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Abstract 

 

The development of high-throughput sequencing technologies has provided 

ecologists with an efficient approach to assess biodiversity in benthic communities, 

particularly with the recent advances in metabarcoding technologies using universal 

primers. However, analyzing such high-throughput data is posing important computational 

challenges, requiring specialized bioinformatics solutions at different stages during the 

processing pipeline, such as assembly of paired-end reads, chimera removal, correction of 

sequencing errors, and clustering of obtained sequences into Molecular Operational 

Taxonomic Units (MOTUs). The inferred MOTUs can then be used to estimate species 

diversity, composition, and richness. Although a number of methods have been developed 

and commonly used to cluster the sequences into MOTUs, relatively little guidance is 

available on their relative performance.  

We focused our study in the benthic community from a natural CO2 vent present in 

the Canary Islands, as it can be used as a natural laboratory in which to investigate the 

impacts of chronic ocean acidification. Here, we propose a pipeline for studying this 

community using a fragment of the mitochondrial cytochrome c oxidase I (COI) sequence. 

We compared two DNA extraction methods, two clustering methods and validated a robust 

method to eliminate false positives.  

We found that we can obtain optimal results purifying DNA from 0.3 g of sample. Using 

the step-by-step aggregation algorithm implemented in SWARM for clustering yields similar 

results as using the Bayesian clustering method of CROP, in much less time. We introduced 

the new algorithm MINT (Multiple Intersection of N Tags), in order to eliminate false 

positives due to random errors produced before or after the sequencing. Our results show 

that a fully-automated analysis pipeline can be used for assessing biodiversity of marine 

benthic communities using COI as a metabarcoding marker in an objective, accurate and 

affordable manner. 

 

Keywords: Enviromental DNA (eDNA), CO2 vent, COI, pipeline, clustering, MINT 
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Resumo 

 

O desenvolvimento de tecnologias de sequenciamento de alto rendimento 

proporcionou aos ecologistas uma abordagem eficiente para avaliar a biodiversidade nas 

comunidades bentônicas, particularmente com os recentes avanços nas tecnologias de 

metabarcoding utilizando primers universais. No entanto, a análise desses dados de alto 

rendimento apresenta desafios computacionais importantes, que requerem soluções de 

bioinformática especializadas em diferentes estágios durante o processamento da pipeline, 

tais como a montagem de paired-end reads, eliminação de quimeras, correção de erros de 

sequenciamento e agrupamento de sequências obtidas em Unidades Taxonômicas 

Operacionais Moleculares (MOTU). As MOTUs inferidas podem então serem usadas para 

estimar a diversidade, composição e riqueza das espécies. Atualmente, há pouca 

informação acerca do desempenho relativo com referência ao agrupamento de sequências 

em MOTUs, apesar do fato de que vários métodos foram desenvolvidos. 

O estudo foi focado em uma comunidade bentônica a partir de uma fumarola de CO2 

natural presente nas Ilhas Canárias, pois pôde ser utilizado como um laboratório natural 

para investigar os impactos da acidificação crônica dos oceanos. Aqui, propomos um 

pipeline para estudar esta comunidade utilizando um fragmento da sequência mitocondrial 

de citocromo c oxidasa I (COI). Comparamos dois métodos de extração de DNA, dois 

métodos de agrupação e se validou um método robusto para eliminar os falsos positivos.  

Descobrimos que podemos obter ótimos resultados purificando o DNA a partir de 

0.3g de amostra. Usando o passo-a-passo do algoritmo de agregação implementado em 

SWARM, podemos comprovar que produz resultados similares quando comparados com 

o método de agrupamento Bayesiano de CROP, além disso, em muito menos tempo. 

Introduzimos um novo algoritmo MINT (Intersecção múltipla de N Tags), com a finalidade 

de eliminar os falsos positivos devido aos erros aleatórios produzidos antes ou após o 

sequenciamento. Nossos resultados mostram que se pode utilizar um sistema de análises 

completamente automatizado para avaliar a biodiversidade das comunidades bentônicas 

marinhas utilizando COI como marcador de uma maneira objetiva, precisa e acessível. 
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1.1. Biodiversity monitoring 

 

Biological monitoring techniques which allow us to obtain accurate data on species 

distributions and population sizes on ecologically relevant scales of time and space are 

crucial for a correct management of natural ecosystems. Species monitoring has 

traditionally relied on physical identification of species by means of visual surveys and 

counting individual abundances, in the field or in the laboratory, using distinct morphological 

characters. However, in many cases these techniques fall short of yielding efficient and 

standardized surveys, due to incorrect identifications arising from, among others, 

phenotypic plasticity, species with similar appearance in juvenile stages (Thomsen and 

Willerslev, 2015) or occurrence of cryptic species complexes (Knowlton, 1993). Additionally, 

traditional monitoring techniques have sometimes proven to be invasive on the species or 

ecosystems under study, such as marine surveys that have relied on highly destructive 

techniques (Baldwin et al., 1996; Jones, 1992). Furthermore, morphological identification is 

heavily dependent on taxonomic expertise, which is often lacking or in rapid decline 

(Hopkins and Freckleton, 2002; Wheeler et al., 2004), a scenario that is better known as 

“the taxonomic impediment” (Wheeler et al., 2004). All such limitations of traditional 

biodiversity monitoring have created demand for alternative approaches. 

Obtaining information of species, populations and communities by retrieving DNA 

from environmental samples holds the potential of combating many of these challenges 

associated with biodiversity monitoring (Baird and Hajibabaei, 2012; Kelly et al., 2014). The 

fact that DNA from organisms of a complex community can be sampled, extracted and 

analyzed, has been a major technological and scientific breakthrough within the last 

decade. Within a single standardized sample, DNA from entire communities across 

taxonomic groups can potentially be analyzed simultaneously (Thomsen and Willerslev, 

2015). 

The content of a community DNA (comDNA) sample is typically analyzed by 

amplification using polymerase chain reaction (PCR) and subsequent DNA sequencing. 

The amplification is done by a multiple-species (multiple-taxon) approach using generic 

primers for a given focal group of organisms. Especially the fast advancing high-throughput 

sequencing (HTS) technologies have made comprehensive biodiversity surveys possible 

for limited effort and costs (Shokralla et al., 2012). This has made the multiple-species 

comDNA approach especially powerful by DNA metabarcoding – mass DNA sequencing 

for the simultaneous molecular identification of multiple taxa in a complex sample (Taberlet 
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et al., 2012a). Although similar in principle to classical DNA barcoding of simple tissue DNA 

extracts (Hebert et al., 2003), the practical approach and target sequences are very 

different. 

 

1.2. DNA Metabarcoding 

 

Taberlet et al. (2012b) introduced the term DNA metabarcoding to designate high-

throughput multispecies identification using the total or typically degraded DNA extracted 

from an environment sample or from bulk samples of entire organisms. Metabarcoding 

differs from metagenomics in several ways as metagenomics describes the functional and 

sequence-based analysis of the collective genomes contained in an environmental sample 

(Riesenfeld et al., 2004) whereas metabarcoding aims to study a subset of genes / gene. 

From methodology point of view, metagenomics approach includes preparation of shotgun 

(random) libraries for sequencing while metabarcoding is based on amplicon sequencing. 

Metagenomics approach generally used to get more insights about the interaction between 

species within an ecosystem (taxonomic and functional information). Metabarcoding 

approach is mainly used to document / characterize species diversity in the ecosystem and 

it can have better coverage to identify rare taxa within an ecosystem (Pavan-Kumar et al., 

2015).  

The success of DNA-barcoding relies on the coexistence of two factors, one natural 

and other technological: (1) a genetic marker universally present in every species, which 

could be easily sequenced using standardized protocols. This marker should have enough 

sequence variability to allow distinction among related species but must be surrounded by 

regions conserved enough so that universal primers could be designed. And (2) a massive 

public database containing the known sequences of this marker for the maximum possible 

number of different species, which must be searchable by automated algorithms, so that 

unknown sequences could be matched to a known species. The identification by DNA-

barcoding is evidently as good and reliable as complete and accurate this reference 

database is (Wangensteen and Turon, 2015). 

