
48 X Национална конференция „Образованието и изследванията в информационното общество” 2017

A MODEL OF AUTONOMOUS SYSTEM FOR SCIENTIFIC
EXPERIMENTS AND SPACECRAFT CONTROL FOR DEEP SPACE

MISSIONS

Plamen Angelov, Plamen Hristov

Space Research and Technology Institute – BAS
{pangelov, phristov}@space.bas.bg

Abstract: The particularities of autonomous control system for deep space missions are
described. A new approach for autonomous control system development is proposed and
analyzed in details. Some models are analyzed and compared. The general formal model is
based on the theory of communicating sequential processes (CSP). Methods for
reconfiguration, verification and trace control are described.
The software that is appropriate not only for the spacecraft flight path control but also for
autonomous control of scientific apparatus operation and science experiments parameters is
described. The software enables onboard scientific apparatus to autonomously detect and
respond to science events
Science algorithms, including onboard event detection, feature detection, change detection,
and unusualness detection, are proposed to be used to analyze science data. Thus detecting
features of scientific interest these algorithms are used to downlink only significant science
data. These onboard science algorithms are inputs to onboard decision-making Replaner that
modify the spacecraft observation plan to capture high value science events. This new
observation plan is input for the Task execution subsystem of the Autonomous control system
(ACS), able to adjust the plan to succeed despite run-time anomalies and uncertainties, and
after it is executed by the ACS, which controls onboard scientific apparatus to enable an
autonomous goal-directed exploration and data acquisition to maximize science return.

Keywords: CSP models, autonomous control system, spacecraft, software

1. Introduction
For future interplanetary space missions the long-term goal is to use such

software that is appropriate not only for the spacecraft flight path control but also for
autonomous control of scientific apparatus operation and science experiments
parameters. On these missions, onboard science analysis will enable capture of
short-lived science phenomena. In addition, onboard science analysis will enable data
be captured at the finest time-scales without overwhelming onboard memory or
downlink capacities by varying the data collection rate. Examples include: eruption of
volcanoes on planets and its satellites, cloud detection, formation of jets on comets,
phase transitions in ring systems and etc. For extended duration missions that study
long-term phenomena the generation of derived science products (e.g., boundary
descriptions, catalogs) and change-based triggering will also reduce data volumes to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/132338837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

X Национална конференция „Образованието и изследванията в информационното общество” 2017 49

an acceptable level. Such long-term phenomena could be atmospheric changes,
flexing and cracking of the ice crust on some planets and its satellites.

These future interplanetary missions require a new generation of spacecraft
with a new generation of control systems and software. Their most important features
are:

 autonomous operation;
 minimal dependence from the Earth-based command center;
 operation by general commands;
 planning and scheduling;
 system dynamic recovering and reconfiguration;
 high reliability of the system hardware and software;
These principles are fully realized in the Remote Agent (RA) model based

system for Deep Space One (DS1) spacecraft [1, 2, 3]. In this extremely successful
extended mission DS1 encountered comet Borrelly and returned the best images and
other science data ever from this comet [2]. Highly advanced technologies, the key to
more capable, powerful, and efficient spacecraft and science instruments, are used
also in other missions from NASA’s New Millennium Program (Space Technology 5,
6, 7, 8; Earth Observing 1, 3; Deep Space Two) [4].

To build an autonomous control system for interplanetary space missions is
difficult due to following reasons:

1. Limited, intermittent communications – for interplanetary space missions
the spacecraft must be able to operate for long periods of time without supervision
from the Earth-based command center. Some deep space missions only contact the
spacecraft once per week, or even rarely.

2. Spacecraft are very complex - a typical spacecraft has thousands of
components, each of which must be carefully engineered to survive rigors of space
(zero pressure, extreme temperature, radiation, collision with high energy particles,
physical stresses).

3. Limited observability - because processing telemetry is expensive, onboard
storage is limited, and downlink bandwidth is limited, engineering telemetry is limited.
Thus onboard software must be able to make decisions on limited information and the
command center team must be able to operate the spacecraft with even more limited
information.

4. Limited computing power – because of limited power onboard, spacecraft
computing resources are usually very constrained.

5. High stakes – a typical interplanetary space mission costs hundreds of
millions of dollars and more, so any failure could have significant economic impact.
New space mission can take years to plan, construct the spacecraft, and reach their
targets. In addition many mission opportunities are limited by planetary geometries.

50 X Национална конференция „Образованието и изследванията в информационното общество” 2017

In these cases, if a space mission is lost, it may be years before another similar
mission can be launched.

