roundabout.

Sensors 2017, 17, 677 14 of 17

One of the most interesting results was found in the scenario of the experiment shown in Figure

14a. This figure indicates with arrows the initial and final positions. In this experiment, the robot

evolves describing what can be called a roundabout-like trajectory, in which the robot moves around

a specific area (marked also in Figure 14a). In this first experiment, navigation was implemented

without any attack, the path-tracking algorithm succeeded in controlling the motion of the robot

very close to the planned trajectory. Figure 14b illustrates, in a red line, the reference for the wheels’

speed, provided by the high level controller, and in a blue line, the wheels’ speed provided by the

encoder signals (up right motor, down left motor).

In the following experiment (see Figure 15), an attack was implemented on both motors. Figure

15a shows in red the path executed by the robot. Figure 15b represents the wheels’ velocity

references (red), and the wheels’ velocity provided by the encoder signals of both motors (blue). A

black line delimits the moment of the attack. In this case, the clock attack took place before

navigating around the roundabout, and disappeared at the moment when the robot was closer to the

end of the roundabout. During the attack, the robot navigates straight ahead, and exits the

roundabout.

Note that, during the attack (see Figure 15b) the high level controller sent references to the

motors in order to make robot move to the closer section of the path, however, and due to the attack,

none of the motors listened to these commands. When the attack finished the robot is closer to the

final section of the path. The tracking algorithm makes the robot move to this section, and then, it

follows the path correctly to the end. As a consequence, the attack was successful because it prevents

the system from visiting the roundabout that was one of the tasks defined by the initially planned

path.

(a) (b)

Figure 15. Avoiding the roundabout: (a) planned and robot trajectory; (b) signal from the encoders.

In the next experiment, authors have extended the application of this strategy so that the robot

keeps navigating around the roundabout instead of avoiding it (see Figure 16). Figure 16a shows in

red the path executed by the robot, and Figure 16b represents the velocity references (red) and the

wheels’ velocity provided by the encoder signals of both motors (blue). The attack is indicated by the

black line.

The clock attack took place when the roundabout was finishing. From this moment, the robot

navigates straight ahead. The attack finished when the robot was close to the beginning of the

roundabout, then the path tracking algorithm makes the robot follow the roundabout again, visiting

this area twice.

Figure 15. Avoiding the roundabout: (a) planned and robot trajectory; (b) signal from the encoders.

Note that, during the attack (see Figure 15b) the high level controller sent references to the motors
in order to make robot move to the closer section of the path, however, and due to the attack, none of
the motors listened to these commands. When the attack finished the robot is closer to the final section
of the path. The tracking algorithm makes the robot move to this section, and then, it follows the path
correctly to the end. As a consequence, the attack was successful because it prevents the system from
visiting the roundabout that was one of the tasks defined by the initially planned path.

In the next experiment, authors have extended the application of this strategy so that the robot
keeps navigating around the roundabout instead of avoiding it (see Figure 16). Figure 16a shows in
red the path executed by the robot, and Figure 16b represents the velocity references (red) and the
wheels’ velocity provided by the encoder signals of both motors (blue). The attack is indicated by the
black line.

Sensors 2017, 17, 677 15 of 17
Sensors 2017, 17, 677 15 of 17

(a) (b)

Figure 16. Visiting the roundabout twice: (a) planned and robot trajectory; (b) signal from the

encoders.

These results confirm that a convenient selection for the moment of the attack can make robot

change its expected behavior. Nevertheless, the resulting motions appear to be “natural”, in fact the

robot navigates safely and returns to the desired trajectory. It is only evident by the bizarre behavior

of the motors that probably no one would understand without knowing of the existence of the

attack.