The metabarcoding technology has now been successfully used for characterizing 

the microscopic biodiversity present in relatively homogeneous substrates, such as 

plankton (Pearman and Irigoien, 2015; de Vargas et al., 2015), soil (Epp et al., 2012; 

Schmidt et al., 2013), marine sediments (Chariton et al., 2010; Fonseca et al., 2014; 
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Guardiola et al., 2015; Lejzerowicz et al., 2015) or gut contents (Leray et al., 2013). 

However, its applications to characterize more complex and heterogeneous substrates such 

as marine rocky communities, for example, to identify differences produced by a natural 

CO2 vent, are still little explored. 

 

1.3. Bioinformatics pipelines for metabarcoding 

 

Data processing is currently a bottleneck in metabarcoding projects. The number of 

reads per study has been continuously increasing since the introduction of high-throughput 

sequencing (HTS) methods, and it is expected to rise as sequencing technologies advance. 

Data processing must consider the peculiarities of the taxonomic marker, the sequencing 

instrument and chemistry, as well as the experimental needs, such as the requirements for 

sample multiplexing (Bálint et al., 2014).  

The metabarcoding procedure will introduce random errors, both during the 

amplification and sequencing steps, which will generate an initial dataset of sequences 

considerably different from the sequences present in the original sample (Figure 1C). The 

analysis pipeline typically starts with a denoising stage, which is a stringent quality control 

step and has a strong effect on downstream analyses (Schloss et al., 2011). In this first 

step, the raw data are corrected by clustering the flowgrams using frequency-based 

heuristics or approximate likelihood with empirically derived error distributions, or fasta-

formatted files are corrected based on alignments (Reeder and Knight, 2010). The result is 

that all sequences with putative random errors will be removed from downstream analyses. 

Denoising procedures may work well when using short metabarcoding markers with 

low natural diversity. However, they are not very useful when using longer markers with 

high natural variability (such as, for example, COI), because too high a proportion of the 

initial reads will be removed by the denoising algorithm. A better alternative is to cluster the 

obtained sequences into operational taxonomic units (OTUs) (Figure 1D), which will also 

have a strong impact on the number of observed and estimated community richness, but it 

will keep a higher number of useful reads, providing more accurate information about 

relative abundances. Whether two sequences are clustered together into the same OTU 

depends both on their similarity and other sequences in the studied dataset, as well as the 

selected clustering algorithm (Schloss et al., 2011). 
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Heuristic algorithms have been developed to cluster sequence reads into OTUs, 

allowing analysis of large datasets without access to highly powerful computer resources. 

The clustering rate is typically much faster and the maximum memory requirement is 

considerably lower, but the heuristic algorithms do not work as accurately as the best of the 

classic hierarchical clustering tools (Schloss et al., 2011). Additionally, different algorithms 

can produce surprisingly divergent results, particularly in OTU numbers and diversity 

estimates. 

In this study, we compared two clustering algorithms to estimate which algorithms and 

parameters provide the most reliable results for characterizing marine benthic diversity: 

CROP and SWARM. 

CROP (Hao et al., 2011) adopts an unsupervised probabilistic Bayesian clustering 

algorithm and uses a soft threshold (different similarity for the diverging branches of the 

phylogenetic tree) for defining the OTUs, which is probably more accurate for reflecting real 

species diversity, and it also reduces the effects of PCR and sequencing errors in inferring 

OTUs (Wei et al., 2016), by clustering the sequences affected by these errors to their mother 

sequences, instead of removing them altogether. CROP has the big disadvantage of 

requiring time-consuming calculations, even when using powerful multiprocessor 

computing clusters. Moreover, given the heuristic nature of Bayesian algorithms, the 

reproducibility of CROP is somehow low, so that different runs on the same input dataset 

might result in variable numbers of resulting molecular operational taxonomic units 

(MOTUs) (Wangensteen and Turon, 2015). 

Figure 1. Representation of the analysis of a metabarcoding sequence dataset including random errors (C), using either 

denoising or clustering procedures 
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SWARM (Mahé et al., 2014) was the other clustering algorithm used, which is based 

in a step-by-step aggregation procedure. This method has the advantage of being 

deterministic, so it yields robust and repeatable results. Every resulting cluster is a network 

of sequences, somehow comparable to the haplotype networks used in population genetics. 

However, it also bears the arbitrariness of having to choose a value of the distance threshold 

for including a sequence into a growing cluster. SWARM is an iterative process which also 

requires large amounts of computing time for completion (Wangensteen and Turon, 2015). 

We compared different metabarcoding analysis pipelines, based on these two 

clustering algorithms, for selecting the best method to assess the biodiversity present in 

marine benthic communities affected by ocean acidification. 

 

1.4. Ocean acidification 

 

Increasing atmospheric CO2 is causing unprecedented changes in seawater 

chemistry (Guinotte and Fabry, 2008). Atmospheric CO2 concentrations are projected to 

increase by 0.5 % per year throughout the XXI century, this rate of change is around 100 

times faster than has occurred in the past 650,000 years (Meehl et al., 2007). The current 

concentration of atmospheric CO2 is around 400 ppm, having increased from pre-industrial 

levels of 280 ppm, and emissions scenarios predict a continued increase to ~750-1000 ppm 

by 2100 (Meehl et al., 2007; Feely et al., 2009). The rising atmospheric CO2 levels drive 

changes in seawater chemistry and lower pH (Gattuso and Buddemeier, 2000). The oceans 

play a crucial role in the global carbon cycle, forming an important sink for anthropogenic 

CO2. The carbonate equilibrium in seawater is the balance between dissolved inorganic 

carbon (DIC) species; CO2(aq), HCO3
- and C ions. Changes in pH control this equilibrium; 

therefore, increasing CO2 will increase the total DIC and shift the proportion of DIC 

speciation in seawater, with widespread biological consequences. When CO2 dissolves in 

seawater it reacts with water molecules to form carbonic acid: 

[CO2] + [H2O] ⇄ [H2CO3] 

Carbonic acid then dissociates to bicarbonate and hydrogen ions: 

[H2CO3] ⇄ [H+] + [HCO3
-] 
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This leads to a lowering of pH and other chemical changes collectively termed as 

ocean acidification (Caldeira and Wickett, 2003). The increase in hydrogen ion 

concentrations causes some carbonate ions to react with hydrogen to become bicarbonate:  

[H+] + CO3
= ⇄ [HCO3

-]  

Therefore, the dissolution of CO2 in seawater increases concentrations of hydrogen 

ions, carbonic acid and bicarbonate whilst decreasing the concentration of carbonate.  

The dissolution of CO2 in seawater decreases carbonate ion concentrations, shifting 

the equation to the right, impeding the formation of carbonate minerals and promoting 

dissolution. This is likely to negatively impact a wide range of calcifying marine biota 

(Leclercq et al., 2000; Riebesell et al., 2000; Gazeau et al., 2007)). 

This dissolution of carbonate minerals produces carbonate ions that can react to 

consume hydrogen ions which in turn counteracts some of the hydrogen generating effects 

of CO2 enrichment (Morse et al., 2007). However, as CO2 is being absorbed so rapidly, it is 

unlikely that this natural buffering capacity of the ocean surface will be able to prevent a 

substantial reduction in ocean pH (Raven et al., 2005). 

Over the past 200 years the oceans have absorbed about one third of the total human 

CO2 emissions (Sabine et al., 2004) resulting in gradual acidification of seawater. Ocean 

pH has dropped by 0.1-0.2 pH units (corresponding to a 30% increase in hydrogen ion 

concentration) since the Industrial Revolution and, under predicted emission scenarios, is 

expected to drop another 0.3-0.4 units, from pH 8.2-8.1 to 7.8-7.6, by the end of this century 

(Caldeira and Wickett, 2003; Orr et al., 2005; Meehl et al., 2007).The current rate of CO2 

release into the atmosphere is capable of driving a magnitude of ocean geochemical 

changes potentially unparalleled in at least ~300 My of Earth history (Hönisch et al., 2012). 

