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Energy deposition around swift proton tracks in polymethylmethacrylate: How much and how far
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The use of proton beams in several modern technologies to probe or modify the properties of materials,
such as proton beam lithography or ion beam cancer therapy, requires us to accurately know the extent to
which the energy lost by the swift projectiles in the medium is redistributed radially around their tracks, since
this determines several endpoints, such as the resolution of imaging or manufacturing techniques, or even
the biological outcomes of radiotherapy. In this paper, the radial distribution of the energy deposited around
swift-proton tracks in polymethylmethacrylate (PMMA) by the transport of secondary electrons is obtained
by means of a detailed Monte Carlo simulation. The initial energy and angular distributions of the secondary
electrons generated by proton impact, as well as the electronic cross sections for the ejection of these electrons, are
reliably calculated in the framework of the dielectric formalism, where a realistic electronic excitation spectrum
of PMMA is accounted for. The cascade of all secondary electrons generated in PMMA is simulated taking into
account the main interactions that occur between these electrons and the condensed phase target. After analyzing
the influence that several angular distributions of the electrons generated by the proton beam have on the resulting
radial profiles of deposited energy, we conclude that the widely used Rudd and Kim formula should be replaced
by the simpler isotropic angular distribution, which leads to radial energy distributions comparable to the ones
obtained from more realistic angular distributions. By studying the dependence of the radial dose on the proton
energy we recommend lower proton energies than previously published for reducing proximity effects around
a proton track. The obtained results are of relevance for assessing the resolution limits of proton beam based
imaging and manufacturing techniques.

DOI: 10.1103/PhysRevB.96.064113

I. INTRODUCTION

The interaction of energetic charged particles with mat-
ter is widely used both for analyzing and modifying the
properties of matter. The former category includes analytical
techniques such as electron microscopy, electron energy-loss
spectroscopy (EELS), or Rutherford backscattering (RBS)
[1–3]. Among fabrication techniques we can find ion im-
plantation and ion or electron beam lithography, which are
extensively used in the microelectronics industry [4,5]. In this
context, the new technical developments in the production
of focused ion beams (especially of nanometric spot size)
are revolutionizing all these techniques, with the emergence
of new methods that exploit the large energy loss rates
and almost negligible angular deflection of energetic ions,
such as scanning-ion-transmission microscopy [6], proton
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beam writing [7], and ion beam lithography [8], all of them
characterized by improved resolutions as compared to photon
beam techniques, down to the nanometer scale.

Despite this, the applications of charged particle beams are
not limited to inorganic materials. In a biomedical context,
organic targets can be damaged by particle radiation, which
leads to cell death or mutation. Therefore, physical mecha-
nisms of biodamage are of great importance for radiotherapy
(e.g., proton beam cancer therapy [9]) and radiation protection
[10]. On top of that, proton beams are opening very exciting
possibilities on the high-resolution visualization (nanometer
scale) of cellular samples [11].

The capabilities of modifying materials by means of ion
beams are due to the large energy lost by the particles per
unit path length when moving through condensed matter
targets. For swift incident projectiles (ions with energies larger
than 100 keV/u and electrons above ∼20 eV), the main
channel of energy loss is through inelastic collisions with the
target electrons [1], which results in the production of large
numbers of secondary electrons. The energy distribution of
these electrons is peaked at very low energies, with most of
them being ejected with a few tens of eV [12–14], so they
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can typically travel only a few nanometers. Thus, the large
energies lost by the ions are redistributed in narrow distances
around their paths, giving place to radial dose distributions
whose sharpness depend on the characteristics (energy and
nature) of the ion beam, as well as on the target nature.

The organic polymer polymethylmethacrylate (PMMA) is
a very relevant target, being commonly used as a surrogate of
biological tissues [15] as well as a resist for ion or electron
beam lithography [16], which has motivated previous studies
of the radial energy distribution at the nanometer scale in this
target [17].

The radial doses that build up around the tracks of energetic
ions can be adequately assessed through analytical methods
[18,19] or by Monte Carlo simulations [17,20,21]. While the
former are faster and more efficient methods, the complete
cascade of secondary and tertiary electrons (produced by
the primary ion and the secondary electrons, respectively),
including all the possible interaction mechanisms and complex
geometries, can only be followed in detail in event-by-event
Monte Carlo simulations. However, the accuracy of the results
provided by the different simulation codes depends on the
availability of reliable interaction probabilities (through the
corresponding cross sections). The initial energy and angular
spectra of the electrons ejected by the ion impact determines
the initial conditions for the track structure, and to follow in
detail the transport and energy deposition of these secondary
electrons through the target it is required to accurately
know the elastic and inelastic (including electronic excitation
and ionization) inverse mean free paths of electrons in the
condensed phase targets. Moreover, other interactions between
the electrons and the condensed state target should also be
accounted for.

Several methodologies have been used to obtain energy
and angular distributions of secondary electrons produced by
ion impact, going from very simple and fast semiclassical
models to complex and sophisticated time-consuming ab
initio methods [22,23]. However, they are usually limited
to particular projectile-target combinations (commonly gas
phase targets), to certain ranges of energies, or they fail
to provide both the energy and angular distributions of the
electrons. Also, these methods have to be complemented with
models for electronic excitation, which are scarcer. This is the
case, for example, of the recent study by Udalagama et al.
[17]. While implementing the promising Hansen-Kocbach-
Stolterfoht method for ionization in their Monte Carlo code,
these researchers have to complement it with different models
and databases for electronic interactions of ions and electrons.
Alternatively, a model based on the dielectric formalism
[24,25] was recently proposed [13,26] to obtain reliable energy
and angular distributions of electrons generated by energetic
projectiles in organic targets, such as PMMA. This method
has the advantage of being computationally efficient, while
it allows us to obtain, within a unique framework, both the
probabilities of electronic excitation and ionization, including
the total energy loss and the energy and angular distributions
of secondary electrons, both for the impact of ion and electron
beams.

