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Abstract

We report the potential-dependent interactions of trimesic acid with Cu sur-

faces in EtOH. CV experiments and electrochemical surface-enhanced Raman

spectroscopy show the presence of an adsorbed trimesic acid layer on Cu at

potentials lower than 0 V vs Cu. The BTC coverage increases as the po-

tential increases, reaching a maximum at 0 V. Based on molecular dynamics

simulations, we report adsorption geometries and possible structures of the

organic adlayer. We find that, depending on the crystal facet, trimesic acid

adsorbs either flat or with one or two of the carboxyl groups facing the metal
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surface. At higher coverages, a multi-layer forms that is composed mostly

of flat-lying trimesic acid molecules. Increasing the potential beyond 0 V

activates the Cu-adsorbate interface in such a way that under oxidation of

Cu to Cu2+, a 3-D metal-organic framework forms directly on the electrode

surface.

Keywords: metal-organic frameworks, self-assembled monolayers, Cu

UPD, organic electrolytes

1. Introduction

Organic molecules with higher order symmetry and surface-active func-

tionalities have attracted significant attention as building units for molecular

networks on all kinds of substrates.[1, 2, 3, 4] Molecule-metal interactions are

of particular interest as they promise possible applications in self-assembly

driven surface patterning [5, 6, 7] or electronic-state engineering of the under-

lying metal.[8, 9, 10] Trimesic Acid (1,3,5-benzenetricarboxylic acid, BTC)

has been the poster child for the study of specific interactions between coinage

metals and organic acids. The behavior of BTC, especially on single crys-

tal Au surfaces, has been investigated with regard to changes in monolayer

structure at different surface coverages [11] or different temperatures under

UHV conditions.[12] At the solid-liquid interface, BTC has been investigated

as building block for 2-D porous networks, for example, on highly ordered

pyrolytic graphite that can host molecules in its pores.[13, 14]

BTC is also used as linker to build hybrid metal-organic frameworks

(MOF) such as CuBTC (HKUST-1)[15], MoBTC (TUDMOF-1)[16] or ZnBTC.[17]

Some of these structures are accessible through electrochemical synthesis
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routes in an organic solvent through oxidation of a metal substrate in a solu-

tion of BTC.[18] CuBTC is of special interest here since it is one of the few

electrochemically grown MOFs that form directly on electrode surface, as

opposed to in the bulk-solution phase.[19] While some studies on BTC-metal

interactions in aqueous electrolytes at different electrochemical potentials do

exist,[20, 21] little is still known about the interaction of BTC with metal sur-

faces in organic solvents as commonly employed in MOF synthesis. Moreover,

the potential-dependent metal-BTC interaction and its possible influence on

the resulting framework properties, such as its adhesion or crystal orientation

with respect to the surface, are unknown. Such knowledge would provide an

important step toward potential-tuned growth of functional MOF materials.

The electronic structure of the metal electrode can easily be controlled

through the applied potential in a standard three-electrode electrochemi-

cal setup. For coinage metals, additional vibrational spectroscopic informa-

tion about the potential-dependent processes at the metal-adsorbate inter-

face can be gathered with surface-enhanced Raman spectroscopy.[22] The

combination of electrochemistry and surface-enhanced Raman spectroscopy

(EC-SERS) has been extensively used to study metal-adsorbate interactions

at solid/liquid interfaces.[23, 24]

We set out to investigate the potential-dependent Cu-BTC interactions in

EtOH. Using Au(111) as a substrate for electrochemical investigation of Cu

(underpotential-) deposition and oxidation, we performed cyclic voltammetry

(CV) to observe the effect of BTC on the energetics of Cu electrochemistry

in EtOH (Figure 1 a)). We complement our findings with EC-SERS exper-

iments performed on polycrystalline Cu to obtain in-situ information about
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the potential-dependent adsorption characteristics of BTC on Cu. Our ex-

perimental findings are expanded further by molecular dynamics simulations

to gain structural information about the Cu-BTC interface. Finally, we spec-

troscopically observe the potential-triggered transition of BTC from a surface

adsorbate into an integral building block of a 3D MOF (Figure 1 b)).

E << 0 V

Cu2+

E > 0.5 V

O

OH

O

OH

HO O

BTC

E   0 V

BTC

BTC

E > 0 VE   0 V<

<
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Au(111)

Cu

CuBTC

Figure 1: a) Schematic representation of the CV experiments on Au(111). Dissolved Cu

ions are reduced and deposited at negative potentials and removed at positive potentials.

b) Representation of the EC-SERS experiments of potential-dependent BTC-Cu interac-

tion. Below 0 V vs Cu, adsorption of BTC takes place while above 0 V vs Cu, BTC and

Cu form CuBTC MOF crystals.

