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ABSTRACT
We revisit the various approximations employed to study the long-term evolution of the
magnetic field in neutron star cores and discuss their limitations and possible improvements.
A recent controversy on the correct form of the induction equation and the relevant evolution
time-scale in superconducting neutron star cores is addressed and clarified. We show that
this ambiguity in the estimation of time-scales arises as a consequence of nominally large
terms that appear in the induction equation, but which are, in fact, mostly irrotational. This
subtlety leads to a discrepancy by many orders of magnitude when velocity fields are absent
or ignored. Even when internal velocity fields are accounted for, only the solenoidal part of
the electric field contributes to the induction equation, which can be substantially smaller than
the irrotational part. We also argue that stationary velocity fields must be incorporated in the
slow evolution of the magnetic field as the next level of approximation.
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1 IN T RO D U C T I O N

The evolution of the magnetic field in the interior of neutron stars is
a complex and controversial research area, with several important
open issues. Part of the difficulty stems from the multifluid character
of the problem, with at least three different species (protons, neu-
trons and electrons) that are not necessarily coupled in some range
of temperatures and time-scales of interest. This makes necessary
a multifluid dynamics approach to the problem. In spite of recent
relevant advances in the field, many important aspects are still under
debate. For instance, we still ignore the ‘equilibrium’ configuration
that emerges from the star formation after a core-collapse, and how
the subsequent long-term evolution of the magnetic field in the core
proceeds.

The complex multifluid physics becomes particularly difficult
when protons/neutrons in the core undergo a transition to a su-
perconducting/superfluid state, further decoupling the components.
Recently, there has been a number or relevant papers aiming
at improving the description and understanding of non-trivial
interactions between the various particle species. Glampedakis,
Andersson & Samuelsson (2011) derived the magnetohydrody-
namic (MHD) equations for superfluid and type II superconduct-
ing neutron stars, by using a Newtonian variational formalism and
clarifying several aspects of these systems. Their equations were
consistent with those determined by Mendell & Lindblom (1991)
and Mendell (1991a,b), and they recognized the role of the London
magnetic field in the superconducting equivalent to Ampèr’s law.
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This formalism has been later applied by Graber et al. (2015) and
Elfritz et al. (2016) to study the induction equation of supercon-
ducting neutron stars and to estimate the (very long) time-scales
of the magnetic field evolution. More recently, Gusakov (2016)
and Gusakov & Dommes (2016) have derived and further extended
the Hall-Vinen-Bekarevich-Khalatnikov (HVBK) formalism origi-
nally derived to describe the dynamics of superfluid helium (Hall &
Vinen 1956; Hall 1960; Bekarevich & Khalatnikov 1961;
Khalatnikov 2000) to general relativity. This formalism allows us to
study superfluid and type I and type II superconducting neutron stars
with thermal effects. The correct implementation of the buoyancy
effect has also been discussed in Dommes & Gusakov (2017).

Generally, the various formalisms provide equivalent descrip-
tions of the physical system, and they agree on the most part of
the equations, but there are also discrepancies. The main contro-
versy, which appeared recently, concerns the form of the induction
equation in superconducting neutron stars. The electric field deter-
mined by Gusakov & Dommes (2016) has an extra contribution of
the fluxtube tension that is absent in the derivation of Glampedakis
et al. (2011) and Graber et al. (2015). As further emphasized in
Dommes & Gusakov (2017), this leads to a difference of several
orders of magnitude in the estimated evolution time-scales.

The paradox is that for type II superconducting stars the equa-
tions, which have been derived by these two groups, are completely
equivalent with the only exception of the induction equation. This
issue, as we will show later, is due to the different assumptions the
authors have made to find the electric field, in particular, neglecting
the inertial terms in the momentum and mass conservation equa-
tions to estimate the long-term time-scales. In this paper we revisit
these assumptions, discuss their limitations, and propose how to
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improve the current calculations and to reconcile apparently op-
posed results. We will proceed gradually, from the simplest case to
the most complex, showing that the basic math and physics assump-
tions are analogous in a simple case and a complex superconducting
liquid.

