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ABSTRACT
The present paper describes the application of an evolutionary algorithm to the optimum design of the 
reinforcement of timber beams using FRP laminates and sheets. The objective function is the material 
cost of the strengthening and is subjected to ten constraints derived from the ultimate limit states for 
flexural and shear behaviour as well as the serviceability limit states. A genetic algorithm is used and 
the optimization problem is transformed into an unconstrained one by means of an adaptive penalty 
function. The design variables are the CFRP and GFRP mechanical properties and dimensions and 
they are encoded in a binary chromosome: type of composite material (CFRP or GFRP), reinforcement 
mechanical properties and geometric configuration. The search space for the minimum cost consists of 
65 billion possible solutions. The crossover operator switches randomly between a fenotype crossover 
and flat crossover. An adaptive mutation scheme has been as well as an elitism criterion. The algorithm 
has been used for obtaining optimum designs in several specific load and geometry cases of glued 
laminated timber beams. The objective is finding whether there are specific reinforcement configura-
tions more feasible for a certain loading situations: short or long beams and lower or higher loading 
increments. Five cases have been analysed. In the first three cases the length of the beams has constant 
values of 2, 2.5 and 3 m, whereas the value of loading was variable. In the latter case, the value of the 
load was fixed and the length of the beam was variable. The analysis of the results shows that the GFRP 
reinforcement is more efficient than CFRP for designs governed by shear failure, whereas CFRP is 
more effective in the case of flexural failure and deflection controlled strengthening of timber beams.
Keywords: adaptive operators, FRP strengthening, genetic algorithm, structural optimization, timber 
structures

1 INTRODUCTION
Although the use of wood as a building material is ancient, nowadays it still presents good 
structural qualities compared to steel and concrete materials. It stress ratio to specific weight 
makes it suitable for one way floors and, in particular, wood beams without knots or cracks 
have high values of compressive and tensile strength. However, elastic modulus and shear 
strength have very low values compared with steel materials (Triantafillou [1]). Nowadays, 
building reutilization and the current technical standards lead to an increase in service loads 
and to a decrease of the maximum deflection limits. In order to improve the structural safety 
and reliability of structural wood systems in existing buildings, composite-based reinforce-
ment techniques are demanded. In this regard, fibre reinforced polymers (FRP) are an 
adequate alternative to improve structural capacity (Bru et al. [2]). This study is aimed at 
reaching and optimum design of the CFRP and GFRP reinforcement of wood beams by 
means of a genetic algorithm. Genetic algorithms (GAs) have been thoroughly used as an 
alternative to traditional structural optimization methods. GAs were introduced in the 70’s by 
Holland [3]. Concerning the optimum design of the reinforcement for retrofitting of concrete 
structures, GAs have proven to be a robust technique, as shown in Perera and Varona [4]. 
Contrary to mathematical programming based optimization methods, GAs are of a probabil-
istic nature. They are able to handle groups of design points simultaneously and it is also 
possible to handle continuous and discrete variables. Their application does not need any 
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explicit algebraic formulation of the objective functions and constraint functions and since 
they do not depend on gradient information, it is not necessary to perform a sensitivity anal-
ysis of these functions. Those are their principal advantages over mathematical programming 
based optimization. GAs are based on the Darwinian principle of evolution, in which the 
most feasible individuals within a generation are most likely to survive and pass their genetic 
material on to the next generation. Among their principal advantages, GAs are easily imple-
mented and programmed and, given enough computation time, are always capable of reaching 
the global optimum. This can be justified because, as noted above, they are able to analyse 
simultaneously a wide range of possible solutions randomly generated, thus being less sensi-
ble to converge to local optima. Other heuristic optimization techniques, such as ant colony 
optimization and particle swarm optimization have not yet proven as robust as GAs for struc-
tural optimization.

