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Highlights 

 VPIN rarely signals abnormal illiquidity.  

 VPIN only occasionally anticipates price changes leading to actual trading halts.  

 The capacity of VPIN to anticipate truly toxic events is limited. 

 VPIN limits cannot substitute traditional price limits. 

 VPIN-based circuit breakers can be costly in terms of unnecessary trading cessations. 
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Abstract 

We study if VPIN (Easley, López de Prado, and O’Hara, 2012, Review of 

Financial Studies 25, 1457-1493) is an efficient advance indicator of 

toxicity-induced liquidity crises and related sharp price movements. We find 

that high VPIN readings rarely signal abnormal illiquidity, and very 

occasionally anticipate large intraday price changes leading to actual trading 

halts. We find significant differences in illiquidity and price impact between 

VPIN-identified toxic and non-toxic halts, but they tend to vanish when we 

control for ex ante realized volatility. We conclude that the capacity of 

VPIN to anticipate truly toxic events is limited.  

JEL Classification: G10 

Keywords: VPIN; BVC; circuit breakers; trading halts; price limits; order 

flow toxicity.  
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1. Introduction 

In a series of related papers, Easley, López de Prado, and O’Hara (hereafter ELO) 

introduce a metric of order flow toxicity called Volume-Synchronized Probability of 

Informed Trading (VPIN).
2
 Order flow is regarded as toxic when it adversely selects liquidity 

providers. VPIN is expected to increase when information events induce unbalanced and 

accelerated trades over relatively short intervals. High VPIN readings are presumed to concur 

with or precede illiquidity shortfalls; subsequently short-term volatility peaks.  

Using ultra-high frequency data on future contracts, ELO (2011a) find that VPIN achieved 

abnormally high values in the hours preceding the Flash Crash of May 6, 2010. Also, ELO 

(2012a) find that short-term volatility is often substantial within VPIN-identified toxic 

periods. Encouraged by these promising findings, ELO (2012a) recommend that market 

authorities use VPIN to monitor markets in real time, and eventually trigger a trading halt 

whenever VPIN signals that liquidity provision is at risk. Circuit breakers often use price 

limits as triggers.
3
 In a recent report (see UKGOS, 2012), the UK Government Office of 

Science advocates for new forward-looking types of circuit breakers that would use early 

warning signals as triggers. ELO (2012a) claim that circuit breaker programs triggered by 

VPIN limits could have this preventive capacity.  

We evaluate ELO’s proposal by addressing the core question of whether VPIN is a valid 

proxy and/or a reliable leading indicator for order flow toxicity. Failing to document a strong 

link between high VPIN readings and both contemporaneous and ex-post liquidity 

withdrawals would call into question the use of VPIN limits to trigger circuit breakers. 

Previous studies focus on the lead-lag relationship between VPIN and ex-post short-term 

                                                           
2
 See ELO (2011a, 2011b, 2012a, 2012b, 2014, 2015, and 2016).  

3
 An example is the “limit-up, limit-down” (LULD) approved as a response to the Flash Crash (see SEC release 

34-67091, May 31, 2012). In Europe, similar systems have been in place for a long time now (see Abad and 

Pascual, 2010, and Zimmermann, 2013). 
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volatility.
4
 However, ELO (2012a) themselves note that not all volatility is due to toxicity. 

So, volatility-based tests do not provide a satisfactory answer to the question of whether 

VPIN does signal toxic order flow. Instead, we evaluate VPIN using objective measures of 

liquidity and adverse selection costs.  

We contribute to the literature in several ways. First, we analyze trading activity, liquidity, 

and realized volatility around VPIN-limit violations using close-in-time VPIN-identified non-

toxic days as a benchmark. We show that VPIN limits are triggered by sudden rises in trading 

volume. Consistent with previous studies, we also find that VPIN-limit hits often precede 

extraordinary increases in realized volatility. However, relative spreads after VPIN-limit hits 

are rarely out of the ordinary, and there are no significant changes in the limit order book 

depth. So, VPIN-identified toxic events do not appear that toxic when judged by objective 

measures. 

Second, we test if VPIN-limit violations anticipate truly toxic events. Earlier studies 

examine whether VPIN succeeds in signaling extraordinary events, like the Flash Crash (e.g., 

ELO, 2012a) or single-stock mini-flash crashes (e.g., Pöppe et al., 2016). Despite the sharp 

price disruptions associated with these crashes, case studies of unique events do not suffice to 

judge the effectiveness of any metric as an early-warning signal. Instead, we test VPIN’s 

anticipatory capacity by means of a large sample of recurrent, potentially toxic, single-stock 

events triggered by unusually large intraday price changes. Namely, our exercise involves 

6,740 trading halts for 45 stocks listed in an electronic order-driven market over 12 years.  

We start by analyzing how often VPIN-signaled toxic events comprise actual trading halts 

(hereafter, toxic halts). We find that toxic halts represent only 4.5% to 9.9% of all halts, 

depending on the VPIN parameterization. The immediate regulatory implication of this 

                                                           
4
 See ELO (2012a), Andersen and Bondarenko (2014), Low, Li, and Marsh (2016), Pöppe, Moos, and Schiereck 

(2016), Song, Wu, and Simon (2014), Wei, Gerace, and Frino (2013), and Wu et al. (2013). 
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finding is that VPIN-limits can at most complement, but never substitute, price limits. 

Moreover, during toxic periods with no price-limit hits, the largest intraday price movements 

observed are remarkably lower than the minimum intraday price variations market authorities 

are willing to tolerate. 

Next, we examine if VPIN-identified toxic halts are truly toxic. We find that the abnormal 

realized spread (depth) tends to be higher (lower) around toxic-halts than around non-toxic 

halts. Moreover, the average price impact of trades, a common proxy for adverse selection 

costs, shows higher abnormal values around toxic halts than around non-toxic halts. Yet, 

when we control for ex ante differences in volatility, most of the anticipatory capacity of 

VPIN vanishes. In general, our analysis renders limited support for VPIN’s preventive 

capacity.      

Our study reveals that VPIN limits would miss most of the intraday price movements that 

ultimately lead to price-limit hits. Being imperfect substitutes, we recommend market 

authorities not to replace price limits with VPIN limits. Moreover, authorities must be aware 

that circuit breakers triggered by VPIN limits could have a high false positive rate in 

foreseeing truly toxic illiquidity-driven volatility peaks. Since they would not know ex ante 

which VPIN-limit hits are due to toxicity, executing a VPIN-based circuit breaker could 

impose a high cost in terms of disrupting the normal functioning of markets with no apparent 

benefit. 

VPIN has been the subject of a heated academic debate. Opponents have questioned every 

finding in ELO's papers. Above them all, Andersen and Bondarenko (2014, 2015) find that 

VPIN has no incremental predictive power on short-term volatility beyond trading intensity 

and volatility itself. The bulk-volume classification (BVC) scheme, introduced by ELO 

(2012a) to estimate order imbalances within the VPIN approach, is also the object of severe 

criticism. While proponents (e.g., ELO, 2016) show that BVC is as reliable as any standard 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 6 

tick-based algorithm (TBA) can be, independent studies (e.g., Chakrabarty, Pascual, and 

Shkilko, 2015, Andersen and Bondarenko, 2015, and Pöppe et al., 2016) show that TBAs 

outperform BVC. Despite the controversy, VPIN has already been used in several studies 

assuming is a solid indicator for order-flow toxicity.
5
 Our findings question the reliability of 

the metric. 

This study is related to Andersen and Bondarenko (2014, 2015), Chakrabarty et al. (2015), 

and Pöppe et al. (2016), who also evaluate the VPIN. They focus on the lead-lag relationship 

between VPIN and volatility. Instead, our emphasis is on the more fundamental question of 

whether VPIN can be called a metric of order flow toxicity. Our study is also connected to 

Bhattacharya and Chakrabarti (2014), Cheung, Chou, and Lei (2015), and Phuensane and 

Williams (2016). Like us, they evaluate VPIN using recurrent events: IPOs, mandatory calls, 

and episodes of manipulation, respectively. Unlike them, we do not presume the events of 

interest are toxic. Instead, we test whether VPIN-signaled toxic halts really differ from non-

toxic halts.  

Last but not least, our analysis is based on high-frequency quote and trade data from the 

electronic trading platform of the Spanish Stock Exchange (SSE). The SSE has some features 

that make it ideal for our study. It is the least fragmented of the major EU stock exchanges. 

Up to January 2013, the SSE market share on the Spanish large caps was above 90%. On 

December 2013, it fell to 84%. Therefore, our database contains a large majority of all the 

trades for the SSE-listed stocks. In highly fragmented markets such as the US, it is a 

challenge to compute VPIN with data from a single trading platform (e.g., Chakrabarty et al., 

2015). Consolidated files also suffer from integrity problems (e.g., Holden and Jacobsen, 

2014; O’Hara, 2015; Upson, Johnson, and McInish, 2015). Moreover, our sample spans 

twelve years and thousands of trading halts. A similar task centered on the recent US single-

                                                           
5
 See Bhattacharya and Chakrabarti (2014), Borochin and Rush (2016), ELO (2015), McInish et al. (2014), and 

Van Ness, Van Ness, and Yildiz (2016). 
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stock circuit breaker program, for example, would be nowadays unfeasible (e.g., Cui and 

Gozluklu, 2016).       

The rest of the paper is structured as follows. In section 2, we provide methodological 

details. In Section 3, we describe the database and provide market background. In Section 4, 

we characterize the VPIN-signaled toxic periods. In section 5, we study liquidity and 

volatility around VPIN-limit violations. In Section 6, we examine if VPIN can anticipate 

truly toxic events. In Section 7, we summarize the robustness tests. Finally, in Section 8 we 

conclude. 

2. Implementing VPIN 

VPIN is a moving average of the absolute order imbalance over the most recent n volume 

increments or buckets,  

1
( )







n

i

i n

i

OI
VPIN

nV
,     [1] 

where the subscript  1,...,  n  represents the volume buckets, and ( ) n  is the last bucket; 

iV  is the size (in shares) of each bucket, and iOI  is the order imbalance in the τ-th bucket, 

that is, the difference between the volume of trades initiated by buyers ( B

iV ) and the volume 

of trades initiated by sellers ( S

iV ). VPIN is defined in volume time rather than clock time in 

an attempt to capture pieces of new information of comparable relevance arriving to the 

marketplace (ELO, 2012a). 

The VPIN level depends on parameter choices. Therefore, it has to be evaluated in 

relative terms to its own history. Following ELO (2012a), we use the empirical CDF of VPIN 

to convert each VPIN reading into a cumulated probability (hereafter, relative VPIN). A toxic 

event starts when the relative VPIN reaches a critical level or VPIN limit (p). As in Andersen 
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and Bondarenko (2015), we set p = 0.99. A toxic period ends when the relative VPIN crosses 

up-bottom a second threshold q = 0.85. We choose q low enough to prevent nested short-

lived toxic events that essentially constitute the same event. 

