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Abstract Data Reduction techniques play a key role

in instance-based classification to lower the amount of

data to be processed. Among the different existing ap-

proaches, Prototype Selection (PS) and Prototype Gen-

eration (PG) are the most representative ones. These

two families differ in the way the reduced set is ob-

tained from the initial one: while the former aims at

selecting the most representative elements from the set,

the latter creates new data out of it. Although PG is

considered to delimit more efficiently decision bound-

aries, the operations required are not so well defined

in scenarios involving structural data such as strings,

trees or graphs. This work studies the possibility of us-

ing Dissimilarity Space (DS) methods as an interme-

diate process for mapping the initial structural repre-

sentation to a statistical one, thereby allowing the use

of PG methods. A comparative experiment over string
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data is carried out in which our proposal is faced to PS

methods on the original space. Results show that the

proposed strategy is able to achieve significantly simi-

lar results to PS in the initial space, thus standing as

a clear alternative to the classic approach, with some

additional advantages derived from the DS representa-

tion.

Keywords kNN classification · Prototype Genera-

tion · Structural Pattern Recognition · Dissimilarity

Space

1 Introduction

In the Pattern Recognition (PR) field, two fundamen-

tal approaches can be found depending on the model
used for representing the data [12]: a first one, usually

known as structural or syntactical, in which data is rep-

resented as symbolic data structures such as strings,

trees or graphs; and a second one, known as statistical

or feature representation, in which the representation

is based on numerical feature vectors that are expected

to sufficiently describe the actual input.

The election of one of these approaches has some no-

ticeable implications and consequences: structural meth-

ods offer a wide range of powerful and flexible high-level

representations, but only few PR algorithms and tech-

niques are capable of processing them; statistical meth-

ods, in spite of being less flexible in terms of represen-

tation, depict a larger collection of PR techniques [5].

Independently of whether we use a structural or a

feature representation, instance-based PR methods, for

which the k-Nearest Neighbor rule (kNN) is the most

representative, may be applied for classification tasks.

Generally, these methods just require to work over a

metric space, i.e., that in which a distance between two

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/132347564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Calvo-Zaragoza et al.

points can be defined. Instead of obtaining a set of clas-

sification rules out of the available information, they

need to examine all the training data each time a new

element has to be classified. As a consequence, they

not only depict considerable memory requirements in

order to store all these data, which in some cases might

be a very large number of elements, but also show a

low computational efficiency as all training information

must be checked at each classification task [28].

Data Reduction techniques, a particular subfamily

of Data Preprocessing methods, try to solve these limi-

tations by means of selecting a representative subset of

the training data [19]. Two common approaches for per-

forming this task are Prototype Generation (PG) and

Prototype Selection (PS). Both families of methods fo-

cus on reducing the size of the training set for lowering

the computational requirements while maintaining, as

far as possible, the classification accuracy. The former

family creates new artificial data to replace the initial

set while the latter one simply selects certain elements

from that set.

It must be pointed out that the two aforementioned

DR paradigms do not show the same dependency on

the data representation used. PS algorithms have been

widely used in both structural and feature representa-

tions as the elements are not transformed but simply

selected. On the other hand, PG methods require to

modify or create data in order to intelligently place new

elements and, while this process can be easily performed

in feature representations, it becomes remarkably diffi-

cult for structured data, at least in terms of developing

a generic strategy for any type of data structure (e.g.,

strings, trees, or graphs).

In this paper we study the possibility of applying

PG methods to structured representations by means of

using Dissimilarity Space (DS) methods so as to solve

the aforementioned obstacle. By using DS techniques,

the initial structural representation can be mapped onto

a feature-based one, thereby allowing the use of statis-

tical PG techniques not available in the original space.

Our intention is to assess whether this approach de-

serves further consideration when faced against the clas-

sical choice of applying PS in the initial structural space.

This paper expands the initial idea proposed in the

work of Calvo-Zaragoza et al. [8] by providing a more

far-reaching experimentation, in which a broader num-

ber of DS methods is considered. Stronger statements

about the performance of the proposal are drawn, sup-

ported by a comprehensive evaluation in terms of num-

ber of datasets and statistical significance tests.

The rest of the paper is structured as it follows: Sec-

tion 2 introduces the task of Data Reduction; Section 3

explains the idea of Dissimilarity Space and its appli-

cation to our case; Section 4 describes the evaluation

methodology proposed; Section 5 shows and thoroughly

analyzes the results obtained; finally, Section 6 explains

the general conclusions obtained and discusses possible

future work.

