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Abstract

The EX6-0, EX7-0 and EX7-1 representative benchmark sets are developed for

the fast evaluation of the performance of a density functional, or more generally of a

computational protocol, in modeling low-lying valence singlet-singlet excitation energies

of organic dyes within the range of 1.5 to 4.5 eV. All sets share the advantage of

being small (a maximum of 7 molecules), but providing statistical errors representative

of larger and extended databases. To that extent, the EX7-1 benchmark set goes a

step further and is composed by systems as small as possible in order to alleviate

the associated computational cost. The reliability of all the sets is assessed through

the benchmarking of 15 modern double-hybrid density functionals. The investigation

shows not only that the 3 benchmark sets provide close error metrics for each density

functional, but also that when taking advantage of the Resolution-of-the-Identity and a

balanced triple-ζ basis set (e.g., def2-TZVP), double hybrids overperform the ‘popular’

hybrids in modeling vertical absorption, emission, and adiabatic energies.
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1 Introduction

The accurate modeling of excited-state properties of large organic systems is a challenge of

broad interest for chemists. From excited-state reactivity1,2 to electronic spectroscopy,3,4 it

allows for a comprehensive understanding of complex photomechanisms,5–7 for the design

and the characterization of novel candidates in dye and probe chemistry,8 and goes beyond

qualitative aspects with the color simulation9–11 or the quantification of side products for in-

dustrial purposes.12,13 This list is not exhaustive but representative of the various challenging

excited-state applications explored within the modeling landscape.

The assessment of excited-state properties requires robust theoretical chemistry methods

suitable for the type and complexity of the systems involved. Many of them exist, each one

based on its own formalism (e.g., wavefunction, Green function, electron density) and each

one providing different levels of accuracy and reliability. Among them, methods rooted in

density-functional theory (DFT),14 and particularly the adiabatic variant of time-dependent

density-functional theory (TDDFT),15 are undoubtedly the most popular. Their popularity

comes not only from their efficiency and their claim to routinely afford systems of hundred

of atoms, but also from their continuous improvements through the development of new

classes of exchange-correlation density-functional approximations.16 Those developments re-

quire tests and validations through standard and valuable benchmark sets built from robust

reference energies/structures of systems representative of the targeted applications.

To this end, over the last ten years, numerous databases specifically dealing with excited-

state properties were developed. Valence, Rydberg and charge-transfer vertical excitations

of small organic systems were the first properties to receive interest.17–20 Their small size,

ranging from 2 to 10 nonhydrogen atoms, add up the advantages to get a fast evaluation of

the entire dataset and a robust theoretical reference. However their electronic spectroscopy

signatures are mainly restricted to UV (wavelengths lower than 400 nm), an energy domain

of low interest for chemical applications. Later on, benchmark sets evolved to the probing

of the UV-visible domain with extension to low-lying singlet-singlet21–23 and singlet-triplet
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vertical excitations24 of large size organic chromophores, and a concomitant growing interest

about adiabatic energy properties.25–29 Apart from benchmarks based on energy properties,

some relevant excited-state structure and potential energy surface comparisons of organic

systems exist but are still marginal.30–32

Among the existing databases, Jacquemin et al. recently proposed a really large bench-

mark set of 80 large organic and organometallic systems that we denote here as RLex80

dataset.25 It contains 80 molecules that are excellent candidates to probe for local and

charge-transfer valence excitations in a broad UV-visible energy range (∼1.5 to ∼4.5 eV).

However its complete assessment remains both computationally and time demanding since it

requires the evaluation of 160 excited-state energies, 80 corresponding to ground-state min-

imum energy structures (absorption process) and 80 others corresponding to excited-state

relaxed energy structures (emission process). As a result using such a dataset to train or to

validate the development of a new theoretical method is indeed statistically relevant but it

is also technically cumbersome.

In this article, we propose a robust and computationally inexpensive way to probe new

theoretical developments for excited-state properties by deriving small representative subsets

of the large RLex80 benchmark set. Taking inspiration from pioneering works by Truhlar

and coworkers in which they specifically derive subsets from large and diverse databases

(i.e., atomization energies of main-group33 and transition metal-based systems,34,35 barrier

heights of reactions36), we construct here 3 equivalent small benchmark sets guaranteeing

the chemical diversity and the statistical representativity of the large RLex80 dataset with

the aim to get a fast and robust idea of the excited-state performance of a method. More

precisely, the 3 small sets are built under 3 successive constraints imposed (i) to conserve

the standard statistical criteria; (ii) to conserve the broad range of reference values of the

large RLex80 dataset; (iii) to drastically reduce the computational power needed to assess

them. These small sets are named as part of what we call the EXN family (i.e., EX6-

0, EX7-0, EX7-1) and are especially designed to measure the performance of a theoretical
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method to model vertical absorption, vertical emission and adiabatic energies of local and

charge-transfer character.