In this paper we present detailed simulations of the radial
dose distribution around the trajectory of swift protons (0.1–
10 MeV) moving through PMMA, by using the event-by-

event Monte Carlo code SEED (Secondary Electron Energy
Distribution) [27]. This code implements the interactions of
electrons in PMMA based on the realistic initial distribution
of secondary electrons generated along the proton’s path,
according to the new model based on the dielectric response
function formalism (DRF) [13,26,28], which provides the total
number of generated electrons, as well as their initial energy
and angular distributions. Besides inelastic (excitation and
ionization) interactions, the code also accounts for additional
relevant interactions, namely, Coulomb scattering, as well as
other features of the condensed phase, i.e., electron-phonon
interaction, and trapping phenomena due to the polaronic
effect, which are usually missing in other Monte Carlo codes.

The extent to which the energy lost by the protons is
distributed around their path is studied as a function of the
proton energy and compared to the recent simulations by
Udalagama et al. [17]. Some trends of the dependence of the
radial dose on the initial proton energy are identified, which
are relevant to determine the resolution of proton beam-based
technologies. Also, the effect of considering realistic, instead
of more simplified, angular distributions of ejected electrons is
discussed. This leads to some useful recommendations on how
to account in a simple manner for this relevant initial stage in
electron transport simulations.

The paper is organized as follows. In Sec. II we feature the
dielectric formalism methodology to obtain electronic excita-
tion and ionization cross sections, paying special attention to
the calculation of the energy and angular spectra of secondary
electrons generated by swift proton impact in condensed
phase targets. The main details and recent development of
the event-by-event Monte Carlo code SEED are explained
in Sec. III. The electronic cross sections of the generated
electrons are used in the SEED code in Sec. IV, where we
report our results on the radial energy deposition profiles
produced by swift protons in PMMA. The final remarks and
conclusions are presented in Sec. V.

II. INTERACTIONS OF CHARGED PARTICLES
AND GENERATION OF SECONDARY ELECTRONS

The main energy loss channel of the swift charged particles
in the energy range studied in this paper is through interactions
with the electrons of the target, which can result in electronic
excitations and, much more often, in ionizations, leading to the
production of secondary electrons. The dielectric formalism
[24,25] provides a suitable framework to calculate all the
necessary electronic cross sections (for the total energy loss,
as well as for the energy and angular distributions) of the
electrons generated and moving in condensed phase targets.

A. Proton projectiles

Let us consider a swift proton with mass M and atomic
number Z moving with kinetic energy T through a medium
characterized by its dielectric function ε(k,ω). The doubly
differential inverse mean free path (DDiMFP) [29] for inelastic
interactions with energy transfer h̄ω and momentum transfer
h̄k is given by [30]:

d2�excit−ioniz
H (T )

dω dk
= e2Z2M

πh̄T

1

k
Im

[ −1

ε(k,ω)

]
, (1)
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where e is the fundamental charge and Im[−1/ε(k,ω)] is the
energy loss function (ELF) of the target, which is a key element
of this methodology, since it contains the relevant information
on the energy h̄ω and momentum h̄k electronic excitation
spectrum of the material. The above expression is very useful,
because it allows, besides the calculation of the integrated
energy loss quantities (projectile energy loss and number of
electrons produced per unit path length), the determination
of the energy and angular distribution of secondary electrons,
when a relation between the energy h̄ω (and the momentum
h̄k) transferred by the proton and the energy W of the
secondary electrons (and their ejection angle θ ) is provided.

Integration of Eq. (1) over the whole energy and momentum
plane (the Bethe surface) gives the total inverse mean free path
(iMFP, hereafter) for inelastic interactions:

�excit-ioniz
H (T ) = e2Z2M

πh̄T

∫ ωmax

0
dω

∫ k2

k1

dk

k
Im

[ −1

ε(k,ω)

]
.

(2)

Due to momentum and energy conservation, the integra-
tion limits are h̄k1,2 = √

2M(
√

T ∓ √
T − h̄ω) and h̄ωmax �

4mT/M [31], with m being the electron mass. The iMFP is
directly related to the microscopic cross section σ by � = Nσ ,
where N is the target atomic or molecular density. Equation
(2) includes both electronic excitations and ionizations. In
the dielectric response function formalism (DRF) [13] it
was shown that it is possible to introduce a mean binding
energy B for the outer shell electrons, in such a way that
secondary electrons will be ejected, when h̄ω > B, with
kinetic energy W = h̄ω − B. For inner shells, this relation
reads W = h̄ω − Bj,nl , where Bj,nl is the ionization energy of
the (n,l) subshell of the j th atomic constituent of a compound
target. Following this reasoning, the singly differential inverse
mean free path (SDiMFP) for ionization is given by:

d�ioniz
H (T ,W )

dW
= e2Z2M

πh̄2T

∫ κ2

κ1

dk

k
Im

[ −1

ε(k,W + B)

]
outer

+ e2Z2M

πh̄2T

∑
j

νj

∑
nl

∫ ζ2

ζ1

dk

k

× Im

[ −1

ε(k,W + Bj,nl)