ELO (2011a, 2012a) fix the number of volume buckets (n) at 50; we also consider n = 25 

and 75. As Andersen and Bondarenko (2015), we compute iV  as a percentage (δ) of the 

average daily volume over the previous month. In this way, we account for the pronounced 

rise in daily volume within our sample period. We fix δ at 1/50. According to ELO (2012a), 

VPIN should be robust to a wide range of choices of n and δ. To generate a bucket, we 

aggregate consecutive trades till the accumulated volume is iV . If a trade is for a size greater 

than needed to fill the bucket, the excess size is assigned to the next bucket. 

To estimate the iOI  in eq. [1], we consider two alternatives. First, as suggested by ELO 

(2016), we use the BVC approach.
 
We pre-aggregate volume into bars of a given size. Then, 

we estimate the buy volume ( ˆ B

bV ) within a bar b as 

ˆ


 
   

 

B b
b b

p

p
V V ,     [2] 

where bV  is the aggregated volume; 1  b b bp p p  is the price change between two 

consecutive bars, where  pb is the price of the last trade in bar b;  p  is the volume-weighted 

standard deviation of  bp , and  .  is the CDF of the probabilistic distribution assumed for 

 b pp . The relative weights of buy and sell volume within a bar depend on how large  bp

is relative to the assumed distribution of price changes.  

BVC-based iOI  estimates and, thus, VPIN estimates, depend on the choice of the type 

and size of bars, and the assumed CDF of  b pp . In our exercise, we use time, trade, and 
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volume bars. We consider time bars from 30 to 1800 seconds in increments of 30 seconds. 

Volume and trade bar sizes are stock-specific to account for differences in the average daily 

trading activity across assets and overtime. Volume (trade) bar sizes are computed as the 

closest integer to iυV  ( iυT ), υ  varying between 1% and 40% in increments of 1%. iT  is the 

average daily number of trades over the preceding month.  

Regarding the distribution of  b pp , ELO (2011a) and Andersen and Bondarenko 

(2014) assume normality. More recently, however, ELO (2016) and Wu et al. (2013) suggest 

t-student distributions with 0.25 and 1 degree of freedom, respectively. Our main results are 

independent on this particular choice. Without loss of generality, we provide results with the 

t-student with 0.25 degrees of freedom. 

In the Appendix, we summarize all our parameter choices for the BVC, resulting in 840 

different estimates of VPIN and 1680 different sets of toxic events per stock. Hereafter, we 

will refer to the VPIN with BVC simply as “VPIN”. 

Second, our database contains and initiator flag. So, we can compute VPIN using the 

actual initiator-based order imbalance (hereafter, VPIN-flag). Evaluating the performance of 

VPIN-flag is important for several reasons. On the one hand, there is no need to calibrate 

unobserved parameters; determine the proper type of bars, or their size; choose an underlying 

distribution for the changes in prices, etc. The resulting VPIN-flag is unique given the 

starting point of the series. On the other hand, the trade initiator plays a fundamental role in 

market microstructure, with literally hundredths of empirical studies relying on it (or 

estimates of it). Even in the VPIN literature, VPIN-flag has already been used by several 

papers, including Andersen and Bondarenko (2015), Chakrabarty et al. (2015), Panayides, 

Shohfi, and Smith (2014), and Pöppe et al. (2016). Recently, ELO (2016) strongly object to 

initiator-based iOI  estimates arguing that the aggressor flag becomes distorted in the 
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presence of high-frequency trading (HFT). However, in ELO (2012a), they state that “the 

trade-classification algorithm itself is independent of the VPIN metric” and “any algorithm 

could be used to provide input to the estimation of VPIN” (p. 1465). 

3. Market background and data 

We use 12 years (2002-2013) of intraday trade and quote high-frequency data from the 

electronic trading platform of the SSE, called Sistema de Interconexión Bursatil Español 

(SIBE). According to the World Federation of Exchanges, in 2013 the SSE was the fifth 

exchange by domestic market capitalization, and the third by total value of share trading in 

the Europe-Africa-Middle East Region. The SIBE handles the trading activity of the most 

liquid Spanish stocks. Trading is continuous from 9:00 am to 5:30 pm GMT+1, with regular 

call auctions at the opening (8:30-9:00 am) and closing (5:30-5:35 pm). We only use data 

from the continuous trading phase.  

Our database comprises limit order book (LOB) and trade files. LOB files include 

snapshots of the five best ask and bid quotes, updated after each order submission, revision, 

or cancellation. For each quote, we know the displayed depth, but not the hidden volume due 

to iceberg orders (e.g., Pardo and Pascual, 2012). Liquidity supply depends entirely on the 

LOB since there are not designated market makers. For each trade, we know its price, its 

direction (i.e., buy or sell), its size, and the best quotes prevailing before the trade. We only 

keep ordinary trades. We exclude trade registers containing the allocation price and volume 

of the corresponding auction. Time stamps in both files are in hundredths of a second 

(milliseconds after June 2013). Trade and LOB files can be perfectly matched using common 

sequence code. 

We consider stocks that traded continuously during at least three years within our sample 

period and were constituents of the IBEX-35, the official market index, at least half of the 
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time. We drop temporarily delisted stocks or stocks with prices below one euro. Our final 

sample consists of 45 stocks. In Table I, Panel A, we provide cross-sectional average daily 

statistics for the whole sample and the ten largest and ten smallest stocks. In Table 1, Panel B, 

we provide cross-sectional average statistics on the evolution of trading activity and liquidity 

over the sample period. 

[Table 1] 

Trades (volume) grew by 257% (62.9%) between 2002 and 2013. Despite the short-sale 

ban in place from July 23, 2012, to January 31, 2013, most of that growth happened post-

MiFID (2008-2013). Trade size halved, mostly post-MiFID. Message traffic (i.e., order 

submissions, revisions, and cancellations) experienced an extraordinary 1,958% increase, 

suggesting more intense HFT activity (e.g., Angel, Harris, and Spatt, 2011). Message traffic 

per trade, a common proxy for HFT (e.g., Hendershott, Jones, and Menkveld, 2011), raised 

323.7% post-MiFID.  

Regarding liquidity, the relative spread halved over the sample period. As it happened 

worldwide (e.g., Beber and Pagano, 2013), SSE relative spreads increased during the recent 

financial crisis, but they decreased 14.81% over the post-MiFID period. LOB depth raised 

273.27% during the pre-MiFID period but decreased 300% post-MiFID. A staged program 

initiated in May 2009 to reduce the tick size from 0.01 to 0.001 or 0.005, depending on the 

stock price, could partly explain this structural change (e.g., Goldstein and Kavajecz, 2000). 

Reduced tick sizes cheapened competition for price priority, tightening the book near the best 

quotes (see “dispersion” in Table 1). We control for tick size changes in posterior analyses.  

Since May 2001, the SSE implements a single-stock circuit-breaking mechanism to 

handle episodes of extraordinary volatility. It consists of “static” and “dynamic” price limits 

that trigger short lived call (“volatility”) auctions. Static (dynamic) price limits set the 
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maximum permitted variation around the allocation price of the last auction (the last trade 

price). Price ranges are revised every month based on the stock’s volatility over the last six 

months. Non-regular revisions may also occur.  

A volatility auction starts when an incoming order is about to execute at a price at or 

above (below) the upper (lower) price limit. It lasts five minutes plus a random end of at most 

thirty seconds to avoid price manipulation. Never mechanically extended, discretionary 

extensions may happen. We find 50 cases, lasting about 27 minutes on average. They do not 

drive our results. After the auction, new price limits are set around the allocation price. While 

a violation of the static price limit implies a remarkable intraday variation in the stock price, a 

violation of the dynamic price limit may happen because a single incoming aggressive order 

encounters an unusually thin book. Within our sample, there are 6,740 price limit violations; 

3,794 (56.3%) dynamic, and 2,946 (43.7%) static. During ordinary times, static ranges vary 

from 4% to 8%, but ranges up to 20% have been imposed under extreme market turmoil, like 

October 2008. Dynamic ranges fluctuate between 1% and 10%. For a given stock, the 

dynamic range is always smaller than or equal to the static range.  

4. Toxic events 

In Table 2, we provide cross-sectional summary statistics on the number and persistence 

of VPIN-identified toxic events. For each bar type, we provide cross-sectional medians across 

different bar sizes. VPIN signals 30 to 46 toxic events per stock. The median toxic event 

comprises between 55 and 78 buckets. Using time bars, toxic events persist about five hours 

in average, two hours less than using trade or volume bars. As a result, intraday toxic events 

are less common with volume/trade bars than with time bars.
6
 VPIN-flag identifies 7 toxic 

events per stock of much longer average duration (447 buckets). The lengthy duration of 

                                                           
6
 The accuracy of BVC depends on the average number of trades within a bar (Chakrabarty et al., 2015) and the 

variability in the number of trades across bars (ELO, 2016). Differences in accuracy across bar types could 

explain the reported differences in persistence of toxic events. 
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toxic events might be of some concern. Being a moving average, VPIN might keep signaling 

high toxicity after a VPIN-triggered halt even when the halt succeeds in restoring regular 

trading.  

[Table 2] 

We wonder if different VPIN parameterizations result in the same VPIN-limit violations. 

As the VPIN performance must ultimately depend on the accuracy of the order flow 

imbalance estimates, our focus is on the BVC parameters. In Panel A of Table 3, we change 

the bar size within each bar type. In Panel B of Table 3, we vary the bar type. In each case, 

we randomly pick two different VPIN specifications and obtain the percentage of overlapped 

events. We repeat this process 200 times, and compute median statistics across random pairs. 

[Table 3] 

From Table 3, we learn that the VPIN performance as a trigger is contingent upon BVC 

parameter choices. In Panel A, we show that the percentage of overlapping toxic events 

across bar sizes varies between 58.35% for volume bars and 70.72% for time bars. VPIN 

specifications disagree more when we randomly pick distant bars. For example, the 

percentage of overlapped toxic events for trade bars is 77.3%  (52.8%) when the difference 

between bar sizes is less (more) than 10% (20%) of the average daily number of trades. In 

Panel B, we show that VPIN is highly sensitive to changes in the type of bar. For example, 

only 29% (47%) of the toxic events identified using time bars are found to be toxic using 

volume (trade) bars.  

Our results agree with previous studies suggesting that VPIN is sensitive to parameter 

changes (e.g., Andersen and Bondarenko, 2015; Chakrabarty et al., 2015), and disagree with 
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ELO’s (2012a) claim that the bar size must have a minor influence on the value of VPIN.
7
 

Recognizing that the performance of price limits is also contingent on choices such as the 

reference price or the allowed price range, our findings thus far do not necessarily undermine 

VPIN as a trigger. However, they stress the need to carefully tune the metric. We will address 

the optimal calibration of VPIN in the robustness section. For the rest of the paper, we will 

use uniform bar types and sizes for all stocks. 

5. VPIN as a proxy for order flow toxicity 

According to ELO (2012a), VPIN-limit violations signal the highest relative levels of 

order flow toxicity within our sample period. According to the adverse selection costs 

literature (e.g., O’Hara, 1995; Foucault, Pagano, and Röell, 2013), VPIN-limit hits should 

precede extraordinary liquidity withdrawals and, as a result, peaks in short-term volatility. In 

this section, we evaluate the reliability of VPIN as a proxy for order flow toxicity by testing 

the expected connection between VPIN-limit hits and illiquidity.  

