
Noname manuscript No.
(will be inserted by the editor)

Object recognition in noisy RGB-D data using GNG
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Abstract Object recognition in 3D scenes is a research field in which there is
intense activity guided by the problems related to the use of 3D point clouds.
Some of these problems are influenced by the presence of noise in the cloud
that reduces the effectiveness of a recognition process. This work proposes a
method for dealing with the noise present in point clouds by applying the
Growing Neural Gas (GNG) network filtering algorithm. This method is able
to represent the input data with the desired number of neurons while preserv-
ing the topology of the input space. The GNG obtained results which were
compared with a Voxel Grid filter to determine the efficacy of our approach.
Moreover, since a stage of the recognition process includes the detection of
keypoints in a cloud, we evaluated different keypoint detectors to determine
which one produces the best results in the selected pipeline. Experiments show
how the GNG method yields better recognition results than other filtering al-
gorithms when noise is present.

Keywords 3D Object Recognition · Growing Neural Gas · Keypoint
Detection

1 Introduction

3D object recognition is a growing research field which has been stimulated by
the well-known advantages offered by the use of 3D sensors compared against
2D based recognition methods. However, there are several difficulties to be
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overcome in order to achieve effective recognition. Some of these difficulties are:
noise, occlusions, rotations, translations, scaling or holes that are present in
the raw 3D point clouds provided by current RGB-D sensors such as Microsoft
Kinect. Therefore, new algorithms are required to handle these problems when
performing a correct object recognition process.

There exist several previous works in the field of 3D object recognition.
Some of them provide a survey, review or evaluation of the existing 3D object
recognition methods, while other works focus on the proposal of new meth-
ods and approaches for the recognition process. In [8], a survey of 3D object
recognition methods based on local surface features is presented. They divide
the recognition process into three basic stages: 3D keypoint detection, feature
description, and surface matching. It also describes existing datasets and al-
gorithms used in each stage of the whole process. Other studies, such as [23],
focus on the evaluation of stereo algorithms. It presents an evaluation in terms
of the recognition ability of this kind of algorithms. Using a different approach,
[2] evaluates the different 3D shape descriptors for object recognition to study
their feasibility in 3D object recognition.

There are some works that propose novel object recognition pipelines, such
as [9], which combines depth maps and images, achieving good recognition re-
sults for heavily cluttered scenes. In [22], a novel Hough voting algorithm is
proposed to detect free-form shapes in a 3D space, and this too produces
good recognition rates. [17] describes a general purpose 3D object recognition
framework that combines machine learning procedures with 3D local features,
without a requirement for a priori object segmentation. This method detects
3D objects in several 3D point cloud scenes, including street and engineer-
ing scenes. [1] proposes a new method called Global Hypothesis Verification
(Global HV), which is added to the final phase of the recognition process to
discard false positives. Our approach is based on the pipeline presented in that
work, introducing noise into the original point cloud to test the effect of that
noise on the recognition process.

To make the object recognition system robust to noise, we propose the use
of a Growing Neural Gas (GNG) [7] to represent and reduce the raw point
clouds. This self-organizing map learns the distribution of the input space,
adapting its topology. This feature makes it possible to obtain a compact and
reduced representation of the input space in a set of 3D neurons and their con-
nections. In addition, we test different keypoint detectors to determine which
one obtains better recognition results. This GNG reduction improves the recog-
nition process and reduces noisy 3D values. GNG has been used previously in
[27] to filter and reduce point clouds. We also compare our proposal against
other reduction/filtering methods, such as Voxel Grid. Hence, we present ex-
periments that test a 3D object recognition pipeline with both the raw point
cloud, the GNG and Voxel Grid filtered point clouds.

The rest of this work is organized as follows. First, in Section 2 we in-
troduce and describe the GNG and Voxel Grid methods that we will use in
the experimentation. Then, in Section 3 the pipeline is explained. Section 4
describes the dataset used in the experiments and how the recognition exper-
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iments are carried out. After that, in Section 5 we present the results and a
discussion of our experiments and, finally, in Section6 conclusions and further
work are presented.

2 3D Filtering methods

One way of selecting points of interest in 3D point clouds is to use a topo-
graphic mapping where a low dimensional map is fitted to the high dimensional
manifold of the model, whilst preserving the topographic structure of the data.
In this section, we review some typical methods for representing and reduc-
ing 3D data. First, we describe the Growing Neural Gas algorithm and how
it works. Then, we briefly describe the Voxel Grid method, which is another
commonly used data structure, in order to compare our proposed method.

2.1 GNG method

A common way to achieve a multi-dimensional reduction is by using self-
organizing neural networks where input patterns are projected onto a network
of neural units such that similar patterns are projected onto units adjacent
in the network and vice versa. As a result of this mapping, a representation
of the input patterns is achieved that, in the post-processing stages, makes it
possible to exploit the similarity relations of the input patterns. However, most
common approaches are not able to provide good neighborhood and topology
preservation if the logical structure of the input pattern is not known a priori.
In fact, the most common approaches specify in advance the number of neurons
in the network and a graph that represents topological relationships between
them, for example a two-dimensional grid, and seek the best match to the
given input pattern manifold. When this is not the case, the networks fail to
provide good topology preservation, as for example in the case of Kohonen’s
algorithm [12]. The approach presented in this paper is based on self-organizing
networks trained using the Growing Neural Gas learning method [7], which
is an incremental training algorithm. The links between the neurons in the
network are established through competitive Hebbian learning [14]. As a result,
the algorithm can be used in cases where the topological structure of the input
pattern is not known a priori, and yields topology preserving maps of the
feature manifold [15]. The main difference with respect to the original method
[7] is that in our method a neuron is composed of 3 data elements (X,Y, Z)
representing the point coordinates.