The next experiment illustrates the efficiency of the proposed sensor in defending against the

previous situations. As was explained in Section 4.2, in this experiment the frequency sensor was

connected between the MD23 and the I2C bus, protecting the motors’ drivers from the attacks. The

robot suffered two attacks at the same moments they were performed in the experiments of Figures

15 and 16. Figure 17a presents the trajectory of the robot in the attacked/defended experiment,

showing that the vehicle accurately follows the desired path. Figure 17b shows the velocity

references (red), with the wheels’ velocity provided by the encoder signals of both motors (blue) and

the attack evolution (black). Observe that, when an attack appears, the velocity references generated

by the path tracking algorithm are different from zero. However, the velocity of the motors evolves

to zero—remember that motors under attack obey only the commands generated by the sensor and

the high level controller does not perceive that any attack has been performed. Once, the attack

disappears, motors listen correctly the references of the high level controller and start moving again,

accurately following the path.

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

 Y
 (

m
·1

0-2
)

 X (m·10
-2

)

First attack

Second attack

0 20 40 60 80 100 120 140 160

0

1

2

3

4

5

 w
 [

ra
d
·s

-1
]

 t [s]

0 20 40 60 80 100 120 140 160

0

1

2

3

4

5

 w
 [

ra
d
·s

-1
]

 t [s]

(a) (b)

Figure 17. Avoiding the roundabout: (a) planned and robot trajectory; (b) signal from the encoders.

Figure 16. Visiting the roundabout twice: (a) planned and robot trajectory; (b) signal from the encoders.

The clock attack took place when the roundabout was finishing. From this moment, the robot
navigates straight ahead. The attack finished when the robot was close to the beginning of the
roundabout, then the path tracking algorithm makes the robot follow the roundabout again, visiting
this area twice.

These results confirm that a convenient selection for the moment of the attack can make robot
change its expected behavior. Nevertheless, the resulting motions appear to be “natural”, in fact the
robot navigates safely and returns to the desired trajectory. It is only evident by the bizarre behavior of
the motors that probably no one would understand without knowing of the existence of the attack.

The next experiment illustrates the efficiency of the proposed sensor in defending against the
previous situations. As was explained in Section 4.2, in this experiment the frequency sensor was
connected between the MD23 and the I2C bus, protecting the motors’ drivers from the attacks.
The robot suffered two attacks at the same moments they were performed in the experiments of
Figures 15 and 16. Figure 17a presents the trajectory of the robot in the attacked/defended experiment,
showing that the vehicle accurately follows the desired path. Figure 17b shows the velocity references
(red), with the wheels’ velocity provided by the encoder signals of both motors (blue) and the attack
evolution (black). Observe that, when an attack appears, the velocity references generated by the
path tracking algorithm are different from zero. However, the velocity of the motors evolves to
zero—remember that motors under attack obey only the commands generated by the sensor and the
high level controller does not perceive that any attack has been performed. Once, the attack disappears,
motors listen correctly the references of the high level controller and start moving again, accurately
following the path.

Sensors 2017, 17, 677 15 of 17

(a) (b)

Figure 16. Visiting the roundabout twice: (a) planned and robot trajectory; (b) signal from the

encoders.

These results confirm that a convenient selection for the moment of the attack can make robot

change its expected behavior. Nevertheless, the resulting motions appear to be “natural”, in fact the

robot navigates safely and returns to the desired trajectory. It is only evident by the bizarre behavior

of the motors that probably no one would understand without knowing of the existence of the

attack.

The next experiment illustrates the efficiency of the proposed sensor in defending against the

previous situations. As was explained in Section 4.2, in this experiment the frequency sensor was

connected between the MD23 and the I2C bus, protecting the motors’ drivers from the attacks. The

robot suffered two attacks at the same moments they were performed in the experiments of Figures

15 and 16. Figure 17a presents the trajectory of the robot in the attacked/defended experiment,

showing that the vehicle accurately follows the desired path. Figure 17b shows the velocity

references (red), with the wheels’ velocity provided by the encoder signals of both motors (blue) and

the attack evolution (black). Observe that, when an attack appears, the velocity references generated

by the path tracking algorithm are different from zero. However, the velocity of the motors evolves

to zero—remember that motors under attack obey only the commands generated by the sensor and

the high level controller does not perceive that any attack has been performed. Once, the attack

disappears, motors listen correctly the references of the high level controller and start moving again,

accurately following the path.

