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Abstract: The particularities of autonomous control system for deep space missions are 
described. A new approach for autonomous control system development is proposed and 
analyzed in details. Some models are analyzed and compared. The general formal model is 
based on the theory of communicating sequential processes (CSP). Methods for 
reconfiguration, verification and trace control are described. 
The software that is appropriate not only for the spacecraft flight path control but also for 
autonomous control of scientific apparatus operation and science experiments parameters is 
described. The software enables onboard scientific apparatus to autonomously detect and 
respond to science events 
Science algorithms, including onboard event detection, feature detection, change detection, 
and unusualness detection, are proposed to be used to analyze science data. Thus detecting 
features of scientific interest these algorithms are used to downlink only significant science 
data. These onboard science algorithms are inputs to onboard decision-making Replaner that 
modify the spacecraft observation plan to capture high value science events. This new 
observation plan is input for the Task execution subsystem of the Autonomous control system 
(ACS), able to adjust the plan to succeed despite run-time anomalies and uncertainties, and 
after it is executed by the ACS, which controls onboard scientific apparatus to enable an 
autonomous goal-directed exploration and data acquisition to maximize science return. 
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1. Introduction 
For future interplanetary space missions the long-term goal is to use such 

software that is appropriate not only for the spacecraft flight path control but also for 
autonomous control of scientific apparatus operation and science experiments 
parameters. On these missions, onboard science analysis will enable capture of 
short-lived science phenomena. In addition, onboard science analysis will enable data 
be captured at the finest time-scales without overwhelming onboard memory or 
downlink capacities by varying the data collection rate. Examples include: eruption of 
volcanoes on planets and its satellites, cloud detection, formation of jets on comets, 
phase transitions in ring systems and etc. For extended duration missions that study 
long-term phenomena the generation of derived science products (e.g., boundary 
descriptions, catalogs) and change-based triggering will also reduce data volumes to 
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an acceptable level. Such long-term phenomena could be atmospheric changes, 
flexing and cracking of the ice crust on some planets and its satellites. 

These future interplanetary missions require a new generation of spacecraft 
with a new generation of control systems and software. Their most important features 
are: 

 autonomous operation; 
 minimal dependence from the Earth-based command center; 
 operation by general commands; 
 planning and scheduling; 
 system dynamic recovering and reconfiguration; 
 high reliability of the system hardware and software; 
These principles are fully realized in the Remote Agent (RA) model based 

system for Deep Space One (DS1) spacecraft [1, 2, 3]. In this extremely successful 
extended mission DS1 encountered comet Borrelly and returned the best images and 
other science data ever from this comet [2]. Highly advanced technologies, the key to 
more capable, powerful, and efficient spacecraft and science instruments, are used 
also in other missions from NASA’s New Millennium Program (Space Technology 5, 
6, 7, 8; Earth Observing 1, 3; Deep Space Two) [4]. 

To build an autonomous control system for interplanetary space missions is 
difficult due to following reasons: 

1. Limited, intermittent communications – for interplanetary space missions 
the spacecraft must be able to operate for long periods of time without supervision 
from the Earth-based command center. Some deep space missions only contact the 
spacecraft once per week, or even rarely. 

2. Spacecraft are very complex - a typical spacecraft has thousands of 
components, each of which must be carefully engineered to survive rigors of space 
(zero pressure, extreme temperature, radiation, collision with high energy particles, 
physical stresses). 

3. Limited observability - because processing telemetry is expensive, onboard 
storage is limited, and downlink bandwidth is limited, engineering telemetry is limited. 
Thus onboard software must be able to make decisions on limited information and the 
command center team must be able to operate the spacecraft with even more limited 
information. 

4. Limited computing power – because of limited power onboard, spacecraft 
computing resources are usually very constrained. 

5. High stakes – a typical interplanetary space mission costs hundreds of 
millions of dollars and more, so any failure could have significant economic impact. 
New space mission can take years to plan, construct the spacecraft, and reach their 
targets. In addition many mission opportunities are limited by planetary geometries. 
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In these cases, if a space mission is lost, it may be years before another similar 
mission can be launched.  