2 Background on Data Reduction

Among the different stages which comprise the so-called

Knowledge Discovery in Databases, Data Preprocessing

is the set of tasks devoted to provide the information to

the Data Mining system in the suitable amount, struc-

ture and format [25]. Data Reduction (DR), which con-

stitutes one of these possible tasks, aims at obtaining a

reduced set with respect to the original data which, if

provided to the system, would produce the same output

as the original data [19].

DR techniques are widely used in kNN classification

as a means of overcoming its previously commented

drawbacks, being the two most common approaches

Prototype Generation (PG) and Prototype Selection

(PS) [29]. Both methods focus on obtaining a smaller

training set for lowering the computational requirements

and removing ambiguous instances while keeping, if not

increasing, the classification accuracy.

PS methods try to select the most profitable subset

of the original training set. The idea is to reduce its

size to lower the computational cost and remove noisy

instances which might confuse the classifier. Typically,

three main families can be considered based on the ob-

jective pursued during the process:

– Condensing: The idea followed by these methods
is to keep only the most representative prototypes

of each class and reduce as much as possible the

data set. While accuracy on training set is usually

maintained, generalization accuracy is lowered.

– Editing: These approaches focus on eliminating in-

stances which produce some class overlapping, typ-

ical situation of elements located close to the deci-

sion boundaries or noisy data. Data reduction rate

is lower than in the previous case but generalization

accuracy tends to be higher.

– Hybrid: These algorithms look for a compromise

between the two previous approaches, which means

seeking the smallest data set while improving, or at

least maintaining, the generalization accuracy of the

former set.

Given its importance, many different approaches have

been proposed throughout the years to carry out this

task. The reader may check the work of Garcia et al. [18]

for an extensive introduction to this topic as well as
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a comprehensive experimental comparison for the dif-

ferent methods proposed. Since trying to maintain the

same accuracy as with the initial training set is diffi-

cult to fulfill in practical scenarios, much research has

been recently devoted to enhance this process through

the combination with other techniques. Some of these

include Feature Selection [35], Ensemble methods [20]

or modifications to the kNN rule [7].

On the other hand, PG methods are devoted to cre-

ating a new set of labeled prototypes that replace the

initial training set. Under the DR paradigm, this new

set is expected to be smaller than the original one since

the decision boundaries can be defined more efficiently.

Depending on the focus where placing the new proto-

types, three main families of strategies can be found:

– Centroid-based: subsets of prototypes of the ini-

tial training set are grouped taking into account

proximity, labeling and representation criteria. Then,

the centroid of this subset is generated as a new pro-

totype for the final set.

– Position adjustment: from an initial subset of the

training set, selected following any strategy (for in-

stance, a PS method), prototypes are moved around

their neighborhoods following a particular heuristic.

The objective is to find the location in which they

can be more profitable for classification purposes.

– Space partitioning: the idea is to divide the input

space into regions of interest. Then, representatives

of each space are generated. Variations in space di-

vision and generation within each one provide the

different methods of this family.

Reader is referred to the work of Triguero et al. [34]

to find a further extension to this introduction to PG

methods.

Under the same conditions, PG is expected to per-

form better than PS since the former can be seen as

a generalization of the latter. Nevertheless, while PS

only needs information about similarity or proximity

between different prototypes, for which one can use the

same dissimilarity function considered for the kNN rule,

PG needs information about the representation space.

Indeed, the PG family represents a more restrictive op-

tion than the simple selection of prototypes because

it is hard to be used under structural spaces. In these

cases, it is difficult to develop generic operations such as

‘move a prototype towards a specific direction’ or ‘find

the centroid of a subset of prototypes’. Thus, generat-

ing new prototypes in structural data is not a trivial

matter.

Given the theoretical advantages of PG over PS

methods, finding strategies to generate prototypes on

structural data would be of great interest. In this work,

it is proposed a method that fills this gap. It consists

of a two-stage algorithm which first maps the struc-

tural data onto features vectors, after which common

PG techniques can easily work. To perform this map-

ping, we resort here to the so-called Dissimilarity Space

representation. Next section details our proposal.