In GNG, nodes in the network compete to determine the set of nodes
with the highest similarity to the input distribution. In our case, the input
distribution is a finite set of 3D points that can be extracted from different
types of sensors. The highest similarity reflects which node, together with its
topological neighbors, is the closest to the input sample point, which is the
signal generated by the network. The n-dimensional input signals are randomly
generated from a finite input distribution.
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The nodes move towards the input distribution by adapting their position
to the input data geometry. During the learning process local error measures
are gathered to determine where to insert new nodes. New nodes are inserted
near the node with the highest accumulated error. At each adaptation step
a connection between the winner and its topological neighbors is created as
dictated by the competitive Hebbian learning rule. This is continued until an
ending condition is fulfilled, as for example evaluation of the optimal network
topology, a predefined network size or a deadline.

The network is specified as:

– A set N of nodes (neurons). Each neuron c ∈ N has its associated reference
vector wc ∈ Rd. The reference vectors can be considered as positions in
the input space of their corresponding neurons.

– A set of edges (connections) between pairs of neurons. These connections
are not weighted and their purpose is to define the topological structure.
An edge aging scheme is used to remove connections that are invalid due
to the motion of the neuron during the adaptation process.

The GNG learning algorithm is presented in Algorithm 1, and Figure 1
shows the working scheme for the GNG method. Using a Growing Neural Gas
model to represent 3D data has some advantages over traditional methods such
as Voxel Grid. For example, we specify the number of neurons (representative
points of the map), while other methods such as Voxel Grid obtain a different
number of occupied cells depending on the distribution and resolution of the
cells (voxels). In our experiments, we have used the following parameters for
the GNG method: λ = 2000, εw = 0.1, εn = 0.001, α = 0.5 and αmax = 250.
These produced good results in our previous works with GNG and 3D data.

Figure 2 shows an example of a GNG representation of one of the objects
we use in the experimentation. The GNG forms a map and we use only the
neurons as the new, filtered and reduced representation of the object.

2.2 Voxel Grid method

The Voxel Grid (VG) down-sampling technique is based on the input space
sampling using a grid of 3D voxels [28]. The VG algorithm defines a voxel grid
in the 3D space and for each voxel, a point is chosen as the representative of all
the points that lie on that voxel. It is necessary to define the size of the voxels
as this size establishes the resolution of the filtered point cloud, and therefore
the number of points that form the new point cloud. The representative of
each cell is usually the centroid of the voxel’s inner points or the center of the
voxel grid volume. Thus, a subset of the input space is obtained that roughly
represents the underlying surface.

The VG method presents the same problems as other sub-sampling tech-
niques: it is not possible to define the final number of points which represent
the surface; geometric information loss due to the reduction of the points inside
a voxel; and sensitivity to noisy input spaces.
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input : N-dimensional input data
output: N-dimensional map

1 Start with two neurons a and b at random positions wa and wb in Rd.
2 repeat
3 for patterns=0 to λ do
4 Generate at random an input pattern ξ according to the data distribution

P (ξ) of each input pattern.
5 Find the nearest neuron (winner neuron) s1 and the second nearest s2.
6 Increase the age of all the edges emanating from s1.
7 Add the squared distance between the input signal and the winner neuron

to a counter error of s1 such that:

4error(s1) = ‖ws1 − ξ‖
2 (1)

8 Move the winner neuron s1 and its topological neighbors (neurons
connected to s1) towards ξ by a learning step εw and εn, respectively, of the
total distance:

4ws1 = εw(ξ − ws1 ) (2)

9 forall the direct neighbors n of s1 do
10

4wsn = εn(ξ − wsn ) (3)

11 end
12 if s1 and s2 are connected by an edge then
13 Set the age of this edge to 0.
14 else
15 Create the connection between s1 and s2.
16 end
17 Remove the edges larger than amax

18 if any neuron is isolated (without emanating edges) then
19 Remove those neurons as well.
20 end

21 end
22 Insert a new neuron as follows:
23 Determine the neuron q with the maximum accumulated error.
24 Insert a new neuron r between q and its furthest neighbor f :

wr = 0.5(wq + wf ) (4)

25 Insert new edges connecting the neuron r with neurons q and f , removing
the old edge between q and f .

26 Decrease the error variables of neurons q and f multiplying them by a constant
α. Initialize the error variable of r with the new value of the error variable of q
and f .

27 Decrease all error variables by multiplying them by a constant γ.

28 until number of neurons reached ;

Algorithm 1: Pseudo-code of the GNG algorithm.

3 3D object recognition

This section describes the overall recognition pipeline, which is based on the
one proposed in [1] (see Figure 4). Our proposal is based on local features from
the point clouds, so our pipeline does not need a segmentation pre-stage. The
recognition pipeline is explained in the following subsections.
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Fig. 1 GNG scheme.

3.1 Normal extraction

Point normals are frequently used in many areas like computer graphics. Given
a geometric surface, it is usually trivial to infer the direction of the normal
at a certain point on the surface as the vector perpendicular to the surface
at that point. Normals are used to infer the orientation of the surface in a
coordinate system. Our system will use the normals computed both in the
scene and the model to compute other necessary data such as descriptors and
reference frames in the following steps [18].

3.2 Keypoint detection

After the normals are estimated, the next step is to extract the keypoints for
the model and scene point cloud. With this stage we can reduce the number of
points in the point cloud. It allows us to select only points that are represen-
tative of the cloud. This stage makes it possible to reduce the time required
to describe the features in further stages. The selection of the keypoints is
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Fig. 2 Top left: Original object. Top right: GNG representation of one of the objects we
use in the experimentation. Bottom: Zoom of the arm of Mario.

made using the following keypoint detectors: Uniform Sampling, Harris3D or
the Intrinsic Shape Signature(ISS) method.