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

 Y
 (

m
·1

0-2
)

 X (m·10
-2

)

First attack

Second attack

0 20 40 60 80 100 120 140 160

0

1

2

3

4

5

 w
 [

ra
d
·s

-1
]

 t [s]

0 20 40 60 80 100 120 140 160

0

1

2

3

4

5

 w
 [

ra
d
·s

-1
]

 t [s]

(a) (b)

Figure 17. Avoiding the roundabout: (a) planned and robot trajectory; (b) signal from the encoders. Figure 17. Avoiding the roundabout: (a) planned and robot trajectory; (b) signal from the encoders.

Sensors 2017, 17, 677 16 of 17

6. Conclusions

This paper pays attention to illustrate an example of attacks on the clock signal in the I2C
protocol, and proposes a defense strategy. Particularly, the effect of a clock glitching attack over the
communication process between master and slaves has been analyzed. The authors propose the
design of a new sensor that represents an effective defense against this type of perturbation. Attacks
and defense strategies have been validated in an experimental platform that emulates a differential
drive mobile robot. Several experiments concerning mobile robot navigation have been performed.
Some particular circumstances have been characterized where I2C clock glitching attacks dramatically
increase the robot vulnerability. Experiments show the efficiency of the proposed sensor in detecting
and defending the robot from clock attacks.

Author Contributions: Fernando Gómez-Bravo, Raúl Jiménez-Naharro and Juan Antonio Gómez-Galán
performed the vulnerability analysis and designed the defense sensor; Jonathan Medina-García and
Manuel Sánchez-Raya proposed ideas and performed the experiments; Fernando Gómez-Bravo and
Juan Antonio Gómez-Galán designed and implemented the robot’s high level controller; Raúl Jiménez-Naharro
implemented the low level controller, made the supervision and direction of the work. All authors contributed to
the writing and editing of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tehranipoor, M.; Koushanfaar, F. A Survey of Hardware Trojan Taxonomy and Detection. IEEE Tran. Des.
Test Comput. 2010, 27, 10–25. [CrossRef]

2. Bruschi, D.; Cavallaro, L.; Lanzi, A.; Monga, M. Replay Attack in TCG Specification and Solution.
In Proceedings of the 21st Annual Computer Security Applications Conference, Tucson, AZ, USA,
5–9 December 2005; pp. 11–137.

3. Karaklajic, D.; Schmidt, J.M.; Verbauwhede, I. Hardware Designer’s Guide to Fault Attacks. IEEE Trans.
VLSI Syst. 2013, 21, 2295–2306. [CrossRef]

4. Huang, A. Hacking the Xbox: An Introduction to Reverse Engineering; No Starch Press: San Francisco, CA,
USA, 2002.

5. Marques, C.; Cristóvão, J.; Alvito, P.; Lima, P.; Frazão, J.; Ribeiro, I.; Ventura, R. A search and rescue robot
with tele-operated tether docking system. Ind. Robot 2007, 34, 332–338. [CrossRef]

6. Garcia-Cerezo, A.; Mandow, A.; Martinez, J.L.; Gómez-de-Gabriel, J.; Morales, J.; Cruz, A.; Seron, J.
Development of ALACRANE: A mobile robotic assistance for exploration and rescue missions.
In Proceedings of the IEEE International Workshop on Safety, Security and Rescue Robotics, Rome, Italy,
27–29 September 2007; pp. 1–6.

7. Moreno, H.A.; Saltaren, R.; Carrera, I.; Puglisi, L.; Aracil, R. Performance Indices of Robotic Manipulators:
A review of the State of the Art. Rev. Iberoam. Autom. Inform. Ind. 2012, 9, 111–122. [CrossRef]

8. Park, J.; Jeong, W.; Lee, H.K.; Won, J. An efficient path planning method for a cleaning robot based on ceiling
vision. In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV,
USA, 11–14 January 2013.