The use of highly advanced technologies will lead to self-sufficient autonomous 
spacecraft systems that can adapt their behavior to complex, rapidly changing, and 
incompletely understood environments. Areas of research and development of these 
advanced technologies include adaptive control technologies, control agent 
architectures, embedded decision systems, evolvable systems, intelligent robotics, 
adjustable autonomy, distributed and multi-agent systems, goal-level commanding, 
planning and scheduling.[5, 6, 7, 8] 

2. General characteristics of the approach 
The authors’ approach for creating of an autonomous control system (ACS) is 

characterized by: 
- formal models and methods throughout the system operating cycle are 

used; 
- the system is presented as a set of objects freely configurable and 

connectible by channels [9, 10]; 
- Artificial Intelligence (AI) is used in the stage of system reconfiguration or 

as a part of the control process. 
The main differences of ACS from the RA model based system for DS1 [1, 2, 3] 

are: 
1. ACS executes control and development functions - it makes dynamic 

reconfiguration  (analysis, synthesis and etc.) of the execution control system in real 
time; 

2. AI functions are used, both in the control process (if it is necessary) and in 
the system development; 

3. Formal models and methods are used repeatedly – to create and verify 
formal specification and to control the traces of the system processes (all in real time).  

The structure of the ACS system is shown on Fig. 1. 
Let’s describe the main elements of the proposed approach: 
1. Software formal models (specifications): software formal models are a 

process models type (a sequential process, that can be executed parallel), where the 
processes are communicating (and are synchronized) by a message exchange. 

2. Software system verification, using Hoare's (CSP) specifications and laws: 
with the CSP theory [9] the software properties can be specified and verified. 

3. System operations control, using Hoare's trace models: the traces describe 
all events that have place, or can have place in the computing process, and can be 
used for run-time control. 
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4. System structure and parameters run-time determining on the base of 
information about control system, controlled objects (spacecraft and scientific 
apparatus) and background states. (This is a separate subsystem of the ACS.) 

5. Dynamic reconfiguration: on the base of the specification, the system 
structure and parameters are implemented in the general software model frame. 

6. Real-time simulation. 
Corresponding to this approach the ACS is treated like a set of software and 

hardware objects that can be configured to exchange information and to synchronize 
and get access to common system resources.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Structure of ACS as set of objects and subsystems 

3. CSP models 
The CSP models describe functions and structure of the system by set of 

communicating sequential processes, that can be executed parallel. The models 
include CSP-description, alphabet, trace and specification. The interactions are 
synchronous by one-direction channels. 

The models described below represent a RTS system that consists of four main 
processes  

(CONTROL, MEASUREMENT, SIMULATION, MODEL): 

MODELING = CONTROL || MEASUREMENT || SIMULATION || MODEL, 
where the symbol || indicates parallel processes. 

Spacecraft and 
Scientific apparatus 
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The alphabet of the processes determines a set of events, logically possible for 
the parallel system: 

α(CONTROL || MEASUREMENT || SIMULATION || MODEL) = αCONTROL 
∪ αMEASUREMENT ∪ αSIMULATION ∪ αMODEL, 

where α is process alphabet. 

The traces of the parallel processes are determined by: 
trace(CONTROL || MEASUREMENT || SIMULATION || MODEL)={t | (t ↑ 
αCONTROL) ∈ trace(CONTROL) & (t ↑ αMEASUREMENT) ∈ 
trace(MEASUREMENT) & (t ↑ αSIMULATION) ∈ trace(SIMULATION) & 
(t ↑ αMODEL) ∈ trace(MODEL) & t ∈ (αCONTROL ∪ αMEASUREMENT 

∪ 
αSIMULATION ∪ αMODEL)}, 

where trace is a process protocol, describing the events, which the process has 
gone to this moment. The symbol ↑ indicates shrink of the trace on the some set, 
such as the alphabet. 