The use of highly advanced technologies will lead to self-sufficient autonomous
spacecraft systems that can adapt their behavior to complex, rapidly changing, and
incompletely understood environments. Areas of research and development of these
advanced technologies include adaptive control technologies, control agent
architectures, embedded decision systems, evolvable systems, intelligent robotics,
adjustable autonomy, distributed and multi-agent systems, goal-level commanding,
planning and scheduling.[5, 6, 7, 8]

2. General characteristics of the approach
The authors’ approach for creating of an autonomous control system (ACS) is

characterized by:
- formal models and methods throughout the system operating cycle are

used;
- the system is presented as a set of objects freely configurable and

connectible by channels [9, 10];
- Artificial Intelligence (AI) is used in the stage of system reconfiguration or

as a part of the control process.
The main differences of ACS from the RA model based system for DS1 [1, 2, 3]

are:
1. ACS executes control and development functions - it makes dynamic

reconfiguration (analysis, synthesis and etc.) of the execution control system in real
time;

2. AI functions are used, both in the control process (if it is necessary) and in
the system development;

3. Formal models and methods are used repeatedly – to create and verify
formal specification and to control the traces of the system processes (all in real time).

The structure of the ACS system is shown on Fig. 1.
Let’s describe the main elements of the proposed approach:
1. Software formal models (specifications): software formal models are a

process models type (a sequential process, that can be executed parallel), where the
processes are communicating (and are synchronized) by a message exchange.

2. Software system verification, using Hoare's (CSP) specifications and laws:
with the CSP theory [9] the software properties can be specified and verified.

3. System operations control, using Hoare's trace models: the traces describe
all events that have place, or can have place in the computing process, and can be
used for run-time control.

X Национална конференция „Образованието и изследванията в информационното общество” 2017 51

4. System structure and parameters run-time determining on the base of
information about control system, controlled objects (spacecraft and scientific
apparatus) and background states. (This is a separate subsystem of the ACS.)

5. Dynamic reconfiguration: on the base of the specification, the system
structure and parameters are implemented in the general software model frame.

6. Real-time simulation.
Corresponding to this approach the ACS is treated like a set of software and

hardware objects that can be configured to exchange information and to synchronize
and get access to common system resources.

Fig.1. Structure of ACS as set of objects and subsystems

3. CSP models
The CSP models describe functions and structure of the system by set of

communicating sequential processes, that can be executed parallel. The models
include CSP-description, alphabet, trace and specification. The interactions are
synchronous by one-direction channels.

The models described below represent a RTS system that consists of four main
processes

(CONTROL, MEASUREMENT, SIMULATION, MODEL):

MODELING = CONTROL || MEASUREMENT || SIMULATION || MODEL,
where the symbol || indicates parallel processes.

Spacecraft and
Scientific apparatus

52 X Национална конференция „Образованието и изследванията в информационното общество” 2017

The alphabet of the processes determines a set of events, logically possible for
the parallel system:

α(CONTROL || MEASUREMENT || SIMULATION || MODEL) = αCONTROL
∪ αMEASUREMENT ∪ αSIMULATION ∪ αMODEL,

where α is process alphabet.

The traces of the parallel processes are determined by:
trace(CONTROL || MEASUREMENT || SIMULATION || MODEL)={t | (t ↑
αCONTROL) ∈ trace(CONTROL) & (t ↑ αMEASUREMENT) ∈
trace(MEASUREMENT) & (t ↑ αSIMULATION) ∈ trace(SIMULATION) &
(t ↑ αMODEL) ∈ trace(MODEL) & t ∈ (αCONTROL ∪ αMEASUREMENT

∪
αSIMULATION ∪ αMODEL)},

where trace is a process protocol, describing the events, which the process has
gone to this moment. The symbol ↑ indicates shrink of the trace on the some set,
such as the alphabet.

Loop process, describing the system functions by separate loops:
LPi = {PR, CH, PAR, ARG},

where: PR – procedure, implementing the process functions; CH – set of
information channels; AGR – set of aggregates; PAR – parameters.

CSP model is:
LoopProcess = c[0]?x → AgregatesList; c[n]!y → ENDprocess;

ModelProcesses,
where: c[i] indicate channels with numbers; AgregatesList – linear aggregates list;
?x – CSP procedure to receive a value from channel c and assumes it to the x

variable;
!y – CSP procedure to transmit the value of y variable to the channel;
ModelProcesses – modeling processes.

