Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

CENTRAL A-POLYNOMIALS FOR THE GRASSMANN ALGEBRA

Antônio Pereira Brandão Jr.*, Dimas José Gonçalves**
Communicated by A. Giambruno

We dedicate this paper to the 65 th birthday of Yuri Bahturin.

Abstract

Let F be an algebraically closed field of characteristic 0 , and let G be the infinite dimensional Grassmann (or exterior) algebra over F. In 2003 A. Henke and A. Regev started the study of the A-identities. They described the A-codimensions of G and conjectured a finite generating set of the A-identities for G. In 2008 D. Gonçalves and P. Koshlukov answered in the affirmative their conjecture. In this paper we describe the central A-polynomials for G.

1. Introduction. Let F be a field and let $F\langle X\rangle$ be the free unitary associative algebra, freely generated over F by the infinite set $X=\left\{x_{1}, x_{2}, \ldots\right\}$. The elements of $F\langle X\rangle$ are called polynomials. All algebras considered in this paper will be associative, unitary and over the field F.
[^0]A polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ is a polynomial identity for an algebra R if $f\left(a_{1}, \ldots, a_{n}\right)=0$ for all $a_{1}, \ldots, a_{n} \in R$. It is well known that the set $T(R)$ of all polynomial identities for R is a T-ideal, that is, an ideal invariant under all endomorphisms of $F\langle X\rangle$. A polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ is a central polynomial for R if $f\left(a_{1}, \ldots, a_{n}\right) \in Z(R)$, the centre of R, for all $a_{1}, \ldots, a_{n} \in R$. The set $C(R)$ of all central polynomials for R is a T-space of $F\langle X\rangle$, that is, $C(R)$ is a vector subspace invariant under all endomorphisms of $F\langle X\rangle$.

Recall that if $\operatorname{char}(F) \neq 2$ and V is a vector space over F with an infinite basis e_{1}, e_{2}, \ldots then the Grassmann algebra of V is the unitary associative algebra G with a basis consisting of 1 and the elements

$$
\begin{equation*}
e_{i_{1}} e_{i_{2}} \cdots e_{i_{n}} \tag{1}
\end{equation*}
$$

where $i_{1}<i_{2}<\cdots<i_{n}$. The multiplication in G is induced by $e_{i} e_{j}=-e_{j} e_{i}$ for all i and j. The centre of G is the subspace G_{0} spanned by 1 and the elements (1) with n even. It is well known that the polynomial $\left[x_{1}, x_{2}, x_{3}\right]=\left[\left[x_{1}, x_{2}\right], x_{3}\right]$ is a polynomial identity for G, where $[x, y]=x y-y x$ is the commutator of x and y. A direct consequence of this fact is that the polynomial $\left[x_{1}, x_{2}\right]$ is a central polynomial for G.

The polynomial identities for G were described in [9] by Krakowski and Regev when $\operatorname{char}(F)=0$, and by various authors in the general case (see [4] and [10]). The central polynomials for the Grassmann algebra were described independently by several authors, see for example [1], [2] and [6].

Let P_{n} be the set of all multilinear polynomials of degree n in the variables x_{1}, \ldots, x_{n}. The set formed by all monomials $x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(n)}$, where $\sigma \in S_{n}$, the symmetric group of degree n, is a basis for the vector space P_{n}. It is known that the multilinear identities for an algebra R generate its T-ideal $T(R)$ when $\operatorname{char}(F)=0$. In other words, all polynomials identities of R are linear combinations of elements

$$
g_{0} f\left(g_{1}, \ldots, g_{n}\right) g_{n+1}
$$

where $g_{i} \in F\langle X\rangle$ for all i and $f \in P_{n} \cap T(R)$. Due the importance of the multilinear identities, the quotient space

$$
\frac{P_{n}}{P_{n} \cap T(R)}
$$

has become an object of extensive study. Its dimension, $c_{n}(R)$, is called the n-th codimension of R. The codimensions of G were computed explicitly in [9].

In 2003 Henke and Regev [7] started the study of the A-identities of an algebra. Let P_{n}^{A} be the subspace of P_{n} spanned by the monomials $x_{\sigma(1)} \cdots x_{\sigma(n)}$,
where $\sigma \in A_{n}$, the alternating group of degree n. The elements in P_{n}^{A} have the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in A_{n}} \alpha_{\sigma} x_{\sigma(1)} \cdots x_{\sigma(n)}
$$

where $\alpha_{\sigma} \in F$, and they are called A-polynomials. If $f \in P_{n}^{A}$ is a polynomial identity for an algebra R, then f is called an A-identity for R. The n-th A codimension of R is

$$
c_{n}^{A}(R)=\operatorname{dim}\left(\frac{P_{n}^{A}}{P_{n}^{A} \cap T(R)}\right)
$$

An example of an A-identity for the Grassmann algebra G is the polynomial

$$
\begin{equation*}
\left[x_{1}, x_{2} x_{3}\right] x_{4}-x_{4}\left[x_{1}, x_{3} x_{2}\right] . \tag{2}
\end{equation*}
$$

In [7] Henke and Regev proved the following result.
Theorem 1 ([7]). If F is an algebraically closed field and $\operatorname{char}(F)=0$, then

$$
c_{n}^{A}(G)=\operatorname{dim}\left(\frac{P_{n}^{A}}{P_{n}^{A} \cap T(G)}\right)=2^{n-1}-1
$$

Using this theorem D. Gonçalves and P. Koshlukov [5] gave an affirmative answer to the conjecture of Henke and Regev [7] about the description of the Aidentities of G. It was shown in [5] that the A-identities of G are determined by the polynomial (2).