Loop process, describing the system functions by separate loops: 
LPi = {PR, CH, PAR, ARG},  

where: PR – procedure, implementing the process functions; CH – set of 
information channels; AGR – set of aggregates; PAR – parameters. 

CSP model is: 
LoopProcess = c[0]?x → AgregatesList; c[n]!y → ENDprocess; 

ModelProcesses, 
where: c[i] indicate channels with numbers; AgregatesList – linear aggregates list; 
?x – CSP procedure to receive a value from channel c and assumes it to the x 

variable; 
!y – CSP procedure to transmit the value of y variable to the channel; 
ModelProcesses – modeling processes. 

The traces are: 
LoopProcess=P;Q;ModelProcesses; 
P=c[0]?x→AgregatesLIst; Q=c [n]!y→ENDprocess; 
trace(P) = {t|t=<>V(t0=c[0]?x & t’∈ trace(AgregatesList))} = {<>} U 

{<c[0]?x>∧t|t 
∈ trace(AgregatesList)}; 
trace(Q)={t|t=<> V (t0 = c[n]!z & t’∈ trace(ENDprocess))} = {<>} U 

{<c[n]!z>∧t|t 
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∈ trace(ENDprocess)}; 
trace(LoopProcess)= {s;t|s ∈ trace(P)& t ∈ trace(Q); r|s ∈ trace(P)& t ∈ 
trace(Q)& r ∈ trace(ModelProcesses)}. 

where the symbol ^ indicate after (between traces); t0 – beginning of the trace; t’ 
– end of the trace; <> – empty trace. 

A list of aggregates CSP model is: 
AgregatesList = (c[i]?z →AGREGATE[i]; AgregatesList | c[i]!z → 
AGREGATE[i]; AgregatesList) | (next →AGREGATE[i]; AgregatesList) | 
(end_list →ENDprocess), 

where END process is a special process, the alphabet of which has only one 
event, that indicate successful end. 

AGREGATE=input(x) →AgrTransferFunction(x:y); output(y) 
→ENDprocess; 
AgrTransferFunction = (f1→ENDprocess) | (f2→ENDprocess) |...| 
(fn→ENDprocess); 

where f1,...,fn – functions, doing the transformation x→y. 

There are two traces: 
AgregatesList 
(c[i]?z →AGREGATE[i]) = P1; (c[i]!z →AGREGATE[i]) = P2 ; 
(next →AGREGATE[i] = P3;(end_list→ENDprocess) = P4 ; 
trace(P1)={<>} U {<c[i]?z>∧t|t ∈trace(AGREGATE[i])}; 
trace(P1;AgregatesList)={s;t|s ∈trace(P1) &t ∈trace(AgregatesLIst)}; 
trace(P2)={<>} U {<c[i]!z>∧t|t ∈trace(AGREGATE[i])}; 
trace(P2;AgregatesList)={s;t|s ∈trace(P2) &t ∈trace(AgregatesLIst)}; 
trace(P3)={<>} U {<next>^t|t ∈trace(AGREGATE[i])}; 
trace(P3;AgregatesList)={s;t|s ∈trace(P3) & t ∈trace(AgregatesLIst)}; 
trace(P4)={<>} U {<end_list>^t|t ∈trace(ENDprocess)}; 
trace(P4;AgregatesList)={s;t|s ∈trace(P4)&t ∈trace(AgregatesLIst)}; 
trace(AgregatesList)= {t|t=<> V (t0 ∈B & t’ ∈trace(P(t0)}, 
where B = {c[i]?z,c[i]!z,next,end_list}; P(t0)= (P1|P2|P3|P4). 
– AGREGATE 
P = (input(x)→AgrTransferFunction); 
Q = (output(y)→ENDprocess); AGREGATE=(P;Q); 
trace(P)={<>} U {<input(x)>^t|t ∈trace(AgrTransferFunction)}; 
trace(Q)={<>} U {<output(y)>^t|t ∈trace(ENDprocess)}; 
trace(AGREGATE)= {s;t|s ∈trace(P) & t ∈trace(Q)}. 
– AgrTransferFunction 
trace(AgrTransferFunction)= {t|t=<> V (t0 ∈B & t’∈trace(P(t0)}, 
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where B = {f1,f2,.., fn} alternative 
P(t0)=f1→ENDprocess|f2→ENDprocess|...| fn→ENDrocess); 
 
In a similar way the other system objects are defined. 

