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Abstract: CH4 and CO2 adsorption capacity at 25, 50 and 75°C was evaluated in two metal-organic frameworks: 

Al-BDC and ZIF-8, the later with zeolite topology. Adsorption experiments were carried out under static conditions 

using a gravimetric suspension balance until 40 bar of pressure. Adsorption isotherms of type I were obtained for both 

materials showing high adsorption capacity values. ZIF-8 exhibited the higher uptake value for both CH4 and CO2 (4.9 

and 8.5 mmol g-1, respectively). The Toth equilibrium model was used to fit experimental isotherms in order to obtain 

qm (maximum adsorption capacity) and t (related to energetical heterogeneity of the surface). Isosteric heats of 

adsorption were also calculated by Clausius-Clapeyron equation. 
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1. Introduction   

A new family of materials named metal organic framework (MOFs) has been developed principally in the 

last two decades. These novel crystalline materials attract the scientific interest because of it is possible to 

design rationally new structures as well as to monitor the empty spaces (pores and cavities) at nanometrical 
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scale. The control of the empty spaces enables the manipulation capacity of the molecule chemistry trapped 

inside which represents a powerful tool for several important applications.  

MOFs are composed of two blocks: (i) the connectors (ligands) and (ii) nodes (metallic ions with charge 2+ 

or 3+) which constitute open metal sites located at the cavities surface. The strength of the bond between the 

metal oxide cluster and the linker has been suggested to be important in determining the stability [1]. They 

are attractive for adsorption and separation applications [2-5] and gases storage [6, 7] due to their thermal 

and chemical stability, versatility and numerous structural design possibilities.  

The framework structure of MIL-53-Al (also known as Al-BDC) is composed of infinite AlO4(OH)2 

octahedra connected by a 1,4-benzenedicarboxylate ligand. Its chemical formula is M(OH)(O2C-C6H4-CO2), 

in which M stands for either Al3+ [8]. This MOF is important in the field of gas adsorption [9, 10] and 

separation of organic compounds [11]. 

More recently a MOFs sub-family known as ZIFs (zeolitic imidazolate frameworks) has fascinated the 

scientific community. These materials own a zeolitic type structure given by their structure similarity with 

these inorganic compounds and possess even higher thermal stability. Their framework arises by the metallic 

node connected by imidazole derivatives with a tetrahedral environment [12]. 

The zinc 2-methylimidazolate [Zn(C4H5N2)2 or Zn(MeIm)2], zeolitic imidazolate framework ZIF-8 [13, 14] 

is commercially available, highly stable MOF that is receiving great interest fora diverse variety of 

applications. ZIF-8 is constructed from corner-sharing Zn(MeIm)4 tetrahedral units in which the 

MeIm-ligands bridge the Zn2+ ions to form a three-dimensional framework with the sodalite framework 

topology and a pore size of 3.4 Å. Separation of linear and branched alkanes, ethane/ethylene, hydrogen 

storage and carbon dioxide capture have been evaluated using ZIF-8 material [12, 15-17].  

From an environmental and energy perspective, purification and recovery of carbon dioxide from flue gas 

and natural gas are of great interest. CO2 is the main component of the greenhouse gases, and its 

accumulation in the environment is leading to global warming issues. Thus, the selective adsorption of CH4 

in the presence of other gas species, such as CO2, is a property of fundamental interest. Methane adsorption 

and selectivity in ZIFs have been studied both experimentally [18] and computationally [19] for pure gases 

and gas mixtures relevant in the context of natural gas separations. Experimental studies in ZIFs have 

involved measurements of adsorption isotherms [18], breakthrough curves [20], and membrane selectivity 

[21]. The understanding derived from these studies has been complemented by relevant investigations in 

other related metal-organic framework (MOF) systems, [22, 23] featuring data on the time-resolved uptake 

of methane and carbon dioxide [24] as well as neutron scattering to characterize CH4 and CO2 binding sites 

and occupations [25, 26]. The studies of ZIFs have shown that these frameworks can exhibit adsorption 
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selectivities and uptakes that exceed the performance of commercial adsorbents used for natural gas 

separation and that performance depends on several factors, including the choice of linker, functionalization, 

pore size, and metal ion. 