2. Experimental details

2.1. Materials

EtOH (G CHROMASOLV, 99.9 %), Cu nitrate hemipentahydrate and

methyltributylammonium methylsulfate (≥ 95%) were received from Sigma

Aldrich. BTC (≥ 98%) was received from Santa Cruz Biotechnology. All

chemicals were used without further purification. Polycrystalline Cu elec-

trodes (99.99 %) were received from GAMETEC Analysentechnik. The
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Au(111) single crystal was obtained from small single crystal beads that

were oriented, cut and polished by Clavilier’s method.[25, 26] The bead was

produced by using a very small flame from a hand torch (propane-oxygen)

to melt a Au wire and slowly cooling the melted bead.[27]

2.2. Methods

Electrochemical measurements on Au(111) were performed using a μ-

Autolab III potentiostat (Eco-Chemie, Utrecht, The Netherlands) in the

current-integration mode. A Cu wire polished with fine-grit polishing pa-

per prior to immersion in the electrolyte was used as a reference electrode.

Flame-annealed Au wire was used a counter electrode. All glassware was

previously immersed in 40 % nitric acid over night and boiled in ultrapure

water (18.8 MΩ) twice. All potentials are reported versus Cu.

The Au(111) working electrode was flame annealed before cooling in the

Argon saturated atmosphere over the degassed electrolyte. Degassing was

performed for at least 15 minutes. The single crystal was immersed at a

potential of 0.6 V vs Cu and experiments were performed in the hanging-

meniscus configuration. The supporting electrolyte was 10 g/L methyl-

tributylammonium methylsulfate (MTBS) in EtOH. Experiments in Cu2+

ion containing solution contained 0.67 mM Cu(NO3)2 x 2.5 H2O. If BTC was

part of the electrolyte, the concentration was 75 mM. After every experiment

the Au electrode was kept at a potential of 0.5 V for several minutes to re-

move residual Cu on the surface. The electrode was then cleaned with 40%

nitric acid, copious amounts of ultrapure water and finally flame-annealed

before storage.
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Raman measurements were conducted using a home-built electrochemical

Raman cell (Kel-F) designed to seamlessly exchange the electrolyte through

teflon tubings. The counter- and reference-electrodes were Pt wire. The

potential of the Pt-electrode used during the Raman experiments is 0.1 V

vs Cu, and the potentials of the Raman experiments have been converted

accordingly. The cell was cleaned in caroic acid and boiled three times with

ultrapure water prior to each experiment. The Raman set-up is homebuilt

with a 35 mW 633 nm HeNe cw-laser as excitation source. The spectral res-

olution of our setup is 1.65 cm−1.[28] The maximum of the surface plasmon-

resonance of Cu is located at ca. 573 nm (2.163 eV).[29] Due to the short

range of the plasmon enhancement effect, the collected signal stems from

the Cu-adsorbate interface and inherently makes the experiment insensitive

to the bulk electrolyte.[30] Signal collection was performed in backscattering

by a long working-distance air objective (Olympus LMPlan FL N, 50x, NA

0.5) parallel to the sample normal. The laser power at the sample was 2

mW. Exposure times for the spectra were 10 seconds. A full spectrum was

taken every 40 seconds. All reported spectra are background-corrected with

an asymmetric least-squares algorithm,[31] normalized to the C-C stretch

vibration band of EtOH at 882 cm−1 and smoothed with a Savitzky-Golay

filter. The background correction was performed in Matlab, all other data

evaluation steps were performed with self-written Python code. Potential-

dependent spectra are averages of 7 to 10 spectra. Time-series spectra are

not averaged. Spikes from cosmic rays were removed by hand.

For the in-situ Raman measurements the polycrystalline Cu working elec-

trode was cleaned with 25 % hydrochloric acid, rinsed with copious amounts
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of ultrapure water and finally rinsed with EtOH prior to use. The electrolyte

consisted of 10 g/L MTBS in 96 % EtOH / 4 % water and optionally 150 mM

BTC as indicated. The cell was always first filled with pure MTBS-solution

to perform a blank measurement. The electrode was afterwards kept at a con-

stant potential of -0.4 V vs Cu while the electrolyte was exchanged to BTC

containing one by hydrostatic pressure, simultaneously monitored through

recording of the current. The electrolyte was flown for at least 15 minutes

before the measurement in BTC containing solution was started. Raman

measurements were started within 5 seconds of adjusting the potential to a

new value.

3. Computational methods

3.1. Model and simulation details

We studied the adsorption of a single BTC molecule at the interface

between EtOH and different Cu(100), (110) and (111) surfaces. The thickness

of the Cu slab is 1.25, 0.93 and 1.1 nm for the three Cu(100), (110) and

(111) surface models, respectively. The slab is solvated with an EtOH slab

of 6.7 nm thickness. The details of the simulation model for the three Cu

surfaces/EtOH interface with BTC molecules has been listed in Table 1,

including number of atoms, molecules and box sizes. The system was charge

neutral.