4. ACS operation control method based on CSP trace model 

The CSP theory proposes appropriate means for preliminary specification of the 
system functions and structure and for the following operation control. These means 
are specifications, alphabets and traces of the processes [9, 10]. 

The general algorithm of the control method is shown on Fig.2: 
 the system start; 
 the software specification is defined, including the set of system objects; 
 

 
Fig.2. Flowchart of the system traces control method 
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 the program system implementation and verification (CSP specifications 
verification method); 

 all possible traces computing for the specified system (procedure trace (P)); 
 the special process (tracer) observes and registers the system traces and 

determines if they are valid; 
 when an invalid trace is registered (emergency situation). 

5. Verification method 

The method's idea is to be satisfied the relation P sat S (process P satisfies the 
specification S). It must satisfy preliminary determined specifications of the traces. 

This is method that works with a limited, preliminary determined set of objects 
and standard structures. The method sequence is: 

1. process (subsystem) type (structure) determining; 
2. traces computation by the function trace(p); 
3. traces verification (choice from a set of standard traces) by the function 

SAT(P,S(np)), represented below, where symbol (np) is any process trace. 

The function SatP,S) that decides whether the system implementation satisfies 
the system specification: 

Sat(P,S(np)) = 
     if P = STOP then if np = <> then return TRUE; 
else 
   return FALSE; end; 
elsif P sat S(np) & (c ∏P) then 
    if (np = <> V (np0 = c & S(np’))) then return TRUE; 
    else return FALSE; end; 
    elsif P sat S(np) & (c ∏d ∏P) then 
       if (np ≤c,d> V (np ≥<c,d> & S(np”))) 
            then return TRUE; else return FALSE; 
      elsif P sat S(np) & Q sat T(np) & (c∏P|d∏Q) 
      then 
if (np = <> V (np0 = c & S(np’)) V (np0 = d & T(np’)) /*S(np’) & T(np’) are the 
specifications of the chosen alternative */ 
     then return TRUE; 
     else return FALSE; 
      elsif ∇x ∈B.(P(x) sat S(np,x)) & (x:B ∏P(x)) then 
if (np = <> V (np0 ∈B & S(np’,np0))) 
     then return TRUE; (*a process with choice from a set*) 
else return FALSE; 
    elsif P sat S(np) & Q sat T(np) & P || Q then if (P||Q) sat (S(np |‘ ∝P) & T(np |‘ 
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∝Q)) then return TRUE; (* parallel processes *) 
else return FALSE; 
——— other standard structures ——- 
else return FALSE; End; 
——— other standard structures —— 

else return FALSE; 
End; 

The function trace(P) that computes the system traces: 

trace(P)= (µR)* & 
if P = (STOPP) then trace(P)= \<>\; 
elsif P = (c→P) then trace(P)= \<> U \<c> ∧t|t ∈trace(P)\; 
elsif P = (c →P | d →Q)then trace(P)= \t|t = <> V (t0 = c & t’∈trace(P)V 
(t0 = d & t’∈trace(Q))\; 
elsif P = (x:B →P(x)) = \t|t = <> V (t0 ∈B & t’∈trace(P(t0)))\ 
elsif P = (mX : A.F(x))) = U trace(Fn(STOPA)); 
elsif P = (P || Q)then trace(P)= trace(P)Ç trace(Q); 
else t = trace(P||Q) then 
trace(P||Q)=\t|(t |`µR) ∈trace(P)& (t |`µQ) ∈trace(Q)& t ∈(aR U aQ)*\ 
...........—other structures--..................... 
else 
end. 