9. Singh, G. A study of encryption algorithms (RSA, DES, 3DES and AES) for information security. Int. J.
Comput. Appl. 2013, 67, 33–38. [CrossRef]

10. Arena, P.; Buscarino, A.; Fortuna, L.; Frasca, M. Separation and synchronization of piecewise linear chaotic
systems. Phys. Rev. E 2006, 74, 026212. [CrossRef] [PubMed]

11. Arora, A.; Telang, R.; Xu, H. Optimal policy for software vulnerability disclosure. Manag. Sci. 2008, 54,
642–656. [CrossRef]

12. Heelan, S. Vulnerability detection systems: Think cyborg, not robot. IEEE Secur. Priv. 2011, 9, 74–77.
[CrossRef]

13. Anderson, R.; Kuhn, M. Tamper Resistence a Cautionary Note. In Proceedings of the 2nd USENIX Workshop
on Electronic Commerce, Oakland, CA, USA, 18–21 November 1996; Volume 2, pp. 1–11.

14. Ladd, A.M.; Bekris, K.E.; Rudys, A.P.; Wallach, D.S.; Kavraki, L.E. On the feasibility of using wireless ethernet
for indoor localization. IEEE Trans. Robot. Autom. 2004, 20, 555–559. [CrossRef]

http://dx.doi.org/10.1109/MDT.2010.7
http://dx.doi.org/10.1109/TVLSI.2012.2231707
http://dx.doi.org/10.1108/01439910710749663
http://dx.doi.org/10.1016/j.riai.2012.02.005
http://dx.doi.org/10.5120/11507-7224
http://dx.doi.org/10.1103/PhysRevE.74.026212
http://www.ncbi.nlm.nih.gov/pubmed/17025530
http://dx.doi.org/10.1287/mnsc.1070.0771
http://dx.doi.org/10.1109/MSP.2011.70
http://dx.doi.org/10.1109/TRA.2004.824948

Sensors 2017, 17, 677 17 of 17

15. Cañas, N.; Hernández, W.; González, G.; Sergiyenko, O. Multivariable controllers for an autonomous ground
vehicle: Comparison based on software reliability. Rev. Iberoam. Autom. Inform. Ind. 2014, 11, 179–190.
[CrossRef]

16. Sheppard, B.; Thompson, T. Cyber Security for Robots: Scenarios for 2030. Available online: http:
//www.roboticsbusinessreview.com/article/cyber_security_for_robots_scenarios_for_2030 (accessed on
23 March 2017).

17. Nobile, C. Robots Vulnerable to Hacking. Robotic Business Review. Available online: http://www.
roboticsbusinessreview.com/article/robots_vulnerable_to_hacking (accessed on 23 March 2017).

18. Du, J.; Wu, Y.C. Distributed clock skew and offset estimation in wireless sensor networks: Asynchronous
algorithm and convergence analysis. IEEE Trans. Wirel. Commun. 2013, 12, 5908–5917. [CrossRef]

19. Sadler, B.M.; Swami, A. Synchronization in sensor networks: An overview. In Proceedings of the IEEE
Military Communications Conference (MILCOM), Washington, DC, USA, 23–25 October 2006; pp. 1–6.

20. Kim, J.S.; Lee, J.; Serpedin, E.; Qaraqe, K. Robust clock synchronization in wireless sensor networks through
noise density estimation. IEEE Trans. Signal Process. 2011, 59, 3035–3047. [CrossRef]

21. Morales, J.; Martínez, J.L.; Martínez, M.A.; Mandow, A. Pure-pursuit reactive path tracking for nonholonomic
mobile robots with a 2D laser scanner. J. Adv. Signal Process. 2009. [CrossRef]

22. Cuesta, F.; Gómez-Bravo, F.; Ollero, A. Parking maneuvers of industrial-like electrical vehicles with and
without trailer. IEEE Trans. Ind. Electr. 2004, 51, 257–269. [CrossRef]

23. McLoughlin, I. Secure embedded system: The threat of reverse engineering. In Proceedings of the 14th
International Conference on Parallel and Distributed Systems, Melbourne, Australia, 8–10 December 2008;
pp. 729–736.