Current anthropogenic trends in ocean acidification already exceed the level of natural 

variability by up to 30 times on regional scales and are detectable in many areas of the 

world’s ocean (Friedrich et al., 2012). 

Near-future acidification is predicted to have dramatic impacts on some marine 

species with cascading biological consequences for marine ecosystems (Abbasi and 

Abbasi, 2011). These studies indicate that variation in the sensitivity of organisms to ocean 

acidification is likely to disrupt the species balance of communities and influence species 

interactions which could potentially lead to unforeseen impacts on marine ecosystems. 

 



Chapter 1. Introduction 

 
 

  9  
 

 

 

1.5. Natural CO2 Vents 

 

Natural CO2 vents can be used as natural laboratories in which to investigate the 

impacts of chronic ocean acidification. They have advantages (e.g. populations studied in 

a natural environment, biotic interactions taken into consideration, consequences of long-

term acidification) and limitations (e.g. high pH variation, open system, obscuration of direct 

versus indirect effects) in comparison with experiments based in a laboratory setting (Barry 

et al., 2010). Ecological consequences of ocean acidification remain unexplored and, until 

now, the vast majority of studies have been performed in laboratories and are characterized 

by short-term and univariate experimental approaches (Hernández et al., 2016). 

Although, laboratory manipulation experiments simulating current and future pCO2 

concentrations are a crucial tool to ensure causality, a great proportion of them, do not make 

use of the appropriate experimental design (Cornwall and Hurd, 2016). Other problem of 

these experimental approaches is that they do not incorporate the understanding of the 

carbon chemistry environment that is naturally experienced by the study organism 

(McElhany and Shallin Busch, 2013; Hernández et al., 2015). All these make it very difficult 

to draw an ecological relevant interpretation from some of the current data, and the need 

for truly rigorous experimental designs has been recently highlighted (Cressey, 2015). 

An alternative way to improve results of laboratory experiments is to study naturally 

occurring CO2 vents, however field observations at such spots are scarce and very few 

studies investigating the biological effects of these natural experiments have been 

performed to date (Hernández et al., 2016). There are several studies on the effects of in 

situ CO2 leakage on benthic community (Raulf et al., 2015; Hall-Spencer et al., 2008; 

Meadows et al., 2015), microbial communities in costal sediments from volcanic shores 

(Oppermann et al., 2010), macroalgal communities from volcanic vents (Porzio et al., 2013) 

or even on specific organisms (Rodolfo-Metalpa et al., 2010; Lucey et al., 2016). However, 

changes in the composition of the whole eukaryotic communities have never been studied 

in these natural laboratories using an integrative approach based on metabarcoding. 
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1.6. Aims of the study 

 

In the present work, we introduce an enhanced metabarcoding methodology for 

characterizing complex communities inhabiting natural CO2 vents. We tested the suitability 

of this methodology to study the eukaryotic biodiversity from different communities sampled 

from four marine locations in the southeast coast of La Palma Island, Canary Islands 

(Spain), along a gradient of distances to a natural CO2 vent. The main objectives of this 

study are: 

- To validate a robust method to eliminate false positives from the initial 

metabarcoding sequence dataset. 

- To compare two types of clustering algorithms: CROP and SWARM 

- To compare two DNA extraction methods which use different sample weights 
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2.1. Area of study 

 

The study site is located in the southeast coast of La Palma Island, Canary Islands, 

in a location called “Fuencaliente”. Besides the vent site (1) and the nearby area (2), we 

also selected two more control locations (3 and 4), representing the most common and 

characteristic coastal ecosystems of the subtropical Eastern Atlantic Archipelagos (Fig. 2).  

 At each location, samples from the communities were collected during September 

2017 by scraping the surface with a trowel from a 25x25 cm quadrat placed randomly. In 

each zone 6 replicates were carried out, all of them from the subtidal zone within a range 

of 1 meter depth. All samples were placed underwater inside plastic containers of 500 ml. 

Seawater was replaced by 96% ethanol using a 63 µm sieve, and the samples were stored 

at room temperature until pre-treatment. 

 

2.2. Sample pre-treatment and DNA extraction 

 

Samples were separated into two size fractions (A: > 1 mm; B: 63 μm - 1 mm) using 

a column of stainless steel sieves (www.cisa.net), washing thoroughly under high-pressure 

Figure 2. Location of the studied areas in La Palma Island, Canary Islands. Arrows show the sites that w ere sampled. 

(1) Vent, (2) Transition, (3) Control and (4) Control Echentive. 

20 km 

100 m 

http://www.cisa.net/
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freshwater. All separated samples were then recovered in 96% ethanol, homogenized using 

a 600 W hand blender and stored at 5 ºC until DNA extraction. All equipment was thoroughly 

washed and cleaned with sodium hypochlorite between successive samples. 

0,3 g of each homogenized sample fraction were purified using PowerSoil® DNA 

Isolation Kit (www.mobio.com). DNA concentration of purified extracts was assessed in a 

Qubit fluorometer (www.lifetechnologies.com). The DNA extracts were stored at -20 ºC. 

With some of the samples, two DNA extraction methods were compared: PowerSoil® 

DNA Isolation Kit, where we only used 0,3 g of the homogenized sample, and PowerMax® 

Soil DNA Isolation Kit, where we used 10 g of homogenized sample, both as indicated in 

the protocol. For this comparison, we extracted DNA from 6 samples with the PowerMax® 

Soil DNA Isolation Kit (V11, V12, V13, V41, V42, V43). 

 

2.3. PCR 

 

We amplified a mitochondrial gene fragment: the mitochondrial cytochrome c oxidase 

I gene (COI), which has been adopted as the standard ‘taxon barcode’ for most animal 

groups (Hebert et al., 2003) and is by far the most represented in public reference libraries 

(Leray et al., 2013). 

We used a new highly degenerated primer set called Leray-XT, which includes the 

reverse primer jgHCO2198 5'-TAIACYTCIGGRTGICCRAARAAYCA-3' (Geller et al., 2013) 

and a novel forward primer mlCOIintF-XT 5'-GGWACWRGWTGRACWITITAYCCYCC-3', 

modified from the mlCOIintF primer (Leray et al., 2013) with two more wobble bases 

incorporated and two inosine nucleotides in the most degenerate positions, for increased 

universality across eukaryotic groups (Wangensteen et al., 2017). Sample tags (8 bp) were 

attached to each primer for identifying each sample, in order to prepare a multiplexed mix 

which was sequenced together in a single run. Amplification of COI used 10 μl of AmpliTaq 

Gold DNA polymerase, with 1 μl of each 5 μM forward and reverse 8-base tagged primers, 

0.16 μg of bovine serum albumin, 5.84 μl of Milli-Q water and 2 μl of purified DNA in a total 

volume of 20 μl per sample. 

The PCR profile included a denaturing step of 10 min at 95 ºC, 35 cycles of 94 ºC 1 

min, 45 ºC 1 min and 72 ºC 1 min and a final extension of 5 min at 72 ºC. After PCR, quality 

http://www.mobio.com/
http://www.lifetechnologies.com/
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of amplifications was assessed by electrophoresis in agarose gel. All PCR products were 

purified using MinElute column-based purification kit (QIAgen) (www.qiagen.com). 

In order to remove false positives in the future steps and to correct the bias introduced 

by primer tags (O’Donnell et al., 2016), 3 PCR replicates were made from each fractioned 

sample, using different sample tags. 