The function IsTrace(s,p) that decide whether the trace s is valid for the 
process P: 

IsTrace(s,P)= 
if s = NIL then TRUE; 
elsif P(s0) = “BLEEP then FALSE; 
else IsTrace(s’, P(s0)); 
end. 

6. Sofware archtecture 
The software architecture is shown on Fig.3. 
The concept for intelligent autonomous observation is applied as follows: 
1. A list of science targets to monitor as well as the programs of the spacecraft 

flight path and orientation is stored onboard or that have been sent as high-level goals 
from the Earth-based command center. The model-based planning algorithms used 
by Flight and experiments planner enable rapid response to a wide range of 
operations scenarios based on a deep model of spacecraft constraints, including 
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faster recovery from spacecraft anomalies. This onboard planner accepts as inputs 
the science and engineering goals and ensures high-level goal-oriented behavior. 

 
Fig.3. Software architecture 

2. The software generates an observation plan to monitor the targets on this list 
by using different scientific apparatus, e.g. for volcanic studies, the infra-red and near 
infra-red bands are used. It addition it can generate new plans for changing the 
spacecraft flight path and orientation if needed. 

3. The task execution subsystem accepts the new observation plan as an input, 
reconfigured the control system (using CSP models) and expands the plan into low-
level commands. During execution of the observation plan by generation commands 
and control signals (using conventional software), different scientific apparatus are 
activated. Specialized unit in the subsystem monitors the execution of the plan and 
has the flexibility and knowledge to perform event driven commanding to enable local 
improvements in execution as well as local responses to anomalies. 
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4. The collected images are sent to Science algorithms block, where they 
analyzed and based on this analyze the data is downlinked. Had no new scientific 
event detected, the science software would generate a goal for the Replanner to 
acquire the next highest priority target in the list of targets. Such way the system 
modify the current operations plan to include numerous new activities in order to 
enable the new science observation. 

5. The software executes the new generated plans in conjunction with several 
autonomy elements. 

6. This cycle is then repeated on subsequent observations. 

The developed software enables to autonomously detect and respond to science 
events. Such science events can be: volcanic eruptions on planets and its satellites, 
cloud detection, growth and retreat of ice caps, formation of jets on comets and etc. 
Classification algorithms are used to analyze imagery and other signal to detect change 
and science events (thus to downlink science data only on change and when detect 
features of scientific interest). Detection of these events is then used to trigger scientific 
apparatus. Onboard Replanner then develops a response plan that accounts for target 
visibility and operations constraints. This plan is then executed using a task execution 
subsystem that can deal with run-time anomalies. 

Conclusion 
The proposed integrated approach allow to design and study an spacecraft 

autonomous control system based on the CSP models, appropriate for scientific 
experiments and spacecraft flight path and orientation control during interplanetary 
missions. This approach is implemented by the methods for verification and control. 
The models describe in general the functions of the system by using a rigorous 
mathematical theory (CSP theory). A new software model (process-aggregate) is 
represented. It is a high-efficient model with high degree of structural accordance to real 
systems. The control and verification methods allow creation of high-reliability systems by 
preliminary verification and run-time system observation. The control method, based on a 
trace model, is a new in this type of systems. The main advantage of the approach is 
the completeness and the possibility to achieve some degree of assurance in the system 
quality before the flight tests. 

The software architecture appropriate for the spacecraft flight path and 
orientation control and for autonomous control of scientific apparatus operation and 
science experiments parameters are proposed. The developed software enables to 
autonomously detect and respond to science events. Such science events can be: 
volcanic eruptions on planets and its satellites, cloud detection, growth and retreat of 
ice caps, formation of jets on comets and etc. The onboard analysis using science 
algorithms enables to capture even short-lived science phenomena. Thus the data 
could to be captured at the finest time-scales without overwhelming onboard memory 
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or downlink capacities by varying the data collection rate on the fly. In addition by 
generation of derived science products (e.g., boundary descriptions, catalogs) and 
change-based triggering will also reduce data volumes to a manageable level for 
extended duration missions that study long-term phenomena such as atmospheric 
changes and flexing and cracking of the ice crust on some planets and its satellites. 
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