All molecular dynamics (MD) simulations have been performed using

GROMACS package (version 5.0.2). The simulations have been performed

using an atomistic force field. The force field is non-reactive and suitable

to describe physisorption. Periodic boundary conditions were applied in all
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Table 1: Model details of the Cu low index surfaces

Name of No. of No of No of Box dimensions

surface Cu atoms BTC molecules EtOH molecules X, Y, Z [in nm]

Cu(100) 5000 1 2643 6.4, 6.4, 8.1

Cu(110) 3600 1 2800 6.4, 6.4, 8.1

Cu(111) 3588 1 2246 5.8, 5.9, 8.0

Cu(100) 5000 180 2040 6.4, 6.4, 8.1

three directions. The maximum force on any atom was kept smaller than

100.0 kJ/(mol·nm) for minimization of the energy after solvation. Temper-

ature and pressure were kept constant at 300 K and 1 bar for all simula-

tions using the Berendsen thermostat.[32] and Parrinello-Rahman coupling

scheme.[33] A 2 fs time step was employed for all runs. Trajectories were

saved every 30 ps. All system equilibrations were first performed using the

NVT ensemble which has a constant number of particles (N), volume (V)

and temperature (T) for 10 ps, and later with NPT ensemble with constant

pressure (P) instead of volume. For the systems containing a single BTC

molecule, the MD production runs were extended over 50 ns. Longer runs

up to 500 ns were used for the higher-concentration models to obtain im-

proved statistical sampling.

3.2. Force-field parameters

The GROMOS96 53a6 force-field package was employed for all our MD

simulations.[34] Force-field parameters for BTC were generated by the Auto-

mated Topology Builder (ATB),[35] using bonded and van der Waals param-

eters from the GROMOS force-field. Lennard-Jones parameters for Cu metal
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Table 2: Lennard-Jones parameters of Cu

Name of surface C6 [kJ mol−1 nm6] C12 [10−5 kJ mol−1 nm12

Cu 0.0126466271 0.20266

surfaces from Heinz et. al. [36, 37, 38], optimized to reproduce adsorption

geometries and energies for organic and biomolecules at interfaces, were used

and are reported in Table 2.

4. Results

4.1. CV on Au(111)

We conducted CV experiments to investigate the influence of BTC on

the oxidation and reduction of Cu. As a substrate, we chose a Au(111)

single-crystal surface that can be recovered during the experiments, ensur-

ing maximal reproducibility of the results. In Figure 2, we show the CV

responses of the Au(111) electrode in different electrolytes at a scan rate of

20 mV/s: The supporting electrolyte (Grey triangles) is ethanolic methyl-

tributhylammonium methylsulfate (MTBS), a commonly used organic sup-

porting electrolyte. The corresponding CV shows no prominent features and

is governed solely by a small capacitive current in the range of -10 to 10

μA/cm2. A lack of strong current increase towards both ends of the CV

(0.7 V in anodic direction and -0.7 V in cathodic direction) shows that the

electrolyte is stable in the chosen potential window.

Upon adding Cu nitrate (Cu(NO3)2 x 2.5 H2O) to the electrolyte, the CV

changes significantly (Figure 2, black line). The scan was started at 0.5 V vs

Cu, a potential at which any Cu previously deposited on Au is oxidized so

9
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Figure 2: CV of Au(111) in supporting electrolyte with different additives. Grey triangles:

pure supporting electrolyte (10 g/L MTBS in EtOH). Black line: supporting electrolyte

+ 0.7 mM Cu nitrate hemipentahydrate. Grey line: supporting electrolyte + 0.7 mM Cu

nitrate hemipentahydrate + 75 mM BTC. Black circles: supporting electrolyte + 75 mM

BTC. v = 20 mV/s. The current densities for the pure supporting electrolyte and for the

supporting electrolyte + BTC have been multiplied by 5 for clearer display.

that the Au surface is a pristine Au(111). In the anodic direction, the current

is slightly positive and shows a small increase until the scan reversal point

at 0.7 V. The cathodic scan is featureless, with a slight negative slope of the

current with decreasing potential till about 0.24 V where a small cathodic

peak (A) is seen. Decreasing the potential further, a shoulder appears at -0.1

V (B). Below -0.15 V, the cathodic current increases slightly again, forming

a small current peak at around -0.25 V. The cathodic current density slightly

drops from -0.125 mA/cm3 at the peak to -0.115 mA/cm2 where it forms a

plateau C till reaching the lower vertex potential of -0.5 V. After the scan

reversal, the current stays constant at around -0.11 mA/cm2 until -0.2 V

where it starts increasing slowly, showing a slight hysteresis behavior in the
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potential range from -0.2 to -0.1 V. At -0.05 V, the current increase becomes

steeper (0.1 mA/cm2 increase per 50 mV), leading to the formation of an

anodic peak (D) at 0.11 V. At 0.32 V, a second anodic peak (A’) appears.