2 MECHANICAL PROPERTIES OF MATERIALS
The study of the mechanical properties of the materials used in this research was based on the 
standard ASTM D3039/D3039M for glass fibre reinforced polymer (GFRP) laminates (Bru 
et al. [5]). These properties were obtained for bidirectional laminate (0/90º fibre orientation) 
and for different values of dosage. In this research, weight dosage values of 1/1 were selected, 
for woven type E glass fibre with 440 g/m² weight (213/217) and an epoxy resin supplied by 
SICOMIN Composites, type SR 5550 and SD 5503. The geometrical and mechanical prop-
erties for GFRP laminates are given in Table 1.

In Table 1, er is the equivalent thickness of the laminate; Vf and Vm are the volume fraction 
of the glass fibre and the matrix, respectively; E is the elastic modulus of the equivalent lam-
inate; and fu,f is the tensile strength of the equivalent laminate. Other important input used in 
the genetic algorithm is the cost of the materials. For Sicomin epoxy resin, 34.5 €/m² has been 
considered. For glass fibre fabric, the following values have been considered: ULE630, 1.81 
€/m²; BXE300, 1.62 €/m²; BXE315, 2.29 €/m²; BXE446, 1.98 €/m²; BXE600, 2.33 €/m²; 
BXE800, 2.92 €/m²; BE440, 1.67 €/m²; BE850, 2.74 €/m².

In the case of carbon fibre reinforced polymers (CFRP), Sika-CarboDur laminates were 
selected. The elastic modulus was 170 GPa and the tensile strength fu,f was 2300 MPa. The 
laminates were supplied with a thickness of 1.2 mm (case 50 and 80 mm wide laminates) and 

Table 1: Mechanical properties of GFRP laminates.

Material
Fibre weight  
g/m²

Orient.  
º

er  
mm

Vf 
%

Vm 
%

E 
N/mm²

fu,f  
N/mm²

GF-ULE 630 0 0.797 37.2 62.8 27823 426
GF-BXE 300 +-45 0.718 17.7 82.3 14721 225

GF-BXE 315 +-45 0.724 18.6 81.4 15317 234

GF-BXE 446 +-45 0.765 26.4 73.6 20518 314
GF-BXE 600 +-45 0.793 35.5 64.5 26632 407
GF-BXE 800 +-45 0.815 47.3 52.7 34573 529
GF-BE 440 0/90 0.671 13.0 87.0 11545 176
GF-BE 600 0/90 0.718 17.7 82.3 14721 225
GF-BE 850 0/90 0.760 25.1 74.9 19684 301
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1.4 mm (for 100 and 120 mm wide laminates). These correspond to laminate models 512E 
(31.00 €/m), 812E (47.10 €/m), 1014E (69.10 €/m) and 1214E (83.20 €/m), respectively.

The elastic properties of the timber beams were obtained from the Spanish standard, CTE-
DB-SE-M, whereas the plastic properties were based on previous research [6]. In this way, 
average value of ultimate compression strain for timber beams is taken equal to 0.01. Currently 
the software is only implemented with homogenous and nonhomogeneous glulam properties, 
but different kind of wood and reinforcement materials will be available shortly.

3 STRUCTURE OF THE GENETIC ALGORITHM
This section presents the formulation of the structural strengthening optimization problem, 
its transformation into an unconstrained one, the definition of the genetic algorithm and its 
operators and the treatment of the different constraints.

3.1 Formulation of the structural optimization problem

The general formulation of an optimization problem is to minimize an objective function 
subjected to a set of constraint functions, as shown in eqns (1), (2). In this case the objective 
function, noted as f x( ), was the cost of the reinforcement materials:

 Minimize  f x C CCFRP GFRP( ) = + .  (1)

 subjected to g x ii ( ) ≤ =0 1 2 10, , , , .   (2)

where CCFRP is the cost of the CFRP laminates, CGFRP is the cost of the GFRP and g xi ( ) are 
the constraints considered for this problem.