3.2.1 Uniform Sampling

This method builds a 3D grid over the input point cloud. This grid of 3D
cuboids, which are called voxels, are located upon the point cloud and only
one point is used to represent all the points inside each voxel [19]. This repre-
sentative point is usually the centroid of the inner points inside a voxel.

3.2.2 Harris 3D

Harris 3D[8][21] is a robust point of interest detector for 3D meshes. It adapts
the well-known 2D Harris corner detection for images in order to be used for
3D meshes. It has proven to be effective, obtaining high repeatability values.
It uses a Gaussian function to smooth the derivative surfaces and mitigate the
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Fig. 3 Left: Voxel Grid representation of one of the objects we use in the experimentation.
Right: Zoom of the arm of Mario.

effect of local deformations introduced by noise, holes, etc. It also proposes an
adaptive neighborhood selection which improves feature detection.

3.2.3 Intrinsic Shape Signatures(ISS)

The ISS[29][8][26] approach enables both highly discriminative shape matching
and efficient pose estimation and registration for 3D point clouds. It is a de-
tector that is carefully crafted to ensure discriminative, descriptive and robust
keypoints in noisy scenes. It is based on the Eigenvalue Decomposition of the
scatter matrix of the points belonging to a given neighborhood of a point. This
method employs the ratio of two successive eigenvalues (λ1,λ2,λ3) to prune the
points. Only the points whose ratio between two successive eigenvalues remains
below a threshold (τ) are retained. Among the remaining points, the salience
is determined by the magnitude of the smallest eigenvalue λ1, λ2/λ1 < τ21
and λ3/λ2 < τ32.

3.3 Feature description

A descriptor codifies the underlying information in a certain neighborhood
around a keypoint. Once the keypoints are computed, we need to extract the
descriptors. The original work uses the Unique Signatures of Histograms for
Local Surface Description (SHOT)[24] [8][6]. Here we test the pipeline using
two other descriptors: Fast Point Feature Histograms (FPFH) [20] and Spin
Image [11,10]. We briefly describe them below.



Object recognition in noisy RGB-D data using GNG 9

Model

Normal Estimation

Keypoint Detection

Feature
Description

ICP
Refinement

Hypothesis
Verification

Feature
Matching

Clustering

Scene

Normal Estimation

Keypoint Detection

Feature
Description

Data Filtering Data Filtering

Fig. 4 Recognition pipeline scheme.

3.3.1 Signatures of Histograms for Local Surface Description (SHOT)

This descriptor is an intersection between signatures and histograms. It takes
each detected keypoint, builds a local reference frame and then divides the
neighborhood space into 3D spherical volumes. Next, according to a func-
tion of the angle between the normal at the keypoint and the near points,
a histogram is generated for each spherical volume by accumulating point
counts in bins. Joining all the histograms makes the Signature of Histograms
of Orientations (SHOT) descriptor. The SHOT descriptor is highly descriptive,
computationally efficient and robust to noise.
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3.3.2 Spin Image

The Spin Image feature descriptor [11,10] is calculated by placing a cylinder
at every query point of the cloud,and orienting the cylinder with the normal
at that point. Each cylinder is divided radially and vertically to create a set
of volumes. Then, the descriptor is constructed by adding up the neighboring
points that are inside each volume.

3.3.3 Fast Point Feature Histograms (FPFH)

FPFH [20] is a simplification of the PFH descriptor. To describe a point,
the FPFH method computes a set of tuples between the query point and its
neighbors. After using the same approach, the tuples are now computed for
every selected neighbor and then these values are used to weight a final 16-bin
histogram.

3.4 Feature matching

To determine the correspondences between model and scene descriptors, we
used the KDTreeFLANN [16] method. This method of the FLANN (Fast Li-
brary for Approximate Nearest Neighbors) library uses a kd-tree and an ap-
proximate nearest neighbor scheme to find a close feature (the closest is not
guaranteed) in a quick way. The structure searches for a scene feature in the
model feature set, and only if the distance between the points is less than a
threshold, the coordinates are considered as a correspondence and used in the
next stage. This structure is commonly used due to its computational time
improvement and its fast response results [13].

3.5 Clustering the features with the Geometric Consistency method

In this step, we group subsets of correspondences found in the above stage into
smaller clusters by checking the geometric consistency of pairs of correspon-
dences, using the Geometric Consistency (GC) grouping method. The GC
algorithm assumes that the correspondences without geometric consistency
will generate large errors in the transformations. Hence, with the geometric
consistency method, it is possible to decrease the mismatched correspondences
and improve the robustness of the hypothesized transformations [8] [4] [1].

3.6 ICP Refinement

This step refines the 6 DoF (Degrees of Freedom) pose by using the Iterative
Closest Point (ICP) method. ICP is an iterative method which is able to find
the transformation between two point clouds by using a dense representation
of the point cloud [3] [5]. ICP uses as initialization the result provided by the
clustering stage.
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3.7 Hypothesis Verification

The Hypothesis Verification algorithm was proposed in [1]. This stage deter-
mines whether a given subset is a true or false positive. This method takes
as input the instances found in the clustering stage and refined by the ICP
method. Then, it uses a Simulated Annealing Meta-heuristic algorithm to solve
the cost function used to determine whether the hypothesis is valid or not. The
Hypothesis Verification method provides a set of instances of the model that
match with the scene.

4 Experimentation

This section briefly describes the dataset used in the experimentation and how
the experiments were performed.