Introducing BTC into the solution leads to the CV shown as a grey line

in Figure 2. Starting at a potential of 0.5 V, at a Cu-free Au(111), the anodic

scan shows no features and only negligible anodic current until the first vertex

potential at 0.7 V. After the scan reversal, a cathodic peak (around peak A

for the BTC-free solution) with very low current (-17 μA/cm2 vs the baseline

of -7 μA) is detected at around 0.29 V. Scanning further, the trace stays flat

and slightly negative until the cathodic current starts to increase below -0.2

V. The cathodic current increases almost linearly below -0.4 V (C) till the

lower vertex potential of -0.7 V. The anodic scan shows a similar behavior,

with a slowly decreasing cathodic current until around -0.1 V where the trace

levels off. Just positive of 0 V, a large anodic peak begins (D) which reaches

its maximum current at 0.18 V. The anodic flank of the peak shows a slight

shoulder, and a second anodic peak (A’) appears at 0.37 V.

4.2. Electrochemical surface-enhanced Raman spectroscopy

To gain chemical insight into the interaction of BTC with the Cu sur-

face, we performed EC-SERS on polycrystalline Cu. The experiments were

performed in the potential region from -0.4 V to +0.1 V vs Cu, the area in

which we see the strongest differences in the CV experiments between BTC

containing and BTC-free solutions.

Figure 3 a) shows an overview of SER spectra taken at different poten-

tials in BTC containing electrolyte. For comparison, Figure 3 b) shows the

spectrum of Cu in the BTC-free supporting electrolyte MTBS in EtOH at
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Figure 3: a) SER spectra of polycrystalline Cu in 75 mM BTC + 10 g/L MTBS in EtOH

with increasing potential (bright to dark). b) SER spectrum of polycrystalline Cu in 10

g/L MTBS in EtOH at -0.2 V. All spectra are normalized to the C-C stretch mode of

ethanol at 882 cm−1.

-0.2 V. The spectrum of the supporting electrolyte does not change with the

applied potential in the chosen potential region between -0.4 and 0.1 V.

We will first generally describe the spectral regions that change with ap-

plied potential and then discuss specific bands in detail (Figures 4,5). There

are four areas in the spectrum that show changes in the SER response upon

BTC addition to the supporting electrolyte. Between 500 and 650 cm−1, we

observe two broad peaks in Figure 3 b) that are absent in the corresponding

spectrum in Figure 3 a). Upon addition of BTC, these bands disappear and

do not reappear at any potential under our chosen experimental conditions.

The second area of interest lies between 725 and 850 cm−1. Here, we observe

two bands with high intensity in BTC containing solution at 0.1 V. These

bands are undetectable in any spectra between -0.3 V and 0 V and only ap-

pear in BTC-containing solution. In the third area of interest between 1530
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Figure 4: a) Zoom of the SER spectra in the area from 1500 to 1660 cm−1 at different

potentials. Right: Results of a Lorentzian fit of the area from 1500 to 1660 cm−1: b) & c)

fitted peak maximum position of peaks A and B, respectively, as a function of potential.

d) maximum peak intensity of peaks A (grey, circles) and B (grey, squares) relative to the

respective peak’s maximum observed intensity in the given potential window. Peaks B in

the SER spectra at -0.4 V, -0.35 V and -0.3 V were fitted with a single Lorentzian since

peak A is absent in these spectra. Error bars are errors of the fits.

and 1610 cm−1, we observe new bands at all investigated potentials that are

not present in the spectrum of the pure supporting electrolyte. Lastly, at

1002 cm−1 we observe a new band in the presence of BTC. The intensity of

this band increases with more positive potentials. The changes in the area

from 1300 to 1400 cm−1 are artifacts of the background removal during data

processing. We will now first focus on the area between 1500 and 1650 cm−1

and describe the potential-dependent changes in the peak structure in depth.

Figure 4 a) shows a zoom of the EC-SER spectra obtained at different

potentials in the region from 1500 cm−1 to 1670 cm−1. The spectra show

two distinct peaks, one around 1560 cm−1 (peak A) that cannot be detected

at all potentials, and one around 1605 cm−1 (peak B) present in varying

intensity at all investigated potentials. The right side of Figure 4 shows the

peak positions and maximum peak intensities obtained from fitting the bands

13
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with two Lorentzian profiles. Figure 4 b) and c) show the positions of peak A

and B, respectively. Figure 4 d) shows the maximum peak intensities of both

peaks normalized to their respective maximum intensities in the measured

potential window. We observe that peak A cannot be distinguished from

the noise at potentials below -0.25 V. The position of peak A shows slight

variations between 1555 and 1553 cm−1 in the range from -0.25 V to 0 V.