3 Prototype Generation over Structural Data

using Dissimilarity Space Representation

Current PG algorithms assume that data is defined over

a vector space. Thus, it is feasible to perform geometric

operations to find new points of interest in which new

labeled prototypes can be generated. The intention is to

maintain the accuracy of the kNN classifier with fewer

prototypes than in the original training set.

Nevertheless, when working over a structural space,

it is just known a distance function that allows know-

ing the proximity between two points of the space (this

is also referred as metric space). In that case, PG al-

gorithms are not able to generalize the geometric ope-

rations utilized in the vector space. Serve as an exam-

ple the median operation: its computation is easy for

n-dimensional points whereas it becomes NP-complete

when points are strings [22]. Some examples of works

addressing related issues include the work of Abreu

and Rico-Juan [1], in which the median of a string

set is approximated using edit operations, or Ferrer

and Bunke [16], in which an iterative algorithm for

the computation of the median operation on graphs is

exposed. Nevertheless, all of them take advantage of

the knowledge of the specific structural data to cre-

ate these new prototypes. Therefore, generalization to

other structural representations cannot be assumed.

We propose a new strategy as a possible solution to

the problem stated above. The process itself follows a

simple procedure which consists in mapping data onto

a new vector, or feature, space. This process, known as

embedding, has been extensively studied for decades [23,

4]. Once data is represented as feature vectors, conven-

tional prototype generation strategies may be used.

In this work we are going to restrict ourselves to

a particular family of embedding algorithms known as

Dissimilarity Space (DS) representation [13]. Broadly,

DS representations are obtained by computing pairwise

dissimilarities between the elements of a representation

set, which actually constitutes a subset of the initial

structural training data selected following a given cri-

terion.

The choice of using DS instead of other techniques is

justified by some reasons directly related to the actual

object of study:
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1. It only requires a distance or dissimilarity function

between prototypes. Taking into account that this

work focuses on DR techniques for improving kNN

classification — which also needs this function —,

the requirement is assumed to be effortless.

2. The intention of the work is to measure the per-

formance of PG on the new space. Therefore, it is

preferable that results are more related to the PG

technique instead of the quality of the embedding

method. That is why it is considered a simple me-

thod (but with a strong background) rather than a

more complex one.

During experimentation, the classification results ob-

tained after applying a set of PG techniques to the DS

representation will be compared to the results obtained

when using PS techniques in the initial structural space

so as to check whether our approach can be useful in

these situations. On the other hand, below we intro-

duce the DS transformation and the particular strate-

gies considered.

3.1 Dissimilarity Space transformation

Let X denote a structural space in which a dissimilarity

function d : X×X → R+ is defined. Let Y represent the

set of labels or classes of our classification task. Let T

be a labeled set of prototypes such that T = {(xi, yi) :

xi ∈ X , yi ∈ Y }|T |
i=1.

In order to map the prototypes of T onto a feature

space F , DS-based methods seek for a subset R out of

the training set (R ⊆ T ). The elements of R, usually

known as pivots, are noted as ri with 1 ≤ i ≤ |R|. Then,

a prototype x ∈ X can be represented in F as a set

of features (v1, v2, v3, . . . , v|R|) such that vi = d(x, ri).

This way, an |R|-dimensional real-valued vector can be

obtained for each point in the space X . Different heuris-

tics were proposed in the work of Pekalska et al. [30] for

the selection of pivots, some of which have been consid-

ered for our work and are briefly described below.

3.1.1 RandomC

The RandomC strategy selects a random subset of pro-

totypes, in which the number of prototypes of each class

is exactly c (tuning parameter), that is, |R| = c|Y |.
In order to compare the influence of parameter c in

the feature representation, some different values will be

considered at experimentation stage.

3.1.2 kCenters

This strategy performs a k-medoids clustering process

on every class considered. The initialization is performed

as proposed in the work of Arthur and Vassilvitskii [3]

(k-means++). The different centroids obtained after

the process are included in R, i.e., |R| = k|Y |. As hap-

pened in the previous case, the value k may alter the

representation of the new space so some tuning will be

considered during the experimentation.

3.2 EditCon

The main idea behind EditCon is to select the most

representative prototypes of the training set to be used

as pivots. To this end, this technique applies two PS

algorithms to the initial training set: as a first step, an

Editing process [37] is used to remove noisy informa-

tion; then, a Condensing process [21] is performed so

as to keep only the informative elements. No parame-

ters are considered in this case.