The traces are:
LoopProcess=P;Q;ModelProcesses;
P=c[0]?x→AgregatesLIst; Q=c [n]!y→ENDprocess;
trace(P) = {t|t=<>V(t0=c[0]?x & t’∈ trace(AgregatesList))} = {<>} U

{<c[0]?x>∧t|t
∈ trace(AgregatesList)};
trace(Q)={t|t=<> V (t0 = c[n]!z & t’∈ trace(ENDprocess))} = {<>} U

{<c[n]!z>∧t|t

X Национална конференция „Образованието и изследванията в информационното общество” 2017 53

∈ trace(ENDprocess)};
trace(LoopProcess)= {s;t|s ∈ trace(P)& t ∈ trace(Q); r|s ∈ trace(P)& t ∈
trace(Q)& r ∈ trace(ModelProcesses)}.

where the symbol ^ indicate after (between traces); t0 – beginning of the trace; t’
– end of the trace; <> – empty trace.

A list of aggregates CSP model is:
AgregatesList = (c[i]?z →AGREGATE[i]; AgregatesList | c[i]!z →
AGREGATE[i]; AgregatesList) | (next →AGREGATE[i]; AgregatesList) |
(end_list →ENDprocess),

where END process is a special process, the alphabet of which has only one
event, that indicate successful end.

AGREGATE=input(x) →AgrTransferFunction(x:y); output(y)
→ENDprocess;
AgrTransferFunction = (f1→ENDprocess) | (f2→ENDprocess) |...|
(fn→ENDprocess);

where f1,...,fn – functions, doing the transformation x→y.

There are two traces:
AgregatesList
(c[i]?z →AGREGATE[i]) = P1; (c[i]!z →AGREGATE[i]) = P2 ;
(next →AGREGATE[i] = P3;(end_list→ENDprocess) = P4 ;
trace(P1)={<>} U {<c[i]?z>∧t|t ∈trace(AGREGATE[i])};
trace(P1;AgregatesList)={s;t|s ∈trace(P1) &t ∈trace(AgregatesLIst)};
trace(P2)={<>} U {<c[i]!z>∧t|t ∈trace(AGREGATE[i])};
trace(P2;AgregatesList)={s;t|s ∈trace(P2) &t ∈trace(AgregatesLIst)};
trace(P3)={<>} U {<next>^t|t ∈trace(AGREGATE[i])};
trace(P3;AgregatesList)={s;t|s ∈trace(P3) & t ∈trace(AgregatesLIst)};
trace(P4)={<>} U {<end_list>^t|t ∈trace(ENDprocess)};
trace(P4;AgregatesList)={s;t|s ∈trace(P4)&t ∈trace(AgregatesLIst)};
trace(AgregatesList)= {t|t=<> V (t0 ∈B & t’ ∈trace(P(t0)},
where B = {c[i]?z,c[i]!z,next,end_list}; P(t0)= (P1|P2|P3|P4).
– AGREGATE
P = (input(x)→AgrTransferFunction);
Q = (output(y)→ENDprocess); AGREGATE=(P;Q);
trace(P)={<>} U {<input(x)>^t|t ∈trace(AgrTransferFunction)};
trace(Q)={<>} U {<output(y)>^t|t ∈trace(ENDprocess)};
trace(AGREGATE)= {s;t|s ∈trace(P) & t ∈trace(Q)}.
– AgrTransferFunction
trace(AgrTransferFunction)= {t|t=<> V (t0 ∈B & t’∈trace(P(t0)},

54 X Национална конференция „Образованието и изследванията в информационното общество” 2017

where B = {f1,f2,.., fn} alternative
P(t0)=f1→ENDprocess|f2→ENDprocess|...| fn→ENDrocess);

In a similar way the other system objects are defined.

4. ACS operation control method based on CSP trace model

The CSP theory proposes appropriate means for preliminary specification of the
system functions and structure and for the following operation control. These means
are specifications, alphabets and traces of the processes [9, 10].

The general algorithm of the control method is shown on Fig.2:
 the system start;
 the software specification is defined, including the set of system objects;

Fig.2. Flowchart of the system traces control method

X Национална конференция „Образованието и изследванията в информационното общество” 2017 55

 the program system implementation and verification (CSP specifications
verification method);

 all possible traces computing for the specified system (procedure trace (P));
 the special process (tracer) observes and registers the system traces and

determines if they are valid;
 when an invalid trace is registered (emergency situation).

5. Verification method

The method's idea is to be satisfied the relation P sat S (process P satisfies the
specification S). It must satisfy preliminary determined specifications of the traces.

This is method that works with a limited, preliminary determined set of objects
and standard structures. The method sequence is:

1. process (subsystem) type (structure) determining;
2. traces computation by the function trace(p);
3. traces verification (choice from a set of standard traces) by the function

SAT(P,S(np)), represented below, where symbol (np) is any process trace.