After crossing the 0 V threshold, the peak red-shifts to 1541 cm−1 at 0.1

V. The general trend of the shift is opposite for peak B. The peak position

starts at 1605 cm−1 at -0.4 V and gradually red-shifts to 1601 cm−1 at 0.0

V. After crossing the threshold, it blue-shifts back to 1605 cm−1 at 0.1 V.

The shifts of the two peaks span a range of 14 and 4 cm−1 for peak A and B,

respectively, meaning that the position of peak A is more strongly affected

by the applied potential.

The change in peak intensity with varying potential shows the same trend

for both peaks. While peak A can only be distinguished above -0.3 V, both

peaks rise monotonously in intensity and reach their maximum intensities at

0 V. At 0.1 V, the peak intensities are significantly lower. The increase of

the peak intensity at more positive potentials is reversible in the sense that

changing the potential from -0.2 V to -0.1 V and back shows a reversible

increase and decrease in the signal (data not shown). We observe that for high

intensities (-0.1 V and 0 V in Figure 4, left), peak A has a shoulder around

1530 cm−1. We will discuss the presence of this shoulder later since for most

spectra, the shoulder cannot be distinguished from the noise. The spectra

below 0 V and at 0.1 V are stable over the time frame of the experiment (5

minutes). We do not show the fit results of an average spectrum at 0.05 V
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Figure 5: a) Zoom of the SER spectra in the areas from 725 to 860 cm−1 and from 1500 to

1670 cm−1 at different times after switching the potential to 0.05 V. Darker spectra were

taken at later times after the potential step. Right: fit results for peaks A and C. b) & c)

Fitted peak-maximum position of peaks A and C, respectively, at different times. d) Fitted

maximum peak intensities of peaks A (grey, circles) and C (triangles, black), normalized to

the respective peak’s maximum observed intensity in the experimental timeframe. Error

bars are errors of the fits.

here since the SERS response shows large changes over time which we will

describe in detail below.

While Figure 4 shows a significant change in the SERS response of BTC/Cu

after crossing a potential of 0 V, we now want to further investigate what

happens just above 0 V. Figure 5 a) shows the Raman signal evolving over

time at 0.05 V both in the previously explored area from 1550 to 1670 cm−1

as well as in the spectral region from 725 to 860 cm−1. A spectrum was taken

every 40 seconds. For clarity, only a selected number of spectra are shown

in the overview on the left. We can see that in the area from 725 to 860

cm−1, two peaks appear after 2 minutes and increase in intensity throughout

the experiment. Meanwhile in the higher wavenumber region, the previously

described peaks A and B change considerably.

Figure 5 b) shows the frequency shift of peak A in detail over time. The
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position of peak A shifts from 1555 cm−1 to 1540 cm−1 over the 10-minute

time period. The intensity of peak A (Figure 5 d), grey circles) shows a

slow decrease over time. The observed frequency shifts and intensity changes

of peak A reflect the transition from the previously discussed spectrum at

0 V to the final spectrum at 0.1 V (Figure 4). Figure 5 c) displays the

time-dependent position of peak C whose changes are within 1 cm−1. The

intensity of peak C (Figure 5 d), black triangles) increases at a similar rate

as the intensity of peak A decreases. In the beginning, peak C is not distin-

guishable from the noise, and only starts being visible after 80 seconds. The

intensity increases with time, albeit not monotonously. After 7 minutes, the

intensity stabilizes and shows no significant changes over the last 2 minutes

of the experiment. In fact, the whole spectrum shows only small changes

throughout the last two minutes of the experiment.

4.3. Molecular dynamics simulations

To gain insight into the adsorption geometry and surface structure of BTC

on Cu in EtOH, we performed MD simulations on the adsorption of BTC

on the most stable low index Cu surfaces, namely (100), (110) and (111).

The idea is to provide an atomistic description of the liquid structure at the

solid/electrolyte interface, taking into account both, temperature effects and

the explicit treatment of the solvent. MD simulations were carried out at

room temperature (300 K) and explicitly including a BTC/EtOH solution.

An overview of different binding configurations of a single BTC molecule

on Cu is reported in Figure 6. The configurations reported represent min-

ima in the energy surface in the presence of explicit (ethanol) solvent. On

all the three surfaces, BTC favorably binds to the Cu surface, however the
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Figure 6: Adsorption snapshots for a single BTC molecule on low-index Cu surfaces for

different adsorption geometries taken from MD simulations.

binding configurations and adsorption energies depend on the surface plane.