The paper is organized as follows. In Section 2, we describe the
case of normal matter. We start by considering an electron–proton
plasma, excluding neutrons for clarity, and then go on to discuss
the more general case when neutrons are included as well. The
superconducting case is treated in Section 3. Finally, Section 4 is
dedicated to the concluding remarks.

2 MAG N E T I C FI E L D E VO L U T I O N IN
N O R M A L M AT T E R

2.1 Magnetized two-component plasma

We begin by studying the simplest case. Consider the dynamical
equations for a two-fluid system composed of two charged compo-
nents. These two components are denoted with the letters p (pos-
itively charged with charge +e) and e (negatively charged with
charge −e). For simplicity, we also assume that each component
individually obeys a barotropic equation of state. In addition to the
number (and mass) conservation for each fluid,

∂nx

∂t
+ ∇ · (nxvx) = 0, (1)

the Euler equations for the two species can be written in the follow-
ing form,

ρp

(
∂vp

∂t
+ vp · ∇vp

)
+ np∇μp + ρp∇�

= Fpe + enp

(
E + vp

c
× B

)
, (2)

ρe

(
∂ve

∂t
+ ve · ∇ve

)
+ ne∇μe + ρe∇�

= Fep − ene

(
E + ve

c
× B

)
. (3)

Here ρx, nx, μx and vx are the mass density, number density, chem-
ical potential and velocity of the x-fluid, respectively (x = e, p),
E and B are the electric and magnetic fields measured in the
laboratory frame and � is the gravitational potential. The quan-
tity Fxy is a drag force between the two fluids of the form
Fxy = −mxnx

τxy
(vx − vy) = −Fyx, with τxy being relaxation times

(note that x �= y).
Adding equations (2) and (3) one obtains an equation similar to

the Euler equation for a magnetized fluid. Assuming local charge
neutrality (np = ne ≡ nc) and dropping the inertial terms, this reduces
to the magnetohydrostatic equilibrium equation

nc∇
(
μp + μe

) + ρc∇� = FL, (4)

where ρc = ρp + ρe = (mp + me)nc is the total mass density of the
charged fluid and the Lorentz force is given by

FL = j × B
c

. (5)

The current j is related to the relative velocity between the two
charged fluids u ≡ vp − ve through j = encu. To close the system
one has to solve the Poisson equation to determine � and can specify
the current in terms of the magnetic field by Ampère’s law,

j = c

4π
∇ × B. (6)

We can combine the chemical potentials and the gravitational
terms in equation (4) into a single gradient, which then implies that
the Lorentz force per unit charge, FL/nc must be the gradient of a
scalar function. This requirement can be expressed as

∇ ×
(

FL

nc

)
= 0. (7)

This is an important point to bear in mind when we consider the
electric field from the dynamical equations below.

The evolution of the magnetic field is given by the induction
equation,

∂B
∂t

= −c∇ × E. (8)

To study the long-term evolution of the magnetic field, it is necessary
to adopt some approximations in order to isolate the effects of the
slow processes from the fast dynamics. A common practice is to
neglect the inertial terms in writing the electric field from the Euler
equations. This means that velocities are assumed to be small and
to vary on much longer time-scales than any of the relaxation times.
In that limit, the electric field can be written from either of the two
equations (2) and (3), as

E|p � − FL

enc
− Fpe

enc
− ve

c
× B + 1

e
∇μp + mp

e
∇�, (9)

E|e � − Fpe

enc
− ve

c
× B − 1

e
∇μe − me

e
∇�, (10)

where the label of the electric field specifies the Euler equation
from which it has been derived. Here, the first equation is written
in a way showing explicitly that the difference between the two
expressions is the Lorentz force per unit charge and some gradient
terms. Obviously, the two expressions are exactly equivalent if one
uses the equilibrium equation (4). As noted above, however, this
equilibrium equation additionally requires the Lorentz force per unit
charge to be a gradient, imposing a severe restriction on the form
of the magnetic field, which is not guaranteed to be automatically
satisfied as the magnetic field evolves. Thus, the two equations
are equivalent for the induction equation only if the magnetic field
further satisfies the restriction in equation (7).