4 Experimentation

Figure 1 shows the implemented set-up for performing

the experimentation. As it can be checked, out of the

initial structural elements, a feature representation is

obtained using a particular DS method. DR techniques

are then applied to both data representations but, while

PS methods are applied to structural and feature repre-

sentations, PG is only performed on the latter. Finally,

the Nearest Neighbor (NN) algorithm, parameterized

with k=1, is used for the classification.

For these experiments, different configurations of

the c and k parameters of the RandomC and kCenters,

respectively, have been tested. The values considered

have been 5, 10 and 15 prototypes per class.

We shall now describe the different datasets, Data

Reduction strategies studied and the performance met-

rics considered for this study.

4.1 Datasets

Five different datasets of isolated symbols have been

considered: the National Institute of Standards and Tech-

nology DATABASE 3 (NIST3), from which a subset of

the upper case characters was randomly selected, the

Mixed National Institute of Standards and Technol-

ogy dataset (MNIST) [27] of handwritten digits, the

United States Postal Office handwritten digits dataset

(USPS) [24], the MPEG-7 shape silhouette dataset [26],

and the Handwritten Online Musical Symbol (HOMUS)

dataset [6]. In terms of class representation, these datasets

can be considered as being totally balanced. Freeman
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Prototypes
(structural)

Dissimilarity Space

Prototype Selection

Prototype Selection

Prototype Generation

1-NN

1-NN

1-NN

Statistical classification

Structural classification

Fig. 1 Experimental set-up tested. DS is used for mapping structural data into a feature-based space. PS is applied to both
structural and feature data while PG is only performed on the latter. 1-NN is used for the classification in all cases.

Name Instances Classes

NIST3 6500 26

MNIST 70000 10

USPS 9298 10

MPEG-7 1400 70

HOMUS 15200 32

Table 1 Description of the datasets used in the experimen-
tation.

Chain Codes [17] have been considered as contour de-

scriptors. Since this structural data is represented with

strings, the well-known the Edit distance [36] is consid-

ered as dissimilarity. Once data is mapped onto feature

vectors, the Euclidean distance is used.

A 5-fold cross-validation process has been applied

for each dataset to examine the variance to the training

data.

Reader is referred to Table 1 to find more details

about the composition of the datasets.

4.2 Data Reduction strategies

A representative set of DR algorithms covering a wide

range of selection variants was used for the experimen-

tation. However, in order to perform a fair comparison

between the two DR strategies, we are only showing

the results for the PS algorithms retrieving similar size

reductions to the PG algorithms. These techniques are

briefly introduced in the following lines.

4.2.1 Prototype Selection (PS) algorithms

– Fast Condensing Nearest Neighbor (FCNN) [2]: com-

putes a fast, order-independent condensing strategy

based on seeking the centroids of each label.

– Farther Neighbor (FN) [31]: gives a probability mass

value to each prototype following a voting heuristic

based on neighborhood. Prototypes are selected ac-

cording to a parameter (fixed to 0.3 in our case)

that indicates the probability mass desired for each

class in the reduced set.

– Cross-generational elitist selection, Heterogeneous

recombination and Cataclysmic mutation algorithm

(CHC) [14]: evolutionary algorithm commonly used

as a representative of Genetic Algorithms in PS. The

configuration of this algorithm has been the same as

in [9].

This subset of techniques is expected to cover three

typical searching methodologies of PS: FCNN as con-

densing, FN as heuristic approach and CHC as evolu-

tionary search.

4.2.2 Prototype Generation (PG) algorithms

– Reduction by Space Partitioning 3 (RSP3) [32]: di-

vides the space until a number of class-homogeneous

subsets are obtained; a prototype is then generated

from the centroid of each subset.

– Evolutionary Nearest Prototype Classifier (ENPC)

[15]: performs an evolutionary search using a set of

prototypes that can improve their local quality by

means of genetic operators.

– Mean Squared Error (MSE) [10]: generates new pro-

totypes using gradient descent and simulated an-

nealing. Mean squared error is used as cost function.

The parameters of these algorithms have been es-

tablished following the work of Triguero et al. [34]. As

in the previous case, we try to consider a representa-

tive set of generation techniques: MSE as a classical

method, ENPC as evolutionary search and RSP3 as

heuristic approach.