In particular, on Cu(111), adsorption in the flat configurations is the most

favorable. On Cu(100), flat and upright configurations have a similar binding

affinity, while on Cu(110) flat, upright and two legged upright configurations

are possible. The binding energies for all investigated cases are reported in

Table SI 1.

Increasing the concentration of BTC in the simulation box allows us to

investigate the ensemble structures that form when more BTC adsorbs on the

Cu(100) surface. In particular, here we discuss the case of a Cu(100) surface

in contact with a 1.12 M BTC in EtOH (bulk) solution, which corresponds

to 180 BTC molecules in the simulation box. Note that the actual interface

concentration can be higher, given the high propensity of BTC to adsorb on

the Cu surfaces. In Figure 7, a snapshot of the Cu/electrolyte interface from
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Figure 7: Adsorption structure on Cu(100) for a simulation containing 180 BTC molecules

in the EtOH phase. The inset shows a side view of the same structure. Blue and red are

the first and second layer of H3BTC molecules respectively starting from the Cu surface.

the MD trajectory is reported.

The first adsorbed layer on the Cu(100) surface is formed by both EtOH

and BTC molecules. This can be observed from the density profile reported

in Figure SI 3. 41% of the BTC molecules in this first layer adsorb flat

on the surface, with the molecular plane forming an angle smaller than 10

degrees with the surface plane. 32% of the molecules are found instead

in a standing upright configuration, with the molecular plane forming an

angle larger than 30 degrees with respect to surface plane. Interestingly, a

second well-structured layer of molecules is also observed. In this second

layer, most of the BTC molecules (60%) are found in flat configuration as
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well, with their molecular plane parallel to the Cu(100) plane. These BTC

molecules can interact either directly with the BTC molecules in the first

adsorbed layer or with the highly ordered layer of EtOH. Along the z direction

(direction normal to the surface), BTC and EtOH molecules are perfectly

commensurate, which favors the formation of a well-ordered layer at the

interface. Note the coinciding peak positions for BTC and EtOH density

along the z-direction in Figure SI 3.

5. Discussion

5.1. Potential-dependent adsorption behavior of BTC on Cu

Features B and C in the CVs of Cu nitrate in EtOH (Figure 2, black line)

concern the reduction of Cu and subsequent deposition on the Au surface,

with the shoulder B possibly being a prereduction of Cu2+ to Cu+. Peak D

corresponds to the oxidation of this Cu layer on the electrode (most likely

to Cu2+). The peak-pair A and A’ are the anodic and cathodic sides of

the same reaction, since peak A’ is absent in experiments that do not scan

below 0.3 V. Both features are also absent in experiments without Cu as

evident from the comparison with the CV in pure electrolyte (Figure 2, grey

triangles). It is therefore reasonable to conclude that the peaks belong to an

underpotential deposition (UPD) process of Cu on the Au electrode, similar

to what is observed in aqueous Cu salt solutions.[39] An observed deposition

potential of 0.24 V vs Cu closely matches the potential of 0.21 V vs Cu/Cu2+

previously observed in aqueous sulfuric acid solution.[40] It should be noted

that even after multiple scans, the first CV can be reproduced, meaning that

the Au(111) surface is free of residual Cu above 0.4 V. If Cu remained on
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the surface, we would expect changes in subsequent CVs.

The CV features described after introducing BTC into the solution (Fig-

ure 2, grey line) are similar to the ones that we observe in the solution that

does not contain BTC. Noteworthy is the absence of the shoulder B and

the changes in the deposition peak A of the Cu UPD at A. The small peak

observed around 0.3 V in cathodic scan direction where we expect to see the

deposition of the Cu UPD is also observed (albeit with lower current den-

sity) in solutions containing only BTC and no Cu (Figure 2, black circles).

The peak observed at 0.3 V could therefore either be the Cu UPD peak, a

peak from BTC (or an impurity in the BTC) or a combination of both. The

features C, D and A’ are assigned to the same phenomena as in BTC-free

solution, namely Cu bulk deposition, Cu bulk oxidation and the stripping of

the Cu UPD layer.

The comparison of the CVs recorded in presence and absence of BTC

reveals differences in the positions of peaks and their general shape. First,

the two peaks (D, A’) are shifted towards more positive potentials and peak

at lower current densities. The assigned UPD stripping peak A’ is found

48 mV higher in the BTC containing case while the Cu oxidation peak D is

shifted by +75 mV. The current corresponding to Cu deposition (C) increases

much more slowly in the presence of BTC and the marked plateau features

of the BTC-free CV are missing.

