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ABSTRACT. Let F' be an algebraically closed field of characteristic 0, and
let G be the infinite dimensional Grassmann (or exterior) algebra over F.
In 2003 A. Henke and A. Regev started the study of the A-identities. They
described the A-codimensions of G and conjectured a finite generating set
of the A-identities for G. In 2008 D. Gongalves and P. Koshlukov answered
in the affirmative their conjecture. In this paper we describe the central
A-polynomials for G.

1. Introduction. Let F' be a field and let F/(X) be the free unitary
associative algebra, freely generated over F' by the infinite set X = {x1,x9,...}.
The elements of F(X) are called polynomials. All algebras considered in this
paper will be associative, unitary and over the field F'
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A polynomial f(x1,...,2,) is a polynomial identity for an algebra R if
flay,...,an) =0 for all ay,...,a, € R. It is well known that the set T'(R) of
all polynomial identities for R is a T-ideal, that is, an ideal invariant under all
endomorphisms of F(X). A polynomial f(x1,...,z,) is a central polynomial for
R if f(ai,...,a,) € Z(R), the centre of R, for all ai,...,a, € R. The set C(R)
of all central polynomials for R is a T-space of F(X), that is, C(R) is a vector
subspace invariant under all endomorphisms of F'(X).

Recall that if char(F') # 2 and V is a vector space over F' with an infinite
basis e, €3, ... then the Grassmann algebra of V' is the unitary associative algebra
G with a basis consisting of 1 and the elements

(1) €i1€ip """ €4y

where i1 < iy < --- <1i,. The multiplication in G is induced by e;e; = —eje; for
all ¢ and j. The centre of GG is the subspace G spanned by 1 and the elements
(1) with n even. It is well known that the polynomial [z1,x2,z3] = [[z1,x2], 23]

is a polynomial identity for G, where [z, y] = zy — yx is the commutator of = and
y. A direct consequence of this fact is that the polynomial [z, 23] is a central
polynomial for G.

The polynomial identities for G were described in [9] by Krakowski and
Regev when char(F)=0, and by various authors in the general case (see [4] and
[10]). The central polynomials for the Grassmann algebra were described inde-
pendently by several authors, see for example [1], [2] and [6].

Let P, be the set of all multilinear polynomials of degree n in the variables
T1,...,%Tn. The set formed by all monomials ,(1)Zs(2) * ** To(n), Where o € Sp,
the symmetric group of degree n, is a basis for the vector space P,. It is known
that the multilinear identities for an algebra R generate its T-ideal T'(R) when
char(F') = 0. In other words, all polynomials identities of R are linear combina-
tions of elements

90f (g5, 9n)Gn+1,

where g; € F(X) for all i and f € P, N T(R). Due the importance of the
multilinear identities, the quotient space
Py
P,NT(R)
has become an object of extensive study. Its dimension, ¢,(R), is called the n-th
codimension of R. The codimensions of G were computed explicitly in [9].

In 2003 Henke and Regev [7] started the study of the A-identities of an
algebra. Let P;‘ be the subspace of P, spanned by the monomials z4 (1)« - o (),
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where o € A, the alternating group of degree n. The elements in P;{‘ have the
form

F@i, . mn) = Y Qolio(t) * To(m),
O'EAn

where a, € F, and they are called A-polynomials. If f € P2 is a polynomial
identity for an algebra R, then f is called an A-identity for R. The n-th A-

codimension of R is
PA
A . n
=d _ .
¢, (R) Hn(P;;‘ﬁT(R))

An example of an A-identity for the Grassmann algebra G is the polynomial

(2) [x1, xox3]Ty — T4[T1, T3T2).
In [7] Henke and Regev proved the following result.

Theorem 1 ([7]). If F is an algebraically closed field and char(F') = 0,
then

A
SR S G
PANT(G)

n

cA(G) = dim (

Using this theorem D. Gongalves and P. Koshlukov [5] gave an affirmative
answer to the conjecture of Henke and Regev [7] about the description of the A-
identities of G. It was shown in [5] that the A-identities of G are determined by
the polynomial (2).