4.3 Performance measurement

In order to assess the results, we have considered as

metrics of interest the classification accuracy of the re-
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duced set as well as its size. While the former indicates

the ability of the DR method to choose the most rel-

evant prototypes, the latter one depicts its reduction

skills.

For these figures of merit we show the results ob-

tained when averaging the scores for each dataset, which

allows to understand the general performance of each

scenario at a glance. Nevertheless, in order to perform

a rigorous comparison among the strategies, a signifi-

cance test has been performed facing accuracy and set

size figures.

It must be considered that, although these measures

are suitable to evaluate the performance of each sin-

gle strategy, it is not possible to establish a clear com-

parison among the whole set of alternatives to deter-

mine the best one. DR algorithms aim at minimizing

the number of prototypes considered in the training set

while, at the same time, increasing the classification

accuracy. Most often, these two goals are contradic-

tory so improving one of them implies a deterioration

of the other. From this point of view, classification in

DR scenarios can be seen as a Multi-objective Opti-

mization Problem (MOP) in which two functions have

to be simultaneously optimized: reduction of the train-

ing set and maximization of the classification success

rate. Usually, the evaluation of this kind of problems

is carried out in terms of the non-dominance concept.

One solution is said to dominate another if, and only if,

it is better or equal in each goal function and, at least,

strictly better in one of them. The set of non-dominated

elements represents the different optimal solutions to

the MOP. Each of them is usually referred to as Pareto

optimal solution, being the whole set usually known as

Pareto frontier.

Finally, classification time is also considered in this

study to assess the influence of the type of data repre-

sentation in these terms.

5 Results

Average results in terms of classification accuracy and

set size obtained on the different datasets are presented

in Table 2. Additionally, Table 3 shows the correspond-

ing average classification times. Normalization (in %)

is done with respect to the whole dataset. ALL refers

to results obtained when using the whole training set

(no DR algorithm is applied). Furthermore, Table 4

shows the average number of attributes obtained in each

dataset when applying the different DS processes to the

initial structural space.

For a better understanding, Figure 2 shows graphi-

cally the results in a 2D representation where accuracy

and size are confronted. Non-dominant elements repre-

senting the Pareto frontier are highlighted.

A first initial remark is that, on average, the DS

process implies a reduction in classification accuracy.

For a given algorithm, when comparing the accuracy

results obtained in the initial space with any of the

corresponding DS cases, there is a decrease in these

figures. For instance, when considering the ALL case,

average classification accuracy goes from 90.8 % in the

initial space to figures around 88 % in the different DS

spaces considered, which is around a 3 % decrease in

accuracy simply because of the mapping stage.

For both structural and feature-based representa-

tions, PS techniques depict a decrease in the classifi-

cation accuracy when compared to the ALL case. This

effect is a consequence of the reduction in the set size. In

the DS space, however, PG achieves slightly better clas-

sification results with similar reduction rates than the

PS algorithms, somehow showing the superior robust-

ness of these methods. As an example, for RandomC(5),

ENPC achieves an accuracy of 85.6 % with a set size

of 15 % whereas 1-FN0.3 roughly gets to a classification

rate of 80.7 % with a 16.5 % of the initial set.

Nevertheless, the main outcome out of the results

obtained by the PG algorithms is that the scores ob-

tained in the DS space are quite similar to the ones

obtained by PS schemes in the initial structural space.

Although this point shall be later thoroughly assessed

through statistical tests, these figures may allow us to

qualitatively see the proposed strategy as a clear com-

petitor of PS in structural data.

In terms of classification times, results show DS

strategies as much faster than structural ones (several

orders of magnitude) due to the complexity reduction

achieved by using Euclidean distance instead of Edit

distance.

Regarding the considered DS strategies, it can be

checked that the results are not remarkably affected by

the DS algorithm considered as neither accuracy values

nor sizes show dramatic changes among them. In the

same sense, parameters of RandomC and kCenters do

not seem to have a remarkable influence either as fig-

ures obtained by the different configurations are very

similar.