The presence of BTC causes an overpotential for both the deposition

of Cu, as indicated by the slower and delayed rise of the cathodic currents

at negative potentials, and the corresponding Cu oxidation, as evident by

the shift of peak D to more anodic potentials. The lower currents in all
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oxidation peaks can be explained by the lower amount of deposited Cu (due

to the lower deposition currents). Likely, the induced overpotential stems

from an adsorption of BTC on the Cu surface at potentials lower than 0

V. Adsorption of BTC to the surface below 0 V would explain the delayed

and slowed down deposition of Cu, since Cu electrodeposition is known to

be diffusion-limited[41] and BTC would act as a diffusion barrier for Cu2+

ions, effectively shielding the electrode from the deposition. In addition, after

Cu has been deposited, BTC can adsorb onto the Cu layer, stabilizing the

surface and therefore energetically hindering Cu oxidation. The shift in the

UPD stripping peak A’ can also be explained through Cu-BTC interactions,

assuming that at least part of the BTC is deprotonated upon adsorption. It

has been shown that anions that strongly interact with Cu2+ ions and Cu

can shift the CuUPD process to higher potentials.[42] The possible absence

of the UPD reduction peak A could be explained by an adsorption of BTC

to the Au surface at positive potentials, as has previously been reported for

the Au-aqueous electrolyte interface.[21]

The potential-dependent EC-SER spectra in Figure 3 confirm our hy-

pothesis of adsorbed BTC on the electrode surface. Peaks A and B are

assigned to the symmetric C-O2 stretch vibration and C-C ring vibrations of

BTC, respectively.[43] The increase in the band intensities of peaks A and B

reflects an increase in the amount of BTC at the electrode at more anodic

potentials. The peak at 1002 cm−1, which is assigned to the ring breathing

motion of BTC,[20] shows the same behavior as the 1550 and 1604 cm−1

bands with increasing intensity at higher potentials (data not shown in de-

tail). From the observed increase in Raman band intensities between 1500
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and 1610 cm−1 with higher potentials, we conclude that more BTC adsorbs

on the Cu surface at more positive potentials. Our observation of an in-

crease in the surface coverage of BTC at more positive potentials matches

previous reports for the Au(111)-electrolyte interface. In aqueous solution,

BTC switches from being physisorbed to Au at lower potentials to being

chemisorbed at higher potentials.[44] This change coincides with a gradual

increase in the surface coverage of adsorbed BTC at more positive potentials.

In our system, according to the EC-SERS data, the BTC surface coverage

is highest in the potential range from -0.05 V to 0 V. Comparing these po-

tentials of maximum BTC coverage to the steep increase in anodic current

in the CVs, we see that in BTC-free solution at -0.05 V, Cu oxidation al-

ready starts. More importantly, in BTC-free solution, there does not seem

to be a potential at which neither oxidation nor deposition of Cu take place.

The current trace goes from a slightly decreasing cathodic current just be-

low -0.05 V to a quickly increasing anodic current without a period of low

electrochemical activity. In BTC containing solution, however, the change in

anodic current is more gradual and the current trace is almost flat around

-0.05 V. Only after crossing 0 V, we observe a significant increase in the slope

of the current trace. This coincides with the potential range of maximum

BTC coverage as observed with EC-SERS at -0.05 and 0 V. We thus conclude

that the adsorbed BTC stabilizes the surface and induces an overpotential

for Cu oxidation. This is, to our knowledge, the first time that the adsorp-

tion of BTC on Cu has been shown in organic solution. To complement our

experimental findings, we use MD simulations to gather detailed structural

information about the BTC adlayer formation on Cu.
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5.2. Adlayer structure from molecular dynamics simulations

The MD simulations reveal multiple possible adsorption geometries of

BTC on Cu in EtOH (Figure 6). So far most of the research has concentrated

on UHV conditions.[11, 12] In such conditions, BTC is known to assemble in

diverse supramolecular structures due to the trigonal exodentate function-

ality, and the most common motif identified therein is a planar honeycomb

network structure formed through the dimerization of the carboxyl groups.

On Cu(100) at low temperatures ( ≤ 280 K), flat-lying BTC molecules form

islands where the honeycomb motif prevails. As the temperature increases

(300 K), stripe-shaped supramolecular structures are formed.[45] This change

is associated with a deprotonation of the BTC molecules, leading to carboxy-

late formation and an upright bonding geometry. These results demonstrate

how adsorbate-substrate interactions can be exploited to drive the transfor-

mation of supramolecular arrangements at surfaces.

The presence of the solvent changes this described picture since the sol-

vent can strongly interact with BTC through, for example, hydrogen bonds.