Finally, the EXN family of benchmark sets is then used to test the performance of a panel

of 15 modern double-hybrid density functionals. Their computational cost is larger than the

one provided by conventional DFT methods, thus representing a natural application to the

EX6-0, EX7-0 and EX7-1 benchmark sets. Pioneering investigations already showed that

some of these density functionals are quite promising to model excited-state properties but

their extended benchmarking and related applications are still scarce in the domain.21,22,37–39

We propose here to fill the gap by assessing a large number of double hybrids, including

parameterized as well as parameter-free approaches, for excited-state purposes.

2 Theoretical Background

Introduced in 2006,40 the modern variant of double hybrids (DH) expresses the exchange-

correlation energy as the sum of semilocal density functional approximation (DFA) and fully

nonlocal energy terms such as

EDH
xc = axE

EXX
x + (1− ax)EDFA

x + (1− ac)EDFA
c + acE

PT2
c , (1)

where ax and ac governs the mixing between the nonlocal exact-like exchange (EXX) and

the nonlocal correlation computed by second-order perturbation theory (PT2), respectively.

The first three terms belongs to the well known global-hybrid (GH) expression

EGH
xc = axE

EXX
x + (1− ax)EDFA

x + (1− ac)EDFA
c (2)

and are computed in a self-consistent fashion. The last energy term is evaluated a posteriori

from the GH self-consistently optimized set of Kohn-Sham orbitals and eigenvalues, and then

added to the GH exchange-correlation energy prior being weighted by the ac coefficient.
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The resulting DH expression is nowadays interpreted by numerous authors16,41–43 in

a parameter-free (fully parameterized) fashion by nonempirically (empirically) setting the

{ax, ac} mixing coefficients, and by carefully choosing the semilocal approximation. Despite

of their divergent roots, both approaches lead to similar conclusions in terms of ground-state

property performance,44 and constitute a large performance improvement with respect to

parent density functionals belonging from the semilocal or hybrid approximations.45

The extension of double-hybrid density functionals to excited states reproduces the two-

step fashion protocol described for the ground state.39 The GH vertical excitation energy

(ΩGH) which derives from the GH exchange-correlation equation (eq 2), is estimated from

the Tamm-Dancoff approximation46 (TDA) of the linear-response TDDFT equations.15 They

states that

AX = ΩTDA-GHX, (3)

with A and X representing the Hamiltonian matrix excitation matrix and the corresponding

excitation vector, respectively.

By analogy with the ground state, eq 3 is a CIS-like expression which can be corrected fol-

lowing a second-order perturbation approach.47 The resulting CIS(D)-like correction (∆(D))

is finally summed up with the GH vertical excitation energy to give the DH vertical excitation

energy such as:

ΩTDA-DH = ΩTDA-GH + ac∆(D) (4)

where the ac coefficient corresponds to the one set by eq 1 and denotes the fraction of

CIS(D)-like correction.

3 Subset Derivation

The RLex80 dataset is a robust statistical database (see Figure S1 in the Supporting In-

formation for a graphical representation of the molecules) containing 80 organic systems
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whose structures are optimized in their ground- and low-lying excited-state, thus allowing

the comparison with the corresponding experimental 0–0 excitation energies. Experimental

measurements are among the best references to build a benchmark set yet they are also

known to be condition-dependent and in the present case, prone to solvent and vibrational

effects. We prefer here to turn to a theoretical reference in lieu of comparing equivalent quan-

tities and avoiding accumulation of errors. In particular, the CC2 second-order approximate

coupled cluster method has been adequately chosen previously to be the reference approach

for accurate spectroscopic properties of large organic chromophores,21 and to obtain accurate

reference energies within the RLex80 dataset.25

This choice strongly increases the number of reference energy values from 80 to 240 (i.e.,

80 vertical absorption, 80 vertical emission and 80 adiabatic energies), improving the statisti-

cal robustness of the benchmark set, but preventing form its fast assessment, a criteria often

requested during the development of a novel computational protocol. In order to circumvent

this problem, we propose here to derive some statistically relevant subsets from the RLex80

dataset following a reliable and efficient initiative firstly described by Lynch and Truhlar.33

Within this framework, the statistical agreement between the parent dataset and its subset

implies a close equality of the error measures (vide infra) of both sets: the mean signed

deviation (MSD), the standard deviation (STD) and the mean absolute deviation (MAD).

These metrics are widely employed,48 and are thus used in the following to discriminate the

newly designed subsets.