Theorem 2 ([5]). Let F' be an algebraically closed field of characteristic
0. If o € Ay, and 0 <r <n —4, denote by u,, the polynomial
Uro = [To(r41)s To(r+2)To(r4+3) | To(r+4) — To(r+4)[To(r+1)> To(r+3)To(r42)]

and denote by f, the polynomial

(3) fT,U = Tg(1) " Lo(r) " (U?ZU) *Lo(r45) " Lo(n):
Then the polynomials f,, span all A-identities of degree n for G.

In this paper we describe the central A-polynomials for the infinite di-
mensional Grassmann algebra G. Our main result is the following theorem.

Theorem 3. Let F be an algebraically closed field of characteristic 0.
Given o € A,,, consider the polynomials

9o = [To(1) *** To(n-1)sTom)] and  he = [To(1) *** To(n—2)s To(n—1)Ta(n))-
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(a) If n is odd, then the set
(4) {frelc€A,and 0 <r<n—-4}U{g, | 0 € A,}

spans all central A-polynomials of degree n for G. Futhermore

dim _ B 2" — 1
PANC(G)) '
(b) If n is even, then the set
(5) {freclo€Aand 0 <r<n—-4}U{h, | 0 € Ap}

spans all central A-polynomials of degree n for G. Futhermore

dim (L) = 92
PAnC(@G)) T

The other main result of this paper is the description of the A,-cocharacters
of C(G).

2. Central A-polynomials for . In this section F' will be a field,
char(F) # 2. Let U, be the subspace of P2 spanned by

(i) PANT(G) and {g, | o € A,}, if n is odd.

(ii) PANT(G) and {hy | o € A}, if n is even.
Since [z1,z2] € C(G) we have
(6) U, C PAnC(a).
From now on we denote by V,, an arbitrary subspace of P;;1 such that

U, CV, CPANC(G).
If mapxqz,zsm’ is a monomial in P2, then
(@1, -y @a) = ml[@p, 2q2r|s — Ts[wp, Trag))m

is an A-identity for G. This polynomial will be called principal polynomial.
For future reference we write ( as follows

(7) ¢ = +maprgzrzsm
(8) —MT Ty Tgm
9) —MI T TpT s’
(10) +mxsz,xgr,m’.



Central A-polynomials for the Grassmann algebra 301

Note that since ¢ is an A-identity for G we have ¢ € V,,.

If o € Ap we say that z,(;) occupies the i-th position of the monomial
To(1)To(2) """ To(n)- We will study the subspace W), of P2 spanned by monomials
whose last position is occupied by z,,.

Lemma 4. Let W, be the subspace of P,if‘ spanned by

{x"/(l) © Ly(n) ‘ v € Ap, 7(”) = n}

and let m = Tg(1) " Ty(n), where o € Ap.
(a) If n is odd, then there exists f € W,, such that

m = f modU,.

Consequently, P,if‘ =W, +U,.
(b) If n is even and x,, occupies an even position in m (that is if o(i) = n then i
is even), then there exists f € W,, such that

m = f modU,.

Proof. (a) Suppose o(i) = n, with ¢ # n. One has

To(1) " To(n—1)To(n) = Yo T To(n)To(1) =" To(n—1)-

Since the cycle p=(n n—1 ... 2 1) is an even permutation we have ou € A4,
and hence Ty To(1) - To(n_1) € P2, Applying this argument several times, we
have the result.

(b) The argument is the same from item (a). Note that

To(1) " Lo(n—2)To(n—1)Lo(n) = hs + Lon—1)Tan)La(1) " La(n—2)
and op® € A,. O
The following result is proved in [2]. Here we give another proof.