In this work, a gravimetrical adsorption study of CH4 and CO2 using ZIF-8 and Al-BDC MOFs is exposed. 

Adsorption and desorption isotherms at 25, 50 and 75°C up to 40 bar of pressure were obtained. From the 

recorded isotherms the adsorption heats (Qd) were estimated using the Clausius Clapeyron’s equation. The 

Toth model was used to fit the experimental isotherms in order to obtain qm (maximum adsorption capacity) 

and t (parameter related to energetical heterogeneity of the surface). 

2. Materials and Methods 

2.1 Materials 

ZIF-8 and Al-BDC were supplied by Sigma-Aldrich (commercialized as Basolite Z1200 and Basolite 

A100; Cat. Nr.59061-53-9 and Cat. Nr. 185361, respectively). Table 1 summarizes some textural properties 

of both materials: specific surface area and micropore volume [27, 28]. 

Table 1. Textural properties. 

 Specific Surface area and micropore volume  

Material Surface area 

(m2.g-1) 

Micropore volume 

(cm3.g-1) 

Reference 

Al-BDC 1100 0.350 [27] 

ZIF-8 1813 0.663 [28] 

 

2.2 Methods 
Scanning electron microscope (SEM) observation was conducted on a Philips CM 200 Supertwin-DX4, 

from samples dispersed in ethanol. A drop of the suspension was put on a carbon coated Cugrid (300 mesh). 

The conditions of sample regeneration and thermal stability were evaluated from thermogravimetric 

curves (TG) recorded using a thermal analyzer METTLER TOLEDO, model TGA/DSC 1 with software 

STARe version 10.00 from METTLER TOLEDO STARe system. The experiments were carried out in N2 at 

flow of 50 ml.min-1 with a rate of 10ºC.min-1. 

CH4 and CO2 adsorption experiments were carried out using a magnetic suspension balance Rubotherm 

(Bochum, Germany). Adsorption measurements were performed at 25, 50 and 75°C until 40 bar. Prior to 
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each measurement samples were outgassed 200ºC (heating rate of 2ºC.min-1) under vacuum (10-3 bar). 

Experimental data were obtained gravimetrically so it was necessary to take into account the effects of 

buoyancy during the experiments. For a given pressure P of surrounding gas, the adsorbed phase 

concentration in excess could be obtained according to (Eq. 1): 

 mex(P,T) = Δm (P,T) + (Vb+Vs)*ρ(P,T) (1) 

where: 

mex: excess mass amount adsorbed (g.g-1 of sample) 

Δm: mass difference recorded by the equipment (g.g-1 of sample) 

Vb: specific volume of the balance suspended components (cm3.g-1 of sample) 

Vs: specific volume of the solid sample (cm3.g-1 of sample) 

ρ: gas density (g.cm-3) 

P: pressure (bar) 

T: temperature (K) 

The absolute mass was estimated using the standard procedure reported by Myers et al. (Eq. 2) [29]. 

 𝑛𝑎 = 𝑛𝑒 + 𝜌𝑣𝑝 (2) 

where νp = Vmp/ms is the specific micropore volume (cm3.g-1) of the solid. 

Isosteric heats of adsorption were obtained using the Clausius Clapeyron’s equation (Eq. 3): 

 𝑑(𝑙𝑛𝑃)/𝑑𝑇 =  ∆𝐻/𝑅𝑇2 (3) 

Experimental isotherms were fitted to the Toth model as (Eq. 4) [30]. 