]
, (3)

where we have split the ELF into two contributions, namely
Im[−1/ε(k,W + B)]outer corresponding to the outer shell
electrons and Im[−1/ε(k,W + Bj,nl)] for the inner shells.
Here νj is the stoichiometric coefficient of each atomic
constituent j of the target. The integration limits are

given by h̄κ1,2 = √
2M(

√
T ∓

√
T − W − B) and h̄ζ1,2 =√

2M(
√

T ∓ √
T − W − Bj,nl). In order to take into account

the condensed phase state of the target, its ELF over the whole
energy and momentum transfer domain is obtained by means
of the MELF–GOS (Mermin Energy Loss–Generalized Oscil-
lator Strengths) methodology [32,33], where the contribution
from the outer-shell electron excitations is separated from the
contribution due to the (n,l)-inner-shell electron ionizations
of each atom j of the target. The former is described by
means of a weighted sum of Mermin-type ELF [34], while
the latter is accounted for by hydrogenic generalized oscillator

strengths (GOS) [2]. The MELF-GOS model only needs
suitable (experimental or theoretical) optical ELF as input data
and then extends them over the whole momentum plane by
virtue of the analytical form of the Mermin dielectric function
and the hydrogenic GOS. Therefore, many-body interactions
as well as physical-state effects are automatically included
in this treatment. The energy loss function obtained by the
MELF-GOS method has been shown to properly reproduce
the experimental Bethe surface of liquid water [35] and other
materials [36,37], and it accurately satisfies a set of physical
constrains [38].

We will focus our study on the case of protons incident
on PMMA, a polymer commonly used as a tissue-equivalent
material as well as a lithographic resist, whose ELF in
the whole (h̄ω,h̄k) domain was obtained [28] from the
experimental optical ELF [39]. For this material, the mean
binding energy B is the only (a priori) undetermined parameter
in our model. Although 20 eV was considered previously as a
good approximation of B for organic materials when there are
no available data [14] (which agrees with the weighted average
of the first ionization energies of the atomic constituents of
PMMA), in what follows we will use B = 15 eV, a value in
between the previous one and 12 eV, which is the weighted
average of the lowest electronic energy levels of a model
molecule for PMMA [39].

Figure 1 shows the initial energy distribution of the
electrons generated by 0.1–10 MeV protons incident on
PMMA, as obtained from Eq. (3). The left panel depicts, in
linear scale, the SDiMFP at low electron energies W , while
the right panel (in logarithmic scale) corresponds to the higher
electron energies. It is worth noticing that all the energy
distributions are peaked at the same electron energy (around
6–8 eV), independently of the initial proton energy; these
low electron energies are considered to be very important in
affecting organic target properties [40]. However, the absolute
value of the SDiMFP decreases (i.e., less electrons are ejected)
when the proton energy T increases, with the differences
in the SDiMFP lowering as T grows. Also, increasing the
proton energy makes the tail of the SDiMFP to extend to
larger secondary electron energies; this is due to the maximum
energy that can be transferred to secondary electrons in
inelastic collisions, which is given by Wmax � 4mT/M . The
SDiMFP vanishes for each proton energy as W approaches
this kinematic limit. These three features (maximum of the
spectrum at a position independent of the proton energy,
number of electrons decreasing for increasing proton energies,
and longer high energy tails for higher proton energies) will
be important to understand the results presented in Sec. IV.

The angular distribution of the electrons generated by ion
impact is another essential input quantity required for Monte
Carlo simulations. This distribution is obtained within the
DRF model by using a proportionality relation between the
scattering angle ψ of the incident proton and the ejection
angle θ of the secondary electron, ψ = αθ . This relation was
motivated by the resemblance of the angular distributions of
scattering angles ψ calculated within the DRF model and the
experimental distributions of ejection angles θ of secondary
electrons and is supported by the good agreement of the
model with available experimental data [26]. The exact value
of α is obtained from the binary encounter angle (BEA) as
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FIG. 1. Energy distribution of electrons generated by 0.1–10 MeV proton impact in PMMA, as a function of the electron energy W ,
according to Eq. (3).

α = ψBEA/θBEA, where both the angular spectra as a function
of ψ and θ have a clear maximum, so they can be correlated.
The rest of the ejection (and scattering) angles are obtained
by the momentum distribution of the electrons in the target as
given by its ELF. For further details, the reader is referred to
Ref. [26].

The energy and angular doubly differential inverse mean free
path (DDiMFP) of electrons emitted with energy W and angle
θ (per unit energy and solid angle d = 2π sin θdθ ) due to
a proton with atomic number Z and mass M impacting with
energy T on a target characterized by its ELF, Im(−1/ε), is
given by [26]:

d2�ioniz
H (T ,W,θ )

dWd
= αe2Z2

2π2h̄2 sin θ

M

T
FSalin ×

{ √
T (T − (W + B)) sin(αθ )

2T − (W + B) − 2
√

T (T − (W + B)) cos(αθ )
Im

[ −1

ε(k,W + B)

]
outer

+
∑

j

νj

∑
nl

√
T (T − (W + Bj,nl)) sin(αθ )

2T − (W + Bj,nl) − 2
√

T (T − (W + Bj,nl)) cos(αθ )
Im

[ −1

ε(k,W + Bj,nl)

]⎫⎬
⎭. (4)

In this equation, the Salin’s factor FSalin accounts for two center
effects that attract the ejected electron to the projectile’s field
after the collision, with electron capture to the continuum [41].