Proposition 5. If f(z1,...,2p—1)x, € P, is a central polynomial for G,
then f(z1,...,2n—1) is a polynomial identity for G.

Proof. Since g = fz,, € C(G) we have f € C(G). Thus [g,z,4+1] and
[f, xny1] are identities for G. But

[ga anrl] = [fdjna xn+1] = [f7 $n+1]$n + f[dfny $n+1]

and [f, zp4+1] vanishes on G. Hence f[x,, Tp+1] is an identity for G. Let ay, ag, .. .,
an—1 be arbitrary elements from the basis (1) of G. Suppose e;, e; are different
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letters that do not appear in the composition of the words a;, for all [. Since

0= f(ala s 7an—1)[ei>€j] = 2f(a1> s aan—l)eieja

we have f(ai,...,ap—1) = 0. Thus f is an identity for G. O
The next result is an immediate consequence of Proposition 5.

Corollary 6. If f(xy1,...,%n 1)z, € PA is a central A-polynomial for
G, then f(x1,...,2n—1) is an A-identity for G. Consequently,

C(G)NW, C PANT(G).
The next theorem gives the description of the central A-polynomials of
odd degree for G.

Theorem 7. If n is odd, then P2 N C(G) = U,.

Proof. By (6) it suffices to prove that PANC(G) C U,. If f € PANC(G)
then by Lemma 4 (a) there exist polynomials f; € W,, and fs € U, such that
f = fi+ fa. Since U, C PANC(G) it follows that f; € W,,NC(G). By Corollary
6 we have f; € PANT(G) C U, and hence f € U,. O

Lemma 8. Let W) be the subspace

Wn+ Vi
11 wr—=_-=~_ %
of the quotient space P2 /V,,. If n > 2 then dim W} = c2 | (Q).

Proof. Consider the linear map ) : P;f_l — W, defined by

V(f(xy,...,2n-1)) = f(z1,. ., Zp_1)Tpn + Vi

It follows from Corollary 6 that f € ker(¢) if and only if f € P4, NT(G). Since
1 is surjective and ker(y)) = PA |, NT(G), it follows that

n—1

dim W, = dim i = Q). O
" P NT(G)

Proposition 9. Let n be an even number, n > 4. Consider o € A,, such
that x,, occupies an odd position in the monomial Y = To(1)Tg(2) *** Lo(n)-
(a) If y = magzpxnxem’, where m and m' are monomials, then

y = mrpxerpzem’ mod (W, + Uy).
b) If y = mzgzpxnzem’, where m and m' are monomials, then
Yy

Y = mxcxoxnrym’ mod (W, + Uy,).
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(¢) If y = mzqxnxpyzem’, where m and m’ are monomials, then

Y = mrerprarym’ mod (W, + Uy,).

Proof. (a) If we identify y with the monomial (9) in the principal polyno-
mial, then z,, occupies even positions in the monomials (8) and (10). By Lemma
4 (b) the monomials (8) and (10) belong to W,, + U,. Now observe that the
right-hand side in our congruence is the monomial (7).

(b) If we identify y with the monomial (7) in the principal polynomial,
then z,, occupies even positions in the monomials (9) and (10). Observe that the
right-hand side in the congruence is the monomial (8).

(c) If we identify y with the monomial (9) in the principal polynomial,
then x,, occupies even positions in the monomials (7) and (8). Observe that the
right-hand side in the congruence is the monomial (10). O

Theorem 10. If n is even, then P2 N C(G) = U,.