As an initial test, we examine cross-sectional average abnormal illiquidity levels around 

VPIN-limit violations. For each VPIN-limit hit, we compute trading activity, liquidity, and 

realized volatility statistics for 24 five-minute intervals centered on the time of the VPIN-

limit violation. We exclude intervals that start after the estimated termination of the toxic 

event. We compute realized volatility (RV) as the standard deviation of the one-minute 

returns within a given interval. As liquidity metrics, we use the relative spread (RS), that is, 

the quoted bid-ask spread divided by the quote midpoint, the average depth in euros at the 

market quotes (DB), and the average accumulated depth in euros at the five best ask and bid 

quotes of the LOB (DK), all of them averaged weighting by time. For trading activity metrics, 

we use the volume in shares (VOL) and the number of trades (TRD). Abnormal market 

                                                           
7
 ELO (2012a) rely on a limited exercise with only time bars, a single asset (the E-min S&P500), and a single 

event (the Flash Crash). 
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conditions are evaluated as follows: for each event, we use the closest non-toxic 250 days 

with the same tick regime as benchmark; then, we standardize each metric by subtracting its 

mean and dividing by its standard deviation over the benchmark days and during the same 

time interval. 

In Figure 1, we plot the estimated cross-sectional average abnormal levels for VPIN, with 

selected uniform bar sizes, and VPIN-flag. Our findings are robust across bar sizes. Thus, we 

provide results for VPIN with 60-second time bars, and volume and trade bars of size υ =2%. 

In Figure 1.a, we show that VPIN-limit violations happen because of abrupt jumps in volume 

within the last five minutes (t=-1). With time bars, for example, VOL deviates from the 

benchmark mean 16.48 times the benchmark standard deviation (hereafter, STD). Abnormal 

levels persist shortly after the VPIN-limit violation, but they are never as high as in t=-1. 

TRD (not reported) increases much less than VOL, revealing that VPIN limits are ultimately 

hit by an unusual concentration of relatively large trades. 

[Figure 1] 

In Figure 1.b, we show that high VPIN readings precede short-lived abnormally high 

volatility realizations (RV), consistent with ELO (2012a), but they are also headed by extreme 

RV readings. Namely, RV progressively increases before the VPIN-limit is hit, peaks either 

immediately before (for time and trade bars) or immediately after (for volume bars and 

VPIN-flag) the hit, and then quickly falls below pre-hit levels. Therefore, Figure 1.b 

documents a strong contemporaneous correlation between VPIN and realized volatility.  

We should expect extraordinary liquidity withdrawals after VPIN-limit violations. 

Although liquidity declines on average, the change in RS reported in Figure 1.c is less 

dramatic and persistent than expected. For VPIN, RS is 0.7 to 1.04 STD above the benchmark 

mean before the VPIN limit is hit, from t=-12 to t=-1, which is consistent with the presence 
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of toxic order flow. Immediately after VPIN-limit violations, RS reaches a maximum of 1.06 

(0.85) STD for volume (time) bars, to quickly fall below pre-hit levels. For VPIN-flag, we 

find no remarkable deviation in RS from the benchmark levels. Regarding quoted depth, 

Figure 1.d shows that DB before the VPIN-limit hit is only slightly below ordinary levels 

when we use volume bars. After the hit, it decays, but the drop is either not statistically 

significant (VPIN) or remains above ordinary levels (VPIN-flag). The patterns we obtain for 

abnormal DK (not reported) are similar.  

The low average correlation between high VPIN readings and illiquidity suggests that 

VPIN often fails as an indicator of order flow toxicity. To gain further insights on this core 

issue, we take a closer look at liquidity and volatility around each VPIN-limit hit. Per stock-

event, we take the same 250 benchmark days as before, split their trading sessions into 

regular five-minute intervals, compute the standardized liquidity and volatility proxies and 

obtain the 1
st
, 5

th
, 10

th
, 90

th
, 95

th
 and 99

th
 percentiles of the resulting empirical distribution. 

We classify RS or RV (DK) as “extraordinary” if it exceeds (is lower than) a focal RHS 

(LHS) benchmark percentile. Under the null of ordinary market conditions, RS should be 

found to be extraordinary with respect to the, for example, 95
th

 benchmark percentile in about 

5% of the VPIN-signaled toxic events. 

In Table 4, we provide the proportion of VPIN-limit hits preceded or followed by 

extraordinary illiquidity and volatility levels for a 30-minute window centered on each VPIN-

limit hit and split into five-minute intervals. We also provide average deviations with respect 

to the benchmark percentiles across all toxic events. 

[Table 4] 

We first look at RV. Consistent with Figure 1, VPIN-limit violations often precede 

extremely high RV levels. Using 1-minute time bars, for example, VPIN-limit hits are 
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immediately followed by extreme volatility with respect to the 99
th

 benchmark percentile in 

39.1% of the events. Somewhat unexpected is that RV is often high before extreme VPIN 

realizations. With time bars, 49.56% of the events are shortly preceded by extremely high RV. 

Andersen and Bondarenko (2015, p.39) conclude that VPIN has predictive power on future 

volatility “due to its correlation with realized volatility, which arises from the use of price 

changes to infer order imbalance” (i.e., BVC). Our findings are consistent with their 

conclusions. Indeed, the connection between VPIN-flag and RV is much weaker than that 

between VPIN (with BVC) and RV, with only 12.89% (9.14%) of the limit hits being 

followed (preceded) by extraordinarily high realized volatility. 

We now turn our attention to our main concern: liquidity. Table 4 reveals that most of the 

VPIN-limit hits are not toxicity-driven. Using BVC (Panel A to C), we find RS in the [0 5) 

interval to be above the 99
th

 benchmark percentile in 12.2%-14.09% of the toxic events. The 

occurrence of extreme RS readings declines in posterior intervals. The rate of success of 

VPIN in anticipating liquidity shocks is therefore much lower than that obtained for realized 

volatility. Special mention deserves VPIN-flag, for which RS is rarely above the 99th 

benchmark percentile. Our findings therefore question the toxic nature of many of the VPIN-

signaled volatility peaks. 

With respect to the depth dimension of liquidity, captured by DK, liquidity following 

VPIN-limit hits is nothing but ordinary. For VPIN with time bars (Panel A), the rate of 

success for the [0 5) interval, with respect to the 1
st
 benchmark percentile, is only 3.28%. 

With volume bars (Panel B) and trade bars (Panel C), post-event DK is extraordinarily low in 

only 4.73-5.01% of the occasions. VPIN-flag (Panel D) renders the lowest rate of success, 

2.39%.   

To sum up, according to ELO (2011a, 2012a), high VPIN readings signal that order flow 

toxicity is at its peak within the evaluated period. Under these circumstances, liquidity 
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provision should be at risk. Contradictorily, our analysis shows that liquidity providers do not 

withdraw from the market soon after a VPIN-limit hit. The severe short-lived increases in 

short-term volatility we do observe after VPIN-limit hits rarely follow exceptionally high 

illiquidity. In other words, VPIN-identified events do not appear that toxic when judged by 

objective measures. Our findings question the reliability of VPIN as a proxy for order-flow 

toxicity and cast doubt on the appropriateness of halting the continuous trading session after 

every VPIN-limit hit.  

6. VPIN as an early warning signal for toxic events 

We have corroborated that within VPIN-identified periods of high and persistent toxicity 

volatility is often substantial. Since price limits are hit by unusually large price movements, 

periods of high and persistent toxicity might also comprise actual trading halts. However, 

ELO (2012a, 2014) argue that extreme volatility should not always be preceded by high 

VPIN levels, since not all volatility is due to toxicity. Accordingly, trading halts that do not 

fall within toxic periods should be of a different nature than those that do fall. In this section, 

we formally test this hypothesis.  

In Figure 2, we plot cross-sectional average abnormal levels of the relative spread (RS), 

volume in shares (VOL), and realized volatility (RV) around static (Figure 2.a) and dynamic 

(Figure 2.b) halts. We consider twenty-four five-minute intervals centered on each trading 

recession. As the benchmark, we take the 250 days closest in time to the event day with no 

trading halts and the same tick regime. We do not control for toxicity because, as previously 

shown, the same day could be toxic or non-toxic depending on the particular parameterization 

of VPIN we choose. We standardize each observation using the benchmark values for the 

same metric over the same five-minute interval. Figure 2 uncovers the different nature of the 

two types of SSE halts. Static halts are preceded by progressive increases in VOL and RV. In 
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contrast, dynamic halts are the result of liquidity shortfalls that enhance RV. For both static 

and dynamic halts, RS reaches its highest point right after the halt. Abnormal market 

conditions persist at least one hour after the continuous session resumes.  

[Figure 2] 

We proceed to evaluate if, according to VPIN, the abnormal volatility found around SSE 

trading halts is due to order flow toxicity. We drop six halts that occur before the 

corresponding VPIN series is initiated, that is, before we collect the first 50 volume buckets. 

We are left with 6,734 halts, 2,943 of which are static. We classify a trading halt as “toxic” if 

it totally or partially falls within the limits of a toxic period. In Table 5 Panel A, we show that 

the majority of the SSE halts happen in periods of no remarkable toxicity. Depending on the 

bar type, VPIN classifies between 7.19% and 9.7% of the trading halts as toxic. If we control 

for the type of halt, VPIN classifies 5.47%-11.69% of the static halts and 6.81%-8.52% of the 

dynamic halts as toxic. According to VPIN-flag, only 4.44% of the halts are toxic. 

[Table 5] 

In Panel B of Table 5, for toxic events that comprise at least one trading halt, we provide 

the average distance from the VPIN-limit hit to the closest price-limit hit. We exclude 

overnight periods, holidays, and weekends. A VPIN-limit violation precedes the closest toxic 

halt by about 78 minutes for time bars, more than 3 hours for volume bars, and more than 15 

hours for VPIN-flag. As a result, the percentage of toxic halts occurring during the session in 

which the VPIN limit is reached decreases from 48.82% for VPIN with time bars to 7.7% for 

VPIN-flag.  

We conclude that VPIN limits miss most of the abnormal intraday price movements 

leading to price-limit hits. Even if we are willing to accept that high VPIN readings could 

anticipate truly toxic events occurring one or more trading sessions ahead, our results indicate 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 20 

that only a few of the SSE halts are actually anticipated by VPIN-limit violations. Therefore, 

VPIN limits can complement but never replace traditional price limits.  

A plausible explanation for our finding is that only a few of the SSE trading halts, those 

identified by VPIN, are actually triggered by order flow toxicity. An alternative explanation 

is that VPIN-identified toxic periods comprise actual halts just by chance. The rest of this 

section is directed to discern which of these explanations gets greater support in our data. 

In Table 6, we compare standardized liquidity (RS, DK) and realized volatility (RV) 

around VPIN-identified toxic halts vs. non-toxic halts. We also provide statistics on a 

commonly used metric of adverse selection costs – the trade-size weighted average price 

impact of trades (PI). The price impact of a trade is computed as the difference between the 

quote midpoint one minute after the trade and the quote midpoint prevailing before the trade. 