By definition, the dielectric formalism (based on the first
Born or plane wave approximation) cannot account for two
center effects. The incident projectile and the ejected electron
are described by plane waves and hence do not obey the
correct boundary conditions, i.e., the electron wave being
distorted by the field of the projectile both before and after the
collision. More accurate methodologies exist to account for
these two center effects, mainly represented by the continuum
distorted wave (CDW) approximation, where these boundary
conditions are correctly considered [42,43]. Within the first
Born approximation, it is customary to multiply the cross
sections by the Salin’s factor (related to the reciprocal of
the absolute value of the difference between the proton and
electron velocity vectors), in the form of a semiempirical factor
that corrects the cross section for the electron capture to the
continuum [22,44].

Analogously to Eq. (3), in Eq. (4) there are contributions due
to the outer-shell electrons (first term in the r.h.s.) and from the
inner shells of each type of atom in a compound target (second

term in the r.h.s). We show in Fig. 2 the angular distribution
of the electrons generated by the impact of 1 MeV protons in
PMMA, for electron energies W in the range from 10 eV to
2100 eV; to our knowledge no experimental data are available
to compare with. Figure 2 shows that electrons emitted at low
energies W have a rather isotropic angular distribution, which
develops a structure when W increases, whose maximum
value coincides with the angle θ corresponding to the binary
encounter peak.

The increase of the curves at θ → 180◦ is just an artifact
coming from the term sin θ in the denominator of Eq. (4)
when the DDiMFP is plotted per unit solid angle. The observed
increase in the cross section for W = 500 eV at θ � 30◦ results
from electron capture to the continuum, which is accounted
for by the Salin’s factor. At W = 500 eV, the ejected electrons
have a speed close to that of the 1 MeV proton, so they are
preferentially ejected in the forward direction attracted by the
field of the proton.

B. Electron projectiles

As a consequence of the energy delivered by a swift proton
along its path, secondary electrons are emitted due to ionization
of the target atoms. These electrons move away from the
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FIG. 2. Angular distribution d2�ioniz
H /dWd of secondary elec-

trons generated by the impact of a 1 MeV proton beam incident on
PMMA, as a function of their emitted angle θ , for several electron
energies W .

region where they originated, experiencing elastic and inelastic
scattering with the target constituents, losing energy through
excitations and producing new ionizations, which results in an
avalanche of electrons.

To simulate the distribution of energy carried by these
electrons we use the SEED code, whose details are described
elsewhere [27]. This is an event-by-event Monte Carlo code
that has been previously applied to simulate the energy
distribution of the secondary electrons generated along ion
tracks [21] and by electron irradiation of solid targets [45].

The inverse mean free path �elast
e for the elastic collisions

suffered by electrons is calculated using the Mott theory
[46], for which the Dirac equation is numerically solved in
a central field. This procedure, known as the “relativistic
partial wave expansion method,” has been demonstrated to
provide excellent results when compared to experimental data

[47,48] and is the standard procedure to obtain elastic iMFP
for electrons. However, it should be kept in mind that due
to the electron energies involved in this work, no relativistic
corrections are required in the electron kinematics.

Concerning the inelastic scattering of the electrons, for
electron energies higher than ∼20–50 eV, two main interaction
channels have to be considered: ionization and excitations.

The SDiMFP for the ionizations produced by energetic
electrons is calculated by using the DRF model presented in
Eq. (3) but now taking into account the specific nature of
the electron projectile. To proceed in this way the electron
inelastic scattering must consider Pauli’s exclusion principle,
the indistinguishability between the incident and the struck
electron, as well as the exchange effects [49]. It is com-
monly accepted that after the collision the most energetic
electron is the primary one, which implies that the maximum
energy transferred by an electron with energy T cannot
exceed the value h̄ωioniz

max = (T + Ebinding)/2, where Ebinding =
B for the outer-shell electron excitations and Ebinding = Bj,nl

for the (n,l) inner-shell electron excitation of the atom j of the
target. Besides, due to Pauli’s exclusion principle, the primary
electron after the collision cannot lie on a target occupied level,
so h̄ωioniz

max = T − EPauli, where EPauli is the Fermi energy for
metals, or a value close to a few eV for semiconductors and
insulators [49], although the exact value of EPauli does not
change sensibly the electron SDiMFP.

According to the previous discussion, the upper limit of
the energy transfer in an inelastic collision between electrons
(leading to ionization) is h̄ωioniz

max = min[(T + Ebinding)/2,T −
EPauli]. Additional corrections to the dielectric formalism are
necessary to correctly describe very low energy electrons,
so an exchange correction term fexch has to be included in
the model. We have used the Ochkur exchange correction
term [50], fexch(k) = 1 − (h̄2k2)/(2mT ) + [(h̄2k2)/(2mT )]2,
which comes from the leading term of an expansion of the
Born-Oppenheimer amplitude in series of the electron energy
T [51]. Taking into account the previous considerations, the
ionization SDiMFP due to the impact of a swift electron with
kinetic energy T is given by:

d�ioniz
e (T ,W )

dW
= e2m

πh̄2T

∫ κe,2

κe,1

dk

k
fexch(k) Im

[ −1

ε(k,W + B)

]
outer

+ e2m

πh̄2T

∑
j

νj

∑
nl

∫ ζe,2

ζe,1

dk

k
fexch(k) Im

[ −1

ε(k,W + Bj,nl)

]
.