More precisely, the design procedure followed here compares the error measures over the

adiabatic energies of the parent RLex80 dataset with the ones of its subsets for a selection

large enough of 16 TDDFT-based computational protocols (see Table S1 in the Support-

ing Information). The methods are chosen to represent the exchange-correlation density-

functional landscape developed over the past 20 years, i.e., density functionals spanning

from pure to hybrid and double-hybrid approximations. To determine and validate the most

statistically representative subset (SN) of N systems, the 16 selected computational protocols
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are split into a training and a test set named TrainXC8 and TestXC8, respectively. During

the training step, TrainXC8 feeds a normalized absolute error function ERR:

ERR(SN) =

8∑
i=1

∑
mi={MSDi,MADi,STDi}

|mi(SN)−mi(RLex80)|

8∑
i=1

∑
mi={MSDi,MADi,STDi}

|mi(RLex80)|
, (5)

which calculates the absolute error between a statistical criteria mi estimated from the

RLex80 dataset and its subset SN for the ith computational protocol (i runs over 1 to 8 in

case of TrainXC8). For each subset size N ∈ [1, 80], N systems are chosen to minimize the

ERR function such as:

EXN := min
SN
{ERR(SN)} . (6)

The minimization procedure returns the EXN subset which is the most statistically rep-

resentative subset of N systems of the RLex80 dataset. According to eq 5 we can expect

that, the larger N is, the better the statistical agreement between the RLex80 dataset and

its subset will be. As a consequence, the choice of N is a trade-off between deviations in

reproducing the statistical measures and the computational time.

The training step is followed by an assessment step which is typically afforded to vali-

date the robustness of the statistical treatment, or in other words, to verify that the EXN

subset provides similar values of the ERR function (eq 5) when fed by the computational

protocols included into both TrainXC8 and TestXC8. In addition, the assessment step is

also supplemented by 4 post-Hartree-Fock approaches defined in TestWF4 (see Table S1 in

the Supporting Information). In this sense, the validation extends the application range of

the EXN subset to wavefunction-based methods. Note that the subset derived under this

procedure will be dubbed as EX6-0 (vide infra).

As mentioned above, the subset derivation based on the training and assessment loop is

mainly based on pure statistical arguments. The potential risk of this process is the lack
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of chemical diversity which reflects in the large range of excitation energies contained into

the RLex80 dataset. This diversity is particularly important to judge the quality of density

functionals since the range of errors strongly depends on the character of the excitation (see

Figure S2 in the Supporting Information). Therefore, to conserve this chemical feature, a

further constraint is added to the minimization process, ultimately leading to the EX7-0

benchmark set. It consists in conserving the broad range of reference excitation energies

of the RLex80 dataset by partitioning it according to a one-dimensional (1D) histogram

approach where the number of bins is optimally tuned following the Freedman-Diaconis

rule.49 This partition fixes automatically the number N of systems included into the subset

as equal to the number of bins of the histogram. As a result the newly derived subset is

not only statistically alike the RLex80 dataset, but it also shares in proportion its chemical

diversity.

However, note that the question of the computational cost still remains. Deriving a small

subset of the large RLex80 dataset contributes to a general decrease of the overall CPU

time spent to assess the entire set, but it does not directly impact on the computational

power needed by any software to afford the excited-state evaluation of a single system.

A pragmatic remedy to further reduce the computational cost consists in adding another

constraint during the subset derivation, that will finally yield the EX7-1 set of systems. This

constraint is based on the size of the system and more particularly on its number of electrons.

Consequently, the 80 systems of the RLex80 dataset are partitioned into a two-dimensional

(2D) histogram (broad range of reference energies, total number of electrons) in which the

bin size of each dimension is again determined by the Freedman-Diaconis rule.49 During

the statistical minimization of the ERR function (eq 5), one system is selected in each bin

along the reference energy axis, constraining the selection to the lowest bin along the ‘total

number of electrons’ axis. As a result the newly derived subset shares not only the chemical

diversity and the statistical likeness with the RLex80 dataset, but it also tends to reduce

concomitantly the computational time and cost during its assessment.
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4 Computational Details

All the DFT and TDDFT computations were performed on the fully optimized ground- and

excited-state structures belonging to the RLex80 dataset and reported in Reference 25. The

the adiabatic energy is calculated as the difference between the excited- and ground-state

energies of the relaxed excited- and ground-state structures, respectively, while the vertical

absorption (emission) is computed as the difference between the excited- and ground-state

energies of the relaxed ground-state (excited-state) structure.

In particular, for the pure and hybrid density functionals involved in the TrainXC8 (e.g.,

PBE,50 PBE0,51,52 M06-2X,53 LC-ωPBE,54–56 ωB97XD57) and TestXC8 (e.g., M06-L,58

N12,59 B3LYP,60–62 M06,53 BMK,63 N12-SX,64 CAM-B3LYP,65 M06-HF66,67) sets, ground

and excited-state energies were estimated within the Kohn-Sham DFT and linear-response

TDDFT frameworks, respectively. In relation with these families of density functionals, the

6-31+G(d) double-ζ basis set68,69 which is recommended for a fast and meaningful treatment

of valence excitations,70 was used. The heavy metal atoms were treated with the LanL2DZ

basis set and the corresponding effective core potentials.71,72 All these computations were

performed with the Gaussian’09 program73 using tight SCF convergence criteria and ultrafine

integration grids.