In this case, we standardize the variables using the 250 days closest in time to the event (i.e., 

halt) day, with the same tick regime, no trading halts, and no toxicity (i.e., relative 

VPIN<0.9). We provide results for static halts only.
8
 Our focus is on the 15-minute window 

before the price-limit hit and the 15-minute window after the resumption of the continuous 

session.  

[Table 6] 

For VPIN, we find RV around toxic halts to be significantly higher than around non-toxic 

halts. Illiquidity, as measured by RS, is also relatively higher around toxic halts. Regarding 

LOB depth, we find that DK is significantly lower around toxic halts, but only with trade or 

volume bars. These findings suggest that VPIN might occasionally succeed as an early 

warning signal for truly toxic events. Consistently, PI is significantly higher around toxic 

halts than around non-toxic halts. For VPIN-flag, however, our findings show that this metric 

                                                           
8
 Results for dynamic halts are totally consistent and can be found in the online appendix. 
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fails as an advanced indicator of toxicity. No significant differences in volatility, liquidity, or 

price impact emerge between VPIN-flag identified toxic and non-toxic halts. 

Although our findings in Table 6 provide some support to VPIN-based circuit breakers, 

their value added would be questionable if differences in liquidity and PI between toxic and 

non-toxic halts can be explained by differences in ex ante volatility (e.g., Andersen and 

Bondarenko, 2015). We run a regression analysis to evaluate the incremental predictive 

power of VPIN over RV. We estimate the model in eq. [3] by OLS with White-robust 

standard errors 

3 13 45

1 3 2

      

  

        y y i i

ht T h R h Vj ht j Y ht S ht ht

j y s

L Toxic Range RV Y S   [3] 

where L is the standardized liquidity metric for trading halt h and five-minute interval t; Toxic 

is a dummy variable that equals one for VPIN-identified toxic halts; Range is the stock-

specific price range in place when the trading halt happens; RV is the standardized realized 

volatility metric; Y
y
, for y = 2003 to 2013, are year dummies, and S

i
, for i = 2 to 45, are stock 

dummies. The dependent variable L is, in turn, RS, DK, or PI, defined and standardized as 

before. The coefficient of interest is βT, which captures differences in each dependent variable 

between toxic and non-toxic halts. We use lags rather than the contemporaneous RV to avoid 

potential endogeneity problems. Finally, we also consider a model with lagged volume 

statistics. Our findings are virtually the same.  

In Table 7, we provide the estimated βT in eq. [3] for static (Panel A) and dynamic (Panel 

B) halts. For each type of halt, we provide findings for VPIN (with time, volume, and trade 

bars) and for VPIN-flag. Due to space considerations, we only present results for the five-

minute interval preceding the price-limit violation and the five-minute interval after the halt.  

[Table 7] 
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For VPIN with time bars, the differences in liquidity and price impact between toxic and 

non-toxic static halts reported in Table 6 vanish once we control for differences in ex ante 

volatility. For VPIN with volume or trade bars, RS and PI are still found to be significantly 

higher (βT>0) around toxic static halts than around non-toxic static halts. Differences in LOB 

depth, however, disappear. Similarly, for dynamic halts, toxic halts detected by VPIN with 

time or volume bars show higher RS and PI immediately after the VPIN-limit hit than non-

toxic halts. For VPIN with trade bars, differences in ex ante realized volatility explain the 

findings in Table 6. Finally, for both static and dynamic halts, Table 7 corroborates the poor 

performance of VPIN-flag as an early warning signal for toxic events. In general, based on 

our findings we cannot reject that a properly calibrated VPIN may occasionally succeed in 

anticipating truly toxic events. It is important to realize that this preventive ability is, 

nevertheless, limited, since VPIN has a high false positive rate in signaling order flow 

toxicity.  

7. Robustness analyses 

In this section, we summarize extra analyses that provide further support to our main 

findings. Unreported tables are provided in the online appendix of the paper. 

7.1. Robustness of VPIN in signaling toxic halts 

In Section 4, we show that VPIN is sensitive to changes in key design parameters when 

signaling toxic periods. We have also studied the sensitivity of VPIN in signaling toxic halts. 

We find that only 43% of the toxic halts identified by VPIN with 60-second time bars are 

classified as toxic by VPIN with v=2% volume bars. The highest matching score, involving 

time and trade bars, is 53%. The lowest matching scores, between 2.5% and 4.1%, involve 

VPIN-flag.  

7.2. Toxicity around trading halts 
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In Section 5, we show that VPIN-limit hits often precede extraordinary realized volatility 

(RV), but seldom anticipate extraordinary relative spreads (RS). We perform a similar 

analysis around price-limit hits using the 250 days closest to the event day, with no halts, and 

the same tick regime as benchmark. We find that both RS and, foremost, RV are severe 

around the price-limit hits as often as around VPIN-limit hits. Yet, opponents argue that 

circuit breakers may exacerbate volatility (e.g., Kyle, 1988; Lehmann, 1989; Madhavan, 

1992). Therefore, high RV readings around price-limit hits could be caused, at least partially, 

by the circuit breaker itself. 

7.3. Restarting VPIN 

VPIN measures toxicity in relative terms to its own history. As a result, the metric might 

fail to identify toxic periods that are recent highs but not historical highs. Restarting VPIN 

periodically could alleviate this potential limitation. To provide some insights on this issue, 

we shift the starting point of our VPIN series to December 2008 (VPIN09). In Table 8, we 

show that VPIN09 signals more toxic events from 2009 to 2013 than VPIN with starting 

point January 2002 (VPIN02). Moreover, except for VPIN-flag, VPIN09 locates more toxic 

halts than VPIN02. Indeed, VPIN09 signals as toxic most of the VPIN02-identified toxic 

halts; in contrast, VPIN02 misses many toxic halts signaled by VPIN09. Therefore, we 

confirm that VPIN ignores recent toxic highs unless it is restarted regularly. Determining how 

often to restart VPIN could represent an extra challenge for market authorities. 

[Table 8] 

7.4. VPIN performance in high-frequency and low-frequency environments 

ELO (2011, 2012a) design the VPIN to be a warning signal of order flow toxicity in high 

frequency environments. Arguably, HFT should be in an embryonic stage during most of the 
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first-half of our sample period.
9
 However, our main findings still hold if we restrict ourselves 

to the second half of our sample and use VPIN09 instead of VPIN02. We interpret this as 

evidence that our conclusions are not driven by the low-frequency part of our sample.  

7.5. Extreme price changes within VPIN-identified toxic events 

In Section 6, we show that most of the VPIN-identified toxic periods do not comprise 

actual trading halts. However, SSE market authorities revise static and dynamic price limits 

periodically according to the most recent historical volatility of the asset. So, it could be the 

case that toxic periods do contain extraordinary price changes, but the price ranges in place 

are so wide that price limits are rarely hit. In Table 9, we explore this possibility. We provide 

cross-sectional average statistics on the maximum dynamic (Panel A) and static (Panel B) 

price variations within toxic periods with no price-limit hits. No matter the VPIN version, we 

find that the average maximum (both static and dynamic) price variation observed during 

VPIN-signaled toxic periods is much lower than the corresponding benchmark statistic. 

Moreover, for 70 to 80% (81% to 92%) of the toxic events signaled by VPIN, price changes 

never reach the minimum dynamic (static) range of 1% (4%) that can be assigned to an SSE-

listed stock. So, SSE authorities would label the most extreme price variations observed 

within VPIN-identified toxic periods as “tolerable”. This finding is at odds with ELO’s 

(2012a, p. 1486) claim that it takes persistently high levels of VPIN to “reliably generate 

large absolute returns”.  

[Table 9] 

7.6. Extreme illiquidity within VPIN-identified toxic events 

                                                           
9
 The Spanish Comisión Nacional del Mercado de Valores (CNMV) estimate that HFTs account for 25-30% of 

the SSE volume traded in 2010 (see CNMV, 2011). For twelve large SSE-listed stocks in 2013, the European 

Securities and Markets Authority (ESMA) attributes 32% of the euro volume traded, 29% of the trades, and 

46% of the orders to HFTs (see ESMA, 2014). 
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In Section 5, we conclude that most of the VPIN-limit hits do not appear to be toxic when 

judged by objective liquidity metrics. This conclusion is based on an examination of how 

liquidity behaves immediately before and after VPIN-limit hits. However, if VPIN were an 

effective advance indicator of order flow toxicity, liquidity withdrawals could happen later in 

the toxic period. In Table 10, we investigate this possibility. We split each VPIN-identified 

toxic event with no trading halts into regular five-minute intervals, compute the average 

relative spread weighted by time (RS) per interval, standardized as in previous tests, and pick 

its maximum realization. We compare this value with the maximum of the standardized RS 

for the same five-minute interval over the corresponding 250 benchmark days. No matter the 

VPIN parameterization, we find significantly worse liquidity realizations during VPIN-

identified non-toxic days than during VPIN-identified toxic events. This analysis reinforces 

our main conclusion that VPIN is neither a reliable proxy nor an effective advance indicator 

for order flow toxicity.   

[Table 10] 

7.7. Calibration 

How should market authorities optimally calibrate VPIN? ELO do not address this 

question. Wu et al. (2013) (hereafter, WGLR) consider 16,000 VPIN parameter combinations 

for futures contracts and rank them by how often high VPIN readings lead extremely high in-

sample realized volatility peaks. WGLR’s in-sample optimization approach raises concerns. 

Should anyone be impressed if, after searching over thousands of VPIN versions, we find a 

constellation of parameters for which VPIN aligns reasonably well with the spikes of realized 

volatility? Some would probably consider this approach as ultimate data snooping. Should an 

in-sample optimized VPIN be optimal out-of-sample too? Probably not; we have already seen 

that it is convenient to restart VPIN periodically. Finally, not all volatility is due to toxicity. 

Therefore, WGLR’s approach might lead to suboptimal results.  
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Despite all our concerns, we calibrate VPIN just to show that even when VPIN is helped 

with an in-sample calibration our conclusions persist. Our calibration exercise differs from 

WGLR in several ways. We fix all the VPIN parameters except the bar type and size because, 

as we have already shown, the ultimate performance of VPIN depends on BVC. In WGLR, 

the BVC parameters are not free. Albeit limited, our calibration exercise suffices to gauge 

whether VPIN improves by fine-tuning some key parameters. We optimize parameters per 

stock, whereas WGLR render uniform optimal parameters. Finally, we label abnormal RV 

(ARV) as “extreme” when it exceeds the 99
th

 percentile of its empirical distribution over the 

benchmark days.
10

 WGLR are more lenient with VPIN; they take the benchmark average RV 

as threshold. We calibrate VPIN over the five-minute interval following each VPIN-limit 

violation. 

Using the calibrated VPIN (hereafter, CVPIN), we corroborate our main findings. The 

percentage of CVPIN-limit hits immediately followed by extreme ARV is 56.1%, much 

higher, as expected, than with uniform bars (21.4%-36.4%). However, differences in ex-post 

liquidity are modest or negligible, meaning that CVPIN also has a high false positive rate in 

signaling toxic order flow. The majority of toxic periods signaled by CVPIN do not contain 

actual trading halts. In Table 11, we use CVPIN instead of VPIN to replicate the analysis 

summarized in Table 7. For CVPIN with time or trade bars, differences in illiquidity (RS) and 

price impact (PI) between CVPIN-signaled toxic and non-toxic halts disappear once we 

control for ex ante volatility. CVPIN with volume bars still shows some preventive capacity, 

mostly for dynamic halts.  

