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Abstract. Machine Learning applied to Automatic Audio Surveillance has been attracting 

increasing attention in recent years. In spite of several investigations based on a large number 

of different approaches, little attention had been paid to the environmental temporal evolution 

of the input signal. In this work, we propose an exploration in this direction comparing the 

temporal correlations extracted at the feature level with the one learned by a representational 

structure. To this aim we analysed the prediction performances of a Recurrent Neural Network 

architecture varying the length of the processed input sequence and the size of the time window 

used in the feature extraction. Results corroborated the hypothesis that sequential models work 

better when dealing with data characterized by temporal order. However, so far the 

optimization of the temporal dimension remains an open issue. 

1. Introduction

Automatic Sound Recognition (ASR) can be subdivided into two main categories: speech and non-

speech problems. In the Machine Learning literature the term ASR is usually referred to the second

area, whereas the first one is a separated field of research that has been investigated in-depth in the last

years. However, also non-speech ASR has attracted increasing and wide ranging interest in recent

years [1]. Many applications have been investigated like, for example, Music Information Retrieval

[2], environmental sound event recognition [3][4] and Audio Surveillance (AS)[5], which is the main

subject of investigation of this paper. Restricting our attention to classification problems, these are

divided into two major categories: when the classification aims at detect different events from a

categorization decided in advance [6][7], or when the task is to distinguish normal events from

abnormal ones. The second assumption seems more general in typical surveillance and system

monitoring scenarios, and it is usually referred to as Novelty Detection (ND) [8]. The general idea is to

model a function 𝑧(𝑥) by training a learning agent on data considered to be normal, for which a large

number of examples is usually available. The function 𝑧(𝑥) can be interpreted as a novelty score and

the task is often defined as a one-class classification problem by assigning to the abnormal class those

samples 𝑥 for which 𝑧(𝑥) ≥ 𝑘, where 𝑘 is a fixed threshold. From a theoretical point of view, this

scenario is related to the statistical problem of outlier detection [9], trying to model a 1-class data

distribution to detect possible anomalies or to remove possible noised data in general circumstances

[10][11]. Different techniques have been investigated, employing different classifiers and possible sets

http://creativecommons.org/licenses/by/3.0
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of features [8]. Despite the intrinsic temporal nature of the studied environment, many proposed 

solutions neglect to represent the input as a sequence of frames, instead merging the input frames into 

a single static data representation and then using classical non-recursive machine learning approaches 

to perform learning and inference. For example, Gaussian Mixture Models are employed in [6][11], 

whereas Support Vector Machines are used in [12]. As a matter of fact, only in a few cases generative 

models processing temporal sequences in the form of Hidden Markov Models had been used [13].  

Recent successful applications of Recurrent Neural Networks (RNNs) based on Long-Short Term 

Memory (LSTM) cells to sequences modeling [14][15][16] [17] suggests that the same advancements 

could be obtained in the field of Novelty Detection for AS. This has been pioneered in [18], where 

remarkable improvements in prediction performances by using unsupervised sequence-to-sequence 

models. The exploitation of RNNs seems to be sound in this context, since it is difficult to fix in 

advance the size of the considered temporal window during the processing of the audio signal. In 

particular, the capability of LSTM-RNNs to automatically learn the temporal correlations in the input 

signal could represent a crucial advantage in the considered application. 

These ideas are explored in this work by the analysis of the behavior of a general sequence-to-

sequence model used to process an audio signal in an unsupervised way. As already said, we assume 

to have not any a-priori knowledge on possible abnormal events during the training, when only the 

audio describing the environment during normal daily activity is available. A first LSTM module is 

embedded in an Auto-Encoder architecture and used to encode each sequence to a compressed feature 

representation. The obtained vector is then decoded by a similar module trained to reproduce the 

original input. The training phase indeed consists into minimizing the reconstruction error comparing 

the generated output with the corresponding input on normal data samples. Hence, the trained model is 

used to make predictions on new data in presence of various kinds of anomalies. A potential 

degradation in the reconstruction quality is used to detect abnormal events and it is possible to analyze 

how the model can learn when varying the temporal scope of its memory. A larger temporal memory 

is obtained by processing longer input sequences, allowing the network to exploit correlations that are 

farther away in time. In particular, this should help in presence of structured events, in which the 

unusual composition of singular occurrences, each one similar to normal ones, could represent a 

potential dangerous situation. The disadvantage of processing longer input sequences is the increased 

computational time and the more limited generalization capabilities of the network, as reconstructing 

long sequences is a much harder learning task. 