All the double-hybrid-based computations were performed with the Orca software74 (re-

lease 3.0.3) using a tight SCF convergence criteria and taking advantage of the ‘resolution-of-

the-identity’ (RI) approximation: the ‘chain-of-spheres’ algorithm75 (COSX) was turned on

to efficiently and accurately treat the exact-like exchange contribution in self-consistent pro-

cedures.76 To nearly reach the basis set convergence (see Figure S3 in the Supporting Infor-

mation), the large Ahlrichs def2-TZVP triple-ζ basis set77 together with its def2-TZVP/JK

and def2-TZVP/C auxiliary counterparts were also used. In the case of dealing with heavy

metal atoms, the corresponding Stuttgart-Dresden effective core potentials were added to

the computational procedure.77,78

Note that the requested excitation energies obtained at the aug-cc-pVTZ level of the-
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ory79,80 with the post-Hartree-Fock methods of the TestWF4 set (i.e., ADC(2),81 SOS-

CC2,82,83 SCS-CC2,82,83 BSE/GW 84,85) were directly taken from Reference 25.

5 Results and Discussion

5.1 EX6-0: a subset statistically alike the RLex80 dataset

The first subset derivation is performed without applying any specific constraint on the

statistical minimization procedure. It just consists in selecting molecules from the RLex80

dataset to build a subset made with N ∈ [1, 80] element(s) and whose statistical performance

criteria (e.g., MSD, MAD, STD) are similar to those of the parent set by minimizing the

ERR function (eq 5). Figure 1 plots the evolution of the ERR function versus the size N of

the subset. It especially shows how the increase of N leads to a fast decrease of the ERR

function when going from N = 1 (ERR = 29.4%) to N = 6 (ERR = 2.5%).

Fixing N is merely a question of compromise between the reproduction of the MSD,

MAD and STD measures and the computational time employed. As a general trend, vertical

transition energies are estimated within errors of the order of ∼2×10−1 eV for global-hybrid

density functionals.86 A bias of 2.5% on this measure gives a variation of ∼5 × 10−3 eV,

which is below the numerical accuracy of the CC2 energies taken in Reference.25 For this

reason, we establish a 2.5% threshold on the ERR function as convergence limit and set the

optimal subset size as N = 6.

The corresponding subset is consequently named EX6-0. Its molecules are depicted in

Figure 2 and their spectroscopic features are provided in Table 1. From a spectroscopic point

of view, these systems are very different since the character of their first low-lying transition

can be of local- (π → π?) or charge-transfer-type with an overall range of energies spanning

between 2.02 and 4.56 eV. This wide range of energies gets closer to the one of the RLex80

dataset (1.71 eV to 4.56 eV) also guaranteeing a parent chemical diversity.

Figure 3 shows the correlation between MADs from the large RLex80 dataset and the
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newly developed EX6-0 subset for the TrainXC8 and TestXC8 sets. More details about the

MSD and STD measures are provided in Figure S4 in the Supporting Information. As a

general trend, the linear agreement is respected for each statistical measure with very small

deviations with respect to the diagonal, always lower than 0.02 eV. Thus the EX6-0 subset

is an excellent approach to evaluate the performance of a given density functional (from

pure to hybrid and double-hybrid approximations) in modeling the low-lying excited-state

properties of organic dyes. Figure 3 confirms also that the applicability of the subset can be

successfully extended to the post-Hartree-Fock methods included into TestWF4.

5.2 EX7-0: a subset statistically alike and respecting the chemical

diversity of the RLex80 dataset

The second subset derivation aims to go beyond the systematic statistical minimization

procedure fixed by eq 6 while imposing a constraint which ensures the recovery of the chemical

diversity of the RLex80 dataset. This constraint consists in conserving its wide and broad

range of excitation energies (from 1.71 eV to 4.56 eV). This feature is particularly important

for some families of exchange-correlation density functionals for which the error estimating

the excitation energies increases when the latter increases (see Figure S2 in the Supporting

Information). The constraint is applied by partitioning the wide range of excitation energies

according to a 1D-histogram approach. The number of bins is optimally estimated by the

Freedman-Diaconis rule and is found equal to 7 (bin width of ∼0.41 eV), fixing automatically

the size of the newly derived subset as N = 7.

Once the energy partitioning is done, the selection of the 7 elements is performed by

choosing a system in each bin of the 1D-histogram and minimizing the ERR function (eq

5). An illustration of the selection procedure is provided in Figure 4. The ERR function is

finally minimized up to 5.7% with an excitation range spanning between 1.89 and 4.56 eV,

and the newly derived subset is named EX7-0. By direct comparison with the EX6-0 subset,

EX7-0 includes one molecule more and its chemical diversity is by construction closer to the
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one of the RLex80 dataset. However its statistical agreement remains larger (5.7% instead

of 2.5% for the EX6-0 subset) but still acceptable.