(5)

When the incident electron undergoes an inelastic collision, the Monte Carlo code also requires knowing whether ionization
or excitation of the target electrons occurs. In order to do that the electronic iMFP should be known, which is obtained
from Eq. (2) but applying the exchange correction and using the correct integration limits discussed in the previous
paragraph. This can be expressed as the sum of the excitation and ionization processes: �excit−ioniz

e = �excit
e + �ioniz

e . As
done previously, we use the mean binding energy to separate excitation from ionization. Proceeding in this manner, and
according to the dielectric framework, the excitation iMFP of an electron moving with kinetic energy T in a condensed target is
given by:

�excit
e (T ) = e2m

πh̄T

∫ ωexcit
max

0
dω

∫ κe,2

κe,1

dk

k
Im

[ −1

ε(k,W + B)

]
outer

, (6)

where the maximum energy transferred by the electron when an excitation process takes place is h̄ωexcit
max = min(B,T −

EPauli). On the other hand, the ionization iMFP for an electron with energy T is given by the following
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expression:

�ioniz
e (T ) = e2m

πh̄T

∫ ωioniz
max

B/h̄

dω

∫ κe,2

κe,1

dk

k
fexch(k) Im

[ −1

ε(k,W + B)

]
outer

+ e2m

πh̄T

∑
j

νj

∑
nl

∫ ωioniz
max

Bj,nl/h̄

dω

∫ ζe,2

ζe,1

dk

k
fexch(k)

× Im

[ −1

ε(k,W + Bj,nl)

]
. (7)

As we discussed earlier in relation to Eq. (5), in the case of
ionization it is necessary to consider the indistinguishability
between the primary and the struck electrons, as well as Pauli’s
exclusion principle (which enters through the maximum
energy transfer appearing in the integration limit) and also
the exchange correction through the Ochkur term fexch. In the
case of excitation processes the indistinguishability and the
exchange corrections do not apply.

We present in Fig. 3 the excitation (dashed line) and the
ionization (solid line) iMFP of electrons in PMMA as a
function of the incident electron energy T . The dotted line
represents the total electronic iMFP. The results were obtained
by using Eqs. (6) and (7) with the ELF of PMMA described
by the MELF-GOS model [28]. We find that the maximum
value of the electron ionization iMFP occurs at around 90 eV,
whereas the excitation iMFP has a maximum around 18 eV.

When the electron energy T becomes lower than ∼
20–50 eV it can lose energy in many small amounts interacting
with phonons, in particular with the optical modes of lattice
vibrations. In his theory of the electron-phonon interaction,
Fröhlich [52] described the interaction of free conduction
electrons with the longitudinal optical mode lattice vibrations.
Since, according to Ganachaud and Mokrani [53], the disper-
sion relation of the longitudinal phonons can be neglected in
the optical branch, one can use a single phonon frequency
ωphon. Using the Fröhlich theory, Llacer and Garwin [54]
calculated the inelastic iMFP for electron-phonon interaction

FIG. 3. Inverse mean free path (iMFP) corresponding to ioniza-
tion (solid line) and excitation (dashed line) processes, as well as the
total iMFP (dotted line) for electrons in PMMA, as a function of the
incident electron energy T .

�
phon
e and obtained the following result:

�phon
e (T ) = 1

a0

(
n(τ ) + 1

2

)(
ε(0) − ε(∞)

ε(0)ε(∞)

)
h̄ωphon

T

× ln

[
1 + √

1 − h̄ωphon/T

1 − √
1 − h̄ωphon/T

]
, (8)

where n(τ ) = (eh̄ωphon/kBτ − 1)−1, a0 is the Bohr radius, kB is
the Boltzmann constant, ε(0) is the static dielectric constant,
ε(∞) is the high frequency dielectric constant, and τ is the
absolute temperature of the target. With typical values of
h̄ωphon lying in the range from 0.01 to 0.1 eV [54], we have
used h̄ωphon = 0.1 eV in the present simulations [45].

Low-energy electrons moving in an insulating material
induce around them a polarization field, which has a stabilizing
effect on the electrons that generated it. The quasiparticle
describing the slow electron with its polarization field around is
called polaron. According to Ganachaud and Mokrani [53], the
inelastic iMFP for electron-polaron interaction �

pol
e is given

by:

�pol
e (T ) = Ce−γ T , (9)

where C and γ are constants depending on the material under
investigation. For PMMA we have used the values provided by
Ref. [45] as they give good agreement with the experimental
data by many authors both concerning secondary and total
electron yield and secondary electron energy distribution.
Therefore, the inelastic iMFP, which takes into account all
the above mentioned inelastic scattering processes, is given
by:

�inel
e (T ) = �excit

e (T ) + �ioniz
e (T ) + �phon

e (T ) + �pol
e (T ).

(10)

The total iMFP, which considers both elastic and inelastic
inverse mean free paths, �elast

e (T ) and �inel
e (T ), is given by:

�total
e (T ) = �elast

e (T ) + �inel
e (T ). (11)

The initial angular distribution of the electrons generated
by proton impact has been described in Sec. II A and will
be further discussed in Sec. IV. On the other hand, the polar
scattering angle ψ along the trajectory of each electron is
calculated, as already noted, according to the Mott theory for
elastic scattering. In the case of inelastic collisions: (i) For
electron-electron ionization collisions, the deviation angle ψ

of the incident electron is calculated within the classical binary
collision model by [22]

sin2 ψ = �T

T
, (12)
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TABLE I. Inelastic mean free path of protons in PMMA, for
several energies T of the proton beam, Eq. (2).

T (MeV) 1/�excit-ioniz
H (T ) (nm)

0.1 0.342
0.3 0.658
0.5 0.952
1 1.621
2 2.826
3 3.943
5 6.033
10 10.822

where �T is the electron energy loss and T is the incident
electron energy. The struck out electron (which becomes a new
secondary electron belonging to the cascade) has an energy
�T − B and is emitted isotropically [55,56].

(ii) For electron-phonon collisions, ψ is obtained by [54]

cos ψ =
(

T + T ′

2
√

T T ′

)
(1 − Kξ ) + Kξ, (13)

where K = (T + T ′ + 2
√

T T ′)/(T + T ′ − 2
√

T T ′), with T

and T ′ being, respectively, the electron energies before and
after the electron-phonon scattering; ξ is a random number
uniformly distributed in the interval [0,1].