The first seven constraints deal with ultimate limit states (ULS) of the retrofitted design. 
Constraint g x1 ( ) corresponds to the bending capacity of the wood beam at the point of max-
imum moment along the reinforced zone. Constraint g x2 ( ) corresponds to the bending 
capacity at the point of maximum moment along the unreinforced zone. Constraints g x3 ( ) 
and g x4 ( ) correspond, respectively, to the tension failure of the CFRP laminate and the 
GFRP sheet used for flexural reinforcement at the point of maximum moment. And addi-
tional constraint g x5 ( ) handles the ultimate stress of the CFRP before delamination occurs 
at the end of the laminate. Constraint g x6 ( ) corresponds to the shear capacity of the rein-
forced wood beam at the point of maximum shear force near the supports. Constraint g x7 ( ) 
corresponds to the shear capacity of the timber beam along the zone without shear 
reinforcement.

Constraint g x8 ( ) assesses the serviceability limit state (SLS) of vertical deformations. 
Constraints g x9 ( ) and g x10 ( ) refer to geometric limitations concerning the available beam 
width for installing the CFRP laminates (next to one another) and the available beam depth 
for installing the GFRP sheets, respectively. Figure 1 shows the locations where some of the 
previous design constraints are checked.

3.2 Formulation of an unconstrained optimization problem

The constrained optimization problem was transformed into an unconstrained one. This was 
done by creating a penalty function P x t,( ), which multiplied the original objective function 
f x( ). The penalty function depends on the degree of violation of each of the constraints as 
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well as the generation number t. The unconstrained optimization problem was thus rewritten 
in eqn. (3):

 Minimize Φ x t f x P x t, , .( ) = ( ) ( )   (3)

The genetic algorithm starts with a randomly generated population of 100 individuals, each 
encoding one possible solution. This population becomes the first generation (t =1), which 
consists of j = 1, 2,…, 100 individuals. Each one of these consists of a binary string (Fig.  2) 
that encodes the reinforcement: type and number of CFRP laminates and length of the CFRP 
reinforced zone (LCFRP); type and number of layers of GFRP sheets, fibre orientation, length 
and depth of reinforcement (LGFRP,1 , LGFRP,2 and hGFRP, see Fig. 1). The aim of the penalty 
function P x t,( ) is the following: when a given individual-chromosome encodes an inexpen-
sive solution which does not satisfy one or several constraints, then its cost gets penalized and 
the genetic algorithm is less likely to select that individual for the genetic operators.

Figure 1: Assessment points of the constraints in the structural optimization problem.

Figure 2: Example of chromosome that encodes a possible solution.
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For this optimization problem it was found that an adaptative penalty function P x t,( ) of 
the type proposed by Gen and Cheng [7] and Perera and Varona [4] worked to satisfactory 
results. The adaptative penalty function is calculated through eqns (4) and (5):
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where a value of k = 2 has been used in eqn (4). The parameter b ti ( ) is a penalty threshold, 
which, thanks to eqn (5), gets lower as the number of generations progresses.

Once function Φ x t,( ) is calculated for each individual, a fitness parameter S j  is defined for 
each j-th individual through eqn (6):
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where Φmin,t and Φmax,t are, respectively, the minimum and maximum values of function 
Φ x t,( ) within the t-th generation.

3.3 The genetic operators

A genetic algorithm has three basic operators: selection, crossover and mutation. The first 
one, selection, depends on the fitness values. The probability of selection pS j,  for the j-th 
individual is defined in eqn (7):

 p
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j
j

, .=

=

∑
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100
  (7)

The higher the value of pS j,  the more likely will be the j-th individual eligible for reproduc-
tion and preservation of its genetic material (i.e. reinforcement type and dimensions) onto 
generation t + 1. Therefore, the selected individuals become parents for generation t+1.

The reproduction operator is performed on a pair of parents and works combining the 
genetic material of the parents, creating two new individuals (possible optimum solutions) 
which are designated as children. This operator is also known as crossover operator. For this 
particular genetic algorithm a reproduction probability of 70% has been used, which means 
that in some cases (30% approximately) the genetic material of the parents will not be com-
bined and the pair of children will be identical to the pair of parents. In the rest of cases, the 
combination of genetic material is made randomly through two different methods: fenotype 
crossover and flat crossover (Radcliffe et al. [8]).