24. Dutertre, J.M.; Fournier, J.J.; Mirbaha, A.P.; Naccache, D.; Rigaud, J.B.; Robisson, B.; Tria, A. Review of
fault injection mechanisms and consequences on countermeasures design. In Proceedings of the 6th IEEE
International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), Athens,
Greece, 6–8 April 2011; pp. 1–6.

25. Fukuhara, R.; Day, L.; Luong, H.H.; Rasmussen, R.; Chau, S.N. I2C Bus Protocol Controller with Fault
Tolerance. U.S. Patent 6,728,908, 27 April 2004.

26. Alkalai, L.; Chau, S.N.; Tai, A.T. Fault-Tolerant Communication Channel Structures. U.S. Patent 7,020,076,
28 March 2006.

27. Jiménez-Naharro, R.; Gómez-Galán, J.A.; Sánchez-Raya, M.; Gómez-Bravo, F.; Pedro-Carrasco, M. Design
and implementation of a new real-time frequency sensor used as hardware countermeasure. Sensors 2013,
13, 11709–11727. [CrossRef] [PubMed]

28. Kömmerling, O.; Kuhn, M.G. Design Principles for Tamper-Resistant Smartcard Processors. Smartcard 1999,
99, 9–20.

29. Ollero, A. Robotics: Manipulators and Mobile Robots; Marcombo: Barcelona, Spain, 2001.
30. Nakhaeinia, D.; Payeur, P.; Hong, T.S.; Karasfi, B. A hybrid control architecture for autonomous mobile robot

navigation in unknown dynamic environment. In Proceedings of the IEEE International Conference on
Automation Science and Engineering (CASE), Gothenburg, Sweden, 24–28 August 2015; pp. 1274–1281.

31. Gomez-Bravo, F.; Medina García, J.; Jiménez Naharro, R.; Gómez Galán, J.A.; Sánchez Raya, M. Experimental
Platform for Studying Hardware Vulnerabilities on Mobile Robots: I2C Bus, a Case of Study. Rev. Iberoam.
Autom. 2017, in press.

32. Ollero, A.; Mandow, A.; Muñoz, V.F.; De Gabriel, J.G. Control architecture for mobile robot operation and
navigation. Robot. Comput.-Integr. Manuf. 1994, 11, 259–269. [CrossRef]

33. MD23—Dual 12Volt 3Amp H Bridge Motor Drive. Available online: http://www.robotstorehk.com/
motordrivers/doc/md23tech.pdf (accessed on 23 March 2017).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.riai.2014.02.002
http://www.roboticsbusinessreview.com/article/cyber_security_for_robots_scenarios_for_2030
http://www.roboticsbusinessreview.com/article/cyber_security_for_robots_scenarios_for_2030
http://www.roboticsbusinessreview.com/article/robots_vulnerable_to_hacking
http://www.roboticsbusinessreview.com/article/robots_vulnerable_to_hacking
http://dx.doi.org/10.1109/TWC.2013.100213.130553
http://dx.doi.org/10.1109/TSP.2011.2141660
http://dx.doi.org/10.1155/2009/935237
http://dx.doi.org/10.1109/TIE.2004.824855
http://dx.doi.org/10.3390/s130911709
http://www.ncbi.nlm.nih.gov/pubmed/24008285
http://dx.doi.org/10.1016/0736-5845(95)00032-1
http://www.robotstorehk.com/motordrivers/doc/md23tech.pdf
http://www.robotstorehk.com/motordrivers/doc/md23tech.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Clock Signal: A Possible Source of Attacks
	Attack on the Protocol I2C

	Countermeasures
	Transition Detector
	Local Oscillator
	Output Block
	Sensor Simulations

	Case Study: the Navigation of a Mobile Robot
	A robotic Experimental Platform
	Attacking and Defending Strategies
	Attacking Strategy
	Defending Strategy

	Experimental Results
	Conclusions