After the description of the used architecture, this paper introduces the experimental setup and it 

shows how processing sequences of input frames, instead of static single data representations, affects 

the classification results. Interestingly, the proposed dynamic model is shown to outperform the static 

one even when the input data spans over the same temporal window, showing the importance of 

proper sequence modeling for this task.  

2.  Sequence-to-sequence Audio signal modelling 

RNNs represent a powerful neural architecture recursively processing an input sequence by carrying 

on a state representation, based on the previously observed inputs. At each single step, the 

computation is performed using a standard Multi-Layer Perceptron. Back-Propagation through Time 

(BPTT) [19] is a training algorithm that extends the classical back-propagation procedures to this class 

of networks. Unfortunately, this training algorithm suffer of the well-known problem of vanishing 

gradients [20], making it difficult to learn correlation dependencies when processing long input 

sequences [21]. Long-Short term memory cells had been introduced [17] to enforce the error flow 

through different temporal states of the network by the definition of special units, called gates, capable 

of transmitting information within several time steps, while also maintaining the response to any local 

information. These architectures have been first proposed two decades ago, but have not been fully 

exploited for many years, because of the computational requirements and the difficulties in effectively 

training them. Recent advancements on computer architectures and on deep networks training have 

allowed to train LSTM networks effectively even on a large amount of training data. LSTM-RNNs 
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have been shown to outperform state-of-the-art algorithms especially in problems that can be naturally 

represented via a sequence-to-sequence model, as for example in Handwriting Recognition [14] and 

Natural Language Processing [15][16]. The basic sequence-to-sequence approach, introduced and now 

widely popular in Machine Translation [22][23][24], consists in the use of a LSTM cell to encode an 

input sequence of variable length into a vector of numbers. Hence, a dual LSTM cell can be used to 

generate the output sequence according to the prediction to be performed, starting from the vector of 

numbers encoding the input. Due to the generality of this Encoding-Decoding procedure, the extension 

to several stacked layers is straightforward. For the same reasons, it can be easily adapted to our 

problem, due to the nature of the audio signal as a continuous stream of data. Indeed, assuming to 

represent an input frame by a feature vector, the audio signal is represented by a sequence of vectors. 

Hence, the network is trained to reproduce the sequence itself by minimizing the reconstruction error 

when processing the sequence of input vectors. This model, performing ND for AS tasks, has been 

already proposed in [18], showing to outperform classic approaches. A visual representation of the 

architecture is depicted in figure 1. 

The aim of this work is to analyse the relation between the quality of the information extracted at a 

feature level with the one learned by the RNNs. In particular, we start by extracting a feature 

representation 𝑥(𝑖) of the audio signal, which will be explained in more details in the following of his 

section. This representation is computed on a window 𝑤 composed by a certain number of samples 

from the raw audio signal, expressing a specific characterization of the input over a given interval. The 

width 𝑤 of this window is fixed in advance, and so is the amount of information embodied by the 

generated representation. Hence, a sequence of length 𝑠 of these feature vectors is assembled in order 

to be fed to the learner, covering a certain time interval 𝐼. The obtained interval 𝐼 is proportional to the 

window size 𝑤 and to the length of the sequence 𝑠. In particular, if we pose 𝑟 = 1 − ℎ, where ℎ is the 

rate of overlap between two consecutive feature windows, the input size 𝐼  spans over a temporal 

interval equal to:  𝐼 = 𝑤 + (𝑠 − 1) ⋅ 𝑟𝑤 = 𝑤 ⋅ [1 + 𝑟(𝑠 − 1)]. A sketch of how the signal is fed into 

the processing architecture is depicted in figure 1. A first part of the experimental analysis consists in 

comparing the performances obtained by increasing 𝑠  while keeping 𝑤  fixed. Moreover, we also 

propose a comparison on different configurations by covering the global input window 𝐼 in different 

 

Figure 1. Global description of the Auto-Encoder architecture composed by Encoding and 