The last operator, mutation of genetic material, is not likely to produce more feasible chil-
dren than their parents, but it must be used to avoid convergence to local optima. For the first 
10 generations mutation probability varies from 20% to 15%; between the 11-th generation 
and the 50-th generation, mutation decreases from 15% to 5%. The mutation operator is per-
formed at genotype level (see Fig. 2), whereas the crossover operator could work at a fenotype 
level.
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From the 51-th generation onwards, mutation is set at a minimum of 5% but adaptative 
mutation scheme was added, making the GA able to detect whether there is little genetic 
diversity within a given t-th generation. This could happen in the event of converging to a 
local optimum. The genetic diversity Dt of generation t is defined as the quotient of the 
maximum value of the penalized objective function within the population Φmax,t  and its 
mean value Φmean,t . Depending on Dt mutation probability will be corrected as shown in 
eqn (8):

 mutation probability
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Finally, an elitism criterion has been applied, which means that generation t+1 will be formed 
by the best individuals from the group that includes the parents selected from generation t and 
their children (i.e. if a child is not a better solution for the optimization problem than a given 
parent, it does not enter generation t+1).

4 DESIGN CONSTRAINTS
To perform this research, two standards have been used to study bending and shear behaviour 
of reinforced timber beams: the Spanish standard CTE-DB SE-M and the Italian standard 
CNR DT201. Besides, for analysing the delamination failure, several previous research 
works were addressed as well. These design recommendations are based on limit-states 
design principles and allow plastic behaviour in compression. This approach sets acceptable 
levels of safety against the occurrence of both serviceability limit states and ultimate limit 
states. To assess these limit states, certain values for the design loading and the design strength 
of the materials must be assumed. Load factors and strength reduction factors stated are the 
ones in Spanish standard (which is harmonized to the European standard Eurocode 5). For 
example, eqn (9) shows the bending strength fwd for timber beams:

 f k k k
f

wd mod sys h
wk

m

= ⋅ ⋅ ⋅

γ

.  (9)

The algorithm automatically selects the characteristic strength fwk of the wood according to 
its strength class. The software also selects the correct load factor kmod according the load 
duration, the load sharing factor ksys, the height factor kh and the material partial safety factor 
γm . Other factors related to the type of load (dead load, variable load, etc.) are also used in 
the design application.

In the assessment of constraints, g x1 ( ) and g x2 ( ), which correspond to the bending capac-
ity, the following assumptions have been considered: wood is considered an isotropic 
material, having tree planes of symmetry; shear effect is neglected and plane sections remain 
plane; the stress-strain relationships assumed for wood are elastic-plastic (in compression) 
and linear-elastic (in tension).

In the case of GFRP and CFRP, linear-elastic behaviour is considered for both compres-
sion and tension stress. For the case of a FRP reinforced timber beam in bending, Fig. 3 
shows the stress and strain distributions of the composite cross-section. The ultimate bending 
moment of the section Mu has been obtained assuming strain compatibility and equilibrium 
of internal forces and moments. In Fig. 3, erG and erC are the laminate thickness for GFRP and 
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CFRP, respectively; σ rcG is the compression stress in the GFRP; σ rtG  and σ rtC are the tensile 
stresses in the GFRP and in the CFRP laminate, respectively.

After calculating the flexural capacity Mu of the strengthened timber beam and the factored 
value of the maximum bending moment at mid-span MEd,max , constraint g x1 ( ) can be 
obtained through eqn (10):

 M M
M
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 ≤1 1 01   (10)

An analogous approach must be followed with constraints g x2 ( ) to g x10 ( ).
Constraints g x3 ( ) and g x4 ( ) correspond to the tension failure of laminate. In this case, the 

ultimate tensile strain of wood is equal to the maximum value of the laminate strain. There-
fore, the stress level of the laminates will be around 14% of its ultimate stress. Thus, these 
constraints are not likely to be active during the optimization process. However, in future 
improvements of the algorithm, voids and defects in the wood, could change this hypothesis.