More generally, when FL/nc has a solenoidal part in addition
to the irrotational part, it no longer satisfies the static equilibrium
equation (4), and velocity fields must be present. This point is oc-
casionally overlooked. In this case, the approximate forms of E|p
and E|e from the above equations will no longer lead to the same
magnetic field evolution. In order to see which of the two approxi-
mations is better, we can write the exact vector E in the following
two forms

E = E|p + mp

e

(
∂vp

∂t
+ vp · ∇vp

)
, (11)

E = E|e − me

e

(
∂ve

∂t
+ ve · ∇ve

)
, (12)

where we have re-introduced the inertial terms. We have two other
constraints: (i) The mass carried by electrons is much smaller than
that of the protons, me � mp, and (ii) The two fluids have very sim-
ilar velocities, vp � ve, i.e. the macroscopic electric current is very
small compared to the mass current because of the strong electro-
magnetic coupling between the opposed charges. If both conditions
apply, it is more reasonable to assume that E|e is a better approxi-
mation of the electric field, as the correction due to the inertial terms
of the electrons is smaller.
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2.2 Generalized Ohm’s law in neutron star matter

More generally, let’s consider the case when neutrons are also
present and interact with protons and electrons. We now have equa-
tions of motion for three constituents, with their respective frictional
couplings

ρp

(
∂vp

∂t
+ vp · ∇vp

)
+ np∇μp + ρp∇�

= enp

(
E + vp

c
× B

)
+ Fpe + Fpn, (13)

ρe

(
∂ve

∂t
+ ve · ∇ve

)
+ ne∇μe + ρe∇�

= −ene

(
E + ve

c
× B

)
+ Fep + Fen, (14)

ρn

(
∂vn

∂t
+ vn · ∇vn

)
+ nn∇μn + ρn∇� = Fnp + Fne. (15)

Adding the three equations, assuming local charge neutrality and
dropping the inertial terms, one obtains the global static equilibrium
equation

nc∇
(
μp + μe

) + nn∇μn + ρ∇� = FL, (16)

where ρ = ρp + ρe + ρn is the total mass density. This equa-
tion can also be written in terms of the pressure gradient, since
∇P = np∇μp + ne∇μe + nn∇μn. In this case, for a barotropic
equation of state, magnetostatic equilibrium now requires that the
Lorentz force per unit mass FL/ρ be a gradient. This leads to the
well-known Grad–Shafranov equation, which determines the struc-
ture of the magnetic field.

A standard way to obtain the electric field to study the dynamics of
a multiconstituent plasma is to consider the appropriate linear com-
binations of equations (13) and (14) to derive a generalized Ohm’s
law describing the time variation of the electric current (see e.g.
Goedbloed & Poedts 2004). The same procedure has been applied
to neutron stars in different works (Goldreich & Reisenegger 1992;
Shalybkov & Urpin 1995; Passamonti et al. 2017) to obtain a gen-
eral expression for the electric field. Assuming mp � me, neglecting
inertial terms, and dropping gradients that are inconsequential for
the induction equation (8), we get

E � j
σ0

− vc

c
× B + j

encc
× B. (17)

Here, σ 0 denotes the electrical conductivity in the absence of a
magnetic field, and the velocity of the charged fluid is given by

vc = ρpvp + ρeve

ρc
. (18)