4.1 Dataset

To test the different approaches, we used the SHOT Dataset1 (University of
Bologna)[25][24][6]. SHOT has been acquired by means of the Spacetime Stereo
(STS) technique and consists of 7 models, with different views of each model,
and 17 scenes for a total of 49 object recognition instances. Using these point
clouds we will test the noise influence on the recognition rate. Figure 5 shows
two models of the dataset and two scenes where they appear.

4.2 Experimentation setup

The experiment consists in searching a selected model in a scene with the
recognition pipeline described above. As we are testing the method with dif-
ferent noise levels, we have applied five different levels of Gaussian noise with
0.001, 0.0025, 0.005, 0.0075 and 0.01 meters of standard deviation. We only
applied noisy values in the scene point clouds as the stored models are sup-
posed to have a higher quality level. These new clouds with noise, named
the RAWNoise dataset, are reduced or filtered using the GNG and VoxelGrid
methods. We apply the GNG algorithm to reduce the scene clouds to 10000,
15000, 17500 and 20000 representative points, which we call the GNGNoise
dataset. This process is repeated using the Voxel Grid method to achieve a sim-
ilar reduction in obtaining the VoxelGridNoise dataset. We repeat this process
with each keypoint detector and descriptor.

In the end, we have a dataset with six different sets of point clouds and five
levels of noise for the scene datasets. We decided to test every combination of
model and scene on the different datasets to obtain the most representative
values. Table 1 shows all the possible combinations of our datasets. The first

1 http://www.vision.deis.unibo.it/research/80-shot
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Fig. 5 At top, two models of the dataset, namely those of Mario and Peter Rabbit. At
bottom, two scenes from the dataset .

word of each pair is the method applied to the model and the second one
is the scene method. We tested the system with the 49 recognition instances
available in the dataset.

Table 1 List of the experiment combinations.

GNG Models RAW Models Voxel Grid Models
GNG GNG RAW GNG VoxelGrid GNG

GNG GNGNoise RAW GNGNoise VoxelGrid GNGNoise
GNG RAW RAW RAW VoxelGrid RAW

GNG RAWNoise RAW RAWNoise VoxelGrid RAWNoise
GNG VoxelGrid RAW VoxelGrid VoxelGrid VoxelGrid

GNG VoxelGridNoise RAW VoxelGridNoise VoxelGrid VoxelGridNoise

To measure the performance of the recognition pipeline, we use the Hy-
pothesis Verification algorithm, which analyzes the results and provides us
with the true positives of the recognition method over the different datasets.
When the system finds a true positive, it only takes the instance with the
most matched points between the model and the scene that has been located,
and shows a screen with the model superimposed on the scene, in the position
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Fig. 6 Recognition result obtained by the pipeline.

where the instance has been located (see Figure 6). The different colors for
the model in the image indicate the following:

1. Green: a true positive instance recognized by the Hypothesis Verification
algorithm.

2. Red: an instance aligned in the ICP Refinement step.
3. Yellow: Original model searched in the scene.
4. Purple: detected keypoints of the model.

5 Results

This section presents the results obtained after the execution of the different
sets of experiments. We present the results for a descriptor and, then, for each
detector.

5.1 Results for SHOT feature descriptor

Table 2 shows the percentage of true positives obtained using the Uniform
Sampling keypoint detector with the SHOT descriptor. The number in the
green shade represent the higher percentages, while yellow indicates the middle
values and red the lowest ones. The recognition percentage obtained for a non-
filtered scene and model was 86%, where we used all the points in the clouds,
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obtaining the highest recognition value for all the experiments using Uniform
Sampling. With this keypoint detector the better recognition results when
adding noise were those filtered with the GNG method. In the presence of
noise, the highest recognition rate obtained was 83%, using the scenes with the
0.005 noise level and filtered using the GNG method with 10000 representative
points. On the other hand, the results for a raw cloud with the same noise level
do not provide true positive recognition results. Comparing with the value
obtained using scenes filtered with VG, GNG maintains the recognition rates.
It is noteworthy that with a 0.01 noise level we did not obtain true positive
recognition results in any experiment.

Table 2 Results for the experiments using SHOT and Uniform Sampling.

RAW

Models Scene'srNoise AllrPoints 10000 15000 17500 20000 10000 15000 17500 20000

0 86 50 47 53 65 9 31 23 31

0.001 82 45 49 50 57 17 23 27 28

0.0025 20 58 67 74 73 9 16 22 36

0.005 0 75 77 69 73 0 0 0 0

0.0075 0 37 43 31 22 0 0 0 0

0.01 0 3 0 0 0 0 0 0 0

0 84 52 58 57 70 23 29 26 42

0.001 69 59 64 67 72 18 38 40 49

0.0025 9 59 67 79 73 32 24 22 40

0.005 0 83 71 73 76 0 0 3 0

0.0075 0 49 31 14 10 0 0 0 0

0.01 0 0 0 0 0 0 0 0 0

0 78 51 66 64 70 27 38 42 47

0.001 65 48 64 62 70 27 38 37 45

0.0025 0 63 74 76 66 24 35 35 41

0.005 0 60 74 63 69 0 0 3 8

0.0075 0 36 24 26 13 0 0 0 0

0.01 0 0 0 0 0 0 0 0 0

VoxelGrid

Scenes

GNG VoxelGrid

RAW

GNG

Table 3 shows the results for the Harris 3D keypoint detector. Using this
detector the highest recognition rate was 81%, with a 0.005 noise level and
filtered using the GNG method with 15000 representative points. For non-
filtered scenes and models, the recognition percentage for this detector was
84%. The noisy scenes filtered by GNG obtain better results outperforming
those filtered using the Voxel Grid method. Again, with this detector no true
positive results were obtained for the cloud with a 0.01 noise level.