Constraints g x5 ( ), g x6 ( ) and g x7 ( ) correspond to the shear capacity of wood beams. In 
these cases, two different analyses have been performed. On the one hand, the value of resist-
ing shear force VRd was calculated by transforming the FRP reinforcement to equivalent 
wood, according to Triantafilou et al. [1], and using the formulation of Collignon-Jourawski; 
the ultimate strength was then calculated according to the Spanish standard. The equivalent 
wood thickness of the GFRP is notated as eh,rG and is equal to the GFRP thickness erG times 
the quotient of the laminate elastic modulus and the wood elastic modulus. In this case, it has 
been assumed that no other failure mechanism such as FRP shear failure occurs prior to wood 
shear failure. On the other hand, the second possible failure mechanism is due to debonding 
of the CFRP laminate. In this case, the maximum laminated normal stress σ rtC ,max was calcu-
lated according to Juvandes et al. [9], as shown in eqn (11):

 σ
µ

rtC max

b c rC rC wtm p

rC

c k k E e f k

e,

,
.=

⋅ ⋅ ⋅ ⋅ ⋅ ⋅1
  (11)

where c1, kc and kμ are experimental factors equal to 0.76, 1, and 1, respectively; kb is a 
geometrical function; ErC is the elastic modulus of the CFRP laminate; and fwtm,p is the ulti-
mate pull-off stress, equal to 2.5 MPa. Currently, the algorithm considers the maximum 
anchor length, according to the properties of the reinforcement. Moreover, this check is per-
formed only for CFRP laminates, due to the lack of information about experimental test for 
debonding in wrap beams with GFRP.

Figure 3: composite FRP-strengthened section in bending.
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In addition to the ultimate limit states, the serviceability of a member under service loads 
should satisfy the provisions of Spanish standard CTE-DB-E-M. This is verified through con-
straint g x8 ( ) for the following three cases: structural integrity, user comfort and functionality. 
The calculation method of these three different provisions is indicated in the Spanish standard.

Finally, constraint g x9 ( ) corresponds to the ratio between the total width of the CFRP 
plates and that of the timber beam cross-section. In the same way, constraint g x10 ( ) corre-
sponds to the ratio between the perimeter of GFRP and the roll width of fiberglass fabric.

5 APPLICATION OF THE GENETIC ALGORITHM
This section shows the application of the genetic algorithm to evaluate the efficiency of 
different schemes of reinforcing to simply supported timber beams.

The first example consists of a 3 m span beam, with a 0.08×0.16 cross section (width×depth). 
It is a glulam GL24h timber beam subjected to a fixed distributed dead load of 0.825 kN/m, 
plus a distributed live load. The unreinforced timber beam is able to support a live load of 
2.475 kN/m according to CTE-DB-SE-M. The live load is increased at 10% intervals and the 
optimum reinforcing scheme for each of them is obtained with the genetic algorithm (10 runs 
are performed for each case). Table 2 shows the optimum designs. The notation used in Table 
2 is the following: LC is the length of the CFRP laminate, which is centred at mid span; HG is 
the depth of the GFRP reinforcing, on the lateral faces of the timber beam; LG,A is the length 
of the GFRP from the beam ends, used for reinforcing in shear; LG,C is the length of the GFRP 
located at mid span (analogous to LC); finally, the cost is given as a unit cost, comparing the 
total cost of reinforcing materials to that of the timber beam (hence the units, in €/€). As it 
was introduced in Table 1, BXE stands for bidirectional fibres (±45°) whereas ULE stands for 
fibres with single orientation.

When SLS are active for aesthetic reasons, the algorithm converges to an expensive solu-
tion installing CFRP laminates, which is the most effective way of increasing the inertia of 
the composite cross section and thus reducing the maximum vertical displacement. However, 
when SLS is not active, Table 2 shows that GFRP reinforcing for flexural bending is the less 
expensive scheme. In this case it also becomes clear that shear reinforcement is not needed 

Table 2: Optimum solutions for Example 1: 3 m simply supported beam.