 

2.4. Illumina library preparation and sequencing 

 

Amplified gene fragments were prepared for Illumina sequencing following a one-step 

PCR-based approach. Illumina adaptor tails and library tags were added using a ligation-

based procedure (NEXTflex PCR-Free DNA-Seq Library Prep Kit, Bioo Scientific, USA) 

prior to sequencing. Four Illumina libraries were built from the DNA amplicon pools 

(equimolar concentration). All libraries were sequenced together in an Illumina MiSeq 

platform (Illumina, Inc., San Diego, CA, USA) using a v3 reagent kit 2×250 bp. Sequencing 

workflow followed manufacturer’s protocols and was performed at the genomics laboratoy 

facility at the University of Salford (Manchester, United Kingdown). 

 

2.5. Bioinformatic analysis 

 

The bioinformatic analyses were carried out in a BioLinux environment, using different 

alternative versions of a pipeline based on OBITools (Boyer et al., 2016). The analysis 

pipeline (Figure 3) consisted of three steps: (1) data pre-processing including: paired-end 

alignment, removal of primers, sequencing adaptors and demultiplexing, and removal of 

chimeras (artificial amplicons stemming from two or more parent sequences, formed by 

incomplete template extension), (2) clustering of sequences into MOTUs and (3) taxonomic 

assignment of the representative sequences of each MOTU using the ecotag algorithm. 

The output of the sequencer is a file in FASTQ format, a text file which includes the 

DNA sequences (reads) and the quality information for each base, so quality control was 

performed using the software FASTQC (Andrews, 2010). The length of the raw reads was 

trimmed to a good quality control length between 200 and 240 bp. The next bioinformatic 

analyses were based on the OBITools metabarcoding software (Boyer et al., 2016). The 

reads with quality score higher than 40 after the paired-end assembly using 

http://www.qiagen.com/
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illuminapairedend were kept. The aligned datasets were demultiplexed using ngsfilter. A 

length filter (obigrep) was applied to the assigned reads (303 – 323 bp) and reads including 

only A, C, G or T bases were selected. Strictly identical reads were then dereplicated (using 

obiuniq) and chimeric sequences were detected and removed using the uchime_denovo 

algorithm implemented in vsearch (http://github.com/torognes/vsearch).   

Species are defined operationally as a cluster of similar sequences, and the clusters 

are known as Molecular Operational Taxonomic Units (MOTUs). Sequences can be 

clustered into MOTUs even if the sequences have not yet been linked to a taxonomic name. 

A clustering algorithm is needed to group the related sequences into clusters, so that the 

resulting MOTUs reflect the real species diversity present in the samples as accurately as 

possible. The MOTUs were then delimited using two methods: (1) the Bayesian clustering 

algorithm implemented in CROP (Hao et al., 2011) which generates clusters within user-

defined lower (-l) and upper (-u) bound levels of similarity to account for differences in rates 

of sequence evolution among taxonomic groups. We defined -l = 1.5 and -u = 2.5 (which 

correspond to an initial clustering level at 95% similarity) because it was shown to create 

OTUs that closely reflect morphological species grouping by providing the lowest frequency 

of false positives (splitting of taxa) and false negatives (lumping of taxa) (Leray and 

Knowlton, 2015).  And (2) the SWARM algorithm (Mahe et al., 2015) based in a step-by-

step aggregation procedure with a resolution parameter of d = 13 (maximum number of 

differences allowed to cluster a sequence within a MOTU in each aggregation step). This 

value was selected from previous works using COI metabarcoding in similar complex 

marine benthic communities (Wangensteen et al., 2017). For long amplicons and 

hypervariable markers such as COI, high d values must be used. 

The taxonomic assignment of the representative sequences for each MOTU was 

performed using ecotag (Boyer et al., 2016), which uses a local, customizable, reference 

database and a tree based approach (using the NCBI taxonomy database) for assigning 

sequences. Ecotag searches the best hit in the reference database and builds the set of all 

sequences in the database as similar or more to the best hit as the query sequence is. 

Then, the taxon that is the most recent common ancestor to all these sequences in the 

NCBI taxonomy database is assigned to the MOTU. With this procedure, the assigned 

taxonomic rank varies depending on the similarity of the query sequences and the density 

of the database (Wangensteen and Turon, 2015). Since we were interested only in 

Eukaryotic diversity, all MOTUs assigned by ecotag to prokaryotes or to the root of the Tree 

of Life were removed from the analyses. 

http://github.com/torognes/vsearch
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The phylogenetic assignment is not exempt of problems. The most obvious being that 

commonly accepted taxonomic trees (specially those branches relying upon doubtful 

morphological traits) are often in conflict with molecular phylogenies. Moreover, some 

molecular phylogenies based on different molecular markers can often be in conflict as well. 

Even in the presence of phylogenetically coherent taxonomic information in the reference 

database, the problem remains that the phylogenetic tree obtained from using just a short 

fragment of marker (unavoidable in metabarcoding) is not expected to match perfectly the 

real phylogeny. Thus, incongruences and ambiguities are common in any phylogenetic 

procedure intended to assign metabarcoding data using reference sequences with low 

similarities, potentially resulting in many query sequences being assigned to higher 

taxonomic levels or even to wrong taxa. The only way to improve these assignments would 

be adding as many sequences as possible to the reference databases in order to grow them 

denser. When any sequence in the reference database matches the query closely (with an 

identity of 95% or higher in COI), the assignment procedure is reliable, fast and useful. 

Sadly, the reliability drops quickly as the similarity with the matching references decreases, 

so that even assignments at the phylum level with identity percentages less than 85% in 

COI should be considered questionable and treated with caution (Wangensteen and Turon, 

2015). 

In multiplexed metabarcoding analyses, the sequence data may contain sequencing 

noise, PCR chimeras (Lenz and Becker, 2008), contaminant sequences, and PCR errors. 

Eliminating all these error sequences from final data analysis is prerequisite before 

assigning taxon to the sequences. Some of these errors are eliminated during the pipeline, 

but the sequences from contaminations due to cross-sampling are not so easy to remove 

during this step. That is, a small (but usually not negligible) number of reads will be assigned 

to the wrong sample. The cross-sampling rates will depend on the total abundance of the 

MOTU. Thus, a small number of reads of the most abundant MOTUs of the dataset will 

appear randomly spread through most of the sample columns in the raw final matrix 

resulting from the MOTU clustering procedure. Quantitatively, this would be unimportant, 

but it represents a big difference for methods based on presence/absence. So, MINT was 

used to eliminate these sequencing errors (false positives). Multiple intersection of N tags 

(MINT) consist in an R script (https://www.rstudio.com/) that selects or eliminates replicates 

that do not meet the rule that has been assigned.  

During the sample amplification, 3 PCR replicates were done from each sample to 

assess the reliability of the sequences that were retained after doing the pipeline. In doing 

so, we relied on the assumption that sequences that appear in multiple PCR replicates are 

https://www.rstudio.com/
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more likely to be real rather than randomly generated artefactual sequences. In order to 

eliminate these false positives, MINT was applied to these replicates in two different ways.  

In the MINT-all strategy, MINT was used to eliminate all the MOTUs that only 

appeared in 1 or 2 of the replicates, so that only the MOTUs that had some reads in all 3 

replicates were kept. As an alternative strategy, MINT-two was used to eliminated all 

MOTUs that only had reads in one replicate, so that MOTUs that appeared in 2 or 3 

replicates were kept (Figure 4).  

 

2.6. Statistical analysis  

 

All analyses were performed in R v 3.3.0 (https://www.R-project.org/). To carry out 

the community ecology analyses we used the R package vegan (Oksanen et al., 2016).The 

α-diversity patterns were analyzed applying the rarefaction methods (function rrarefy) 

(Sanders, 1968) using the number of reads as a proxy for sample size. Pairwise differences 

in MOTU diversity among sites were evaluated using the nonparametric multiple 

comparison function (dunn.test) implemented in the R package dunn.test. The dunn.test is 

equivalent to the Kruskall–Wallis and pair-wise Mann–Whitney post hoc tests with 

Bonferroni correction. MOTU compositional differences among sites were examined using 

metric multidimensional scaling (MDS). 