III. ELECTRON ENERGY DEPOSITION AROUND
THE PROTON TRACK

After being generated, electron trajectories follow a
stochastic process, with scattering events separated by straight
paths having a distribution of step lengths that follow a
Poisson-type law. Once the step length is defined, the (elastic or
inelastic) nature of the scattering event, the polar and azimuthal
angles, and the energy losses, are all sampled using the relevant
cumulative probabilities according to the usual Monte Carlo
procedures [27,47,55].

By using the SEED code [27] we follow the trajectories of
all the electrons generated by the proton beam (which comprise
not only the ones ejected directly but also those resulting
in the subsequent electron cascades). The energy delivered
by these electrons to the target due to the different inelastic
events (described previously) is used to calculate the radial
dose dE/dm = dE/(ρ 2πrdrdz), i.e., energy deposited per
unit mass, in a cylindrical shell of length dz, inner radius r , and
outer radius r + dr , around the proton track in a radial interval
dr , as a function of the radial distance r from the proton’s path;
ρ = 1.188 g/cm3 is the mass density of the target.

As the kinetic energy T of the incident proton beam changes
due to energy loss along its travel through the target, the value
of the cylinder length dz is chosen to be the corresponding
proton inelastic mean free path, 1/�excit-ioniz

H (T ) [57]. Table I
contains the values of 1/�excit-ioniz

H (T ) in PMMA for a few
representative energies T , obtained by Eq. (2).

In order to model with accuracy the energy deposition, the
SEED code generates (new) secondary electrons only when
an ionization event takes place, which does not occur for
all inelastic electronic collisions. According to the relative

probability of excitation and ionization, sometimes just an
electronic excitation is produced, which results in a local
energy deposition without further energy transport. The SEED
code distinguishes between these two electronic inelastic
events according to the corresponding inverse mean free paths,
which are available through expressions (6) and (7). Figure 3
shows the relative importance of the electron ionization and
excitation processes in PMMA, as a function of the kinetic
energy of the primary electron.

As each secondary electron produces further secondary
electrons during its travel inside the solid, to obtain quantitative
results it is mandatory to follow the whole electron cascade,
until the moving particles are trapped in the material or reach
a threshold energy, which we have taken to be 0.1 eV. The
final results we will present do not crucially depend on this
quantity, provided it is in the range of tenths of eV.

IV. RESULTS AND DISCUSSION

In this section we present the results of the simulations
performed with the SEED code, as described in Sec. III,
where the initial energy and angular distributions of electrons
produced by the incoming protons, as well as the electronic
interactions of these electrons with the medium, have been
described within the dielectric formalism as explained in
Sec. II.

In the first place, let us discuss the effect that the initial
conditions of the track-structure code have on the simulated
radial energy distribution. In order to analyze the influence
of the angular distribution of the electrons ejected by proton
impact on the radial dose dE/dm, it has been simulated
by using different expressions for the angular DDiMFP,
namely, isotropic (the simplest), perpendicular to the ion’s
path, forward, and backward DDiMFPs, as well as angular
DDiMFP obtained from the more physically motivated DRF
model [26], Eq. (4), and the widely used Rudd and Kim model
[22], based on the binary encounter angle. In all the cases the
initial energy distribution of the electrons generated by the
proton beam is given by Eq. (3) with B = 15 eV [13].

We show in Fig. 4 the radial dose around a 1 MeV proton
track in PMMA. We can see that the dose is practically identical
for the isotropic angular distribution and for the angular
distribution of the DRF model [26] presented in Sec. II A. This
behavior could have been inferred from Fig. 1, which shows
that low energy electrons are the most abundant, and from
Fig. 2, where an approximate isotropic angular distribution
emerges for electrons with energy lower than 50 eV. The radial
doses obtained when using the forward and the backward
angular distributions agree between them, but not with the
others. Finally, the Rudd and Kim angular distribution [22],
which corresponds to a delta value as a function of the initial
proton energy and the emitted electron energy, gives a radial
dose that practically coincides with the one obtained from
the simple perpendicular distribution. From the analysis of
Fig. 4, we conclude that the extensively used Rudd and
Kim angular distribution [22] for the electrons generated
by proton ionization should be replaced by the isotropic
angular distribution, which leads to radial dose distributions
comparable to the ones obtained from the more realistic
angular distribution of Eq. (4). The differences among the
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FIG. 4. SEED simulation of the radial dose, dE/dm, around the
track of a 1 MeV proton beam incident on PMMA, for several initial
angular distributions of the electrons (indicated in the labels).

radial doses obtained from the different angular distributions
disappear at distances larger than 1 nm.

Besides the coincidences (and differences) among the radial
dose distributions, it is worth noticing that the results obtained
from the isotropic and DRF cases are between the (higher)
backward and forward and the (lower) perpendicular and
Rudd and Kim cases. In what follows, we will use the more

FIG. 5. Radial doses obtained when phonon and/or polaron
processes are removed from the SEED simulation (as stated in the
labels), for 0.1 and 1 MeV proton impact in PMMA.

FIG. 6. (a) SEED simulation of the radial dose deposited by
secondary electrons along the track of T = 0.1–10 MeV proton
beams incident on PMMA. (b) Radial dose divided by the stopping
power Sp corresponding to each proton energy.

physically motivated DRF angular distribution. We would like
to stress that when not detailed calculations are available, the
isotropic angular distribution should be employed instead of
the widely used Rudd and Kim formula [22].