  𝑞 = 𝑞𝑚 
𝑏𝑃

(1+(𝑏𝑃)𝑡)
1
𝑡�
 (4) 

where: 

qm: maximum adsorption capacity 

b: parameter related to the affinity of the pair adsorbate-adsorbent  

t: parameter related to energetical heterogeneity of the surface 

Binary isotherms were predicted by the Toth extended model (Eq 5) 

 𝑞𝑖 = 𝑞𝑚𝑎𝑥,𝑖𝑏𝑖𝑃𝑖

(1+∑ (𝑏𝑖𝑃𝑖)𝑡𝑖
𝑗
𝑖=1 )

1
𝑡𝑖�

 (5) 
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The efficiency of carbon dioxide separation for these MOFs was estimated by the selectivity of CO2 over 

CH4 considering a scenario of 70% CH4 and 30 % CO2 (v/v). Selectivity was calculated from the ratios of 

mole fractions in the gas phase and in the adsorbed phase at equilibrium, as shown in (Eq. 6): 

 𝑆𝑖/𝑗 = 𝑞𝑖 𝑚𝑖𝑥𝑡
𝑞𝑗 𝑚𝑖𝑥𝑡

∗ 𝑃𝑗
𝑃𝑖

 (6) 

3. Results and Discussion 

SEM images of the ZIF-8 and Al-BDC solids morphology are showed in Figure 1 (a) and (b), respectively. 

SEM study revealed the presence of clusters of spherical and uniform particles of size between 180-240 nm 

in the case of ZIF-8 sample, (Figure 1a). However, the Al-BDC material showed an irregular morphology of 

different size particles, (Figure 1b).  

 

 

Fig. 1:SEM micrographs (a): ZIF-8 and (b): Al-BDC. 

Thermal stability of ZIF-8 and Al-BDC was evaluated by thermogravimetric analysis (TGA). The weight 

loss percent of both materials as a function of the temperature is shown in Figure 2. For temperatures 

between 40-230°C; 230-420°C and 420-470°C continuous weight losses of 6 %, 6 % and 54 %,respectively, 

were observed for the ZIF-8 sample, which is attributed to water and residual solvent used in the synthesis 

process. On the other hand, the Al-BDC sample showed just two individual weight losses of 11 % and 49 %, 

within temperatures between 30-536°C and 536-677°C, respectively, attributed to the removal of water and 

the solvents used in the synthesis. 

(a) (b) 
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Fig. 2: Thermogravimetric curves of ZIF-8 and Al-BDC. 

CO2 and CH4 single component adsorption and desorption isotherms at 25, 50 and 75ºC are shown in 

Figure 3 in the range of pressures between 0-40 bars. As expected, both samples exhibited preferential 

adsorption for CO2 in relation to CH4 over the whole pressure range for all measured temperatures. ZIF-8 

sample exhibited the highest adsorption capacity of CO2 under the studied conditions (8.5 mmol.g-1 for CO2 

and 4.7 mmol.g-1for CH4 at 25ºC and 40 bar). Additionally, it was appreciated that the ZIF-8 presented a 

higher CO2 adsorption capacity than that observed for the Al-BDC sample (5 mmol.g-1 of CO2 under the 

same conditions). This higher CO2 capture capacity may be attributed to the combination of high specific 

surface area and micropore volume. Similar behavior has been reported in ZIF-69 and ZIF-76 at 30ºC [31]. 

All isotherms do not present hysteresis loop indicating the reversibility of process. 
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Fig. 3: Single component adsorption isotherms of A: CH4, B: CO2 in ZIF-8 and C: CH4, D: CO2 in Al-DBC at 25, 50 

and 75°C until 40 bar of pressure. 

The Toth parameters and the isosteric heats of adsorption for both samples are summarized in Table 2 and 

Figure 4. The parameter b (Eq. 4) indicates how strongly the adsorbate molecule is attracted onto adsorbent 

surface [30]. As expected, higher b values were obtained for CO2 in comparison with CH4. This behavior 

could be ascribed to the presence of a quadrupolar moment in the CO2 molecule which could interact with 

the electric field gradient inside the pores and cavities. The CH4 molecule presents octupolar moment which 

is smaller in magnitude than the quadrupolar moment of the CO2 molecule (QzzCO2 = 5.9x10-26 esu cm2, ΩCH4 

= 6 x 10-34 esu cm3) [32]. For each sample, it can also be observed that higher values for qmax are obtained for 

CO2. The isosteric heats of adsorption for CO2 were higher than those for CH4 in the two studied samples; 

and they were higher in the ZIF-8 material. These results could be related to the higher specific surface area 

as well as the higher micropore volume in this material. A lower heat of adsorption usually means an easier 
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regeneration and from the observed behavior, one can conclude that these MOFs have not only high capacity 

and apparent selectivity for CO2 but also potentially a good regenerability. 