We find that depending on the exposed crystal facet, BTC can either lie

flat on the surface, or stand upright with one or two of the carboxyl groups

directly binding to the surface. These multiple possible adsorption geome-

tries yield an explanation for the SER spectral shoulder we see towards the

lower energy side of the vasymCO2 peak at 1550 cm−1 (Figure 4 a)). Differ-

ent adsorption geometries will give different SERS responses. The vibrations

that are expected to be most affected are the ones involving the coordinating

atoms, in this case the carboxyl group. A change in adsorption geometry has

been observed for BTC at the Au(111)-aqueous electrolyte interface where
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the structure of the BTC adlayer changes with the applied potential.[21] The

molecules ’stand up’ as their surface coverage increases with increasing po-

tentials. Both flat as well as upright configurations are found in the MD

simulations. The structures obtained in our study can be used as starting

point for more elaborate calculations, also including the electronic structure

e.g. at the Density Functional Theory level. Currently, we cannot directly

link the SER spectra to the MD simulation results and thus we cannot com-

ment on possible adsorption-geometry changes with the applied potential

in our experiments. Calculations of SER spectra from the MD simulation

snapshots and their detailed comparison to experiment are underway in our

laboratory.

5.3. Potential-triggered transformation of the BTC adlayer to CuBTC MOF

The EC-SERS response (Figure 5) allows us to follow the potential-

triggered transformation of the BTC adlayer into a crystalline 3D MOF

structure in situ. Increasing the potential apparently activates the BTC/Cu

interface to form a new hybrid (MOF) structure where the metal ion-molecule

complex is the elemental building unit as identified by the bands at 740

and 826 cm−1 assigned to characteristic C-H stretch vibrations of CuBTC

MOF.[43, 46]. The similar rates in band intensity decrease at 1550 cm−1

(adsorbed BTC) and increase at 826 cm−1 (BTC in CuBTC MOF) indicate

that the MOF is formed at roughly the same rate as the adsorbed BTC is

consumed. After 10 minutes reaction time at 0.05 V, peaks A and B per-

fectly reflect the Raman response of pure CuBTC.[47] The red-shift of the

vasymC-O2 band during the synthesis of CuBTC can be explained through

the influence that coordinated Cu atoms and/or ions have on the C-O2 bond
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strength. As in the Cu in CuBTC is in oxidation state +2, the coordination

of BTC to Cu ions pulls electron density out of the C-O2 bonds. On the Cu

electrode surface, BTC coordinates to metallic Cu(0) where the electron pull

is much weaker.

It should be noted that we do not detect the SER signature of Cu2O in

BTC containing solution. We observe the broad 515 and 615 cm−1 bands of

Cu2O in the BTC-free supporting electrolyte (Figure 2 b)), but upon flushing

the cell with BTC containing electrolyte, the Cu2O signature disappears.

Likely, the slightly acidic linker helps to dissolve the Cu2O, forming either

Cu or Cu2+ depending on the applied potential, and water. Previously we

have shown that Cu2O is a necessary intermediate in the electrochemical

synthesis of CuBTC.[47] The new findings presented here suggest that the

Cu2O intermediate is very short lived in the presence of BTC.

While the electrochemical synthesis of CuBTC MOF in EtOH has been

described before,[48] this is to our knowledge the first time spectroscopic

insight into the electrochemical interface during the synthesis is presented.

Additionally, for the first time, a BTC-metal interaction prior to the oxida-

tion of Cu is reported for this system. The adsorption of BTC at Cu prior to

MOF formation could be the explanation for the commonly observed strong

adhesion of MOF to the Cu electrode, a fairly unique property of electrosyn-

thesized CuBTC compared to other electrochemically produced MOFs.[19]

Identifying metal-linker combinations where a strong adsorption of the linker

to the surface of the metal is to be expected could prove to be a valuable

starting point in the ongoing search for new, surface-anchored electrosynthe-

sized MOFs.
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6. Conclusion

The potential-dependent interaction of BTC with Cu in EtOH has been

investigated. CV shows an energetic delay of Cu oxidation in the presence of

BTC, suggesting the formation of a molecular adlayer of BTC at the metal

surface. EC-SERS confirms the existence of adsorbed BTC on Cu below 0 V

vs Cu. The surface coverage of the adsorbed BTC layer is dependent on the

applied potential where more cathodic potentials lead to a higher amount

of adsorbed BTC. Using MD simulations, we could unveil three different

possible adsorption geometries of single BTC molecules on Cu, namely flat,

upright with one coordinated carboxyl group and upright with two coordi-

nated carboxyl groups, depending on the exposed Cu basal plane. At high

BTC concentration, the MD simulations predict a multi-layered structure

of BTC on the surface with both flat as well as upright molecules present.

Above 0 V, we observe a slow transformation within ten minutes of BTC

adsorbed at metallic Cu(O) to complexed BTC-Cu(2+) in form of CuBTC

MOF.
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