[Table 11] 

  

                                                           
10

 The abnormal RV (ARV) is the deviation of RV from its benchmark mean divided by its benchmark standard 

deviation. The benchmark consists of the 250 days closest to the event day with no toxicity (VPIN< 0.9), and 

the same tick size regime. 
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8. Conclusions and final comments 

Financial markets around the world rely on circuit breakers triggered by price limits to 

constrict volatility. Several recent voices question the usefulness of these traditional systems 

in high-frequency markets and advocate for forward-looking types of circuit breakers. ELO 

(2012a) propose the use of VPIN, a new order flow toxicity metric, as a trigger for such type 

of circuit breaker. We evaluate ELO’s proposal by answering two core questions: Is VPIN 

reliable as a proxy for order flow toxicity? Is VPIN efficient as an early warning signal for 

toxic events? 

Consistent with previous studies, we find that within periods of persistent high VPIN 

readings volatility is often substantial. Yet, VPIN-limit hits are also frequently preceded by 

high volatility realizations, providing support to Andersen and Bondarenko’s (2015) critique 

to VPIN. We contribute to the debate by showing that most of the volatility peaks signaled by 

VPIN are not toxic when judged by objective liquidity metrics. In other words, VPIN is not 

reliable as a proxy for order flow toxicity. Thus, implementing VPIN-based circuit breakers 

might result in elevated costs in the form of unnecessary trading cessations. Regulators and 

market authorities should take note of this flaw of the VPIN approach. 

When confronted with actual trading halts, VPIN misses most (above 90%) of the 

abnormal intraday price movements that ultimately lead to price-limit hits. VPIN limits are 

therefore imperfect substitutes for price limits. When VPIN-signaled toxic halts are compared 

with VPIN-signaled non-toxic halts, we find illiquidity and price impact of trades to be more 

pronounced around the former. This finding is encouraging, as it gives some credibility to 

VPIN as an early warning signal for truly toxic events.  

Unfortunately, when we control for ex ante volatility, differences between toxic and non-

toxic halts disappear. Yet, there is an exception: VPIN with volume bars. This exception 
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matters because, first, it is the specification that more closely aligns with ELO’s volume-

clock paradigm; second, we cannot reject that a well calibrated VPIN can occasionally 

succeed as an advanced indicator of order flow toxicity. The problem is that it only works 

intermittently. VPIN with calibrated volume bars has a false positive rate above 80% in 

signaling order flow toxicity. Also, the most extreme price movements and the worst liquidity 

conditions that can be found during VPIN-identified toxic periods are similar to those we 

observe during non-toxic days.  

Our study exposes practical difficulties of implementing VPIN limits. As in previous 

studies (e.g., Andersen and Bondarenko, 2015; Chakrabarty et al., 2015), we find that VPIN 

is highly sensitive to parameter choices. Our focus is on the type and size of bars, the main 

BVC parameters. For equities, ELO (2016) recommend to carefully calibrating the BVC 

stock by stock, but they do not explain how to do it. Following Wu et al. (2013), we calibrate 

BVC so as to optimize the in-sample forecast power of extreme RV realizations. This 

exercise, however, does not result in a comparable forecast power of extreme illiquidity 

realizations. Indeed, VPIN with uniform bars works as well as VPIN with calibrated bars. As 

ELO (2012a) themselves remark, not all volatility is due to toxicity. Hence, a calibration 

exercise à la Wu et al. (2013) might lead to suboptimal results. An interesting and yet 

unanswered question we leave for future research is whether an in-sample calibrated VPIN 

performs as well out-of-sample. The answer to this question seems pivotal to gauge the 

potential of a VPIN-based circuit breaker. What we do show in this paper is that unless it is 

recalibrated periodically, VPIN could miss toxic events. Determining how often to restart 

VPIN represents an extra challenge for market authorities. 

Our database includes an initiator flag we use to estimate VPIN-flag, that is, VPIN 

computed using the actual order imbalance (OI). ELO (2012a) claim that VPIN should be 

independent of the trade-classification algorithm chosen. Our results clearly show that this is 
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not true. VPIN-flag shows the weakest link with ex-post illiquidity of all the VPIN versions 

we consider, and is the least efficient in anticipating truly toxic events. Our findings 

complement Andersen and Bondarenko (2015) that find a negative association between 

VPIN-flag and posterior short-run volatility. Recently, ELO (2016) advocate for using BVC-

based OI estimates. Initiator-based OI, ELO argue, are no longer linked to information-based 

trading because sophisticated informed traders in modern high-frequency markets use both 

market and limit orders. This argument is supported by independent studies (e.g., Kim and 

Stoll, 2014; Collin-Dufresne and Fos, 2015). Even if the aggressor flag becomes distorted in 

the presence of HFT, this should not be an issue in the first half of our sample. Yet, VPIN-

flag does not perform any better during the first half of the sample as compared to the second 

half. Therefore, we conclude that the ultimate performance of VPIN depends on BVC.      

Finally, VPIN may have unintended consequences. VPIN limits themselves could enhance 

volatility and harm liquidity. For example, in a sort of magnet effect of VPIN limits, as VPIN 

approaches its limit and a halt starts to look imminent, some traders could advance trades in 

time, exacerbating imbalances and pushing VPIN towards its limit (e.g., Subrahmanyam, 

1994). Liquidity providers that monitor VPIN in real time could also withdraw from the 

market, exacerbating short-term volatility and the price impact of trades. So far, these 

problems can only be evaluated theoretically or via experimental markets. 
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Table 1 

Sample statistics. 

In Panel A, we provide cross-sectional average daily statistics on trading activity, liquidity, and volatility for our 

sample of SSE-listed stocks and the subsamples with the ten largest (LC) and ten smallest (SC) stocks by market 

capitalization at the beginning of each month. Market capitalization is in millions of euros. The relative spread 

is the quoted spread prevailing before each trade divided by the quote midpoint. The quoted depth is the average 

of the displayed depth in euros at the best quotes prevailing before each trade. We compute the reported daily 

averages weighting by trade size. Trades is the number of trades registered each day. €Volume is the daily 

volume in euros. We report two proxies of volatility: High-Low is the ratio between the highest and the lowest 

price of the day, and Realized Volatility is the daily standard deviation of 1-minute returns. Price is the daily 

average trade price. We provide standard deviations in parenthesis. Panel B provides cross-sectional average 

changes in trading activity, order flow, and liquidity over the sample period (2002-2013) and for two sub-

periods: pre-MiFID (2002-2007) and post-MiFID (2008-2013). Message traffic is the sum of all the order 

submissions, revisions, and cancellations. Depth(€) is the average cumulated depth in euros at the five best ask 

and bid levels. Dispersion is the absolute distance between the quote mid-point and the 5
th

 best LOB level. For 

statistical inference, we use the non-parametric Wilcoxon (1945) test of equality of medians.  

Panel A: Cross-sectional average sample statistics

All (45) 10 largest 10 smallest

Size Market Cap. 12079.42 24992.82 *** 2392.48

(x10
-6

) (15069.08) (16734.15) (526.98)

Liquidity Relative spread 0.1577 0.1241 *** 0.2162

(x100) (0.065) (0.061) (0.105)

Depth (€) 4028.01 4696.52 *** 2726.51

(x10
-2

) (7972.41) (6832.76) (5659.45)

Activity Trades 1506.55 2286.42 *** 873.10

(1475.42) (2050.18) (480.80)

€ Volume 3888.18 7687.05 *** 961.80

(x10
-4

) (7517.35) (10634.96) (462.25)

Volatility High-Low 2.4991 2.1189 ** 2.8748

(x100) (0.508) (0.670) (1.122)

Realized Vol 0.7992 0.4631 *** 1.2125

(x100) (0.449) (0.512) (0.721)

Price 18.00 19.65 * 14.34

(14.42) (11.20) (11.11)

Panel B: Cross-sectional average changes (in %) over the sample period

2002-2013 Pre-MiFID Post-MiFID Dif.

Trades 257.01 46.25 210.76 164.52 ***

Volume (shares) 62.91 38.82 24.09 -14.73 ***

Trade size (shares) -54.37 -5.08 -49.29 -44.21 ***

Message traffic 1957.95 269.62 1688.33 1418.71 ***

Message traffic/trade 476.45 152.74 323.70 170.96 ***

Relative spread -56.41 -41.60 -14.81 26.79 ***

Depth (€) -27.64 273.27 -300.90 -574.17 ***

Dispersion -65.82 41.14 -106.96 -148.10 ***

***,**,* in Panel A (B) mean that the difference between LC (pre-MiFID) and SC (post-MiFID)

is statistically significant at the 1%, 5%, and 10% level, respectively.
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Table 2 

Toxic events. 

We provide cross-sectional median statistics on the number and duration of toxic events from January 2002 to 

December 2013 for our sample of 45 SSE-listed stocks (interquartile ranges in parenthesis). A toxic event 

begins when the relative VPIN crosses bottom-up a threshold (p) given by the 99
th

 percentile of the VPIN’s 

empirical CDF; it ends when it crosses up-bottom another threshold (q) that correspond to the 85
th

 percentile. 

The length of the VPIN’s rolling window (n) is 50. We use the actual direction of trades (“flag”) and the BVC 

algorithm to obtain order-imbalance estimates. We report results with time, volume, and trade bars. For each bar 

type, we provide median statistics across stocks and different bar sizes. We consider time bars from 30 to 1800 

seconds in increments of 30 seconds, and trade bars (volume bars) from 1% to 40% of the average daily number 

of trades (volume bucket size) over the preceding month. The volume bucket size is 1/50
th

 of the average daily 

volume over the previous month. Persistence in toxicity is measured both in minutes and number of volume 

buckets. We also report the percentage of toxic events that begin and end within the same trading session. For 

statistical inference, we use the non-parametric Wilcoxon (1945) rank-sum test of equality of medians. 

% intraday

Trade classification # Events minutes buckets events

BVC - Time bars 30 302 78.3 56.26

(21.5) (144.6) (30.8) (21.32)

BVC- Volume bars 40 456 *** 55.0 *** 31.25 ***

(25.5) (191.6) (17.3) (15.76)

BVC- Trade bars 46 429 *** 58.0 *** 38.30 ***

(27.3) (124.1) (14.8) (14.16)

Flag 7 7297 *** 447.0 *** 0.00 ***

(9.0) (9750.6) (582.5) (16.67)

***, **, * statistically different from the corresponding time bars' statistic at the 1%, 5%, and 10% level, respectively

Persistence
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Table 3 

Robustness of VPIN. 