In Table 4 we show the results for the ISS keypoint detector. Using this
detector the highest recognition value obtained was 74% , using a 0.001 noise
level and filtered with GNG with 20000 representatives. Non-filtered scenes
and models obtained 86% recognition, and for the scenes with a 0.01 noise
level we did not obtain any true positive result.

Table 5 shows the mean of the recognition results obtained for the keypoint
detectors evaluated. The highest values were obtained when using the scenes
filtered by the GNG method. For the noisy clouds, the highest value obtained
was 72% for the cloud filtered with the GNG method with 20000 representa-
tives and a 0.001 noise level. GNG always obtains better results than Voxel
Grid, and the number of representatives is an influential factor for recognition.
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Table 3 Results for the experiments using SHOT and Harris 3D.

RAW

Models Scene'srNoise AllrPoints 10000 15000 17500 20000 10000 15000 17500 20000

0 84 52 58 36 43 3 22 12 17

0.001 80 49 51 48 51 3 14 15 23

0.0025 0 63 57 54 74 9 21 31 44

0.005 0 68 77 77 76 0 0 3 6

0.0075 0 28 33 19 13 0 0 0 0

0.01 0 0 0 0 0 0 0 0 0

0 76 77 71 55 76 15 39 26 41

0.001 58 64 66 67 68 19 32 40 50

0.0025 0 69 77 70 77 21 34 53 49

0.005 0 73 81 78 71 0 0 5 0

0.0075 0 43 24 15 8 0 4 4 0

0.01 0 0 0 0 0 0 0 0 0

0 59 69 65 52 67 21 40 40 54

0.001 42 64 64 66 72 19 52 47 50

0.0025 0 64 63 67 70 15 43 65 64

0.005 0 69 77 67 61 0 0 0 3

0.0075 0 22 18 5 3 0 0 0 0

0.01 0 0 0 0 6 0 0 0 0

VoxelGrid

Scenes

GNG VoxelGrid

RAW

GNG

Table 4 Results for the experiments using SHOT and Intrinsic Shape Signature.

RAW

Models Scene'srNoise AllrPoints 10000 15000 17500 20000 10000 15000 17500 20000

0 86 32 39 55 50 0 9 13 33

0.001 88 44 55 41 44 0 22 25 28

0.0025 13 36 46 59 64 0 11 24 33

0.005 0 29 56 44 50 0 0 0 0

0.0075 0 8 3 0 0 0 0 0 0

0.01 0 0 0 0 0 0 0 0 0

0 80 28 51 56 56 7 20 24 31

0.001 61 36 49 55 62 5 30 30 42

0.0025 0 40 48 56 61 0 14 26 36

0.005 0 24 48 39 34 0 0 0 0

0.0075 0 6 0 0 0 0 0 0 0

0.01 0 0 0 0 0 0 0 0 0

0 80 26 47 50 63 22 47 39 43

0.001 69 34 44 65 74 19 43 49 47

0.0025 0 30 44 66 67 17 33 38 49

0.005 0 22 39 39 33 0 0 0 0

0.0075 0 0 4 0 0 0 0 0 0

0.01 0 0 0 0 0 0 0 0 0

VoxelGrid

Scenes

GNG VoxelGrid

RAW

GNG

With the GNG filtered scenes we are able to recognize objects with a higher
noise level.

Another noteworthy result is that GNG achieved a better rate than that
obtained for the point clouds filtered with the Voxel Grid method. Table 6
shows the mean of all the recognition results, grouped by the numbers of
representative points. The left part in this table represents the values achieved
by the pipeline using the GNG filtered clouds and the right part shows the
values obtained using the Voxel Grid method. In this table, we see that using
the point clouds filtered by the GNG with 20000 representatives obtains better
results than the one filtered one with fewer representatives.

Figure 7 shows the effect of the noise on the recognition process. The
dotted line represents the experiments using the RawNoise scenes with the
models indicated in the chart. Using a raw point cloud (noise level 0) scene,
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Table 5 Mean values of the results for the experiments using SHOT.

RAW

Models Scene'srNoise AllrPoints 10000 15000 17500 20000 10000 15000 17500 20000

0 85 45 48 48 53 4 21 16 27

0.001 83 46 52 46 51 7 20 22 26

0.0025 11 52 57 63 70 6 16 26 38

0.005 0 57 70 63 66 0 0 1 2

0.0075 0 24 26 17 12 0 0 0 0

0.01 0 1 0 0 0 0 0 0 0

0 80 52 60 56 67 15 29 25 38

0.001 63 53 60 63 67 14 33 37 47

0.0025 3 56 64 68 70 18 24 34 42

0.005 0 60 67 63 60 0 0 3 0

0.0075 0 32 19 10 6 0 1 1 0

0.01 0 0 0 0 0 0 0 0 0

0 72 49 59 56 67 23 42 40 48

0.001 59 49 57 64 72 22 45 44 47

0.0025 0 53 60 70 68 19 37 46 52

0.005 0 50 63 56 55 0 0 1 4

0.0075 0 19 16 10 5 0 0 0 0

0.01 0 0 0 0 2 0 0 0 0

VoxelGrid

Scenes

GNG VoxelGrid

RAW

GNG

Table 6 Mean values of the results for the experiments using the evaluated keypoint de-
tectors grouped by the number of representatives.

RAW
All Points 10000 15000 17500 20000 10000 15000 17500 20000

RAW 30 38 42 39 42 3 9 11 16
GNG 24 42 45 43 45 8 15 17 21

VoxelGrid 22 37 43 43 45 11 21 22 25

Scenes
GNG VoxelGrid

recognition reaches the highest values but, adding different noise levels reduces
this effectiveness even with low noise levels. These charts show how GNG
outperforms the Voxel Grid method and helps to maintain the recognition
process when noisy clouds are used. These results indicate that the algorithm
only tolerates noise levels up to 0.0075 meters of standard deviation.