To assess the influence in the radial dose of electron-
phonon and trapping due to polaronic effects (two processes
associated to the condensed phase nature of the target), we
compare in Fig. 5 the results of the radial dose obtained
when removing in the SEED code these processes, for 0.1
and 1 MeV protons in PMMA. As it can be seen, ignoring the
contribution of phonons practically does not affect the radial
dose, whereas removal of polarons leads to a radial dose that
extends farther compared to the full simulation. However these
changes are very small (only noticeable for the lowest proton
beam energies) at distances where the radial dose has already
fallen several orders of magnitude (r � 5 nm in both cases).
We have checked that the total energy deposited around the
track remains unchanged when the interaction with phonons
and polarons are either included or neglected.

We show in Fig. 6(a) the simulated radial doses obtained
with the SEED code for protons in PMMA in the range of
incident energies 0.1–10 MeV. Our results confirm that the
deposited radial dose changes sizeably with proton energy for
all radial distances, being the difference more than one order
of magnitude for the closest distances to the proton track. This
is directly related to the evolution of the magnitude of the
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SDiMFP with proton energy: The lower the proton energy, the
more secondary electrons are ejected, so the more energy is
deposited around the ion path. At larger distances the radial
doses decrease similarly for all the proton energies, except
for the lower ones, for which the radial dose sharply falls at
r ∼ 10 nm. This behavior is due to the maximum energy that
can be transferred from the proton to energetic electrons: As
seen in Fig. 1, the high energy tail of the SDiMFP grows
with the proton energy, since more energetic electrons can
be produced. Although not very numerous, these electrons
carry large amounts of energy and can travel far away, then
justifying the maximum extension of the radial dose, which
accordingly increases with proton energy. These trends are of
great relevance for the different applications, such as proton
beam writing or ion beam cancer therapy: Lower proton
energies produce both (i) larger amounts of energy deposited
and (ii) larger concentration of these energies in shorter
distances, thus increasing the efficiency and spatial resolution
of the proton beam techniques. The radial dose dependence as
a function of the distance r from the proton track only follows
an approximate r−2 behavior for intermediate distances, with
sizable deviations appearing at large distances r , analogously
to the results obtained in similar studies performed for other
targets and projectiles using different methodologies [58–60].

It is worth noticing, as depicted in Fig. 6(b), that the
different radial doses practically collapse to a single curve
(up to 5 nm) when divided by the stopping power Sp for
each proton energy [28]. This behavior can be understood
when considering that the integral of the radial dose over
the radial distance converges to the total energy lost by the
proton per unit path length, i.e., the stopping power, which

increases at the lower proton energies discussed in this work.
The maximum stopping power of PMMA for protons occurs at
around 0.1 MeV. First, this (almost) common curve is a useful
feature for predicting radial doses when the stopping power (a
well know quantity in most cases) is provided. Furthermore,
it remarks (again) the role of the low energy electrons in the
build up of the radial dose at short radii. As depicted in Fig. 1,
the maximum of the SDiMFP always appears at the same
(low) electron energy W for all the incident proton energies
T . This yields, as it has been demonstrated in previous works
[14], an average kinetic energy of the secondary electrons
which, in the energy range studied, is always around 50 eV,
only slightly changing with the proton energy. Therefore, no
matter what the energy of the impinging proton is, the radial
redistribution of the energy at short distances will be always
quite similar, owing to the fact that low energy electrons
(the most abundant) are always emitted with similar energies
(and with isotropic angular distributions, as already pointed
out above). The differences in the radial dose will be more
related to the amount of energy deposited (the number of
electrons ejected), rather than to the extent to which this
energy is transported radially. Even though, as previously
discussed, the energy of the primary proton will determine
the maximum extension of the radial dose, due to the role of
the more energetic electrons, which are few but very effective
in generating cascades of further electrons that carry the energy
away from the proton track.

Our results for the radial dose around the tracks of energetic
protons in PMMA are compared in Fig. 7 to previous Monte
Carlo results by Udalagama et al. [17] for 0.5–3 MeV proton
beams, which correspond to conditions of practical interest in

FIG. 7. Energy deposited radially by secondary electrons along the track of (a) 0.5 MeV, (b) 1.0 MeV, (c) 2.0 MeV, and (d) 3.0 MeV proton
beams incident on PMMA. Results obtained in this work with the SEED code (red curves) are compared with previous simulations (symbols)
[17]. In panel (a) our simulation for 0.1 MeV protons (blue curve) is also plotted for comparison purposes. See main text for more details.
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the proton beam writing technologies [61]. Since no units were
provided in Ref. [17], we have scaled their results with ours
for each proton energy to find the best match and compare
the general trends obtained in both studies. It can be noticed
in Fig. 7 that our simulations agree fairly well with those for
the higher energies (1, 2 and 3 MeV). However, important
differences are found for the case of 0.5 MeV protons, where
our curve goes to much larger radial distances, following the
behavior discussed in Fig. 6(a).

The results depicted in Fig. 7 are relevant to choose the
appropriate energies for proton beam writing or lithography
[61], in order to avoid proximity effects that lead to degrading
the resolution of these techniques. The recommended energy of
0.5 MeV in Ref. [17] was chosen due to the compactness of the
radial dose profile, justifying such election on the production
of less energetic electrons for low energy proton beams, which
travel to shorter distances from the incident projectile track.
Although this line of reasoning is correct, as we have seen from
the previous discussion, Udalagama et al. [17] only extended
their analysis down to 0.5 MeV. Our results for this energy
clearly disagree with these authors, but we find a similar radial
dose around the proton track when going down to 0.1 MeV
[also depicted in Fig. 7(a)], which is the energy at which
the maximum of the stopping power of PMMA for protons
takes place [28]. Therefore, proximity effects around each
proton track decrease when using lower proton energies than
previously suggested.