We note that the vc × B and j × B terms in the previous equation
can be written in a number of different, but equivalent, ways. The
three basic unknowns are the three velocities of the constituents, and
in principle, any linear combination of them can be used. A natural
choice for one of the velocities is the current (or equivalently u, the
relative velocity between protons and electrons) that gives the last
(Hall) term. We have decided to use the charged plasma velocity
vc to describe the second term, usually identified with ambipolar
diffusion since it physically represents the advection of magnetic
field lines with the charges, which modifies the magnetic field even
in the limit when electron and proton velocities are the same (and
no currents are present). The third velocity could be, for example,
the velocity of neutrons vn, or the hydrodynamical velocity of the

fluid

v = ρpvp + ρeve + ρnvn

ρ
, (19)

which are usually neglected when the background is assumed to
be in equilibrium. We also note that equation (17) is consistent
with the electric field obtained from the electron Euler equation
(equation 10), in the limit me � mp.

2.3 Long-term evolution of the magnetic field

A common approach to study the effects of the slow processes is
to consider a system in steady state and filter out the short time-
scale dynamics (e.g. sound and Alfvén waves). This is done by
neglecting the inertial terms in equations (13)–(15). However, as
noted before, for a barotropic fluid, equation (16) then requires that
the Lorentz force per unit mass be a gradient. Even if the fluid is not
barotropic, in axisymmetry, the hydrostatic terms cannot balance
arbitrary magnetic fields, particularly the φ component. This would
inevitably result in the appearance of accelerations and the activation
of fast dynamical flows. Therefore, the configuration of the magnetic
field would rapidly change before the Hall and Ohmic processes had
time to further influence the evolution.

This problem does not arise in the neutron star crust. Since it
is solid, a matter flow cannot be established and any additional
force can be balanced by the elastic response of the crust (up to the
breaking point). However, in the fluid core, the quasi-static evolution
shows serious limitations. Assuming a slow evolution is still a useful
compromise to investigate the effects of the Hall drift and Ohmic
dissipation, but it remains unclear what the magnetic field geometry
will be after the fluid core is relaxed by fast dynamical processes.

In general, allowing for fluid motion and acceleration, and us-
ing the equations of continuity (equation 1), the total momentum
equation can be written as

∂(ρv)

∂t
+ ∇ ·

(
ρvv + ρcρn

ρ
ww + ρeρp

ρc
uu

)

+ ∇P + ρ∇� = FL. (20)

where we have defined w = vc − vn. For stationary flows the partial
derivatives ∂/∂t are neglected, and if one can further argue that the
w and u terms are small compared to the v term, then this equation
reduces to the one fluid case.

Although an evident improvement over the static assumption, the
inclusion of velocities in the stationary regime must be accompanied
by a new advective term in the induction equation, which may
become dominant. Equation (20) is not easy to solve in the general
case. As far as we know, in the literature there are not yet numerical
solutions that describe the internal magnetic field of neutron stars
with flow motion. Analytical solutions have been presented only for
simplified cases (Chandrasekhar 1956; Tsinganos 1981, 1982).

3 MAG N E T I C FI E L D E VO L U T I O N IN A
S U P E R C O N D U C T I N G N E U T RO N S TA R C O R E

Protons in the core of a neutron star undergo a phase transition
to a type-II superconducting state when the temperature drops
below �1010 K. The magnetic field then penetrates the core in
the form of a dense array of thin fluxtubes. In this section, we
consider the dynamical equations by using the Newtonian HVBK
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formalism1 for a plasma formed by normal electrons, superconduct-
ing protons and superfluid neutrons. These particles are indicated
with the letters e, p and n, respectively. For simplicity, we neglect
the entrainment between nucleons and we omit thermal fluctuations
in the superconducting protons and superfluid neutrons, i.e. we are
well below the critical temperatures. All protons are therefore in the
superconducting state and quasi-particle excitations are absent. We
consider a locally neutral system, np = ne ≡ nc.