Calculating the mean of the recognition rates grouped by filtering method,
Uniform Sampling obtains the highest true positive recognition rate with
47,8%, followed by Harris 3D with 46,8% and, finally, ISS with 31,2%.

5.2 Results for the FPFH feature descriptor

Tables 7, 8 and 9 show the results for Uniform Sampling, Harris3D and ISS,
respectively. Table 10 shows the mean values grouped by the number of repre-
sentatives. Finally, Figure 8 shows a comparison of the mean rate recognition
results.

With this descriptor, although using the raw data the recognition rate is
92%, while in clouds with low noise the recognition rate decreases quickly.
However, GNG is able to provide good recognition rates for noise levels up to
0.0025. For GNG, the recognition rate is better than the one provided by the
SHOT descriptor. This behavior is the same for the three keypoint detectors.
Regarding the mean values, GNG yields better results, although for different
numbers of neurons.



Object recognition in noisy RGB-D data using GNG 17

0

10

20

30

40

50

60

70

80

90

0 0.001 0.0025 0.005 0.0075 0.01

R
ec

o
gn

it
io

n
 %

 

Noise Level 

RAW-GNGNoise

10000 15000 17500 20000 All Points

0

10

20

30

40

50

60

70

80

90

0 0.001 0.0025 0.005 0.0075 0.01

R
ec

o
gn

it
io

n
 %

 

Noise Level 

RAW-VoxelGridNoise

10000 15000 17500 20000 All Points

0

10

20

30

40

50

60

70

80

90

0 0.001 0.0025 0.005 0.0075 0.01

R
ec

o
gn

it
io

n
 %

 

Noise Level 

GNG-GNGNoise

10000 15000 17500 20000 All Points

0

10

20

30

40

50

60

70

80

90

0 0.001 0.0025 0.005 0.0075 0.01
R

ec
o

gn
it

io
n

 %
 

Noise Level 

GNG-VoxelGridNoise

10000 15000 17500 20000 All Points

0

10

20

30

40

50

60

70

80

0 0.001 0.0025 0.005 0.0075 0.01

R
ec

o
gn

it
io

n
 %

 

Noise Level 

VoxelGrid-GNGNoise

10000 15000 17500 20000 All Points

0

10

20

30

40

50

60

70

80

0 0.001 0.0025 0.005 0.0075 0.01

R
ec

o
gn

it
io

n
 %

 

Noise Level 

VoxelGrid-VoxelGridNoise

10000 15000 17500 20000 All Points

Fig. 7 Charts representing the mean results for different experiment sets.

Comparing the results obtained for each detector we can see that Harris
3D achieves the highest true positive mean recognition rate results for GNG,
with 40,2%, Uniform Sampling obtained 39,8%, and ISS 28,8%.

Table 7 Results for the experiments using FPFH and Uniform Sampling.

RAW

Models Scene's Noise All Points 10000 15000 17500 20000 10000 15000 17500 20000

0 92 45 73 67 76 22 57 61 63

0.001 24 55 61 71 73 33 41 47 51

0.0025 2 43 65 84 80 33 35 39 37

0.005 2 47 51 37 18 4 4 0 2

0.0075 2 12 2 6 8 4 8 2 2

0.01 0 0 2 0 2 4 0 0 0

0 80 47 80 73 80 39 53 61 63

0.001 14 53 61 63 76 51 59 69 59

0.0025 0 65 63 69 65 39 37 31 29

0.005 0 43 29 24 18 0 6 2 2

0.0075 0 2 0 2 0 2 0 2 2

0.01 8 0 0 0 0 4 2 4 0

0 80 53 78 71 82 31 67 57 65

0.001 18 41 69 78 76 47 59 61 71

0.0025 0 47 65 67 82 27 39 39 47

0.005 0 45 47 29 22 8 0 0 0

0.0075 0 14 0 2 4 0 0 0 0

0.01 6 2 0 0 0 2 0 0 2

VoxelGrid

Scenes

GNG VoxelGrid

RAW

GNG
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Table 8 Results for the experiments using FPFH and Harris 3D.

RAW

Models Scene's Noise All Points 10000 15000 17500 20000 10000 15000 17500 20000

0 90 57 65 65 65 33 35 37 45

0.001 27 61 53 65 65 27 39 53 53

0.0025 0 63 71 69 78 35 31 31 22

0.005 0 61 51 43 18 8 4 6 2

0.0075 2 10 10 4 4 2 2 2 2

0.01 6 2 0 0 0 4 0 4 2

0 76 61 61 76 69 37 35 45 53

0.001 14 55 67 67 65 43 45 43 43

0.0025 2 67 73 67 69 31 24 31 14

0.005 2 55 41 20 16 2 2 2 6

0.0075 2 2 8 0 2 4 2 0 0

0.01 6 2 2 0 4 0 0 6 0

0 73 55 78 63 63 31 63 47 55

0.001 16 51 57 69 61 33 51 47 51

0.0025 0 61 61 63 63 24 33 39 37

0.005 6 59 45 45 20 2 6 4 8

0.0075 2 12 10 8 4 4 0 2 2

0.01 2 4 0 2 2 4 4 2 0

VoxelGrid

Scenes

GNG VoxelGrid

RAW

GNG

Table 9 Results for the experiments using FPFH and Intrinsic Shape Signature.