When considering the non-dominance criterion, we

can see that most elements defining the Pareto fron-

tier are PS configurations in the structural space, more

precisely CHC, FCNN and the ALL configuration (see

Fig. 2). When mapping to the statistical space, CHC ex-

tends the frontier as, despite its accuracy loss, it achieves

remarkable reduction rates. Concerning our proposal of

PG in the DS space, we can see that the different con-

figurations fill some areas of the space where the rest of
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PS PG

ALL FCNN 1–FN0.3 CHC RSP3 ENPC MSE

Acc Size Acc Size Acc Size Acc Size Acc Size Acc Size Acc Size

No DS 90.8 100 87.9 22.0 84.6 13.9 81.0 3.6 - - - - - -

RandomC(5) 87.4 100 84.1 26.8 80.7 16.5 75.5 3.6 85.8 31.5 85.6 15.0 83.3 14.3
RandomC(10) 88.0 100 84.5 26.2 81.3 16.5 75.8 3.3 86.2 31.0 86.0 14.4 85.5 14.4
RandomC(15) 88.2 100 84.9 26.0 81.6 16.5 76.6 3.3 86.7 31.3 86.1 14.3 84.1 14.4

kCenters(5) 87.9 100 84.1 26.4 81.2 16.5 76.6 3.4 86.2 30.2 85.9 14.8 83.8 14.3
kCenters(10) 88.0 100 84.5 26.1 81.1 16.5 76.7 3.6 86.6 30.9 86.2 14.4 84.2 14.4
kCenters(15) 88.3 100 85.1 25.7 81.4 16.5 77.0 3.5 86.7 30.7 86.3 14.1 84.2 14.4

EditCon 88.0 100 84.9 25.9 81.5 16.6 75.8 3.7 86.5 32.6 86.2 14.5 83.7 14.4

Table 2 Results obtained with the different DS algorithms configurations considered. Figures shown represent the average
of the results obtained for each single dataset. No DS depicts results obtained in the initial structural space. Selection and
generation techniques are regarded as PS and PG respectively. ALL stands for the case in which no selection or generation is
performed. Normalization (%) is performed with respect to ALL case of each dataset separately.

PS PG

ALL FCNN 1–FN0.3 CHC RSP3 ENPC MSE

No DS 877.3 221.3 136.7 50.7 - - -

RandomC(5) 3.15 0.91 0.56 0.13 1.09 0.46 0.13
RandomC(10) 5.07 1.5 0.96 0.28 1.71 0.72 0.14
RandomC(15) 6.72 2.03 1.36 0.47 2.21 0.92 0.18

kCenters(5) 3.17 0.90 0.56 0.13 1.06 0.47 0.08
kCenters(10) 5.05 1.48 0.96 0.29 1.68 0.71 0.14
kCenters(15) 6.73 2.01 1.36 0.48 2.18 0.9 0.18

EditCon 20.75 7.2 5.39 2.92 6.53 2.48 0.39

Table 3 Average classification time (in seconds) for the different DS algorithms configurations considered. Figures shown
represent the obtained when processing each single dataset. No DS depicts results obtained in the initial structural space.
Selection and generation techniques are regarded as PS and PG respectively. ALL stands for the case in which no selection or
generation is performed.

RandomC(5) RandomC(10) RandomC(15) kCenters(5) kCenters(10) kCenters(15) EditCon

NIST3 130 260 390 130 260 390 520
MNIST 50 100 150 50 100 150 650
USPS 50 100 150 50 100 150 680
MPEG-7 350 700 1050 350 700 1050 210
HOMUS 160 320 480 160 320 480 1760

Average 148 296 444 148 296 444 764

Table 4 Number of features in the dissimilarity space for each DS algorithm and dataset.

the considered approaches do not have a relevant pres-

ence. It is also interesting to point out the presence of

ENPC as part of the non-dominant elements set, thus

remarking the interest of the strategy proposed in the

paper.

Finally, some remarks can be done attending to the

information in Table 4 regarding the number of at-

tributes in the feature space for the datasets considered

together with the general performance information in

Table 2. As it can be seen, the election of a particu-

lar DS method implies a great difference in the num-

ber of attributes. For instance, RandomC(5) supposes a

third of the number of attributes in RandomC(15) and

around a seventh of the ones retrieved by the EditCon

algorithm. Nevertheless, accuracy results (cf. Table 2)

do not report a clear difference in the results. As an ex-

ample, in the ALL situation, kCenters(5) and EditCon

report a very similar average accuracy (around 80 %)
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Fig. 2 Average results of the different configurations considered, facing accuracy and size of the reduced set. Non-dominated
elements defining the Pareto frontier are highlighted.

but with a great difference in terms of number of at-

tributes.