Proof. Suppose n even. Let ), be the subspace of P;‘ spanned by the
monomial x123 -+ Tp_4Tp_2Tn_3TnTn—1 and let QF = (Qn + V,,)/V,. We shall
prove that

A
-n
Vo

First we show that P;{‘ =Wn+ Vi +Qn. Let 0 € Ay and let y = 251y To()-
If x,, occupies an even position in y then y € W, + V,, by Lemma 4 (b). Thus
suppose x,, occupies an odd position in y. Using Proposition 9 (a) we can “join”
r, and x1, that is, we can show that

(12) — W Q)

y = uxpriv mod (W, + U,) or y = uxrirpv mod (W, + Uy),
where v and v are monomials. We will show that
y=xzym’ mod (W, + U,)
for some monomial m’. We consider two cases:

Case 1. y = uzpzqv mod (W, +Uy).
(i) If w is a monomial of lenght 0, then by Proposition 9 (a) we have

Y = Tpr12p0 = 2122, mod (W, + U,,),

where v = 2,7 for some monomial .
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(ii) If w is a monomial of lenght > 0, then v = mx,x;, because y, occupies an
odd position in y. By Proposition 9 (b)

Y = MTTpTpT10 = MT1TeTpTpv mod (W, 4+ Up).

Note that x; “walked” 3 positions to the left in the new monomial. Now we use
Proposition 9 (a) again and we have

Y = MTITaTnTpv = MTpT12,Tpv  mod (W, + Up).
Using the same procedure in (i) and (ii), after several steps we will obtain
y=x1m’ mod (W, +U,)
for some monomial m/'.

Case 2. y = uzyz,v mod (W, +Uy).

Since uziz,v is of even length and x, occupies an odd position it follows that
u and v have lengths > 1. Thus uziz,v = v'z,x12,2.0" for some monomials v’
and v'. We have

y = vz, x1000.0 = Wrer v’ mod (W, + Uy,).
Since v/ T xqr,x1v’ is a monomial satisfying Case 1 we have
y=x1m’ mod (W, +U,)

for some monomial m’.
Using Proposition 9 and similar arguments for x5 it follows that

y = xzom” mod (W, + U,),
for some monomial m”. In this way we prove that
Yy=x1T2 Tpos5Tp—qw mod (W, + U,)

for some monomial w. Note that z,, occupies either the first or the third position
in w. By Proposition 9 (a) we have

Y= 21T Tpo5Tn—aTqTpTnte mod (W, 4+ Up),

where {zq, zp, z.} = {Tn_1,Tn—2,Tn_3}. Since x1T2- - Tp_5Tn_4TaTpTnTe IS an
A-polynomial it follows that z,xpx,x. is one of the three monomials

Tpn—2Tn—-3TnTn—1, O Tn-3Ln—-1TnTn—2, O Tpn_1Tp—2TnTn—3-
Therefore applying twice Proposition 9 (b) it follows that

Y =TT TpdTy—2Tn—3TnTp—1 mod (W, + U,).
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Since U,, C V,, we have the equality P;{‘ =W, +V, + Q, as desired.
To finish the proof of equality (12) we shall prove that the intersection of
the subspaces involved is {0}. Let

f = E CoZg(1) " Lo(n—1)Tn + Br172 - Tp—dTy—2Tn—3TnTp—_1,
UeAn—l

where a,, 8 € F. If f € V, then [f(z1,...,2n),Znt+1] € T(G). Looking for the
basis elements of G in (1) it follows that

[fle1, ... en—1,enent1), enta] = 2(y — Plerez - - - enq2 =0,
where
v = Z .
c€A,—1

Hence

(13) v— =0,

Since

[f(erea,...,ean_3€2m—2,€2n—1),€2n] = 2(7 + B)erea--- ez =0

we have

(14) v+ B=0.

From (13) and (14) it follows that 8 = 0 and hence the equality (12) is proved.
By Lemma 8 we have dim(P2/V;,) = ¢2 | (G) + 1. Since V}, is any subspace that
satisfies U, C V;, € P2 N C(G) it follows that PANC(G) = U,. O

3. Proof of Theorem 3. Let F be an algebraically closed field of char-
acteristic 0. According to Theorem 2, T(G) N P2 is spanned by the polynomials
fro, With 0 <r <n —4and o € A,.