The molecules included into the EX7-0 subset are sketched in Figure 5 and their respective

spectroscopic features are reported in Table 2. Here again, the chemical diversity is rich and

composed by low-lying excitations of local- (π → π?) or charge-transfer-type characters,

an important feature to benchmark the performance of density-functional approximations.

Among the 7 compounds, two molecules overlap between EX6-0 and EX7-0. The first one

is a push-pull donor–π–acceptor chromophore made from the triphenylamine and thiazol

moities (74), with a low-lying transition keeping a notably charge-transfer character. The

second one is biphenyl (01), a common moiety of many organic compounds.

The correlations between MADs from the large RLex80 dataset and the newly developed

EX7-0 subset for the computational protocols defined in the TrainXC8 and TestXC8 sets are

reported in Figure 3. More details about the MSD and STD measures are provided in Figure

S5 in the Supporting Information. MADs calculated for the 8 + 8 computational protocols

agree with small deviations to the diagonal up to 0.04 eV. A similar behavior is observed

while switching from DFT to post-Hartree-Fock methods of the TestWF4 set. Thus the

EX7-0 subset is another faithful benchmark subset to judge the quality of a computational

approach in modeling the low-lying excited-state properties of organic dyes.

5.3 EX7-1: a computationally costless variant of the EX7-0 subset

Generally speaking, the subset derivation already reduces the overall computational time

but here, we go a step further by tackling the topic of the computational cost through the

addition of ‘a system size’ constraint based on the total number of electrons per molecule.

It consists in partitioning the 80 systems according to a 2D-histogram approach where the

first and second axis correspond to (i) the range of excitation energies and (ii) the number

of electrons, respectively. The bin sizes along each axis are automatically tuned according to

the Freedman-Diaconis rule and by analogy to the previous procedure, the newly designed
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subset carries N = 7 elements to conserve the chemical diversity feature.

Like in the previous approach, the 7 compounds are selected in the 7 bins along the first

axis but restricting the choice to the lowest populated bins along the second axis. Figure

6 depicts the 2D-partitioning and the ‘red line’ follows the 2D-bins from which are selected

the molecules. The ERR function minimization procedure (eq 6) finalizes the selection. The

minimum value of ERR is found to be 17.4% and the derived subset is named EX7-1.

The molecules included into the EX7-1 subset are represented in Figure 7 and their

respective spectroscopic features are reported in Table 3. The chemical diversity is still rich

and composed by low-lying excitations of local- (π → π?) or charge-transfer-type characters,

but the size of the systems involved dramatically decreased. It spans now between 82 and

137 electrons (22 and 32 atoms, respectively) while in the other subsets, the largest system

has 182 electrons (48 atoms) in the case of EX6-0, and 212 electrons (49 atoms) for EX7-0.

By reference to EX7-0, this new restriction constitutes a total economy of 361 electrons

(80 atoms) which represents a significant gain in term of computational cost. However, it

should be pointed out that this economy of atoms could restrict the nature of the electronic

transitions involved, since long-range charge-transfer excitations are no longer considered.

As a consequence, this restriction reduces somehow the chemical diversity of the subset.

The correlations between MADs estimated from the RLex80 dataset and its EX7-1 subset

for the computational protocols defined in the TrainXC8 and TestXC8 sets are reported in

Figure 3. More details about the MSD and STD measures are provided in Figure S6 in

the Supporting Information. The deviation to the diagonal for those statistical criteria is

one order of magnitude more (∼0.10 eV) with respect to the ones found for EX6-0 and

EX7-0. This larger deviation is explained by the successive constraints applied to derive

the subset. They considerably restrict the pool of systems and consequently worsen the

statistical agreement. Surprisingly, the deviation to the diagonal is lower for the post-

Hartree-Fock approaches of the TestWF4 set (∼0.06 eV). Nevertheless this less satisfactory

statistical agreement does not discredit EX7-1 since again the main objective is to propose a
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subset affordable by computational approaches that are more resource-and-time-consuming

than TDDFT.

5.4 Computational effort to assess the EXN family of subsets

The advantages and inconveniences of each benchmark set of the EXN family, in terms of

computational time and cost, is now carefully analyzed. The assessment is performed with

the PBE-QIDH parameter-free double-hybrid density functional. PBE-QIDH, and more

generally double hybrids, are excellent probing examples for this investigation since their

formal computational cost is larger than the one of more standard global or range-separated

hybrids (O(N5) versus O(N3) with N the number of electrons of the system), but strongly

alleviated by density-fitting techniques.

Figure 8 reports the CPU time trends obtained for the EX6-0, EX7-0 and EX7-1 subsets.

With respect to the parent RLex80 dataset, the total computational time to assess an entire

subset is decreased by a factor 100 and varies in proportion between 1.5 and 8.5% (EX7-1

and EX7-0, respectively). EX6-0 is in between with a total CPU time ratio of 4.7%.