 

 

 

Figure 4. Schematic representation of the 3 PCR replicates showing the MINT strategy. MINT-tw o: MOTUs that appeared 

in at least 2 of the 3 replicates. MINT-all: MOTUs that appeared in all 3 replicates. 

https://www.r-project.org/
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Figure 3. Diagram of the pipeline show ing all the steps. 
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3.1. Abundance of MOTUs  

 

We metabarcoded a total of 24 samples (6 from each site: Vent, Transition, Control 

and Control Echentive). Each sample was separated into 2 size fractions A (> 1 mm) and B 

(63 μm - 1 mm). Each fraction was analyzed in 3 technical replicates, for a total of 144 

technical samples. After the refining procedures, our final dataset from the CROP pipeline 

comprised of a total of 5,484,370 reads, with an average of 38,086 reads per replicate 

(range: 1,862 – 95,334). The total reads from the SWARM pipeline were 5,501,299, with an 

average of 38,203 reads per replicate (range: 1,862 – 95,384).  

 The number of total MOTUs detected from all samples using CROP clustering before 

MINT was 6,372. After refining with CROP-MINT-all a total of 2,456 MOTUs remained, from 

which 1,166 (47.5%) could be assigned to the level of Phylum or lower. Using CROP-MINT-

two refining procedure, a total of 3,864 MOTUs remained, from which 1,525 (39.5%) could 

be assigned to the level of Phylum or lower. Using the SWARM pipeline, the total number 

of MOTUs before MINT was 9,475. After SWARM-MINT-all we obtained a total of 2,867,  

from which 1,490 (52.0%) could be assigned to the level of Phylum or lower. Using SWARM-

MINT-two we obtained 6,030 MOTUs, from which 2,664 (44.2%) could be assigned to the 

level of Phylum or lower. Figure 5 shows the abundance of reads for all replicates assigned 

Figure 5.1. Patterns of abundance of metabarcoding reads by phylum for all technical replicates of samples obtained 

from the fractions A (> 1mm) and fractions B (63μm – 1mm) from the 4 sites Vent (V1), Transition (V2), Control (V3) and 

Control Echentive (V4). Results for clustering using CROP are shown. 
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to major eukaryotic groups at a level of Phylum or lower using both clustering methods: 

CROP represented in Figure 5.1 and SWARM represented in Figure 5.2. 

 

 

 

 

 

 

 

 

 

 

 

3.2. α-Diversity patterns 

 

The rarefaction analysis of the different fraction sizes of the sampled communities 

resulted in different patterns for fraction A (> 1mm) and fraction B (63μ – 1mm). MOTU 

Richness Plots showing the patterns of α-diversity for CROP and SWARM can be seen in 

Figure 6 and 7, being represented in Figure 6 before doing MINT and in Figure 7 after doing 

MINT.  

In Figure 6.1. for the fraction A, after performing the Dunn Test (p < 0.05), we obtained 

significant differences between V1 and V4. And the same for fraction B, significant 

differences between V1 and V4. In Figure 6.2. for the fraction A we didn’t obtain any 

significant difference after doing the Dunn Test but in fraction B we could appreciate 

significant differences between V1 –  V2 and V1 – V4. 

Figure 5.2. Patterns of abundance of metabarcoding reads by phylum for all technical replicates of samples obtained 

from the fractions A (> 1mm) and fractions B (63μm – 1mm) from the 4 sites Vent (V1), Transition (V2), Control (V3) and 

Control Echentive (V4). Results for clustering using SWARM are show n. 
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In Figure 7 we obtained the same results as in Figure 5 after performing the Dunn 

Test. In Figure 7.1 we obtained significant differences between V1 and V4 for both, fraction 

A and fraction B. In Figure 7.2., for the fraction A, there weren’t any significant difference 

after performing the Dunn Test but in fraction B we could see significant differences between 

V1 – V2 and V1 – V4. 
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Fig 6.2. MOTU Richness Plots show ing patterns of α-diversity before doing MINT of the fractions A (> 1mm) and fractions 

B (63μm – 1mm) from the 4 sites Vent, Transition, Control and Control Echentive. SWARM clustering. Results obtained 

by rarefaction analysis to 1,500 reads per sample. 

SWARM 

CROP 

Fig 6.1. MOTU Richness Plots show ing patterns of α-diversity before doing MINT of the fractions A (> 1mm) and fractions 

B (63μm – 1mm) from the 4 sites Vent, Transition, Control and Control Echentive. CROP clustering. Results obtained by 

rarefaction analysis to 1,500 reads per sample. 

CROP 

SWARM 



Chapter 3. Results 

 

  27  
 

   

Fig 7.2. MOTU Richness Plots show ing patterns of α-diversity after doing MINT of the fractions A (> 1mm) and fractions 

B (63μm – 1mm) from the 4 sites Vent, Transition, Control and Control Echentive. Results obtained by rarefaction analysis 

to 1,500 reads per sample.  

 

SWARM 

CROP 

CROP 

SWARM 

Fig 7.1. MOTU Richness Plots show ing patterns of α-diversity after doing MINT of the fractions A (> 1mm) and fractions 

B (63μm – 1mm) from the 4 sites Vent, Transition, Control and Control Echentive. CROP clustering. Results obtained by 

rarefaction analysis to 1,500 reads per sample. 
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3.3. Ordination patterns after CROP or SWARM with MINT 

 

Figure 8 shows the multidimensional scaling (MDS) of the results from the clustering 

algorithm (CROP or SWARM) after using MINT correction. The representation of the MDS 

shows a similar pattern in the four situations with small variations. There is barely any 

remarkable difference between CROP and SWARM. After using MINT we can observe that 

there is no remarkable differences in the obtained ordination patterns between using 

MOTUs appearing in 2 or 3 replicates (MINT-two) or MOTUs appearing in all replicates 

(MINT-all). The total number of remaining MOTUs is the only important variable which 

varies in each situation.  

 

Figure 8. nMDS plots show ing the robustness of ordination patterns using CROP or SWARM w ith both types of MINT 

correction (MINT-all and MINT-tw o). 
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3.4. Comparing DNA extraction methods 

 

In Figure 9 we can observe the patterns of abundance of reads per sample of 6 

samples (3 samples from V1 and 3 samples from V4) comparing different extraction 

methods which are based in two different sample weights. PowerMax® Soil DNA Isolation 

Kit allowed to purify DNA from 10 g of sample and PowerSoil® DNA Isolation Kit purified 

DNA from 0.3 g, both from the same company MoBio Laboratories, Inc (now QIAGEN). 

3 PCR replicates of each sample were done for the samples treated with PowerSoil® 

DNA Isolation Kit and 2 PCR replicates were done for PowerMax® Soil DNA Isolation Kit. 

 We can observe similar MOTUs and read abundances in most of the replicates. In 

the case of V41 and V42 we found differences between both kits for fractions A. In the 

replicates of V41 using PowerSoil® DNA Isolation Kit we can appreciate more reads of 

Rhodophyceae and using PowerMax® Soil DNA Isolation Kit there are less reads of 

Rhodophyceae but more of Annelida, Arthropoda, Cnidaria and Mollusca. In the replicates 

of V42 using PowerSoil® DNA Isolation Kit we can appreciate more reads of Echinodermata 

and using PowerMax® Soil DNA Isolation Kit there are less reads of Echinodermata but 

more of unassigned reads, Annelida, Arthropoda, Cnidaria and Mollusca. 

Figure 9. Patterns of abundance of metabarcoding reads per sample obtained using two DNA extraction kits, Pow erSoil® 

DNA Isolation Kit and Pow erMax® Soil DNA Isolation Kit. 
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The field of eukaryotic biodiversity assessment from marine benthic communities has 

benefited from a growth in the number of tools available to analyze the growing number of 

COI DNA gene sequences. As we have shown in this study, both OTU- and replicate-based 

methods have unique challenges that affect one’s ability to implement the method and 

interpret the results. The results presented in this study enable researchers to better 

interpret and overcome these challenges. There are a several extensions of this research 

that deserve further consideration. 