The space C(G) N PA is spanned by T(G) N P2 and {g, | ¢ € A,} in
the case when n is odd (Theorem 7), and by P2 NT(G) and {h, | ¢ € A,} in
the case of n even (Theorem 10). Thus we have the generating sets (4) and (5)
for C(G) N P2 (as a vector space), in the cases when n is odd, and n is even,
respectively.

If n is odd it follows from Lemma 4 (a), Lemma 8 and Theorem 1 that

. P?? . * A n—2
dlm <m) = dlm Wn = Cn—l(G) =2 — 1.
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If n is even it follows from equality (12) and Theorem 1 that
pi 2
im [ s | = dim(W}) + 1 =2""2,
dim (P,‘fﬂC(G)) dim(W) +
Thus Theorem 3 is proved. O
4. A,-cocharacter of C(G). Let F be a field of characteristic 0 and
let n : F'S,, — P, be the isomorphism of S,-modules defined by
n(o) = o(x1 - Tp) = Toq) - Tom),

where o € .5,,.

In this section we will study the S,- and A,-cocharacters of C'(G). The
dimension of the vector space P,/(P, N C(G)) is called the n-th codimension of
C(G). The codimensions of C(G) are given by following result.

Theorem 11 ([2]). If F is a field of characteristic 0, then
P
dim (| 5——— | =2"7>
. (Pn n C(G))

Let x»(C(G)) be the character of the S,-module P,/(P, N C(G)). We
say that x,(C(Q)) is the n-th cocharacter of C(QG).
Let A\; be the partition of n defined by
M=m—-t+1,1" Y =n-t+1,1,1,...,1),

where 1 <t < n. We will denote by x; and 7; the irreducible character and the
standard Young tableau

t+1]t+2]---[n]

T, =

t

corresponding to A, respectively. The codimensions and cocharacters of G (or
T(G)) are described by following result.

Theorem 12 (]9, 11]). Let F be a field of characteristic 0. The n-th
cocharacter of T(QG) is

W(T(@) =3 X
t=1
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Moreover, the n-th codimension of T(G) is 2" 1.
Let g; be the element of the group algebra F'S,, defined by
g= Y > (-1)07,
oc€Rt veCy

where R; is the set of the row permutations and C; is the set of the column
permutations of 7;. From now on we will denote by n;(x1, ..., x,) the polynomial

n = n(gt) =Gt (55‘1332 s an)-

Note that
771(.7}1, e )ZCTZ) = Z xU(l)xU(Z) . ma_(n)
oESy
and
nt(l‘h N ,.Tn) = Z O'(St(l‘l,l‘g, N 71’t)xt+1 e xn)
ocER;
= Z St(xU(l)"TQ""7xt)mo'(t+1)"'xg(n),
og€R:

if t > 1, where s; is the standard polynomial of degree t.

Lemma 13. Ift is odd then n; is not a central polynomial for G.

Proof. Consider eq, es, €3, ..., the canonic generators of G. Since
m(eiez, ..., e 3€2n 2,62, 1) = nletes---ean1 ¢ Z(G)

we have n(z1,x2,...,2,) € C(G).
Consider ¢t > 1 odd. Suppose that

(@1, mn) = Y 8i(@o(1), B2, T Tty To(n) € C(G).
ocER:

Thus
ne(x1, .., o, 1,0, 1) = (n— ) se(w1, 29, ..., 2¢) € C(G)
and hence s¢(zr1,...,7¢) € C(G). But
si(ery...,e) =tler---ep ¢ Z(Q).

Contradiction. Therefore 7, is not a central polynomial for G. O
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Fix 1 <t < n odd and consider the map

Py
[ (FSy)m m

a — a+ (P,NC(G))
Since (F'Sp,)n: is an irreducible S,-module and f(n;) # 0 (by Lemma 13), it fol-
lows that f is an injective S,-homomorphism. Taking M; = Im (f) we have M; ~
(F'Sp)ne. Thus My, Ms, ..., M, are minimal S,,-submodules of P, /(P,NC(QG))

(where ny is the greatest odd number in {1,2,...,n}) and pairwise nonisomor-
phic. Hence the sum M; + --- + M, is direct. By the Hook formula we have

dim 0, = dim((S, )] = dim((FS )0 = (7).