Decoding LSTM layers to compress and reconstruct the provided feature representation of input 

sequences. 
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ways while maintaining the rate 𝑤/𝑠 constant. A remark has to be done on the case 𝑠 = 1, since in this 

case the RNNs architecture collapses into a standard Auto-Encoder (AE) [25] with one hidden layer to 

perform dimensionality reduction, i.e. we have: 

 

                                                                      ℎ𝑢 < |𝑥| = |𝑦|                                                               (1) 

 

 where ℎ𝑢 is the number of hidden units and |𝑥| = |𝑦| are the dimension of both the input and the 

(reconstructed) output vectors. The size of the hidden layer is chosen to be smaller than the size of the 

original input to prevent the network from learning trivial configurations. 

3.  Experiments 

As already said, we focus on the exploration of the correlations of temporal intervals of different size 

and type.  Since many investigations on the best features for ASR task can be found in the literature 0, 

we avoid further explorations on this part, focusing on the behaviour of the representational agent w.r.t. 

to a fixed input representation. The features are extracted exploiting the librosa package [26] by 

computing for each window of 𝑤 samples the Zero-Crossing Rate (ZCR), 20 Mel-frequency cepstral 

coefficients (MFCCs) and their 20 derivatives (computed by the first order method), since similar 

configurations are proved 0[6][27] to embody a good general representation in many ASR task, both 

in speech and non-speech environments. Each extracted feature is then normalized to null mean and 

standard deviation equal to one. The window size 𝑤 has been varied between 4096 and 32798 samples 

as reported in table 1, while keeping 𝑟 = 0.25 fixed. In table 1 we reported the real-time window 𝐼 

obtained by varying the window size 𝑤 and the length 𝑠 of the sequence processed by the encoding 

LSTM module. As already said, 𝑠 = 1 indicates that the input feature vector is processed by a static 

Auto-Encoder. In this case, since the decreasing rate of 𝑠 (0.2 instead of 0.5) is different w.r.t. the ones 

among the other sequences, the 𝑤 is adapted to obtain a coherent window in term of real world time. 

Because of the difficulty in finding publicly available datasets, audio tracks (sampled at 44100 

kHz)have been generated by recording a week plus one day of daily activity of the help desk of the 

library of the Engineering Department at the University of Siena in the time interval 8AM – 8PM. An 

environmental microphone was placed in a location with a large variety of sounds and interactions, but 

governed by well-defined social norms so as to generate data as close as possible to a potential critical 

working environment such as bank branches. The test set was generated by placing artificial anomalies 

at different random instants of the additional day, so as to have a simple and reliable labelling process. 

Different classes of anomalies have been recorded providing samples of both human interactions, like 

crying or screaming, and mechanical sounds (electronic screwdriver, drill, grinder etc). These 

additional sounds have been later mixed into the original audio samples exploiting the pydub library. 

Table 1. Real time interval length (in seconds) corresponding to the input window size analysed in 

each configuration, composing the feature extraction part and the sequence computed by the agent. 

Input Window Size 𝐼 (seconds) 

Sequence 

Length 𝑠  

(input steps) 

Window Size 𝑤 (samples) 

4096 8192 16384 32768 

40 3.71 7.43 14.86 29.72 

20 1.85 3.71 7.43 14.86 

10 0.92 1.85 3.71 7.43 

5 0.46 0.92 1.85 3.71 

1 0.09 0.18 0.46 0.92 
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The network is implemented using the Keras framework [28][29]. Both the encoding and decoding 

LSTMs are composed by 512 units for each gate (with sigmoid activations), whereas the static AE 

contains 30 units in its hidden layer (with ReLU activation). A validation set (30% of training 

samples) has been held out to stop the optimization when the reconstruction error, evaluated as the 

mean squared error (MSE) between the input and the output sequences, stops to decrease. In table 2 

we report the Area under the ROC (AUC) obtained in each setting to evaluate the general behaviour of 

each model. To give an idea of the classification performances, in table 3 we reported the F1-score 

obtained when selecting the threshold at the point in which the ROC crosses the diagonal. 