 

4.1. Sample pre-treatment, the benefits of sieving and size fractionation 

 

Following the protocol done in Wangensteen and Turon (2015) we can see 

advantages in the choice of size fractionation and filtering through a column of sieves. The 

partitioned metabarcoding of size fractions allows characterization of structurally complex 

communities at different levels, which could be impossible if each sample was homogenized 

altogether, due to the high number of DNA copies from organisms of bigger biomass 

outnumbering the smaller ones (Wangensteen and Turon, 2015). An additional advantage 

of this process is the removal of a significant fraction of microorganisms (prokaryotes and 

smallest microeukaryotes), jointly with probably most of the extra-organismal DNA in the 

form of small remains, cell debris, or extracellular DNA (Creer et al., 2016), which are not 

retained in the last sieve (63 μm). These microorganisms are known to be genetically 

diverse and under-represented in genetic databases. Their presence introduces some 

additional problems during bioinformatic analyses, specifically for clustering and 

taxonomical assignation algorithms, most notably when using COI as marker, and they are 

better removed from the samples whenever they are not the main study target 

(Wangensteen and Turon, 2015). 

 

4.2. Choosing the correct DNA extraction kit 

 

DNA extraction is a fundamental step in metabarcoding and a number of commercial 

kits are available in the market. Selecting the correct kit can save crucial time on kit 

optimization and extraction repeatability. Factors to be considered for selecting a kit include: 
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- Sample origin and humic content: humic substances need to be removed with a 

proper kit, as they can inhibit downstream applications like PCR. 

- Preparation method: depending if the samples are fresh or previously frozen. 

- Intended use: considering the quality and purity of the DNA you want to obtain. 

- Sample quantity: depends on how much sample is available and how many 

replicates we want to analyze. 

- Price. 

PowerMax® Soil DNA Isolation Kit and PowerSoil® DNA Isolation Kit are based in 

the same protocol but they work with different amounts of sample. The first one purifies 

DNA from 10 g of sample and the second one 0.3 g. There are also differences in the price, 

PowerMax® Soil DNA Isolation Kit costs $24.6 per sample and PowerSoil® DNA Isolation 

Kit costs $5.14 per sample.  

PowerMax® Soil DNA Isolation Kit has the advantage that we can use more quantity 

of sample but at a higher cost. 48 samples were analyzed in our study, so this means buying 

5 PowerMax® Soil DNA Isolation Kits (a total of $1,230), which would involve high spending 

just for DNA extraction. 

As we are working with 48 samples, the PowerSoil® DNA Isolation Kit for 100 samples 

would be a good option for our DNA extraction. But then we come to the question: are 0.3 

g sufficient to analyze the biodiversity of the community? We start from an original sample 

of 150 g of where we only take 0.3 g. As we can see in Figure 8 there are barely differences 

between kits. In order to answer our question, we can affirm that 0.3 g are enough to obtain 

repeatable results for presence / absence of MOTUs and even for the relative abundance 

of reads per phylum. The comparison between the kits is perfect for fractions B, whereas in 

the case of fractions A, only two samples showed different relative abundances of reads 

(due to increased abundance of one rhodophycean or one echinoderm MOTU, 

respectively). This result suggests that the repeatability could be improved if the samples 

had been more thoroughly homogenized before the DNA extraction. However, the main 

conclusion is that the PowerSoil® DNA Isolation Kit allows to obtain representative enough 

DNA samples at a lower cost. 
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4.2. Importance of the choice of eDNA metabarcoding markers 

 

The importance of marker choice in eDNA metabarcoding has recently been 

emphasized (Wangensteen et al., 2017). Because there is no ideal universal metabarcode, 

marker choice should be specific to the target taxonomic group, and validation is required 

before application of the metabarcoding analysis in situ. In this case, we are studying a 

whole community so we need a universal primer capable of amplifying the wide array of 

taxonomic groups. We have used the Leray fragment of the mitochondrial cytochrome c 

oxidase I gene (COI) as a metabarcoding marker although it has been criticized arguing 

that it does not contain suitably conserved regions for short amplicon-based eDNA 

applications (Deagle et al., 2014). COI presents two major advantages compared to other 

possible markers. First, the steadily growing international effort, led by the Consortium for 

the Barcode of Life (CBOL), to develop a public DNA barcoding database with curated 

taxonomy enormously facilitates taxonomic assignment. The Barcode of Life Data System 

(BOLD) database is based mainly in COI barcoding and currently includes over 4 million 

sequences belonging to more than 500,000 different species, curated and identified by 

expert taxonomists. These data have been gathered by thousands of researchers working 

worldwide across decades and it is highly unlikely that any comparable effort might be 

undertaken for any other marker in the next future. Metabarcoding studies may take full 

advantage of this invaluable resource only if they choose COI as a marker. Secondly, the 

high mutation rate of COI practically ensures the unequivocal identification at the species 

level, whereas the highly conserved sequence of other markers is often impossible to 

distinguish at the genus or family levels, or even at higher ranks (Wangensteen and Turon, 

2015). Species-level identification is important because we can see which species have 

been affected by the acidification of the sea water with the increase of CO2 dissolved in 

water. 

 

4.3. Quantification of abundance 

 

A controversial issue in metabarcoding is whether this technique has a quantitative 

value. There is some evidence of a positive relationship between species abundance and 

DNA sequence counts for several species (Shaw et al., 2016; Klymus et al., 2017). Many 

factors can affect sequence count (Deagle et al., 2013), including DNA extraction method, 

sample storage, PCR bias, preferential amplification, spatial biases, cell integrity, gene copy 
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number, and sequencing error. The abundance of species is not an important factor to be 

taken into account when studying the species richness of the community, since this 

depends just on the presence/absence of species. Our results for the relative abundance 

of reads belonging to each phylum showed patterns that broadly matched the expected 

abundances of the different phyla in the studied ecosystems. Thus, apparently, using highly-

degenerated universal primers, such as the Leray-XT primer set, on community DNA from 

thoroughly homogenized samples, yields metabarcoding data with at least some 

quantitative value. However, more research is needed before species abundance can be 

reliably estimated from eDNA metabarcoding surveys. 

 

4.4. Comparing clustering algorithm 

 

High-throughput sequencing technologies can generate millions of amplicons (or 

barcode sequences) in a single run, and these sequences need to be clustered into 

molecular operational taxonomic units (MOTUs) before being used for diversity estimates 

or other statistical analyses. Sequences are clustered into MOTUs based on a similarity 

threshold that mirrors natural intraspecific divergence. This approach generates “species 

equivalents” that can be used to approximate species numbers in metabarcoding studies 

irrespective of DNA reference database coverage (Clare et al., 2016). 

A number of analytical programs are used to define MOTU and most rely on some 

sort of clustering or threshold approach. Because of the increasing sizes of today’s amplicon 

datasets, fast and greedy de novo clustering heuristics are usually the preferred practical 

approach to produce MOTUs (Ghodsi et al., 2011). Shared steps in these current algorithms 

are: an amplicon is drawn out of the amplicon pool and becomes the center of a new OTU 

(centroid selection), this centroid is then compared to all other amplicons remaining in the 

pool. Amplicons for which the distance is within a global clustering threshold, t, to the 

centroid are moved from the pool to the OTU. The OTU is then closed. These steps are 

repeated as long as amplicons remain in the pool (Mahé et al., 2014) (Figure 10). 
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In defining OTUs, some studies showed that it is difficult to use a consistent threshold 

because there is considerable overlap in the maximum intra-taxon distance between 

taxonomic levels (Schloss and Westcott, 2011). It may be useful when targeting a closely 

related group of organisms, but it is not the best strategy when dealing with complex, 

taxonomically-wide samples. Setting a constant arbitrary similarity threshold for defining 

MOTUs across the whole dataset will necessarily miss some real diversity in those groups 

having experienced recent evolutionary radiations, whereas it will overestimate the number 

of species of slowly evolving groups with high intra-specific genetic variability. Algorithms 

based in a shifting similarity threshold for defining the MOTUs are then likely more 

appropriate for describing the real diversity in these widely targeted studies (Wangensteen 

and Turon, 2015). 