Table 2. Parameters of Toth isotherm model, calculated selectivity (CO2/CH4) and isosteric heats of adsorption for 

ZIF-8 and Al-BDC MOFs. 

Sample (Vmp 

(cm3.g-1)) 
 Toth parameters  

Selectivity 

( mol CO2/mol 

CH4)a 

Adsorption 

heats 

ZIF-8 (0.58) T(ºC) qm(mmol.g-1) b (bar-1) t r2  Qd(kJ.mol-1) 

CO2 

25 14.31 0.065 0.98 0.96543 2.21 

-19.5 50 14.02 0.040 0.98 0.97581 2.11 

75 13.91 0.024 0.98 0.99012 1.71 

CH4 

25 9.98 0.043 0.93 0.98991  

-17.0 50 9.02 0.030 0.91 0.98753  

75 8.01 0.025 0.90 0.98021  

Al-BDC(0.325) T(ºC) qm(mmol.g-1) b (bar-1) t r2  Qd(kJ.mol-1) 

CO2 

25 15.32 0.101 0.57 0.94565 2.33 

-15.0 50 13.21 0.094 0.57 0.95871 2.92 

75 11.41 0.093 0.57 0.97244 3.68 

CH4 

25 5.17 0.084 1.00 0.99454  

-13.5 50 5.04 0.058 1.00 0.99956  

75 5.01 0.041 1.00 0.99745  

a: average values calculated in the pressure range from 0.1 to 30 bar 
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Fig. 4: Representation of Toth model for the obtained isotherms of CH4 and CO2 adsorbates in ZIF-8 and Al-BDC 

MOFs. A: CH4 in ZIF-8, B: CO2 in ZIF-8, C: CH4 in Al-BDC and D: CO2 in Al-BDC. 

From the fit of the Toth model, several mixture isotherms were simulated at different temperatures (Figure 

5). From this, binary gas equilibrium adsorption isotherms were obtained at 25, 50 and 75°C for an ideal gas 

natural composition (30% CO2 and 70% CH4). The aim of this study is to check if these materials have the 

same trend when the mixture evolves towards higher temperatures. Al-BDC and ZIF-8 samples showed, as 

expected, a decrease in the gravimetric uptake as the temperature increases, especially in the case of ZIF-8. 

In terms of selectivity, the Toth extended model predicts for ZIF-8 a decreasing selectivity as temperature 

increases while for the Al-BDC material this behavior is not observed, the selectivity increases as the 

temperature increases. The highest CO2 affinity of this MOF balances the loss of CO2 capacity when the 

temperature increases, remaining a high CO2/CH4 selectivity and even improves it. 
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Fig 5: CO2/CH4 (30/70 v/v) binary isotherms predicted by Toth Extended model for A: ZIF-8 and B: Al-BDC. 

CO2/CH4 selectivity values are also plotted. 

4. Conclusion 

CH4 and CO2 adsorption at 25, 50 and 75°C up to 40 bar of pressure were carried out using Al-BDC and 

ZIF-8 MOFs as adsorbents. Both materials showed optimal levels of adsorption; therefore the two evaluated 

adsorbents seem to be attractive for CH4 and CO2 adsorption. However ZIF-8 exhibited higher CO2 capture 

capacity under the studied conditions. This fact may be attributed to the combination of high specific surface 

area and micropore volume. Experimental isotherms were fitted to the Toth model from which higher b 

values were obtained for CO2 in comparison with CH4. Since the b parameter indicates how strongly the 

adsorbate molecule is attracted onto the adsorbent surface this could be related to the presence of a 

quadrupolar moment in the CO2 molecule which would interact more strongly with the electric field gradient 

inside the pores and cavities. 
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