We evaluate the robustness of VPIN when signaling toxic events. In Panel A, we change the bar size within a 

bar type in applying the BVC approach. In Panel B, we change both the bar type (time, trade, or volume) and the 

bar size. We randomly pick two different VPIN specifications and compute the proportion of overlapping toxic 

events. We repeat the process 200 times and obtain the cross-sectional median and interquartile range (in 

parentheses). Time bars span from 30 to 1800 seconds in increments of 30 seconds. Trade bars vary from 1% to 

40% of the of the average daily number of trades over the preceding month (T) in increments of 1%. Volume 

bars vary from 1% to 40% of the volume bucket size (V) in increments of 1%. The volume bucket size is 1/50 

times the average daily volume over the preceding month. In Panel A, we also provide separated statistics for 

randomly matched VPIN specifications with close and distant bars. We classify two bars as being “close in size” 

when their size differs less than 5 minutes in case of time bars, or less than 10%T (10%V) in case of trade 

(volume) bars, respectively. A toxic event begins when the relative VPIN (i.e., the cumulated probability of each 

VPIN reading) crosses bottom-up the VPIN threshold p=0.99; it ends when it crosses up-bottom a second 

threshold q=0.85. In computing VPIN, we use a rolling window of 50 volume buckets. For statistical inference, 

we use the non-parametric rank-sum test of Wilcoxon (1945). 

Panel A: Robustness to changes in the bar size (within a bar type)

Bar type % matches % matches % matches

Time 0.7072 < 5 min. 0.7508 > 15 min. 0.6509 ‡‡‡

(0.0674) (0.0321) (0.0783)

Volume 0.5835 ††† < 10%V 0.6133 > 20%V 0.5338 ‡‡‡

(0.0578) (0.0337) (0.0449)

Trade 0.6837 < 10%T 0.7731 > 20%T 0.5283 ‡‡‡

(0.1822) (0.0597) (0.0746)

Panel B: Robustness to changes in the bar type

Bar type % matches % matches % matches

Time 0.2910 0.4788 ***

(0.0480) (0.0413)

Volume 0.2120 0.2812 ***

(0.0282) (0.1184)

Trade 0.3508 *** 0.2850

(0.0184) (0.1488)

†††, ††, † means different than the time bars case at the 1%, 5%, and 10% level, respectively.

‡‡‡,‡‡,‡ means different than the "close in size" case at the 1%, 5% amd 10% level, respectively.

***, **, * means different than the other statistic in the same row at the 1%, 5% and 10% level, respectively.

All cases Close in size Distant in size

Time bars Volume bars Trade bars
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Table 4 

Illiquidity and volatility around VPIN-limit hits. 

We study liquidity and volatility around VPIN-limit hits. A VPIN-limit is hit when the relative VPIN crosses 

bottom-up the VPIN limit p = 0.99. For each VPIN-limit hit, we compare the post-event relative spread (RS) and 

realized volatility (RV) with the 95
th

 and 99
th 

percentiles of the empirical distribution of those same metrics over 

an event-specific benchmark period. Post-event LOB depth (DK) is compared with the 5
th

 and 1
st 

percentiles of 

the same distribution. The benchmark period consists of the 250 days closest to the event day with no toxicity 

and the same tick regime. We split the benchmark days in regular 5-minute intervals. Liquidity and volatility 

metrics are standardized using the benchmark mean and standard deviation for the same 5-minute interval. RS is 

the quoted spread divided by the quote midpoint. DK is the average between the accumulated euro-volume at 

the five best bid and offer quotes of the LOB. Liquidity proxies are averaged weighting by time. RV is the 

standard deviation of the 1-minute price changes within each 5-minute interval. We provide the proportion of 

events with extreme illiquidity and volatility readings for two pre-event and two post-event 5-minute intervals 

centered on the VPIN-limit violation. We also provide the cross-sectional average deviation of the standardized 

metric in the pre- or post-event interval from the benchmark percentile. Statistical test are based on the non-

parametric Wilcoxon (1945) rank-sum test for equality of medians. In implementing the BVC, we report results 

for 1-minute time bars, trade bars of 2% of the average daily number of trades over the previous month, and 

volume bars of 2% of the volume bucket size. The volume bucket size is 1/50
th

 of the average daily volume over 

the previous month. We also report results for VPIN-flag (VPIN computed using the actual direction of trades). 

Panel A: Time bars (60 seconds)

Interval 95
th 

99
th 

5
th 

1
st 

95
th 

99
th 

[-10 -5) % 18.63 9.80 6.45 3.04 40.36 28.64

Dif. -0.878 *** -2.083 *** 1.534 1.715 *** 0.76 *** -0.46 ***

[-5 0) % 20.30 10.48 5.31 2.65 62.46 49.56

Dif. -0.845 *** -2.048 *** 1.731 *** 1.910 *** 4.09 *** 2.86 ***

[0 5) % 22.81 12.20 6.17 3.28 51.45 39.10

Dif. -0.735 *** -1.940 *** 1.403 1.585 *** 1.60 0.38 ***

[5 10) % 18.23 9.74 6.12 3.32 41.52 27.80

Dif. -1.041 *** -2.248 *** 1.377 *** 1.558 *** 0.57 *** -0.65 ***

Panel B: Volume bars (v  = 2%)

[-10 -5) % 18.31 8.38 8.81 4.38 28.25 17.56

Dif. -0.941 *** -2.205 *** 1.126 1.298 *** -0.44 *** -1.62 ***

[-5 0) % 21.37 9.30 8.30 4.02 34.95 23.07

Dif. -0.829 *** -2.092 *** 1.235 *** 1.408 *** 0.28 *** -0.91 ***

[0 5) % 26.52 12.52 9.01 4.73 42.48 29.57

Dif. -0.643 *** -1.910 *** 1.103 *** 1.275 *** 0.72 *** -0.47 ***

[5 10) % 19.62 8.27 9.49 5.58 25.83 15.71

Dif. -1.019 *** -2.283 *** 1.002 *** 1.175 *** -0.74 *** -1.93 ***

*** Means the post-event level is different than the benchmark percentile at the 1% level across all toxic events.

RS  - percentile DK  - percentile RV  - percentile
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Table 4 (Cont.) 

Illiquidity and volatility around VPIN-limit hits. 

Panel C: Trade bars (v = 2%)

Interval 95
th 

99
th 

5
th 

1
st 

95
th 

99
th 

[-10 -5) % 24.41 11.96 9.25 4.50 38.20 26.82

Dif. -0.698 *** -1.889 *** 0.976 *** 1.142 *** 0.59 *** -0.65 ***

[-5 0) % 23.30 10.97 9.36 4.83 45.93 33.94

Dif. -0.727 *** -1.920 *** 1.059 *** 1.225 *** 1.60 *** 0.37 ***

[0 5) % 26.04 14.09 9.84 5.01 44.96 31.95

Dif. -0.692 *** -1.882 *** 0.973 1.140 *** 1.01 *** -0.22 ***

[5 10) % 22.99 11.46 9.58 4.85 35.85 23.04

Dif. -0.823 *** -2.015 *** 0.944 *** 1.112 *** 0.10 *** -1.14 ***

Panel D: Flag

[-10 -5) % 6.99 2.62 4.37 1.57 13.64 7.17

Dif. -1.724 *** -2.850 *** 1.981 *** 2.163 *** -1.44 *** -2.62 ***

[-5 0) % 5.27 2.28 3.87 2.28 17.05 9.14

Dif. -1.774 *** -2.903 *** 2.071 *** 2.252 *** -1.31 *** -2.48 ***

[0 5) % 6.63 2.58 4.60 2.39 21.55 12.89

Dif. -1.656 *** -2.785 *** 1.940 *** 2.122 *** -0.76 *** -1.94 ***

[5 10) % 8.72 3.38 4.63 1.60 15.48 7.47

Dif. -1.672 *** -2.798 *** 1.809 *** 1.991 *** -1.37 *** -2.55 ***

*** Means the post-event level is different than the benchmark percentile at the 1% level across all toxic events.

RS  - percentile DK  - percentile RV  - percentile
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Table 5 

VPIN-limit vs. price-limit hits. 

In Panel A, we provide summary statistics on the number of SSE toxic halts within our sample. A halt is toxic if 

it falls within a toxic period according to the VPIN metric. A toxic period begins when the relative VPIN (i.e., 

cumulated probability of each VPIN value) crosses bottom-up the VPIN limit p and ends when it crosses up-

bottom a second threshold q. We report results for p = 0.99 and q = 0.85. In computing VPIN, we use a rolling 

window of n = 50 volume buckets. The volume bucket size equals 1/50 times the average daily volume over the 

preceding month. In implementing the BVC, we report results for 1-minute time bars, trade bars of 2% of the 

average daily number of trades over the previous month, and volume bars of 2% of volume bucket size. The 

volume bucket size is 1/50
th

 of the average daily volume over the previous month. We also report results for 

VPIN-flag, that is, VPIN computed using the actual direction of trades. A halt is static (dynamic) if it is 

triggered by a violation of the static (dynamic) price limit. Static limits are set over the allocation price of the 

last auction. Dynamic limits are set over the last trade price. In Panel B, we show the percentage of VPIN-

identified toxic periods that comprise at least one trading halt. For those periods, we report the median distance 

(in minutes) and interquartile range from the VPIN-limit violation to price-limit violation that leads to the 

closest toxic halt. Finally, we show the proportion of toxic halts that happen before the end of the session where 

the VPIN-limit violation occurs, and the proportion of toxic halts that happen in the 60-minute interval 

following the VPIN-limit violation. 

VPIN version Halts % halts % halts %

Time bars (60 sec.) 508 7.54 250 8.41 258 6.81

Volume bars (v  = 2%) 484 7.19 161 5.47 323 8.52

Trade bars (v  = 2%) 654 9.71 344 11.69 310 8.18

Flag 299 4.44 155 5.27 144 3.80

Total With toxic In the same Within the next

VPIN version events halts (%) min. iqr. session (%) hour (%)

Time bars (60 sec.) 1364 20.23 78.7 (233.4) 48.82 27.56

Volume bars (v  = 2%) 1589 14.60 200.1 (460.7) 24.79 11.98

Trade bars (v  = 2%) 1673 19.61 138.5 (408.4) 38.53 20.03

Flag 556 19.1 928.7 (2311.6) 7.69 3.68

Distance to the halt

Static halts Dynamic halts

Panel A: Toxic trading halts

Toxic halts

Panel B: Toxic events
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Table 6 

Toxic halts vs. non-toxic halts. 

We test the null hypothesis that market conditions around SSE VPIN-located toxic and non-toxic static halts are 

alike. Similar results for dynamic halts are reported in the online appendix. Static halts are triggered by 

violations of the static price limit, set around the allocation price of the last auction. There are 2,943 static halts 

in our sample. A halt is toxic if it falls within a toxic event according to VPIN. A toxic event begins when the 

relative VPIN (i.e., the cumulated probability of VPIN values) crosses bottom-up the VPIN limit p = 0.99 

(VPIN-limit violation) and ends when the relative VPIN crosses up-bottom a second threshold q = 0.85. We 

report results for VPIN with the BVC algorithm with 1-minute time bars (Panel A), volume bars of 2% of 

volume bucket size (Panel B), and trade bars of 2% of the average daily number of trades over the previous 

month (Panel C). The volume bucket size is 1/50
th

 of the average daily volume over the previous month. The 

relative spread (RS) is the quoted spread divided by the quote midpoint averaged weighting by time. The LOB 

depth (DK) is the accumulated displayed depth at the five best ask and bid quotes in euros also averaged 

weighting by time. Realized volatility (RV) is the standard deviation of the 1-minute price changes. The price 

impact (PI) is the difference between the quote midpoint one minute after the trade and the quote midpoint 

prevailing before the trade, averaged weighting by trade size. All the metrics are standardized by subtracting the 

mean and dividing by the standard deviation of the corresponding variable for the exact same time interval 

across 250 non-toxic benchmark days with no trading halts. We use Wilcoxon’s (1945) rank-sum test to provide 

statistical significance to differences between toxic and non-toxic halts. We use a 30-minute window centered 

on the trading halt that we split into five-minute intervals.  