To avoid using a hard threshold value in clustering as implemented in hierarchical and 

heuristic methods, Hao et al. (2011) proposed a Gaussian mixture model-based clustering 

algorithm termed Clustering 16S rRNA for OTU Prediction (CROP). It adopts an 

unsupervised probabilistic Bayesian clustering algorithm and uses a soft threshold for 

defining OTUs. The CROP algorithm bypasses setting an often-subjective hard cut-off 

threshold thus may effectively reduce the effects of PCR and sequencing errors in inferring 

OTUs. 

In addition, amplicons from one species can be subsumed into the OTU of a 

genetically closely related species with a very dissimilar ecology if that second species had 

a higher abundance, leading to erroneous ecological interpretations. To solve these issues, 

(Mahé et al., 2014) developed SWARM — a novel method that avoids both fixed global 

clustering thresholds, and input-order dependency due to centroid selection. They 

Figure 10. Schematic view  of the clustering approach based on centroid selection and a global clustering threshold, t, 

w here closely related amplicons can be placed into different OTUs. 
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implemented an exact, yet fast, de novo clustering method that produces meaningful OTUs 

and reduces the influence of clustering parameters. 

In our study, we compare both clustering algorithm (Fig. 11). CROP was set with the 

following parameters: l=1.5, u=2.5 (producing an initial threshold of similarity of around 

95%). And SWARM was set with a distance of d=13 mismatches, from a total fragment 

length of 313 bp of the Leray fragment.  

 

 

 Figure 8 shows the multidimensional scaling (MDS) of both clustering algorithm 

where similar ordination patterns were recovered from CROP and SWARM. Samples from 

each site are grouped together with a certain overlap of the ellipses between V2 and V3 

after using the MINT correction. However, the ordination patterns obtained from both 

clustering methods are almost exactly the same, despite the completely different principles 

underlying both methods (one being a heuristic Bayesian method, and the other a 

deterministic step-by-step aggregation algorithm). Comparing the 4 sites, V2, V3 and V4 

are closer to each other, while V1 (the CO2-vent site) is further away, demonstrating that 

V1 has a higher difference in the composition of the MOTUs, probably due to the differences 

of acidity in the water. 

In terms of differences between fractions, there is a large difference between fraction 

A and fraction B which can be expected since we are separating populations according to 

size (63 μm - 1 mm). 

In conclusion, both clustering methods yielded similar results regarding the ecological 

differences among the communities present in all sites, but they yielded different number of 

MOTUs. With CROP, we obtained 6,372 MOTUs and with SWARM we obtained 9,475 

Figure 11. Schematic view  of both clustering algorithm, CROP (a) and SWARM (b). 

a)                                                           b) 
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MOTUs. The higher number of MOTUs is mainly due to low-abundance MOTUs, typically 

including less than 20 reads, whereas the most abundant MOTUs including hundreds or 

thousands of reads are, in general, equally retrieved by both clustering methods.  

The amount of time needed for the calculations is a critical factor when we choose an 

appropriate method for analyzing large scale datasets. With our initial dataset, clustering 

with CROP took 51 hours to reach a valid output solution, whereas clustering with SWARM 

took only 5 minutes to reach to the deterministic solution.  

Other disadvantages of CROP are that, although using a soft threshold for defining 

OTUs, lineages evolve at variable rates so no single cut-off value can accommodate the 

entire tree of life. A single global clustering threshold will inevitably be too relaxed for slow-

evolving lineages and too stringent for rapidly evolving one (Koeppel and Wu, 2013). Also, 

the input order of amplicons may influence the clustering results. Previous centroid 

selections are not re-evaluated as clustering progresses, which can generate inaccurately 

formed OTUs, where closely related amplicons can be separated and unrelated amplicons 

can be grouped (Westcott and Schloss, 2015). 

For all these reasons, we conclude that clustering with SWARM is the best solution 

for treating COI metabarcoding datasets obtained from complex samples. 

 

4.5. Estimates of α-diversity 

 

Alpha diversity refers to the diversity within a particular area or ecosystem, and is 

usually expressed by the number of species (i.e., species richness) in that ecosystem. One 

of the aims of metabarcoding is to objectively determine which species are present in a 

given environmental sample. However, it is presently impossible to establish a one-to-one 

correspondence between morphological species and MOTUs obtained by any 

metabarcoding marker (Wangensteen and Turon, 2015). Neither read abundance can be 

used to estimate the number of individuals per OTU. Therefore, rarefaction must be used 

to normalize the number of reads per sample before comparing values for alpha diversity 

(Yu et al., 2012). In our dataset, MOTU richness was rarefied to 1,500 reads per sample, 

where we obtained values of 50-300 MOTUs per sample. 

Our data showed differences between the diversity from the vent site (V1) and the 

Echentive control site (V4), the one that is farthest away from the vent site. In addition, 
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fractions A and B follow an opposite pattern, that is, alpha diversity is higher in fraction A 

from V1 but lower in fraction B. Thus, as we move from V4 (the control area) towards V1 

(area where the CO2 concentration is higher), a decreasing biodiversity gradient is detected 

in organisms of smaller body size (63 µm to 1 mm), while the detected molecular biodiversity 

of organisms of bigger sizes (> 1 mm) seems to increase. Among the reported effects of a 

higher concentration of carbon dioxide from other studies, there is a clear reduction in 

diversity, biomass and trophic complexity of benthic marine assemblages, major declines 

in the number of many calcifying organisms and increased abundances of erect 

macroalgae, seagrass and soft-corals (Hall-Spencer et al., 2008) (Inoue et al., 2013) 

(Linares et al., 2015; Enochs et al., 2015). Other authors have also demonstrated, using 

natural vents, the capacity of adaptation of calcifying organisms (Johnson et al., 2012) and 

the important role that non-calcifying ones would play in future conditions (Russell et al., 

2013). However, more vent systems are necessary to represent more oceans and different 

environments, in order to assess how biodiversity will adapt to future ocean acidification. 

 

4.6. Contamination 

 

The most serious pitfall of eDNA is probably the risk of contamination and hence the 

possibility of false positive results. Contamination of samples can occur from taking the 

samples in the field to every step of analyses in the laboratory. If several localities are 

sampled after one another in the field, there is a risk of cross-contamination: target DNA 

carried unintentionally from one locality to another. Laboratory contamination is especially 

serious because of the frequent use of PCR in eDNA studies, generating billions of DNA 

copies, which can readily spread throughout the laboratory. The use of HTS technologies 

has further complicated the contamination issues, as they produce a very high throughput 

of DNA sequences likely to reveal tiny amounts of lab-source PCR products (Thomsen and 

Willerslev, 2015). Cross-contamination in the laboratory seems almost unavoidable, and it 

is essential to apply conservative cut-offs for minimum percentages of sequences obtained 

in a sample, and/or the amplification success in independent PCR reactions, before 

including a recovered taxon as authentic. A strict clean-lab protocol using decontamination 

procedures and physical separation of laboratories for pre- and post-PCR work will 

significantly limit the contamination risks (Champlot et al., 2010). Inclusion of DNA 

extraction blanks and PCR blanks, as well as field blanks, to monitor contamination is 

essential. 
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4.7. Dealing with false positives 

 

One of the main challenges associated with metabarcoding is the risk of erroneous 

DNA sequences. Errors can occur either during sampling, during PCR or during 

sequencing. PCR-generated errors include point mutations and formation of chimeric 

molecules (Lenz and Becker, 2008). However, most errors are probably generated during 

sequencing. In order to eliminate these errors, we performed 3 PCR replicates from each 

sample.  