∆q 
(%)

CFRP GFRP

Cost 
(€/€)Type

LC  
(mm) Type

n.  
layers

HG 
(mm)

LG,A 
(mm)

LG,C 
(mm)

SLS
+
ULS

10 1×512E 450 ULE630 2 90 0 480 0.85
20 1×512E 800 ULE630 3 90 0 730 1.71
30 1×512E 1120 ULE630 3 90 0 1180 2.58
40 1×512E 1250 ULE630 3 160 0 1320 3.53

ULS

10 - - BXE300 1 90 0 370 0.14
20 - - BXE446 1 90 0 820 0.32
30 - - ULE630 1 90 0 1080 0.42
40 - - ULE630 2 90 0 1280 1.00
50 - - ULE630 2 90 0 1420 1.11
60 - - ULE630 3 90 0 1560 1.83
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(because LG,A is null in all cases). Finally, for live load increments over 60% the algorithm did 
not find any feasible solutions: in the event of retrofitting a timber beam with the aforemen-
tioned characteristics for a live load increment over 60% its original value, strengthening 
solutions different from FRP materials should be taken into account

Tables 3 and 4 show the solutions obtained when applying the GA to simply supported 
timber beams of 2.5 and 2 m span, respectively. In the case of the 2.5 m beam, the original 
distributed live load for the unreinforced design was 4.125 kN/m. In the case of the 2 m beam, 
the original distributed live load was 6.49 kN/m.

The purpose of analysing shorter beams is forcing the algorithm to deal with designs which 
can be partially governed by shear failure. In the case of the 2 m span beam, there were no 
differences found between the optimum designs for ULS and SLS combined and those cor-
responding to ULS only; vertical deformations did not control the strengthening solution and 
they would not constitute critical constraints in short beams.

A remarkable result is that of the 2.5 m span beam retrofitted for an increase of 50% its 
original live load, with both ULS and SLS constraints active: this was found to be the most 
expensive design, needing a wider CFRP laminate as well as GFRP reinforcements for both 
bending and shear.

Finally, the smallest possible live load increment corresponded to the shortest beam 
(Table 4). FRP strengthening solutions would not be adequate for a retrofitting demanding an 
increase of over 30% the original distributed live load.

Next examples are of beams subjected to fixed values of dead and live distributed loads, 
but with increasing lengths. In example 4 the original design is the same one as in example 1: 
0.08×0.16 m rectangular cross section; glulam GL24h wood; subjected to distributed loads of 
0.825 and 2.475 kN/m (dead and live values, respectively). The maximum span possible for 
the unstrengthened design is 3 m.

Table 5 shows the results for increasing lengths in example 4. Again, CFRP became neces-
sary only when SLS was active as a design constraint. Considering ULS only, the maximum 
span length compatible with FRP strengthening would be 3.6 m (a 20% higher than 3 m). 
With that range of lengths (and for the 0.08×0.16 m glulam GL24h cross section), shear 

Table 3: Optimum solutions for Example 2: 2.5 m simply supported beam.

∆q 
(%)

CFRP GFRP

Cost 
(€/€)Type

LC 
(mm) Type

n.  
layers

HG 
(mm)

LG,A 
(mm)

LG,C 
(mm)

SLS
+
ULS

10 1×512E 220 ULE630 1 90 0 790 0.65
20 1×512E 680 ULE630 2 90 0 990 1.80
30 1×512E 1010 ULE630 2 160 130 1190 3.22
40 1×512E 1400 ULE630 3 90 220 1450 4.45
50 1×812E 1530 ULE630 3 140 290 1580 7.47

ULS

10 - - BXE446 1 90 0 480 0.31
20 - - ULE630 1 160 0 970 0.65
30 - - ULE630 2 90 130 1170 1.34
40 - - ULE630 3 90 220 1320 2.48
50 1×812E 390 ULE630 3 90 290 1430 3.59
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Table 4: Optimum solutions for Example 3: 2 m simply supported beam.