RAW

Models Scene's Noise All Points 10000 15000 17500 20000 10000 15000 17500 20000

0 92 16 31 51 57 16 39 35 53

0.001 61 18 43 55 61 22 39 51 55

0.0025 20 27 65 61 65 20 31 37 31

0.005 8 29 29 18 20 0 2 2 0

0.0075 2 6 0 2 2 0 0 0 0

0.01 8 0 0 0 2 0 0 0 0

0 84 33 57 57 63 24 55 43 51

0.001 49 35 61 55 73 22 45 51 57

0.0025 10 41 55 63 51 22 16 24 22

0.005 4 31 31 18 4 2 0 2 0

0.0075 0 2 0 4 0 0 0 0 0

0.01 0 0 0 0 0 0 0 0 0

0 92 33 49 51 67 24 57 41 61

0.001 57 27 49 57 63 33 47 53 63

0.0025 12 29 53 55 69 16 33 35 41

0.005 4 18 20 22 16 0 0 0 0

0.0075 0 2 0 0 0 0 0 0 0

0.01 0 0 0 0 0 0 0 0 0

VoxelGrid

Scenes

GNG VoxelGrid

RAW

GNG

5.3 Results for the Spin Image feature descriptor

Tables 12, 13 and 14 show the results for the experiments with the different
keypoints using the Spin Image feature descriptor. We also have the same
tables as the previous descriptors for the mean values (Table 15) and the
mean values grouped by the number of representatives (Table 16).

For this set of experiments, GNG achieves better results than the Voxel
Grid filtering method, but the recognition rates were very low. The best recog-
nition rate was obtained by the ISS detector and the Spin Image descriptor.
This indicates that the use of a filter method with the Spin Image descriptor
is not appropriate. This is due to the fact that the Spin Image uses a number
of the neighbors in a given region around the keypoint to build the descriptor.
With the point reduction performed by GNG or Voxel Grid, the descriptor
obtained could not be used for recognition tasks. Furthermore, this combi-
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Table 10 Mean values of the results for the experiments using FPFH.

RAW

Models Scene's Noise All Points 10000 15000 17500 20000 10000 15000 17500 20000

0 91 39 56 61 66 24 44 44 54

0.001 37 45 52 64 67 27 39 50 53

0.0025 7 44 67 71 74 29 32 35 30

0.005 3 46 44 33 19 4 3 3 1

0.0075 2 10 4 4 5 2 3 1 1

0.01 5 1 1 0 1 3 0 1 1

0 80 47 66 69 71 33 48 50 56

0.001 26 48 63 62 71 39 50 54 53

0.0025 4 58 64 67 62 31 26 29 22

0.005 2 43 33 21 13 1 3 2 3

0.0075 1 2 3 2 1 2 1 1 1

0.01 5 1 1 0 1 1 1 3 0

0 82 47 68 62 71 29 63 48 61

0.001 31 39 59 68 67 37 52 54 62

0.0025 4 46 60 62 71 22 35 37 41

0.005 3 41 37 32 20 3 2 1 3

0.0075 1 10 3 3 3 1 0 1 1

0.01 3 2 0 1 1 2 1 1 1

VoxelGrid

Scenes

GNG VoxelGrid

RAW

GNG

Table 11 Mean values of the results for the experiments using the evaluated keypoint
detectors with the FPFH descriptor, grouped by the number of representatives.

RAW
All Points 10000 15000 17500 20000 10000 15000 17500 20000

RAW 24 31 37 39 39 15 20 23 23
GNG 20 33 38 37 37 18 21 23 22

VoxelGrid 21 31 38 38 39 16 26 24 28

Scenes
GNG VoxelGrid

nation of detector and descriptor is computationally expensive, comparing it
with Uniform Sampling and SHOT.

Table 12 Results for the experiments using Spin Image and Uniform Sampling.

RAW

Models Scene's Noise All Points 10000 15000 17500 20000 10000 15000 17500 20000

0 24 10 14 6 6 8 2 2 6

0.001 16 8 8 10 8 0 0 12 4

0.0025 6 2 14 16 10 2 0 4 4

0.005 0 8 2 6 12 4 4 4 10

0.0075 14 8 2 10 14 8 8 4 0

0.01 41 4 2 10 14 14 10 8 12

0 18 6 12 8 14 6 2 0 4

0.001 10 6 12 12 10 0 2 8 2

0.0025 14 14 10 14 14 2 10 8 10

0.005 6 2 4 8 12 2 2 2 4

0.0075 47 6 8 4 14 8 6 10 8

0.01 57 8 2 8 8 12 10 14 33

0 24 6 6 8 6 2 8 2 4

0.001 10 6 10 16 14 2 8 6 2

0.0025 10 10 14 8 8 2 4 2 4

0.005 2 8 8 6 14 8 4 8 4

0.0075 31 4 4 4 4 4 8 8 10

0.01 49 2 4 6 6 0 4 18 20

VoxelGrid

Scenes

GNG VoxelGrid

RAW

GNG
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Fig. 8 Charts representing the mean results for experiment sets using the FPFH descriptor.

Table 13 Results for the experiments using Spin Image and Harris 3D.

RAW

Models Scene's Noise All Points 10000 15000 17500 20000 10000 15000 17500 20000

0 12 10 4 2 8 8 4 8 0

0.001 12 4 2 6 12 12 0 8 0

0.0025 6 6 18 8 4 14 6 6 10

0.005 6 22 10 29 16 2 6 16 14

0.0075 18 12 12 18 31 6 2 4 4

0.01 51 12 14 10 18 6 6 12 14

0 10 10 16 12 10 10 8 6 6

0.001 6 10 6 10 2 4 8 6 6

0.0025 2 4 6 10 6 10 10 14 8

0.005 2 10 10 14 18 6 2 10 14

0.0075 16 2 14 12 20 8 2 4 18

0.01 71 6 4 12 12 14 18 29 27

0 6 24 12 2 8 4 6 6 4

0.001 4 10 8 10 6 4 4 8 6

0.0025 2 10 6 4 4 8 6 6 4

0.005 2 10 18 24 10 6 4 8 12

0.0075 20 12 12 18 24 10 6 6 18

0.01 57 2 6 6 10 4 8 6 27

VoxelGrid

Scenes

GNG VoxelGrid

RAW

GNG

5.4 Discussion

These results support our proposal that the use of GNG improves the results
of recognition in noisy point clouds. Comparing the results obtained with
the descriptors, the highest recognition percentage for the GNG clouds was
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Table 14 Results for the experiments using Spin Image and Intrinsic Shape Signature.