PCR replicates allow researchers to optimize diversity detection by counteracting 

effects of PCR stochasticity (Leray and Knowlton, 2015), which might be especially high in 

low template complex DNA extracts (Murray et al., 2015). Analytically, if PCR replicates are 

made, they are often used additively, that is, through pooling the sequences of a single 

sample’s PCR replicates to maximize diversity detection (e.g. (Burgar et al., 2014; Leray 

and Knowlton, 2015)). While this certainly reduces the risk of missing taxa, false positives 

are a potential consequence due to accumulation of artefactual sequences. To counteract 

this, a few studies have used PCR replicates in a restrictive context by only retaining 

sequences that are shared by a number of a sample’s PCR replicates (Hope et al., 2014). 

However, the most widely used strategy for eliminating erroneous sequences is to set a 

minimum sequence copy number below which sequences are discarded. While many 

authors opt for removing singletons (e.g. (Burgar et al., 2014), others set higher copy 

number thresholds (e.g. (Giguet-Covex et al., 2014). In the MINT strategy we used here, 

we kept singletons in order to not reduce the detected diversity, since they will be removed 

after using this script if they only appear in one replicate. One specific group of PCR 

artefacts are chimeric sequences, and if they are not detected and removed they might 

erroneously inflate the richness and diversity measurements of the results (Bjørnsgaard 

Aas et al., 2017). In our study, we eliminated the chimeras in the pipeline as it is a 

recommended step before the clustering procedures, although it is unlikely to change the 

results considerably if other measures to counteract the effect of PCR and sequencing 

errors are taken. 

The number of total MOTUs detected from all samples using CROP clustering before 

MINT was 6,372. After refining with CROP-MINT-all a total of 2,456 MOTUs remained. 

Using CROP-MINT-two refining procedure, a total of 3,864 MOTUs remained. Using the 

SWARM pipeline, the total number of MOTUs before MINT was 9,475. After SWARM-MINT-
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all we obtained a total of 2,867. Using SWARM-MINT-two we obtained 6,030 MOTUs. 

Although the number of detected MOTUs was decreased, the MOTUs removed by our 

stringent cleaning procedures (MINT) likely corresponded to artefactual MOTUs originated 

by different kinds of random errors. These removed MOTUs never showed high abundance 

values, and the resulting cleaned datasets are robust and more representative of the real 

diversity present in the sampled communities. 

 

4.8. Taxonomic assignment 

 

Many approaches can be used to assign taxonomy to OTUs detected in a 

metabarcoding study. Some authors argue that for COI markers, identifications below 98% 

identity might be error prone (Clare et al., 2011), thus taxonomic assignments should be 

limited to matches above that threshold. However, such fixed approaches, might result in a 

low taxonomic assignment success, more so if the target taxa are not well characterized in 

reference databases, as is commonly the case for small-sized marine benthic communities. 

While species-level identification is essential in some studies, in most cases, incorporating 

higher taxonomic assignments in addition to species-level identifications allows increasing 

the ecological inference of the study. In those cases, multi-level taxonomic assignments 

that assign higher taxonomic levels to lower identities might be useful (Alberdi et al., 2017).  

Multiple algorithms and approaches exist to perform taxonomic assignments but for 

our analysis with reference sequences from public databases we used sequences obtained 

from two sources: in silico ecoPCR against the release 117 of the EMBL nucleotide 

database and a second set of sequences for our metabarcoding fragment obtained from 

the Barcode of Life Data systems (BOLD) (Ratnasingham and Hebert, 2007) and a custom 

R script. This newly generated database included 190,101 reference sequences (August 

2017) from a wide taxonomic range.  

The rates of unassigned sequences in our results suggest that important gaps still 

exist for the COI marker in the genetic repositories, which would prevent the detailed 

identification of many (probably most) marine organisms to a level below order or family, in 

agreement with the concerns expressed by other authors (Leray and Knowlton, 2015). 
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Vent systems are not perfect predictors of future ocean ecology owing to temporal 

variability in pH, spatial proximity of populations unaffected by acidification and the unknown 

effects of other global changes in parameters such as temperature, currents and sea level. 

However, such vents acidify sea water on sufficiently large spatial and temporal scales to 

integrate ecosystem processes such as production, competition and predation (Hall-

Spencer et al., 2008). Some experimental and modelling predictions confirm that differential 

responses of benthic species to decreased pH can lead to substantial changes in 

community structure (Raven et al., 2005; Riebesell et al., 2007; Feely et al., 2004; Orr et 

al., 2005; Hoegh-Guldberg et al., 2007; Davies et al., 2007; Fine and Tchernov, 2007; 

Kuffner et al., 2008). It is unknown whether these groups of species will adapt to survive 

the rapid rate of ocean acidification predicted to occur due to anthropogenic CO2.  

Although a number of studies exist that have studied marine biodiversity in 

communities affected by ocean acidification, to the best of our knowledge, no previous study 

has been performed in the Atlantic Ocean. So, this CO2 shallow vent discovered in the 

Canary Islands can be used as a proxy for ocean acidification studies on Atlantic 

communities. This opportunity to observe the tipping points at which principal groups of 

marine organisms are affected by lowered pH proves that, even without considering the 

global warming, the projected rise in atmospheric CO2 concentration is hazardous, as ocean 

acidification will probably bring about reductions in biodiversity and radically alter 

ecosystems (Hall-Spencer et al., 2008).  

Over the past 10 years, advances in sequencing technology and accompanying 

methodological breakthroughs have revolutionized our ability to study community 

biodiversity. Using this approach, thousands of species present in any environmental 

sample can be detected by high-throughput DNA sequencing and identified using public 

databases. This next generation sequencing can provide us with a lot of information so 

there is a great need to develop effective methods to analyze these data.  

Yet, during the next few years, the improvement of the current PCR-based 

metabarcoding methods is still the most promising development. There is still much room 

for improvement in the design of universal primers (by incorporating deoxyinosine 

nucleotides in crucial positions), as well as in the design of specific primers for selected 

groups of organisms of special interest, which would allow the selective amplification of just 

the target group of organisms, with the resulting increase in the sequencing depth of target 

sequences. No doubt new metabarcoding markers will be discovered, which will lead to 

enhanced quantitative and qualitative biodiversity assessment. 
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Another crucial point where improvement is expected in the near future is the 

increasing breadth and coverage of existing reference databases. Although for particular 

studies it is possible to generate the database of interest (e.g. by sequencing all species of 

a given group known to occur in very local studies), for most studies concerned with 

assessment of general biodiversity, the correct assignment of MOTUs is directly dependent 

on dense and correctly curated databases. Marine barcoding databases are currently much 

less populated than their terrestrial counterparts, and significant portions of the tree of life 

are still under-represented or missing altogether. We urge marine biodiversity researchers 

to contribute to the growth of denser and more useful reference databases by sequencing 

at least the most prominent taxa found in marine metabarcoding studies, thus obtaining a 

validation of the assignments and contributing to improve the databases. Of course, 

ecological inferences are possible even in the absence of a precise taxonomic assignment, 

but the lower the number of “unassigned” MOTUs (or assigned just at high taxonomic 

levels), the better the knowledge we will obtain of the structural properties and the 

functioning of the ecosystems. 

We demonstrate that the diversity detected in metabarcoding studies can drastically 

change according to the laboratory set-up and the different parameters and thresholds 

employed during the bioinformatic workflow. While it is likely that none of the approaches 

employed perfectly reflects reality, it is clear that certain choices critically increase the 

reliability of the results. Thus, we encourage researchers to acknowledge the benefits as 

well as potential biases and limitations of the different set-ups when designing a 

metabarcoding study, and adjust the interpretation of the data to the level of uncertainty. 

We also highlight the importance of adjusting parameters to the marker region and 

taxonomic range based on empirical data rather than relying on general rules of thumb or 

standard settings of available software. 

 Finally, if metabarcoding is to reliably answer biological questions, we believe that 

continuous technical refinement and illumination of strengths, weaknesses, and biases are 

needed in order to ensure unbiased, standardized and optimal detection of true diversity.
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