5.1 Statistical significance

As aforementioned, in order to statistically estimate the

competitiveness of the proposed strategy, a Wilcoxon

rank-sum test [11] has been performed. As we aim at

assessing the competitiveness of using PG in DS spaces

against PS in the initial space, accuracy and set size

figures shall be compared. Table 5 shows the results of

this test when considering a significance p < 0.05.

We note that PG strategies are not competitive in

accuracy against the ALL case in the structural space

as they achieve significantly lower classification rates. In

terms of reduction, as expected, all PG strategies sig-

nificantly outperform the ALL case, as the latter does

not perform any kind of reduction.

When compared to the PS algorithms in the struc-

tural space, it can be checked that RSP3 does not achieve

a remarkable reduction rate as set sizes are significantly

higher than the ones in the initial space. However, re-

garding classification rate, RSP3 stands as a clear com-

petitive algorithm as results are never significantly worse

than the ones by the PS strategies.

The evolutionary algorithm ENPC achieves notice-

able reduction rates as, except when compared to CHC,

figures are significantly similar to, or even better than,

the considered PS strategies. Classification rates are, in

general, similar to the ones in PS except for the CHC

algorithm, in which ENPC always shows a significant

improvement, and some particular cases of FCNN in

which ENPC shows a significant decrease.

MSE shows the poorest performance of the con-

sidered algorithms with respect to accuracy. This can

be clearly seen when compared to the FCNN or the

CHC cases in which the results of the tests are sig-

nificantly worse than the ones of the other PG strate-

gies. Although this poor performance could be due to

a sharp reduction rate, this is not the case. For in-

stance, if we check the ENPC and MSE cases with

RandomC(10) against FCNN we can see that, while

the former achieves accuracy results similar to the PS

algorithm with a significantly lower set size, MSE shows

worse classification results than the PS strategy with a

similar set size.

5.2 Discussion

Experiments show that the performance of PG in the

feature-based space seems to be somehow bounded by

the DS mapping process: the PG configurations consid-

ered are capable of retrieving classification rates similar

to the ones achieved when not performing data reduc-

tion in this new space; however, these figures are still

far from the ones achieved in the original space without

any reduction either. While this could be a particular-

ity of a precise DS method, our experiments show that
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PG DS method ALL

PS

FCNN 1-FN0.3 CHC

Acc Size Acc Size Acc Size Acc Size

RSP3

RandomC(5) 7 3 = 7 = 7 3 7
RandomC(10) 7 3 = 7 3 7 3 7
RandomC(15) 7 3 = 7 3 7 3 7
kCenters(5) 7 3 = 7 3 7 3 7
kCenters(10) 7 3 = 7 3 7 3 7
kCenters(15) 7 3 = 7 3 7 3 7
EditCon 7 3 = 7 3 7 3 7

ENPC

RandomC(5) 7 3 7 = = = 3 7
RandomC(10) 7 3 = 3 = = 3 7
RandomC(15) 7 3 = 3 = = 3 7
kCenters(5) 7 3 7 = = = 3 7
kCenters(10) 7 3 = 3 = = 3 7
kCenters(15) 7 3 = 3 = = 3 7
EditCon 7 3 7 = = = 3 7

MSE

RandomC(5) 7 3 7 = = = = 7
RandomC(10) 7 3 7 = = = = 7
RandomC(15) 7 3 7 = = = 3 7
kCenters(5) 7 3 7 = = = 3 7
kCenters(10) 7 3 7 = = = 3 7
kCenters(15) 7 3 7 = = = 3 7
EditCon 7 3 7 = = = = 7

Table 5 Results obtained for the statistical significance tests comparing PG in the DS space with PS in the structural one.
For each comparison, accuracy and set size are assessed. Symbols 3, 7 and = state that results achieved by elements in the
rows significantly improve, decrease or do not differ respectively to the results by the elements in the columns. Significance
has been set to p < 0.05.

this effect is inherent to the mapping process itself. A

possibility to consider to palliate this effect would be

the use of more robust embedding algorithms.

Taking this limitation into account, we can see the

proposed strategy of PG in the DS space as very com-

petitive when compared to PS in the initial space: con-

sidering the performance limitation due to the space

mapping, and except for the case in which we compare

MSE with FCNN, accuracy results achieved by PG are

similar or even better than the ones by PS. This proves

that PG algorithms can cope with the aforementioned

drop.