As in the normal case, the dynamics of this plasma at zero tem-
perature can be described by a system of three Euler and three mass
conservation equations. It is possible to choose the Euler and mass
conservation equations for each fluid species, or otherwise use a
combination of these three equations to describe the motion of the
total fluid. The HVBK formalism provides the total conservation
equation and describes separately the Euler equations for the su-
perconducting and superfluid particles (Mendell & Lindblom 1991;
Gusakov & Dommes 2016).

The hydrodynamical system of equations formed by a ‘normal’
and a ‘superconducting’ component are very similar to the normal
fluid case detailed in the previous section, with a few remarkable
differences. In particular, we note that

(i) The true Lorentz force FL is negligible, because, in type II
superconductors, Ampère’s law connects the London field bL to the
macroscopic average currents (Glampedakis et al. 2011),

∇ × bL = 4π

c
j , (21)

and the London field is very weak bL � B. For the same reason, at
the hydrodynamical averaged scale, it is safe to assume that u � vp ≈
ve (i.e. no macroscopic currents).

(ii) However, there is now a new superconducting force, the ten-
sion/buoyancy of the fluxoids T that can be written in the following
compact form:

T = C × B
c

, (22)

where

C ≡ c

4π
∇ × (Hc1 b̂). (23)

As shown by Dommes & Gusakov (2017), the vector field T also
contains the contribution of the buoyancy force. Equation (23) has
the same mathematical form as Ampère’s law in the normal case,
with the difference that the magnetic induction B is replaced by the
vector Hc1 b̂, where Hc1 is the lower critical magnetic field (Tinkham
2004). In type II superconducting neutron stars,

Hc1 ≈ 1015

(
np

0.01 fm−3

)
G. (24)

Note that this is equivalent to replacing the macroscopic current j
in the Lorentz force by an effective current C.

(iii) The mutual friction terms look different and they have a
different physical origin. For example, Fpe describing the mu-
tual friction between the protons and electrons is (Bekarevich &
Khalatnikov 1961; Mendell 1991b)

Fpe = − (
1 + αρp

)
T − βρp b̂ × T − γρp b̂

(
B · C

c

)
. (25)

1 We use Newtonian theory in order to have an easier comparison with the
formalism of Glampedakis et al. (2011), but our discussion is equally valid
in the relativistic limit.

The third term is normally neglected because its strength is small
compared to the other two (Bekarevich & Khalatnikov 1961). The
coefficients α and β are related to the dimensionless drag coefficient
R (typically R ∼ 10−4) by (Dommes & Gusakov 2017)

αρp = − 1

1 + R2
and βρp = R

1 + R2
. (26)

For brevity, we do not discuss the particular forms of the vector
fields Fen and Fpn, describing mutual friction forces between neu-
trons and the charged particles, as these are not important for this
work. For example, they can describe the electron scattering off
the magnetized core of a neutron vortex (Alpar, Langer & Sauls
1984) or the interaction between proton and neutron vortices (see
e.g. Sauls 1989; Ruderman, Zhu & Chen 1998).

We now consider the Euler equations. After neglecting inertial
terms, and other terms of the order of the weak London field, the
equations for the superconducting protons, normal electrons and
superfluid neutrons in the laboratory reference frame read

np∇μ̂p + ρp∇� = T + Fpe + Fpn + enp

(
E + vp

c
× B

)
, (27)

ne∇μe + ρe∇� = −Fpe + Fen − ene

(
E + ve

c
× B

)
, (28)

nn∇μ̂n + ρn∇� = −Fen − Fpn. (29)

Here, the chemical potentials μ̂p and μ̂n may also contain contri-
butions due to the magnetic field energy (Glampedakis et al. 2011)
and kinetic terms. Equation (28) is equivalent to the electron Euler
equation provided in Glampedakis et al. (2011), since the mutual
friction force density (25) is exactly the force used in their work and
in Graber et al. (2015). In equation (27), we have replaced the force
fp that was used in Gusakov & Dommes (2016), with the relation
ρpnpfp = −T − Fpe.