Since our results do not consider the possible radial
widening of the proton beam due to elastic scattering with
the PMMA atomic nuclei, detailed simulations of the proton
beam lateral spreading as it propagates through the target, both
as a function of its initial energy and target depth, are required
to properly evaluate proximity effects and increase resolution
in proton-beam writing or lithography.

Following all the results discussed in this section, 0.1 MeV
protons present the maximum stopping power in PMMA and
hence generate the maximum number of secondary electrons,
so the radial dose is maximized. At the same time, at these
low proton energies, the production of energetic electrons is
suppressed, so the spatial concentration of energy is also max-
imized. Both facts lead to very intense and narrow (∼10 nm)
profiles of energy deposition around each proton track, which
are optimal for proton-beam writing or lithography. Besides,
as low proton energies are reached at the Bragg peak by the
∼100 MeV proton beams currently used in proton beam cancer
therapy [31], the higher density of energy deposited around the
proton tracks would lead to more severe biodamage.

V. SUMMARY AND CONCLUSIONS

An improved version of the event-by-event Monte Carlo
code SEED (Secondary Electron Energy Deposition) has
been used to describe, within a unified framework based
on the dielectric response function (DRF), the production
and transport of secondary electrons due to proton impact in
condensed phase targets. We have considered realistic energy
and angular distributions of the electrons initially generated
by proton beams, as well as the subsequent incorporation of
further electrons to the cascade resulting from the impact of
these electrons. Besides ionization and excitation, Coulomb

scattering and other energy loss channels for the moving
electrons (such as polarons and phonons) have been taken
into account, which become important for electrons moving at
low energies through condensed-phase targets.

The cross sections for the most important electronic
interaction events, namely, ionization and excitation, have
been calculated within the dielectric formalism, which is a
very convenient approach to treat the inelastic interactions of
charged particles in condensed matter. This methodology has
been applied with success to PMMA and a large number of
organic and inorganic materials. The extension of the dielectric
formalism to separate the excitation and ionization phenomena
for arbitrary organic materials allows the calculation of the
generated-electron energy and angular spectra, providing all
the needed electronic cross sections to feed the simulation code
SEED.

We have studied in detail the case of electron cascades
generated when bombarding PMMA with proton beams,
which has practical applications in proton beam writing and
lithography. Using the SEED code and the implemented set
of electronic cross sections, we have simulated the radial
doses arising in PMMA around 0.1–10 MeV proton tracks.
The influence on radial doses due to the initial energy
and angular distributions of the electrons generated by the
proton beam has been analyzed. First, we have evaluated
the effect on the radial energy deposition profile of using a
realistic angular distribution of electrons generated by proton
impact, comparing the simulated radial energy deposition with
those obtained from simpler approaches often used in Monte
Carlo simulations or other analytical approaches, namely
distributions that are isotropic, perpendicular, forward, and
backward to the proton track, as well as the widely used
Rudd and Kim formula. We conclude from our simulations
that an isotropic distribution produces almost identical radial
energy distributions as the ones obtained from realistic angular
distributions. In turn, the Rudd and Kim formula produces
identical results to the perpendicular distribution, while the
forward and backward distributions yield similar results, all
the latter being different from the former. Therefore, we
conclude that it is justified to use the very straightforward
approximation of isotropic ejection of electrons generated by
swift protons, since it produces results similar to the realistic
angular spectrum implemented in this work. This coincidence
is due to the prominent role of the low energy electrons (the
most abundant) in the build up of the radial dose, which present
a rather isotropic angular distribution, as our model based on
the dielectric formalism reveals.

The comparison of the radial doses around 0.1–10 MeV
protons in PMMA reveal a quasiuniversal behavior. Namely,
the differences in the doses at short radial distances (up to
5 nm) can be exclusively attributed to the different number
of ejected electrons but not to their energy distribution. The
radial doses normalized to the corresponding proton stopping
power are very similar for short radial distances, highlighting
the role of the low energy electrons on the buildup of the
dose at short distances. Since the average energy of electrons
produced in the situations discussed in this work is around
50 eV [14], and it only slightly changes with the proton
energy, the radial dose profile divided by the stopping power is
practically universal for short radial distances. The differences
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appear for large radial distances, where the dose is due to
energetic electrons. The number and maximum energy of the
more energetic electrons grow with the primary proton energy,
and thus the tail of the radial dose at large distances also grows
with the proton energy.

Finally, our simulations are used to discuss how the reso-
lution of proton beam writing and lithographic technologies
depends on the proton beam energy, by comparing our results
with previous Monte Carlo simulations [17]. Our results
show that lower energy protons (i) increase the amount of
dose deposited in the material (following the increase in
the stopping power and the ionization cross section with
decreasing energy) and (ii) transport the energy deposited
to shorter distances, owing to the suppressed production of
more energetic electrons. Our simulations agree with those by
Udalagama et al. [17] for the higher proton energies reported,
although sizable differences are found for 0.5 MeV, the lowest
energy reported by these authors. We find such great levels
of concentration of energy around a proton track for 0.1 MeV
protons.

We conclude that lower proton energies are recommended
for proton beam based technologies requiring high energy
deposition around small volumes, such as proton beam writing
or lithography, among other applications. In these cases,

the use of lower proton energies is more convenient, which
correspond to the maximum of the stopping power and yield
the highest concentrations of the radial dose (extending to
∼10 nm around each proton track).
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