The results are plotted in figure 2, while figure 4 depicts the classification performances varying 

the size of the features extraction window and the length of the network input sequence while keeping 

𝑤/𝑠 constant. In figure 3 we show the behaviour of the reconstruction error from different models in 

presence of an anomaly. In figure 2 we can observe how in general the RNN performs better than the 

static AE. Best performances are achieved for each 𝑤 at 𝑠 = 5, except from the shortest window with 

𝑤 = 4096. In this case, increasing the length of the processed sequence helps to get close to the 

results obtained by using wider windows. On the other hand, for larger windows the extension of the 

input sequence leads in general to a degradation of the performances, especially for the largest one 

with 𝑤 = 32768. This could be due to the harder training task implied by the longer input sequence, 

and we leave as a future work to analyse if this issue can be mitigated by increasing the number of 

units in the LSTM layers. In the right plot of figure 3, it is possible to observe how the processing of 

long sequence produces a smoother reconstruction error, which implies a reduction of the precision on 

Table 2. Area Under the ROC Curve (AUC) evaluated on different running varying both the window 

size and the length of the sequence processed by the LSTM modules of the ANN. 

AUC 

Sequence 

Length 𝑠  

(input steps) 

Window Size 𝑤 (samples) 

4096 8192 16384 32768 

40 0.9770 0.9716 0.9537 0.9153 

20 0.9755 0.9776 0.9724 0.9514 

10 0.9729 0.9814 0.9810 0.9706 

5 0.9721 0.9822 0.9836 0.9774 

1 0.9480 0.9784 0.9704 0.9632 

Table 3. F1-score evaluated on different running varying both the window size and the length of the 

sequence processed by the LSTM modules of the ANN. 

F1-score 

Sequence 

Length 𝑠  

(input steps) 

Window Size 𝑤 (samples) 

4096 8192 16384 32768 

40 0. 8680 0. 8653 0. 8194 0. 7213 

20 0. 8537 0. 8734 0. 8678 0. 8115 

10 0. 8449 0. 8810 0. 8902 0. 8648 

5 0. 8461 0. 8808 0. 8946 0. 8829 

1 0. 7787 0. 8684 0. 8413 0. 8264 
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the anomalies boundaries. Another factor to be considered is the width of the temporal window 

expressed by the parameter 𝑤. Indeed, the anomalies are collapsed into a smaller number of frames 

with a large window, raising the detection difficulty. An opposite trend can be observed in the left plot 

of figure 3. In the case 𝑠 = 1 the reconstruction error shows a higher variability, proving that, as a 

matter of fact, the static model seems to provide a poorly representation. In figure 4 we reported a 

comparison among the results obtained by processing configurations with constant rate 𝑤/𝑠 

(following the diagonals of table 1). The sequential approach seems to introduce fundamental 

improvements even in these sense, still confirming the issue of processing long input sequences. 

 

 

 

 

 

 

 

 

 

             

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 2. Area Under the ROC (AUC) and F1-score, respectively on the left plot and the right one, 

obtained varying the sequence length s and the window size w. 

 

          

Figure 3. Reconstruction error on a slice of input stream in presence of anomalies with both short 

and long durations, obtained with models trained varying the input sequence length s. 

 

 

Figure 4. Area Under the ROC (AUC) and F1-score, respectively on the left plot and the right one, 

obtained varying the sequence length s and the window size w. The comparing is reported by 

keeping w/s constant. 
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4. Conclusions 

This work studied the application of a sequence-to-sequence model to the problem of identifying 

abnormal events in an audio input. The proposed solution is purely unsupervised and requires only a 

stream of normal audio to be trained. This paper also presents an investigation about the importance of 

considering the temporal sequence when representing an audio signal. The showed results confirm the 

expected hypothesis that sequential models should work better when dealing with data characterized 

by an explicit temporal order. Indeed, the static approach, obtained by processing single input frames 

of a given temporal size, seems to provide a worse representation in each analyzed setting, even when 

the effectively processed interval of time is the same as the sequential approach. This result seems to 

be general w.r.t. the used feature representation, since the recurrent modules do not receive any 

additional information, except from the one produced by correlating consecutive input frames. The 

study suggests that there is an optimal length in the processed sequences as increasing too much the 

length of the input sequences leads to a degradation in the classification accuracy. As future work, we 

plan to investigate alternative architectures limiting the reconstruction of the output sequence, which is 

very hard to train. For example, once the encoding of the sequence is obtained, the decoder can be 

used to generate only the last input frames instead of the whole input sequence. 
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