RAW

Models Scene's Noise All Points 10000 15000 17500 20000 10000 15000 17500 20000

0 63 2 0 2 6 2 0 2 0

0.001 71 2 0 4 2 2 8 8 6

0.0025 39 0 0 6 2 2 0 4 6

0.005 6 0 2 6 2 0 6 4 2

0.0075 10 0 0 4 6 2 2 2 0

0.01 47 2 2 6 0 2 2 0 2

0 37 0 2 8 2 0 0 0 4

0.001 53 0 6 2 2 2 2 0 4

0.0025 29 0 4 8 0 0 2 4 8

0.005 4 0 4 2 4 0 0 0 4

0.0075 51 0 2 2 2 0 0 2 0

0.01 82 0 0 0 0 2 2 0 0

0 27 2 4 4 2 12 4 2 4

0.001 63 0 2 6 4 0 6 0 6

0.0025 35 0 0 6 6 4 2 4 16

0.005 18 0 2 4 2 0 2 4 2

0.0075 55 0 0 2 0 0 0 2 0

0.01 82 0 0 0 0 0 2 0 0

VoxelGrid

Scenes

GNG VoxelGrid

RAW

GNG

Table 15 Mean values of the results for the experiments using Spin Image.

RAW

Models Scene's Noise All Points 10000 15000 17500 20000 10000 15000 17500 20000

0 33 7 6 3 7 6 2 4 2

0.001 33 5 3 7 7 5 3 10 3

0.0025 17 3 11 10 5 6 2 5 7

0.005 4 10 5 14 10 2 5 8 9

0.0075 14 7 5 11 17 5 4 3 1

0.01 46 6 6 9 11 7 6 7 10

0 22 5 10 10 9 5 3 2 5

0.001 23 5 8 8 5 2 4 5 4

0.0025 15 6 7 11 7 4 7 9 9

0.005 4 4 6 8 12 3 1 4 7

0.0075 38 3 8 6 12 5 3 5 9

0.01 70 5 2 7 7 10 10 14 20

0 19 11 7 5 5 6 6 3 4

0.001 26 5 7 11 8 2 6 5 5

0.0025 16 7 7 6 6 5 4 4 8

0.005 7 6 10 12 9 5 3 7 6

0.0075 35 5 5 8 10 5 5 5 10

0.01 63 1 3 4 5 1 5 8 16

VoxelGrid

Scenes

GNG VoxelGrid

RAW

GNG

Table 16 Mean values of the results for the experiments using the evaluated keypoint
detectors with the Spin Image descriptor, grouped by the number of representatives.

RAW
All Points 10000 15000 17500 20000 10000 15000 17500 20000

RAW 25 6 6 9 10 5 4 6 5
GNG 29 5 7 8 9 5 5 7 9

VoxelGrid 28 6 7 8 7 4 5 5 8

Scenes
GNG VoxelGrid

achieved by the SHOT feature descriptor with 41,9%, followed by FPFH with
36,2% and, finally, Spin Image with 7,2%.

Table 17 and Figure 9 show a comparison of the different detectors, de-
scriptors and filter methods. The best recognition rate is achieved by the com-
bination of Uniform Sampling and SHOT, using GNG with 17500 neurons.
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The Spin Image descriptor cannot be used with a noise reduction method
due to its way of building the descriptor. Furthermore, this descriptor is com-
putationally expensive.

Table 17 Results for the experiments by detector, descriptor and filter.

RAW GNG VG

US 21.20 8.53 6.18

H3D 17.01 11.03 8.42

ISS 42.86 2.15 2.44

US 27.35 47.79 15.35

H3D 22.14 46.78 16.25

ISS 26.47 31.22 12.64

US 18.25 39.82 24.83

H3D 18.14 40.22 20.75

ISS 28.00 28.83 19.10

Spin Image

SHOT

FPFH

FilterFeature 

Descriptor

Keypoint 

Detector
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Fig. 9 Results for the experiments by detector, descriptor and filter.

In SHOT and FPFH with GNG and in Spin Image with the raw data, the
recognition rate is lower for clouds without noise than with noise. This is due
to the way the descriptor is calculated. For SHOT and FPFH with the raw
data, the behavior is as the expected: the more noise there is, the lower the
recognition rate becomes. But GNG is able to capture the topology of the
3D data and this topology is well adapted to both descriptors. However, for
Spin Image and the raw data, the descriptor does not adapt to the topology
provided by the GNG and, thus, the recognition rate is almost negligible.
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6 Conclusions

The presence of noise in a 3D point cloud reduces the performance in a recog-
nition process. Therefore, it is necessary to use a method to reduce the noise
and, therefore, to increase the recognition rate. Our results show that the use
of the GNG method improves recognition rates, obtaining better results than
those for Voxel Grid and for the raw clouds. GNG reduces the noise without
losing significant information, and enables good recognition results. In addi-
tion, we identify that Uniform Sampling is the keypoint detector that achieves
the best rates of recognition together with the SHOT feature descriptor.

As future work, we propose to continue evaluating more 3D detection and
description methods to find better combinations of performance and noise
robustness. We also plan to include RGB information in the GNG in order to
give support to keypoints and descriptors which use color information.
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