Regarding the reduction capabilities, the proposed

scheme achieves similar figures to the ones obtained by

PS in the initial space: except when considering RSP3,

which does not achieve great reduction figures, or when

comparing to CHC, which performs the sharpest reduc-

tion, sizes do not significantly differ in the comparison.

In general, we can see that the proposed strategy of

mapping the initial structural representation to a sta-

tistical one for then performing PG is able to achieve

classification and reduction rates significantly similar

to the ones obtained by PS in the initial space. This

fact clearly questions the usefulness of the method as

it does not improve over the results obtained in the

classical scenario. However, if we consider computa-

tional cost for the classification, we can see that the

proposed strategy stands as a very interesting alterna-

tive as it achieves statistically similar results in signifi-

cantly shorter (several orders of magnitude) time lapses

(see Table 3) than the structural representations. Ad-

ditionally, if speed is the major concern, the proposed

DS mapping with PG still stands as an interesting ap-

proach since a remarkable amount of fast-search algo-

rithms have been proposed for feature-based space, in

contrast to fast searching in metric spaces [33].

6 Conclusions

Prototype Generation techniques for Data Reduction in

instance-based classification aim at creating new data

out of the elements of a given set so as to lower mem-

ory requirements while precisely defining the decision

boundaries. Although these methods are commonly used

in statistical Pattern Recognition, they turn out to be

quite challenging for structural data as the merging

operations required cannot be as clearly defined as in

the former approach. It has been proposed the use of

Dissimilarity Space representations, which allow us to

map structural data representations onto feature ones,

to benefit from the advantages Prototype Generation

methods depict.
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The experimentation performed shows some impor-

tant outcomes. In our results, PG approaches applied to

structural data using DS representation are capable of

competing with PS methods in the original space even

though the mapping process implies information losses.

Nevertheless, when compared to the figures obtained

in the non-reduced structural space, PG methods de-

pict lower accuracy results. Finally, classification using

DS representations has been proved as a faster option

than the one performed in the structural space as costly

distance functions like Edit distance are replaced by

low-dimensional Euclidean distance. This evinces the

proposed approach as an interesting trade-off option

between precision and time consumption.

Given the accuracy drop observed in the Dissimila-

rity Space mapping process, more sophisticated meth-

ods should be considered to check whether that loss

could be somehow avoided. Additionally, experimenta-

tion could be extended including other Prototype Gen-

eration algorithms not considered in the present study.
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(ed.) 7th Iberian Conference on Pattern Recognition and
Image Analysis (IbPRIA), pp. 72–82. Springer, Santiago
de Compostela, Spain (2015)

9. Cano, J.R., Herrera, F., Lozano, M.: On the Combination
of Evolutionary Algorithms and Stratified Strategies for
Training Set Selection in Data Mining. Appl. Soft Com-
put. 6(3), 323–332 (2006)

10. Decaestecker, C.: Finding prototypes for nearest neigh-
bour classification by means of gradient descent and de-
terministic annealing. Pattern Recogn. 30(2), 281–288
(1997)

11. Demsar, J.: Statistical comparisons of classifiers over mul-
tiple data sets. Journal of Machine Learning Research 7,
1–30 (2006)

12. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classifica-
tion. John Wiley & Sons (2001)

13. Duin, R.P.W., Pekalska, E.: The dissimilarity space:
Bridging structural and statistical pattern recognition.
Pattern Recognition Letters 33(7), 826–832 (2012)

14. Eshelman, L.J.: The CHC adaptive search algorithm:
How to have safe search when engaging in nontraditional
genetic recombination. In: Proceedings of the First Work-
shop on Foundations of Genetic Algorithms, pp. 265–283.
Indiana, USA (1990)

15. Fernández, F., Isasi, P.: Evolutionary Design of Nearest
Prototype Classifiers. J. Heuristics 10(4), 431–454 (2004)

16. Ferrer, M., Bunke, H.: An Iterative Algorithm for Ap-
proximate Median Graph Computation. In: Pattern
Recognition (ICPR), 20th International Conference on,
pp. 1562–1565 (2010)

17. Freeman, H.: On the encoding of arbitrary geometric con-
figurations. Electronic Computers, IRE Transactions on
EC-10(2), 260–268 (1961)

18. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype
Selection for Nearest Neighbor Classification: Taxonomy
and Empirical Study. IEEE Trans. Pattern Anal. Mach.
Intell. 34(3), 417–435 (2012)
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