Panel A: Static halts and VPIN with time bars (60 sec.)

[-15 -10) 2.019 *** 0.766 *** 0.107 1.074 ***

[-10 -5) 2.840 *** 0.965 *** 0.072 1.720 ***

[-5 0) 2.766 *** 0.942 *** 0.092 2.084 ***

[0 5) 4.956 *** 1.197 *** 0.188 1.769 ***

[5 10) 2.437 *** 1.539 *** 0.059 1.062 ***

[10 15) 1.536 *** 1.022 *** 0.021 1.075 ***

Panel B: Static halts and VPIN with volume bars (v  = 2%)

[-15 -10) 1.285 ** 1.676 *** -0.258 *** 1.579 ***

[-10 -5) 1.347 *** 1.736 *** -0.240 *** 2.610 ***

[-5 0) 1.878 *** 1.587 *** -0.333 *** 4.117 ***

[0 5) 4.612 *** 1.792 *** -0.153 *** 2.978 ***

[5 10) 1.771 *** 1.583 *** -0.184 *** 1.782 ***

[10 15) 0.516 1.448 *** -0.202 *** 0.951

Panel C: Static halts and VPIN with trade bars (v  = 2%)

[-15 -10) 1.466 *** 0.732 *** -0.154 *** 1.229 ***

[-10 -5) 1.758 *** 1.027 *** -0.198 *** 1.360 ***

[-5 0) 2.638 *** 1.138 *** -0.192 *** 2.278 ***

[0 5) 3.733 *** 1.272 *** -0.034 ** 2.034 ***

[5 10) 1.839 *** 1.474 *** -0.128 *** 1.468 ***

[10 15) 1.630 *** 1.193 *** -0.143 *** 0.953 ***

Panel D: Static halts and VPIN-flag

[-15 -10) 0.312 ** -0.133 0.247 ** -0.121

[-10 -5) 0.202 -0.184 0.188 *** -0.017

[-5 0) 0.419 * -0.126 0.221 *** -0.411

[0 5) 0.181 -0.060 0.284 ** 0.029

[5 10) -0.010 -0.067 0.224 ** -0.290

[10 15) 0.236 -0.084 0.215 -0.480

***, **, * means statistically significant at the 1%, 5%, and 10%, respectively.

RV RS DK PI
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Table 7 

Toxic halts vs. non-toxic halts: regression analysis. 

We test the null that differences in market conditions between toxic and non-toxic halts are driven by 

differences in volatility. A halt is toxic when it falls within a toxic event, which begins when the relative VPIN 

(i.e., the cumulated probability of VPIN values) crosses bottom-up the VPIN limit p = 0.99 and ends when it 

crosses up-bottom a second threshold q = 0.85. We use data on 6,734 trading halts for 45 SSE-listed stocks from 

2002 to 2013. We distinguish between static halts (Panel A) and dynamic halts (Panel B). Static (dynamic) halts 

are triggered by violations of price limits set around the allocation price of the last auction (the last trade price). 

There are 2,943 static halts and 3,791 dynamic halts. We provide results for VPIN-flag, that is, VPIN computed 

with the actual trade direction. We also provide results for VPIN with the BVC algorithm and three types of 

bars: 60-second time bars, 2% volume bars, and 2% trade bars. Dependent variables are the average relative 

spread (RS), the average LOB depth (DK), both weighted by time, and the average price impact of trades (PI) 

weighted by trade size. Explanatory variables are the first three lags of realized volatility (RV) – the standard 

deviation of the 1-minute price changes, a dummy variable for toxic halts (Toxic), and the stock-specific price 

range at the time of the halt (Range), either static or dynamic. As controls, we include 11 yearly dummies and 

44 stock dummies. We only report the estimated coefficient of the variable of interest: Toxic. The model is 

defined for five-minute intervals around trading halts. We report estimated coefficients for the first interval 

preceding and the first interval following the halt. The model is estimated by OLS with White-robust standard 

errors. 

Panel A: Static halts

Toxic coef. [-5,0) (0,5] [-5,0) (0,5] [-5,0) (0,5]

Time bars 0.140 0.382 0.242 *** 0.255 ** 1.334 0.823

Adj.-R
2

0.229 0.123 0.094 0.082 0.106 0.071

F-test 17.200 15.146 10.560 7.231 12.843 7.836

Volume bars 0.702 *** 0.687 *** -0.003 0.111 2.580 * 1.913 **

Adj.-R
2

0.241 0.124 0.111 0.096 0.105 0.078

F-test 17.983 16.290 16.023 10.451 14.203 8.068

Trade bars 0.553 *** 0.566 ** -0.036 0.108 1.932 * 1.239 **

Adj.-R
2

0.234 0.139 0.109 0.097 0.104 0.069

F-test 17.561 15.284 11.213 10.108 13.563 7.543

Flag -0.128 -0.173 0.143 0.234 * -0.753 -0.110

Adj.-R
2

0.233 0.131 0.094 0.080 0.110 0.067

F-test 17.637 14.498 10.748 6.655 13.880 7.237

Obs. 2821 2835 2821 2835 2760 2787

Panel B: Dynamic halts

Time bars 0.769 * 1.221 *** 0.151 ** 0.298 *** 1.132 1.850 **

Adj.-R
2

0.238 0.203 0.007 0.060 0.027 0.182

F-test 13.867 17.138 2.430 7.240 2.977 5.920

Volume bars 0.921 ** 1.107 *** -0.034 0.133 2.668 ** 2.022 **

Adj.-R
2

0.254 0.217 0.008 0.068 0.030 0.193

F-test 16.861 21.914 6.319 11.440 3.039 5.808

Trade bars 0.166 0.831 * -0.032 0.092 2.066 * 0.736

Adj.-R
2

0.243 0.214 0.008 0.054 0.028 0.207

F-test 12.278 15.712 2.091 6.679 3.624 6.024

Flag 0.172 0.471 -0.003 0.143 3.749 -0.234

Adj.-R
2

0.197 0.164 0.006 0.055 0.039 0.142

F-test 13.276 16.366 2.022 6.391 3.413 5.276

Obs. 2844 2953 2844 2953 2557 2619

***, **,* means statistically significant at the 1%, 5%, and 10% level, respectively.

RS DK PI
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Table 8 

Restarting VPIN. 

We study the sensitivity of VPIN to the starting point of the series. We consider two starting points: January 

2002 (“VPIN02”) and January 2009 (“VPIN09”). For each case, we obtain the number of toxic events and toxic 

halts between 2009 and 2013. A toxic event begins when the relative VPIN (i.e., the cumulated probability of 

each VPIN observation) crosses bottom-up the VPIN limit p = 0.99 (VPIN-limit violation) and ends when it 

crosses up-bottom another threshold q = 0.85. For both toxic events and toxic halts, we provide the total number 

of events for the whole sample (“All”) and the average number of events across stocks (“Avg.”). We use the 

non-parametric Wilcoxon’s rank-sum test to compare VPIN02 and VPIN09. Finally, we provide the proportion 

of VPIN02-identified toxic halts also pinpointed by VPIN09, and the proportion of VPIN09-identified toxic 

halts located by VPIN02 too. We apply the BVC algorithm to assign direction to trades. We report results 

implementing BVC using 60-second time bars, 2% volume bars (over the volume bucket size), and 2% trade 

bars (over the average number of trades of the asset over the previous month). The volume bucket size is 1/50
th

 

of the average daily volume over the previous month. We also report results using VPIN-flag, that is, VPIN 

computed using the actual direction of trades. 

VPIN version All Avg. All Avg. All Avg. All Avg. VPIN02 VPIN09

Time bars (60 sec.) 349 7.76 591 13.13 *** 56 1.24 83 1.84 ** 89.29 60.24

Volume bars (v  = 2%) 142 3.16 733 16.29 *** 18 0.40 54 1.20 *** 100.00 33.33

Trade bars (v  = 2%) 318 7.07 831 18.47 *** 81 1.80 150 3.33 *** 95.06 51.33

Flag 157 3.49 217 4.82 74 1.64 65 1.44 59.46 67.69

***, **, * means that the average per stock with VPIN09 is different than with VPIN02 at the 1%, 5% and 10% level, respectively.

Toxic events Toxic halts Matched

VPIN02 VPIN09 VPIN02 VPIN09 toxic halts (%)
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Table 9 

Static and dynamic price variations within toxic periods. 

This table provides summary statistics (cross-sectional mean and standard deviation) on the maximum dynamic 

(Panel A) and static (Panel B) price variations within toxic periods according to the VPIN. We also provide the 

distribution of dynamic (Panel A) and static (Panel B) price variations with respect to SSE pre-established 

categories of dynamic and static ranges. A dynamic price variation is the relative change in prices with respect 

to the previous transaction price. A static price variation is the relative change in prices with respect to the static 

price, that is, the allocation price of the last auction completed. We also provide the average 99
th

 percentile and 

the maximum of both dynamic and static price variations across benchmark periods. Each benchmark period is 

event-specific, and given by the 250 days closest to the toxic event with no remarkable toxicity, no trading halts, 

and the same tick regime. A toxic event begins when the relative VPIN (i.e., the cumulated probability of each 

VPIN observation) crosses bottom-up the VPIN limit p = 0.99 (VPIN-limit violation) and ends when it crosses 

up-bottom another threshold q = 0.85. We consider different VPIN implementations. We report results using the 

BVC algorithm with 60-second time bars, 2% volume bars (over the volume bucket size), and 2% trade bars 

(over the average number of trades of the asset over the previous month). The volume bucket size is 1/50
th

 of the 

average daily volume over the previous month. We also report results using VPIN-flag, that is, VPIN computed 

using the actual direction of trades. 

Panel A: Price changes with respect to the dynamic price

VPIN version Max. Std. 99
th

Max. <=1% (min) <=2% <=3% <=4%

Time bars (60 sec.) 0.0072 0.0051 0.0040 *** 0.0191 *** 79.67 97.60 99.63 99.91

Volume bars (v  = 2%) 0.0072 0.0048 0.0042 *** 0.0176 *** 78.82 98.01 99.63 99.93

Trade bars (v  = 2%) 0.0082 0.0058 0.0040 *** 0.0203 *** 73.97 95.51 99.03 99.93

Flag 0.0083 0.0047 0.0049 *** 0.0211 *** 70.76 98.66 99.55 100.00

Panel B: Price changes with respect to the static price

VPIN version Max. Std. 99
th

Max. <=4% (min) <=5% <=7% <=8%

Time bars (60 sec.) 0.0282 0.0175 0.0364 *** 0.0567 *** 81.33 91.59 97.50 98.61

Volume bars (v  = 2%) 0.0224 0.0137 0.0395 *** 0.0604 *** 91.88 97.34 99.19 99.56

Trade bars (v  = 2%) 0.0290 0.0182 0.0387 *** 0.0613 *** 79.58 89.75 96.34 97.83

Flag 0.0277 0.0199 0.0426 *** 0.0674 *** 82.14 89.06 95.76 97.54

*** means statistically different from the cross-sectional average maximum price variation within toxic events a the 1% level.