The time performance is especially emphasized for EX7-1 which is designed to reduce the

computational cost. Its mean CPU time (0.2%) is a few times smaller than that of EX6-0,

despite including one system morer. The relevance of EX7-1 is not only related to the overall

computational CPU time, but also to the time spent to assess the largest system, a bottleneck

often found in standard computations. It is estimated to be about 0.5% for EX7-1, while it

is about 1.3 and 2.8% for EX6-0 and EX7-0, respectively. As a result the EX7-1 subset is

not only suitable for TDDFT benchmarking but also for the more resource-demanding and

time-consuming computational approaches.

Overall, the impressive resource gain added to the excellent physical and chemical rep-

resentativity of the EX6-0, EX7-0 and EX7-1 subsets turn them into excellent alternatives

to the large RLex80 dataset when benchmarking any kind of computational protocols for

excited-state purposes.
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5.5 Double-hybrid density functionals as probing examples for the

EXN family of subsets

The double-hybrid class of density-functional approximations is of course computationally

more demanding than the ‘popular’ hybrid one, but it is worth to recall that climbing from

singly to doubly hybridized approximation brings the considerable advantage to drastically

improve the performance of density-based methods for any kinds of ground-state energy45

and structure properties.87 Regarding the topic of systems relevant for excited-state chem-

ical applications, the performance assessment of double-hybrid density functionals is still

rare21,22,37–39 and lets wonder if there is still room for this family of approximation. The

RLex80 dataset gives here the opportunity to obtain an extended view of their energy per-

formance taking gas-phase CC2 energies as reference.

As a general rule of thumb, the increase of the fraction of exact-like exchange tends

already to decrease the error on vertical absorption energies (Figure 9). This is especially

true for the sequence PBE (EXX: 0%; MAD: 0.66 eV), B3LYP (EXX: 20%; MAD: 0.30

eV), and BMK (EXX: 40%; MAD: 0.16 eV) on the whole RLex80 dataset. Then casting a

fraction of nonlocal CIS(D)-like correction contributes to further decrease these deviations.

Indeed in going from B3LYP (PBE0) to B2-PLYP (PBE-QIDH) improves the absolute error

from 0.30 (0.22) eV to 0.10 (0.22) eV (Figure 9). This general trend shows not only that the

double-hybrid approximation improves the quality of the excited-state energy estimations

but also that the performance improvement depends on the underlying density functional.42

To get a representative flavor of the performance spreading of the different variants of

double-hybrid density functionals, we select 15 of them (Table 4) to assess the EX6-0, EX7-

0 and EX7-1 benchmark sets developed below. Such an assessment will not only provide

new insight regarding density functional benchmarking but will show how the performance

varies going from one representative subset to another. Figure 10 reports the MAD statisti-

cal measures for the three subsets over vertical absorption, vertical emission and adiabatic
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energies taking gas-phase CC2 computations as reference. CIS(D) is added for the sake of

comparison.

Concerning vertical absorption energies, the MADs estimated on the EX6-0 subset span

between 0.08 and 0.44 eV for B2IP-PLYP and B2-PPW91, respectively. Only B2-PPW91

performs worse than CIS(D) (0.35 eV) for this property. This poor behavior regarding

excited-state properties is quite surprising88 since the latter double hybrid is specifically op-

timized to reproduce dipole polarizability and hyperpolarizability properties. It is probably

linked to the too restricted choice of systems involved in its parameterization loop and to

the strong lack of exact-like exchange (20% instead of more than 50% for the others). De-

spite of this singularity, double hybrids are in line (for some of them) and even better (for

others) with global hybrids for such a property (Figures 9 and 10). As a result, they can be

viewed as an excellent alternative to standard global hybrids to model accurately low-lying

singlet-singlet vertical absorption energies. This performance trend is also confirmed by as-

sessing the EX7-0 and EX7-1 subsets (Figures 9 and 10). Despite of the chemical diversity

constraint, EX7-0 reproduces faithfully the MADs estimates of vertical absorption energies

obtained from the EX6-0 with an error all the time lower than 0.02 eV. For EX7-1, the

largest deviation remains lower than 0.10 eV.

For vertical emission energies, double hybrids (Figure 10) perform as well as vertical ab-

sorption with variations (often negative) of about ∼10−2 eV observed on the 3 subsets. This

behavior is not specific to double hybrids. It is general to all tested exchange-correlation den-

sity functionals and post-Hartree-Fock methods (see Figure S7, S8 and S9 in the Supporting

Information). The performance similarity for vertical absorption and emission processes is

also confirmed by the close deviations found between the 3 subsets. Here again, the largest

error between EX6-0 and EX7-0 (EX7-1) is lower than 0.02 (0.10) eV.