Opening the expression (1 +1)"1 + (1 —1)""! as a sum of binomial coefficients
we have that

n

t—1 '
t=1

todd

Thus

P, " /n—1
n—2 f— 1 > e = n_2'
2 d1m< SYel(e) ) dim @Mt ;,1 <t—1> 2
fodd todd

Therefore the following result is proved.

Theorem 14. If F' is a field of characteristic 0, then

P,
(15) A0 = P M.

todd

From now on F will be algebraically closed of characteristic 0. We will
make a summary extracted from [7], on some basic results of the theory of rep-
resentations of the alternating group A,. For more details on the subject see [8].



Central A-polynomials for the Grassmann algebra 309

Given a Sy,-character x, denote by X its restriction to the group A,. If A F n,
denote by x, the irreducible character associated with A and denote by dy the de-
gree of such character. Let A’ be the conjugate partition of X\. Below we describe
the irreducible characters of A,,:

(i) If X # X, then
XA = XN

Moreover, Xy is A,-irreducible.

(ii) If A = X, then

=X X

where YT are A,-irreducibles. Moreover ° XxT = dy /2.

(iii) All irreducible A,-characters were found in items (i) and (ii).

Denote by x2(C(G)) the A,-character corresponding to the quotient

iy
PANC(G)

We say that it is the A,-cocharacter of C(QG).

Theorem 15. Let F' be an algebraically closed field of characteristic
0. The decomposition of the Ay-cocharacter of C(G) as sum of irreducible A,,-
characters is given as follows:

(a) If n > 2 is even, then

(b) If n > 5 is odd, then

(n—=1)/2
Xﬁ(C(G)) = X1 T X(n+1)/2 t X(n+1)/2 T Z 2 Xt

t=3
todd

(c) Ifn =3, then x2(C(G)) = x71.
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Proof. Let
P
At
i T BN OG)
be the A,-homomorphism defined by «(u) = u + (P, N C(G)). Since ker(t) =
P2 N C(G) we have the isomorphism of A,-modules:

i

7}3;14 SYelte) >~ (PA).

n
If n is even then by the Theorem 11 and Theorem 3 we have the isomorphism of

A,-modules

PA P,
PANC(G) P,NnC(G)’

I

Therefore

X1 (C(@) = xa(C(G)) = Z Xt

by Theorem 14.
Suppose n > 5 odd. If t is odd and 1 < ¢ < (n —1)/2 then \; # A\, =
An—t+1. Hence

Xt = Xn—t+1-
Ift=(n+1)/2 then
Xi=Xi +Xt -

By Theorem 14 we have

(n—1)/2
(16) Xn(C(@) = Xtr2" + Xnrnyjz + Z 2-Xt-

fodd
Hence

(n—1)/2

(17) Xa(C(@) =a’ Xz +a Xernp + Z at - Xt

t odd

where 0 < a™,a” <1 and 0 < a; < 2. Let d; be the degree of character ;. By
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(16) and Theorem 14 we have the following

d( +1)/2 d( +1)/2 (/2
on=2 = 1 " 2d 2d;.
2 + 5 + 2a1 + ; t
todd

By (17) and Theorem 3 we have

dwivyz | dminp "X

— n — n
2”2—1:a+T+a 5 +aidy + ; azdy.
todd
Since
n—1
d; =
=(i0)

we have d; = d,, =1 and d; > 4 otherwise. Hence at =a~ =a; =1 and a; = 2
otherwise.

We leave to the reader the proof of the case n =3. O

Acknowledgement. The authors would like to thank Plamen Koshlukov
for proposing the study of the A,-cocharacters of C(G).
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