Toxic periods Benchmark period w.r.t. standardized SSE static limits

Distribution of max. dynamic price change (%)

Toxic periods Benchmark period w.r.t. stadardized SSE dynamic limits

Distribution of max. static price change (%)
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Table 10 

Highest relative spread realizations within toxic periods. 

This table provides cross-sectional average statistics about extreme relative spread realizations during both 

VPIN-identified toxic periods and non-toxic (benchmark) days. A toxic event begins when the relative VPIN 

(i.e., the cumulated probability of each VPIN observation) crosses bottom-up the VPIN limit p = 0.99 (VPIN-

limit violation) and ends when it crosses up-bottom another threshold q = 0.85. We split each toxic period into 

five-minute intervals, and compute the standardized relative spread weighted by time (RS) within each interval. 

We pick the maximum RS across intervals, which we compare with the same statistic, for the same interval, but 

over the corresponding benchmark days. The event-specific benchmark period is given by the 250 days closest 

to the toxic event with no remarkable toxicity, no trading halts, and the same tick regime. Each RS observation 

is standardized using the RS mean and standard deviation across the benchmark days for the same five-minute 

interval. We report standardized metrics in Panel A, and the corresponding raw metrics in basis points in Panel 

B. We also provide the percentage of toxic events for which the maximum RS is below the benchmark readings. 

We compute VPIN with BVC-based order imbalance estimates. We report results using the BVC algorithm with 

60-second time bars, 2% volume bars (over the volume bucket size), and 2% trade bars (over the average 

number of trades of the asset over the previous month). The volume bucket size is 1/50
th

 of the average daily 

volume over the previous month. We also report results using VPIN-flag, that is, VPIN computed using the 

actual direction of trades. 

Panel A: Standardized RS (in standard deviations from the benchmark mean)

VPIN version Max. Std. Max. < bench.(%)

Time bars (60 sec.) 2.60 3.22 5.07 *** 87.89

Volume bars (2%) 3.30 3.32 5.02 *** 81.80

Trade bars (2%) 3.64 4.17 4.89 *** 77.29

Flag 3.18 4.58 4.77 *** 81.98

Panel B: Raw RS  values (in basis points)

VPIN version Max. Std. Max. < bench.(%)

Time bars (60 sec.) 42.76 37.46 69.74 *** 84.64

Volume bars (2%) 51.07 41.06 69.55 *** 79.04

Trade bars (2%) 49.33 41.36 65.23 *** 77.74

Flag 51.46 41.21 75.23 *** 82.65

***, **,* Means statistically different from the toxic periods a the 1%, 5% and 10%  level, respectively.

Toxic periods Benchmark periods

Toxic periods Benchmark periods
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Table 11 

Toxic halts vs. non-toxic halts with calibrated bars. 

We use a regression approach to test the null that differences in market conditions between toxic and non-toxic 

halts are driven by differences in volatility. A halt is toxic when it falls within a toxic event, which begins when 

the relative VPIN (i.e., the cumulated probability of VPIN values) crosses bottom-up the VPIN limit p = 0.99 

and ends when it crosses up-bottom a second threshold q = 0.85. We use data on 6,734 trading halts for 45 SSE-

listed stocks from 2002 to 2013. We distinguish between static halts (Panel A) and dynamic halts (Panel B). 

Static (dynamic) halts are triggered by violations of price limits set around the allocation price of the last auction 

(the last trade price). There are 2,943 static halts and 3,791 dynamic halts. We use calibrated time, volume, and 

trade bars. Dependent variables are the average relative spread (RS), the average LOB depth (DK), both 

weighted by time, and the average price impact of trades (PI) weighted by trade size. As explanatory variables 

we use the first three lags of realized volatility (RV) – the standard deviation of the 1-minute price changes, a 

dummy variable for toxic halts (Toxic), and the stock-specific price range at the time of the halt (Range), either 

static or dynamic. As controls, we include 11 yearly dummies and 44 stock dummies. We only report the 

estimated coefficient of the variable of interest: Toxic. The model is defined for five-minute intervals around 

trading halts. We report estimated coefficients for the first interval preceding and the first interval following the 

halt. The model is estimated by OLS with White-robust standard errors. 

Panel A: Static halts

Toxic coef. [-5,0) (0,5] [-5,0) (0,5] [-5,0) (0,5]

Time bars -0.126 -0.234 0.172 ** 0.192 ** -0.216 0.232

Adj.-R
2

0.217 0.115 0.089 0.080 0.101 0.068

F-test 17.426 14.920 9.446 6.918 13.780 7.509

Volume bars 0.831 *** 0.385 * -0.169 *** -0.025 1.633 1.375 **

Adj.-R
2

0.247 0.140 0.122 0.106 0.105 0.069

F-test 19.128 17.052 15.367 10.959 13.776 8.301

Trade bars 0.076 -0.044 0.044 0.019 0.331 0.148

Adj.-R
2

0.219 0.133 0.104 0.098 0.105 0.064

F-test 17.745 13.482 10.623 9.454 13.478 7.148

Obs. 2821 2835 2821 2835 2760 2787

Panel B: Dynamic halts

Time bars 0.444 0.944 0.190 ** 0.243 ** 0.320 -0.064

Adj.-R
2

0.236 0.203 0.006 0.051 0.027 0.169

F-test 12.358 14.864 1.914 5.965 3.267 6.195

Volume bars 1.218 *** 1.372 *** -0.134 0.012 2.484 ** 1.983 ***

Adj.-R
2

0.268 0.224 0.009 0.064 0.029 0.191

F-test 16.276 19.816 6.721 11.545 3.334 6.261

Trade bars 0.194 0.848 * 0.030 0.123 -0.052 -0.062

Adj.-R
2

0.234 0.205 0.008 0.056 0.026 0.149

F-test 12.686 15.870 2.278 6.320 3.022 5.159

Obs. 2844 2953 2844 2953 2557 2619

***, **,* means statistically significant at the 1%, 5%, and 10% level, respectively.

RS DK PI
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Figure 1 

Abnormal liquidity, volatility, and activity patterns around VPIN-limit hits. 

We plot average abnormal liquidity, volatility and trading activity levels around VPIN-limit violations for our 

sample of 45 Spanish SIBE-listed stocks from January 2002 to December 2013. A toxic event begins when the 

relative VPIN (i.e., the cumulated probability of the VPIN) crosses bottom-up the p = 0.99 limit (“VPIN-limit 

violation”). Order imbalances are estimated using the BVC algorithm with 60-second time bars, 2% volume bars 

(over the volume bucket size) and 2% trade bars (over the average number of trades of the asset over the 

previous month). The volume bucket size is 1/50
th

 of the average daily volume over the previous month. For 

each event, we take the closest 250 non-toxic days as the benchmark period. We consider twenty-four 5-minute 

intervals centered on the VPIN-limit violation. Each 5-minute interval observation is standardized by 

subtracting the mean and dividing by the standard deviation of the same metric during the exact same interval 

across all the benchmark days. We plot averages across all VPIN-limit violations. Statistically significant 

abnormal values are highlighted using different markers per variable. Statistical tests are based on the Wilcoxon 

(1945) signed rank-sum test. We use volume in shares (VOL) to proxy for trading activity – Figure 1.a. We 

measure realized volatility as the standard deviation of the 1-minute changes in trade prices (RV) – Figure 1.b. 

Finally, we use the relative spread (RS) – Figure 1.c, and the displayed LOB depth in euros at the best quotes 

(DB) – Figure 1.d, all weighted by time, as inverse and direct proxies for liquidity, respectively.  

 

1.1. Volume (shares) 

 

1.2. Realized volatility 
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Figure 1 (Cont.) 

Abnormal liquidity, volatility, and activity patterns around VPIN-limit hits. 

 

 

1.3. Relative bid-ask spread 

 

1.4. Euro-depth at the market quotes 
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Figure 2 

Abnormal liquidity, volatility, and activity patterns around price-limit hits. 

We plot the average abnormal relative spread (RS), realized volatility (RV) and volume (VOL) around SSE 

single-stock trading halts, known as “volatility auctions”. Our sample consists of 45 Spanish SIBE-listed stocks 

from January 2002 to December 2013. We distinguish between static (Figure 2.a) and dynamic (Figure 2.b) 

halts. A static halt is triggered by a violation of the static price limits, the maximum variation permitted around 

the static price. The static price is the allocation price of the last auction completed. A dynamic halt is triggered 

by a violation of the dynamic price limits, the maximum variation allowed around the last trade price. We 

consider twelve five-minute intervals before the price limit hit and twelve five-minute intervals after the 

resumption of the continuous session. RS is the bid-ask spread divided by the quote midpoint; RV is the standard 

deviation of the one-minute changes in prices, and VOL is measured in shares. For each event, we take the 250 

days closest in time with the same tick regime and no trading halts as the benchmark period. Each observation is 

standardized by subtracting the mean and dividing by the standard deviation of the same variable for the exact 

same time interval across the 250 benchmark days. We plot averages across all trading halts. Statistically 

significant abnormal values are highlighted using different markers per variable. Statistical significance is 

evaluated using Wilcoxon (1945) non-parametric test. 
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Appendix:  

Parameterization of VPIN and BVC 

We summarize our parameter choices for implementing the order flow toxicity measure VPIN with the bulk-

volume classification (BVC) algorithm.  

VPIN Description Alternatives considered 

n Number of volume buckets in 

each update of VPIN 

25, 50, 75 

δ Percentage of the daily average 

volume 

1/50 

𝑉𝑖  Size of the volume bucket for 

stock i 

δ times the average daily trading volume of the asset 

over the preceding month, rounded to the closest 

integer. 

𝑂𝐼𝑖𝜏  Order imbalance for stock i in 

the τ-th volume bucket 

BVC-based order flow imbalance 

OI based on the actual direction of trades  

BVC   

Bar types Data is pre-aggregated into bars 

of equal size 

Time, trade and volume bars. 

Bar size Pre-determined bar sizes Time bars (in seconds):  

From 30 to 1800, in increments of 30 seconds (i.e., 60 

different bars). 

Trade bars (in number of trades):  

Stock-specific: from 1% to 40%, in increments of 1%, 

of the average daily number of trades over the 

preceding month, rounded to the closest integer (i.e., 

40 different bars) 

Volume bars (in shares traded): 

Stock-specific: from 1% to 40%, in increments of 1%, 

of 1/50
th

 of the average daily volume (in shares) over 

the preceding month, rounded to the closest integer 

(i.e., 40 different bars) 

Φ(∙) CDF of the probabilistic 

distribution assumed for the 

standardized changes in prices 

between two consecutive bars 

t-student with 0.1 and 0.25 degrees of freedom 

Normal 

 

[p, q]  Thresholds for the CDF of VPIN [0.99,0.85], [0.95,0.85] 

 

 

 

 