Moving to adiabatic energy properties slightly worse the performance of double hybrids

with respect to vertical processes (Figure 10). On the EX6-0 subset, the MADs span between

0.10 eV and 0.33 eV for B2-PLYP and PBE-QIDH, respectively. Extending the performance
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assessment to the EX7-0 and EX7-1 subsets brings similar ranges of errors. The origin of the

performance decrease between vertical and adiabatic properties comes from the structure

reorganization between ground and excited state which adds another source of error. At the

moment, this error is difficult to quantify and is still matter of ongoing research since ana-

lytical gradients for time-dependent double-hybrid approaches are missing and the research

of minimum excited-state energy structures derived from robust reference protocols are still

computationally too demanding.

The 15 double-hybrid density functionals investigated here prove that the EX6-0, EX7-0

and EX7-1 representative subsets of the large RLex80 dataset are able to provide a very

close statistical agreement between themselves. As a consequence, they can be viewed as an

excellent and fast alternative to the RLex80 dataset keeping in mind that EX6-0 provides

a better statistical agreement with RLex80 than EX7-0 and EX7-1, but EX7-1 is faster to

assess than EX6-0 and EX7-0. Moreover, the 15 double-hybrid density functionals show also

that most of them are able to overperform global and range-separated hybrids for such a

job. This improvement is explained by the addition of a fraction of CIS(D)-like nonlocal

correlation whose the amount rangs between 10 (B2-PPW91) and 50% (PBE0-2). The role

of this contribution is to compensate the main faults of the hybrid part, so that the nonlocal

CIS(D)-like contribution prevents the overestimation of excitations energies.42

In order to point out this effect, Figure 11 represents the correlation between the MADs

obtained with and without the CIS(D)-like contribution for 3 double hybrids, namely PBE0-

DH, B2-PLYP and PBE-QIDH. Overall, it appears that the casting of this nonlocal com-

ponent improves quasi-systematically the estimation of vertical absorption, emission and

adiabatic energies. However, the magnitude of the correction differs and is not only linked

to the fraction of CIS(D)-like nonlocal correlation. On one hand, PBE0-DH and B2-PLYP

cast similar fractions of exact-like exchange (50 and 53%, respectively) and different amounts

of CIS(D)-like correction (12.5 and 27%, respectively). Deviations obtained with the former

are closer to the diagonal than the ones computed with the latter. On the other hand, an
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intermediate behavior is observed for PBE-QIDH (∼33% of CIS(D)-like correction) which

shares the same parent PBE functional with PBE0-DH but a larger fraction of exact-like

exchange (∼69%). While these trends deserve a deeper investigation, they suggest a not

straightforward rationalization in term of exact-like exchange and CIS(D)-like nonlocal cor-

relation. There is still room for the assessment of excited-state properties with double-hybrid

density functionals.

6 Conclusions

We develop here the EXN family of small datasets for the fast assessment of computational

protocols in modeling excited-state properties of challenging dyes. The datasets are designed

based on the low-lying valence excitations of organic molecules which are at the origin of

the main features of their absorption and emission spectra. Named as EX6-0, EX7-0 and

EX7-1, they combine the statistical representativity of the RLex80 collection of organic and

organometallic compounds which is nowadays taken as a reference for probing the UV/vis

excited-state signatures of dyes. We further emphasize the following key features of the

subsets:

1. The EX6-0 dataset contains only 6 systems selected to accurately reproduce mean

signed, mean absolute and standard deviations criteria of the large RLex80 dataset.

2. The EX7-0 dataset is slightly larger. Its 7 systems are selected to conserve the largest

range of excitation energies, and to accurately keep a statistical agreement with the

large RLex80 dataset.

3. The EX7-1 dataset contains also 7 systems selected this time to conserve the largest

range of excitation energies and the smallest number of electrons, still keeping a sta-

tistical agreement with the large RLex80 dataset.
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To illustrate the efficiency of the EXN family of datasets, we selected a large panel of

modern double-hybrid density functionals as working examples. By comparison with the

reference RLex80 set, we show that the CPU time gain to assess an entire EXN dataset can

decrease up to 1.5%. We show also that the derived datasets provide statistical measures

(e.g., MSD, MAD, STD) very close to RLex80, with deviations found in average as marginal

and significantly smaller than deviations with respect to the reference excitation energies.