The sum of equations (27)–(29) gives

nc∇
(
μ̂p + μe

) + nn∇μ̂n + ρ∇� = T , (30)

which implies that, in hydrostatic equilibrium, and for a barotropic
equation of state

∇ ×
(

T
ρ

)
= 0. (31)

This is the condition for magnetostatic equilibrium in super-
conducting neutron stars, and has been studied in a number of
works (Roberts 1981; Akgün & Wasserman 2008; Lander 2013;
Henriksson & Wasserman 2013; Lander 2014; Palapanidis, Ster-
gioulas & Lander 2015).

3.1 Evolution time-scales

Surprisingly, although the momentum equations given by
Glampedakis et al. (2011) and Gusakov & Dommes (2016) are
equivalent, Dommes & Gusakov (2017) find that their evolution
time-scales differ by several orders of magnitude from the results
of Glampedakis et al. (2011). We now discuss the cause of this dis-
crepancy. In Gusakov & Dommes (2016) and Dommes & Gusakov
(2017), their approximation for the electric field is derived from the
Euler equation of the superconducting protons (equation 27),

eE|p ≡ − T + Fpn

nc

−
(

e

c
vp × B + Fpe

nc

)
+ ∇μ̂p + mp∇�,

(32)
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which, using equation (29), can be written as

eE|p ≡ − T
nc

+ Fen

nc

−
(

e

c
vp × B + Fpe

nc

)

+ nc∇μ̂p + nn∇μ̂n + (ρp + ρn)∇�

nc

, (33)

In Glampedakis et al. (2011), it is determined from the electron
equation (28),

eE|e ≡ Fen

nc

−
(

e

c
ve × B + Fpe

nc

)
− ∇μe − me∇� . (34)

In both cases the inertial terms are neglected.
It is evident that both approximations to the electric field are

equivalent, because one can use equation (30) to change from
one expression to the other. The problem here is that the appar-
ently large contribution of the tension term T/nc, estimated from
equation (32), in reality must be considered in combination with the
total momentum equation. In fact, using equations (30) and (33),
we can see that the various gradient terms balance the contribution
of the T/nc.

To highlight the issue, let us momentarily proceed by ignoring
the gradient terms in equations (32) and (34) as well as Fen and Fpn

in comparison with Fpe (see Glampedakis et al. 2011). As noted
above, this procedure may be misleading when the total momen-
tum equation is not considered. After using the explicit form of
the mutual friction force (25), the electric field approximated by
equations (32) and (34) can be written in the following compact
form

E = −vp

c
× B + 1

enc

(
R2

1 + R2
− χ

)
T

+ 1

enc

R

1 + R2
b̂ × T + . . . , (35)

where the parameter χ provides the link between the two cases:
χ = 1 for equation (32) and χ = 0 for equation (34). It is im-
portant to remark that this parameter appears only in the second
term of equation (35), which is proportional to the fluxtube tension.
Comparing with the normal matter case where (equation 17)

E � j
σ0

− vc

c
× B + FL

enc
, (36)

we can note three differences: (1) there is no Ohmic dissipation in the
superconductor; (2) the non-dissipative Hall term (∝FL) is replaced
by a similar term (∝ T ); and (3) there is a new term, proportional
to b̂ × T , which has the same mathematical structure as ambipolar
diffusion as defined in Goldreich & Reisenegger (1992).