The function SatP,S) that decides whether the system implementation satisfies
the system specification:

Sat(P,S(np)) =
 if P = STOP then if np = <> then return TRUE;
else
 return FALSE; end;
elsif P sat S(np) & (c ∏P) then
 if (np = <> V (np0 = c & S(np’))) then return TRUE;
 else return FALSE; end;
 elsif P sat S(np) & (c ∏d ∏P) then
 if (np ≤c,d> V (np ≥<c,d> & S(np”)))
 then return TRUE; else return FALSE;
 elsif P sat S(np) & Q sat T(np) & (c∏P|d∏Q)
 then
if (np = <> V (np0 = c & S(np’)) V (np0 = d & T(np’)) /*S(np’) & T(np’) are the
specifications of the chosen alternative */
 then return TRUE;
 else return FALSE;
 elsif ∇x ∈B.(P(x) sat S(np,x)) & (x:B ∏P(x)) then
if (np = <> V (np0 ∈B & S(np’,np0)))
 then return TRUE; (*a process with choice from a set*)
else return FALSE;
 elsif P sat S(np) & Q sat T(np) & P || Q then if (P||Q) sat (S(np |‘ ∝P) & T(np |‘

56 X Национална конференция „Образованието и изследванията в информационното общество” 2017

∝Q)) then return TRUE; (* parallel processes *)
else return FALSE;
——— other standard structures ——-
else return FALSE; End;
——— other standard structures ——

else return FALSE;
End;

The function trace(P) that computes the system traces:

trace(P)= (µR)* &
if P = (STOPP) then trace(P)= \<>\;
elsif P = (c→P) then trace(P)= \<> U \<c> ∧t|t ∈trace(P)\;
elsif P = (c →P | d →Q)then trace(P)= \t|t = <> V (t0 = c & t’∈trace(P)V
(t0 = d & t’∈trace(Q))\;
elsif P = (x:B →P(x)) = \t|t = <> V (t0 ∈B & t’∈trace(P(t0)))\
elsif P = (mX : A.F(x))) = U trace(Fn(STOPA));
elsif P = (P || Q)then trace(P)= trace(P)Ç trace(Q);
else t = trace(P||Q) then
trace(P||Q)=\t|(t |`µR) ∈trace(P)& (t |`µQ) ∈trace(Q)& t ∈(aR U aQ)*\
...........—other structures--.....................
else
end.

The function IsTrace(s,p) that decide whether the trace s is valid for the
process P:

IsTrace(s,P)=
if s = NIL then TRUE;
elsif P(s0) = “BLEEP then FALSE;
else IsTrace(s’, P(s0));
end.

6. Sofware archtecture
The software architecture is shown on Fig.3.
The concept for intelligent autonomous observation is applied as follows:
1. A list of science targets to monitor as well as the programs of the spacecraft

flight path and orientation is stored onboard or that have been sent as high-level goals
from the Earth-based command center. The model-based planning algorithms used
by Flight and experiments planner enable rapid response to a wide range of
operations scenarios based on a deep model of spacecraft constraints, including

X Национална конференция „Образованието и изследванията в информационното общество” 2017 57

faster recovery from spacecraft anomalies. This onboard planner accepts as inputs
the science and engineering goals and ensures high-level goal-oriented behavior.

Fig.3. Software architecture

2. The software generates an observation plan to monitor the targets on this list
by using different scientific apparatus, e.g. for volcanic studies, the infra-red and near
infra-red bands are used. It addition it can generate new plans for changing the
spacecraft flight path and orientation if needed.

3. The task execution subsystem accepts the new observation plan as an input,
reconfigured the control system (using CSP models) and expands the plan into low-
level commands. During execution of the observation plan by generation commands
and control signals (using conventional software), different scientific apparatus are
activated. Specialized unit in the subsystem monitors the execution of the plan and
has the flexibility and knowledge to perform event driven commanding to enable local
improvements in execution as well as local responses to anomalies.

58 X Национална конференция „Образованието и изследванията в информационното общество” 2017

4. The collected images are sent to Science algorithms block, where they
analyzed and based on this analyze the data is downlinked. Had no new scientific
event detected, the science software would generate a goal for the Replanner to
acquire the next highest priority target in the list of targets. Such way the system
modify the current operations plan to include numerous new activities in order to
enable the new science observation.