∆q 
(%)

CFRP GFRP

Cost 
(€/€)Type

LC  
(mm) Type

n. 
layers

HG  
(mm)

LG,A 
(mm)

LG,C  
(mm)

SLS
+
ULS

ULS 
only

5 - - BXE300 1 90 80 0 0.09
10 - - ULE630 1 90 130 360 0.36
15 - - BXE446 1 90 170 550 1.04
20 - - ULE630 2 90 220 690 1.33
25 - - ULE630 2 90 250 790 1.52
30 - - ULE630 3 90 310 910 2.70

Table 5: Optimum solutions for Example 4: q = 2.475 kN/m; original span length of 3 m.

∆L 
(%)

CFRP GFRP

Cost 
(€/€)Type

LC 
(mm) Type

n. 
layers

HG  
(mm)

LG,A 
(mm)

LG,C  
(mm)

SLS
+
ULS

5 1×512E 760 ULE630 3 160 0 810 2.03
10 1×512E 1680 BXE800 3 160 0 1550 4.42

ULS

5 - - BXE300 1 90 0 640 0.28
10 - - ULE630 1 140 0 1200 0.67
15 - - ULE630 3 90 0 1610 1.33
20 - - ULE630 3 90 0 1930 2.29

Table 6: Optimum solutions for Example 5: q = 6.49 kN/m; original span length of 2 m.

∆L 
(%)

CFRP GFRP

Cost 
(€/€)Type

LC  
(mm) Type

n.  
layers

HG 
(mm)

LG,A 
(mm)

LG,C 
(mm)

SLS
+
ULS

5 - - BXE300 1 90 80 430 0.38
10 - - ULE630 1 130 150 810 0.89
15 1×512E 760 ULE630 2 90 220 1100 3.18
20 1×512E 1280 ULE630 3 90 280 1340 5.43

ULS

5 - - BXE300 1 90 80 430 0.38
10 - - ULE630 1 130 150 810 0.89
15 - - ULE630 2 90 220 1100 1.90
20 - - ULE630 3 90 280 1340 3.38

strengthening would not be needed. When considering GFRP sheets for flexural reinforce-
ment (with SLS not active), the tendency of the genetic algorithm is to start increasing the 
height HG of the ‘U’ sheets; however, for longer spans (with moments increasing proportion-
ally to the square of the span), the genetic algorithm finds it more adequate to maintain a 
shorter height HG and increase the number of layers.
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Example 5 starts with the same cross section, with a short span of 2 m and fixed loads of 
0.825 kN/m and 6.49 kN/m (dead and live, respectively). Optimum results for increasing 
span lengths are listed in Table 6. The most expensive solution corresponds to a design that 
needs reinforcement for both SLS (vertical deformations) and ULS (shear failure), with a 
span length increase of 20%.

6 CONCLUSIONS
A genetic algorithm for optimum design of bending and shear FRP reinforcement of low cost 
timber beams has been presented. This GA serves the purpose of minimizing the material 
cost associated with the reinforcement materials for ULS and SLS requirements according to 
the Spanish standards.

Adaptive schemes for both the penalty function and the mutation operator showed ade-
quate performance when applying the GA to this particular design problem.

The analysis of the solutions found by the GA for a set of practical examples showed that 
for structures with flexural failure behaviour, the ultimate load can be increased up to 50-60% 
over the ultimate load for the unreinforced beam. However, for beams with shear failure con-
trolled behaviour, the ultimate load should not be increased over 30% of the unreinforced 
original load, due to the failure on the supports area.

Finally, GFRP sheets should be considered not only for shear strengthening but also for 
flexural strengthening, since they allow reducing the amount of CFRP laminate needed and 
so, they allow to reduce the retrofitting costs. The GA proved effective on deciding whether 
this could be achieved by using higher ‘U’ sheets or by adding layers of FRP.
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