From equation (35) and the induction equation, we can extract
two time-scales describing the long-term evolution of the magnetic
field. As shown by Graber et al. (2015) and Dommes & Gusakov
(2017), one can determine a conservative (mathematically, a Hall-
like term) and a dissipative time-scale. The controversy is about the
estimate of the conservative time-scale

τcon = eρp

mpc

4πL2

Hc1

(
R2

1 + R2
− χ

)−1

, (37)

with the parameter L denoting a typical length-scale of the system.
To recover the result of Graber et al. (2015), we take χ = 0, so that
τcon = O(R2), and

τcon ≈ 1.3 × 1015L2
6 yr, (38)

while for Dommes & Gusakov (2017), χ = 1, τcon = O(1) and

τcon ≈ 2 × 108L2
6 yr. (39)

The large difference between the two estimates is apparently
caused by the presence of a much larger term ∝ T/nc. As pointed
out before, from the total momentum equation (30), we can see that
the combination of T/nc with the various gradients present in (33)
is an irrotational field. Hence, this term does not lead to any change
in the magnetic field after inserting the electric field in the induction
equation.

The time-scale (38) should be considered as a lower limit, because
if the leading term in the electric field is nearly irrotational τ con is
even longer. To correctly estimate the evolution time-scale of the
magnetic field, we should first calculate the solenoidal part of the
electric field, after combining all terms, but this requires a detailed
prescription of the magnetic field geometry and to know the velocity
field. For general magnetic fields, if the system is not required to
be strictly in magnetostatic equilibrium, the motion of the fluid
and inertial terms may not be negligible, and the approximations
usually made are questionable. In principle, there can be dynamical
readjustments that modify the magnetic field geometry much faster
than the slow, secular processes.

4 C O N C L U S I O N S

We have reconsidered the problem of the magnetic field evolution
in a multicomponent plasma, and discussed the approximations
normally used in the context of long-term evolution of magnetic
fields in neutron stars. The standard approach assumes that hydro-
magnetic equilibrium is reached in the fluid core immediately after
formation (within tens of rotation/Alfvén time-scales). After this
first stage, slow processes, such as Ohmic dissipation, Hall drift
and ambipolar diffusion, modify the magnetic field on much longer
time-scales. This approximation is motivated by the multiscale na-
ture of the problem, which makes it extremely difficult to carry out
a numerical study of the complete system of MHD equations. How-
ever, the assumption of hydro-magnetic equilibrium also places a
strong constraint on the form of the magnetic force, which must
be mostly irrotational (in the absence of inertial terms). Therefore,
terms in the electric field proportional to the magnetic force (either
the Lorentz force for normal matter, or the fluxoid tension for su-
perconducting matter) must be treated with extreme caution when
estimating evolution time-scales, as only the solenoidal parts con-
tribute to the induction equation, and these can be many orders of
magnitude smaller.

The preceding remark clarifies a recent controversy that appeared
in the literature, about the ‘correct’ expression for the induction
equation in superconducting neutron stars. This is an important
issue, as a disagreement of seven orders of magnitude between
estimates of time-scales (see Graber et al. 2015 and Dommes &
Gusakov 2017) would lead to very different conclusions about the
evolutionary scenario. Our analysis shows that the evolution time-
scale of Dommes & Gusakov (2017) is likely an overestimation, and
that the one given in Graber et al. (2015) and Elfritz et al. (2016)
should be closer to describe the slow evolution of the magnetic field
in a neutron star core.

More generally, as the magnetic field evolves, the magnetic force
per unit mass will very likely quickly acquire a solenoidal com-
ponent. In the fluid core, this will inevitably activate fluid motions
which, acting on dynamical time-scales, would modify the magnetic
field faster than the Ohmic and Hall processes (or their equivalent
dissipative and non-dissipative processes in superconducting cores).
This problem does not arise for the crust of a neutron star, which is
instead modelled as a solid ion lattice plus a single electron fluid.
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The elasticity of the crust can sustain small deviations from equi-
librium for any magnetic field of reasonable strength.

A significant improvement in our understanding of magnetic field
evolution in neutron star cores would be to construct stationary (but
not static) solutions of the momentum and mass conservation equa-
tions, which would allow us to obtain the velocity field explicitly,
and to incorporate the corresponding advective terms in the electric
field and the induction equation. This may significantly alter the
secular evolution time-scales in neutron star cores.
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