Above all, we prove that double-hybrid density functionals emerge as an interesting alterna-

tive to global and range-separated hybrids for the evaluation of low-lying valence excitations

with local or charge-transfer character with mean absolute deviations reaching up to 0.10

eV for vertical absorption, emission and adiabatic energies. We demonstrate that such a

performance is fairly obtained by using a balanced triple-ζ basis set (e.g., def2-TZVP) and

by taking advantage of the Resolution-of-the-Identity which strongly alleviates the compu-

tational cost. We also conclude that this excellent performance is not only due to the large

fraction of exact-like exchange casted into double hybrids but also to the CIS(D)-like correc-

tion, a component which pushes TDDFT beyond the modeling of single-excitation character.
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Table 1: List of the systems included into the EX6-0 subset. Reference vertical absorption
(abs.; in eV), vertical emission (emi.; in eV) and adiabatic (adi.; in eV) energies computed
in gas phase at CC2 level of theory are reported. All the computations are done with the
aug-cc-pVTZ basis set.

system type abs.a emi.a adi.a

26 iminium dye 2.48 2.35 2.37
54 thiophene dye 2.42 2.19 2.27
59 CT dye 2.66 2.18 2.31
27 styrene dye 3.53 3.01 3.15
74 CT dye 3.71 3.21 3.32
01 hydrocarbon 5.41 4.33 4.72

afrom Reference 25.
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Table 2: List of the systems included into the EX7-0 subset. Reference vertical absorption
(abs.; in eV), vertical emission (emi.; in eV) and adiabatic (adi.; in eV) energies computed
in gas phase at CC2 level of theory are reported. All the computations are done with the
aug-cc-pVTZ basis set.

system type abs.a emi.a adi.a

08 keto dye 2.24 1.91 1.94
52 thiophene dye 2.65 2.22 2.35
75 keto dye 3.37 2.79 2.87
74 CT dye 3.71 3.21 3.32
33 complex dye 4.06 3.47 3.73
41 hydrocarbon 4.77 4.18 4.37
01 hydrocarbon 5.41 4.33 4.72

afrom Reference 25.
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Table 3: List of the systems included into the EX7-1 subset. Reference vertical absorption
(abs.; in eV), vertical emission (emi.; in eV) and adiabatic (adi.; in eV) energies computed
in gas phase at CC2 level of theory are reported. All the computations are done with the
aug-cc-pVTZ basis set.

system type abs.a emi.a adi.a

26 iminium dye 2.48 2.35 2.37
16 CT dye 2.53 1.85 2.13
34 polyaromatic 3.13 2.70 2.80
12 keto dye 4.05 3.40 3.65
03 keto dye 4.27 3.34 3.87
41 hydrocarbon 4.77 4.18 4.37
01 hydrocarbon 5.41 4.33 4.72

afrom Reference 25.
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Table 4: List of double-hybrid density functionals ordered by their increasing exact-like
exchange weight, and wave function theory-based methods considered in this work. EXX and
PT2 denote the percentage of exact-like exchange and second-order perturbation correlation,
respectively.

Name Year Typea % EXX % PT2 Reference(s)
B2-PPW91 2012 DH-GGA 20 10 89
PBE0-DH 2011 DH-GGA 50 13 90,91
TPSS0-DH 2011 DH-mGGA 50 13 90,92
B2-PLYP 2006 DH-GGA 53 27 40

mPW2-PLYP 2006 DH-GGA 55 25 93
B2GP-PLYP 2008 DH-GGA 55 36 94
ROB2-PLYP 2009 DH-GGA 59 28 95
B2π-PLYP 2009 DH-GGA 60 27 96
B2T-PLYP 2008 DH-GGA 60 31 94
B2IP-PLYP 2016 DH-GGA 60 35 97
PBE-QIDH 2014 DH-GGA 69 33 98
TPSS-QIDH 2014 DH-mGGA 69 33 98
B2K-PLYP 2008 DH-GGA 72 42 99

mPW2K-PLYP 2008 DH-GGA 72 42 99
PBE0-2 2012 DH-GGA 79 50 100
CIS(D) 1994 WFT 100 100 47

aList of acronyms: GGA: generalized gradient approximation, mGGA: meta-GGA, DH: double-hybrid,
WFT: wave function theory.
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Figure 1: Evolution of the minimized error function (ERR; in %) versus the number of
systems N in the EXN subset for a 2.5% cost limitation. For each N , the label of the
systems included into the subset are added. The ERR function is estimated to 2.5% for the
EX6-0 subset. A representation of all the systems is given in Figure S1 in the Supporting
Information.
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Supporting Information Available

A list of the computational protococols included into the TrainXC8, TestXC8 and TestWF4

sets is reported in Table S1. A sketch of the 80 large organic systems under investigation

into the RLex80 dataset are depicted in Figure S1. Density-functional error trends as a

function of the reference energy excitations are plotted in Figure S2. A basis set convergence

test to compute vertical and adiabatic transitions with double-hybrid density functionals

is reported in Figure S3. Correlations plots between the MSD, MAD and STD statistical

measures calculated from the large RLex80 dataset and its EX6-0, EX7-0 and EX7-1 subsets

for the computational protocols included into the training, test and the post-Hartree-Fock

sets are reported in Figures S4, S5 and S6, respectively. Detailed statistical comparisons

between MADs computed on the RLex80 dataset and its EX6-0, EX7-0 and EX7-1 subsets

for the computational protocols included into the training, test and the post-Hartree-Fock

sets are reported in Figures S7, S8 and S9, respectively.
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