5. The software executes the new generated plans in conjunction with several
autonomy elements.

6. This cycle is then repeated on subsequent observations.

The developed software enables to autonomously detect and respond to science
events. Such science events can be: volcanic eruptions on planets and its satellites,
cloud detection, growth and retreat of ice caps, formation of jets on comets and etc.
Classification algorithms are used to analyze imagery and other signal to detect change
and science events (thus to downlink science data only on change and when detect
features of scientific interest). Detection of these events is then used to trigger scientific
apparatus. Onboard Replanner then develops a response plan that accounts for target
visibility and operations constraints. This plan is then executed using a task execution
subsystem that can deal with run-time anomalies.

Conclusion
The proposed integrated approach allow to design and study an spacecraft

autonomous control system based on the CSP models, appropriate for scientific
experiments and spacecraft flight path and orientation control during interplanetary
missions. This approach is implemented by the methods for verification and control.
The models describe in general the functions of the system by using a rigorous
mathematical theory (CSP theory). A new software model (process-aggregate) is
represented. It is a high-efficient model with high degree of structural accordance to real
systems. The control and verification methods allow creation of high-reliability systems by
preliminary verification and run-time system observation. The control method, based on a
trace model, is a new in this type of systems. The main advantage of the approach is
the completeness and the possibility to achieve some degree of assurance in the system
quality before the flight tests.

The software architecture appropriate for the spacecraft flight path and
orientation control and for autonomous control of scientific apparatus operation and
science experiments parameters are proposed. The developed software enables to
autonomously detect and respond to science events. Such science events can be:
volcanic eruptions on planets and its satellites, cloud detection, growth and retreat of
ice caps, formation of jets on comets and etc. The onboard analysis using science
algorithms enables to capture even short-lived science phenomena. Thus the data
could to be captured at the finest time-scales without overwhelming onboard memory

X Национална конференция „Образованието и изследванията в информационното общество” 2017 59

or downlink capacities by varying the data collection rate on the fly. In addition by
generation of derived science products (e.g., boundary descriptions, catalogs) and
change-based triggering will also reduce data volumes to a manageable level for
extended duration missions that study long-term phenomena such as atmospheric
changes and flexing and cracking of the ice crust on some planets and its satellites.

Bibliography
1. D. Bernard, G. Dorais, E. Gamble, B. Kanefsky J. Kuriena, G. K. Man, W. Millar, N.

Muscettola P. Nayak, K. Rajant,N. Rouquette, B. Smith, N. W. Taylor, Yu-Wen Tung,
Spacecraft Autonomy Flight Experience: The DS1 Remote Agent Experiment, Proceedings
of the AIAA Space Technology Conference & Exposition, Albuquerque, NM, Sept. 28-30,
1999. AlAA-99-4512.

2. NASA, Remote Agent Experiment Home Page
https://ti.arc.nasa.gov/tech/asr/planning-and-scheduling/remote-agent/ [retrieved June 12, 2017]
3. NASA, Jet Propulsion Laboratory
 https://www.jpl.nasa.gov/nmp/ds1/ [retrieved June 12, 2017]
4. NASA, Jet Propulsion Laboratory, https://www.jpl.nasa.gov/nmp/ [retrieved June 12, 2017]
5. NASA, Jet Propulsion Laboratory

https://www.jpl.nasa.gov/nmp/TECHNOLOGY/missions.php/ [retrieved June 12, 2017]
6. S. Chien, B. Engelhardt, R. Knight, G. Rabideau, R. Sherwood, E. Hansen, A. Ortiviz, C.

Wilklow, S. Wichman, "Onboard Autonomy on the Three Comer Sat Mission,"
Proc.SAIRAS 2001, Montreal, Canada, June 2001.

7. N. Muscettola, G. Dorais, C. Fry, R. Levinson, and C. Plaunt, “IDEA: Planning at the Core
of Autonomous Reactive Agents”, Proceedings of the Workshops at the AIPS-2002 Conf.,
Tolouse, France, April 2002.

8. M. Griffin, H. Burke, D. Mandl, & J. Miller, “Cloud Cover Detection Algorithm for the EO-1
Hyperion Imagery,” Proceedings of the 17th SPIE AeroSense 2003, Orlando, FL, April 21-
25, 2003.

9. C.A.R. Hoare, Communicating Sequential Processes. London, Prentice-Hall International,
London, UK, 1985, 2015 (http://www.usingcsp.com/cspbook.pdf).

10. Hristov P.L., P.S. Angelov, Autonomous Onboard Computer Systems Using Real Time
Trace Models, IEEE Proceedings of 2nd International Conference on Recent Advances in
Space Technologies: Space in the Service of Society RAST’2005, June 9-11, 2005,
Istanbul, Turkey, pp.189-194.