Theorem 2 ([5]). Let F be an algebraically closed field of characteristic 0. If $\sigma \in A_{n}$ and $0 \leq r \leq n-4$, denote by $u_{r, \sigma}$ the polynomial

$$
u_{r, \sigma}=\left[x_{\sigma(r+1)}, x_{\sigma(r+2)} x_{\sigma(r+3)}\right] x_{\sigma(r+4)}-x_{\sigma(r+4)}\left[x_{\sigma(r+1)}, x_{\sigma(r+3)} x_{\sigma(r+2)}\right]
$$

and denote by $f_{r, \sigma}$ the polynomial

$$
\begin{equation*}
f_{r, \sigma}=x_{\sigma(1)} \cdots x_{\sigma(r)} \cdot\left(u_{r, \sigma}\right) \cdot x_{\sigma(r+5)} \cdots x_{\sigma(n)} \tag{3}
\end{equation*}
$$

Then the polynomials $f_{r, \sigma}$ span all A-identities of degree n for G.
In this paper we describe the central A-polynomials for the infinite dimensional Grassmann algebra G. Our main result is the following theorem.

Theorem 3. Let F be an algebraically closed field of characteristic 0. Given $\sigma \in A_{n}$, consider the polynomials

$$
g_{\sigma}=\left[x_{\sigma(1)} \cdots x_{\sigma(n-1)}, x_{\sigma(n)}\right] \quad \text { and } \quad h_{\sigma}=\left[x_{\sigma(1)} \cdots x_{\sigma(n-2)}, x_{\sigma(n-1)} x_{\sigma(n)}\right] .
$$

(a) If n is odd, then the set

$$
\begin{equation*}
\left\{f_{r, \sigma} \mid \sigma \in A_{n} \text { and } 0 \leq r \leq n-4\right\} \cup\left\{g_{\sigma} \mid \sigma \in A_{n}\right\} \tag{4}
\end{equation*}
$$

spans all central A-polynomials of degree n for G. Futhermore

$$
\operatorname{dim}\left(\frac{P_{n}^{A}}{P_{n}^{A} \cap C(G)}\right)=2^{n-2}-1
$$

(b) If n is even, then the set

$$
\begin{equation*}
\left\{f_{r, \sigma} \mid \sigma \in A_{n} \text { and } 0 \leq r \leq n-4\right\} \cup\left\{h_{\sigma} \mid \sigma \in A_{n}\right\} \tag{5}
\end{equation*}
$$

spans all central A-polynomials of degree n for G. Futhermore

$$
\operatorname{dim}\left(\frac{P_{n}^{A}}{P_{n}^{A} \cap C(G)}\right)=2^{n-2}
$$

The other main result of this paper is the description of the A_{n}-cocharacters of $C(G)$.
2. Central A-polynomials for G. In this section F will be a field, $\operatorname{char}(F) \neq 2$. Let U_{n} be the subspace of P_{n}^{A} spanned by
(i) $P_{n}^{A} \cap T(G)$ and $\left\{g_{\sigma} \mid \sigma \in A_{n}\right\}$, if n is odd.
(ii) $P_{n}^{A} \cap T(G)$ and $\left\{h_{\sigma} \mid \sigma \in A_{n}\right\}$, if n is even.

Since $\left[x_{1}, x_{2}\right] \in C(G)$ we have

$$
\begin{equation*}
U_{n} \subseteq P_{n}^{A} \cap C(G) \tag{6}
\end{equation*}
$$

From now on we denote by V_{n} an arbitrary subspace of P_{n}^{A} such that

$$
U_{n} \subseteq V_{n} \subseteq P_{n}^{A} \cap C(G)
$$

If $m x_{p} x_{q} x_{r} x_{s} m^{\prime}$ is a monomial in P_{n}^{A}, then

$$
\zeta\left(x_{1}, \ldots, x_{n}\right)=m\left(\left[x_{p}, x_{q} x_{r}\right] x_{s}-x_{s}\left[x_{p}, x_{r} x_{q}\right]\right) m^{\prime}
$$

is an A-identity for G. This polynomial will be called principal polynomial. For future reference we write ζ as follows

$$
\begin{align*}
\zeta= & +m x_{p} x_{q} x_{r} x_{s} m^{\prime} \tag{7}\\
& -m x_{s} x_{p} x_{r} x_{q} m^{\prime} \tag{8}\\
& -m x_{q} x_{r} x_{p} x_{s} m^{\prime} \tag{9}\\
& +m x_{s} x_{r} x_{q} x_{p} m^{\prime} \tag{10}
\end{align*}
$$

Note that since ζ is an A-identity for G we have $\zeta \in V_{n}$.
If $\sigma \in A_{n}$ we say that $x_{\sigma(i)}$ occupies the i-th position of the monomial $x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(n)}$. We will study the subspace W_{n} of P_{n}^{A} spanned by monomials whose last position is occupied by x_{n}.

Lemma 4. Let W_{n} be the subspace of P_{n}^{A} spanned by

$$
\left\{x_{\gamma(1)} \cdots x_{\gamma(n)} \mid \gamma \in A_{n}, \quad \gamma(n)=n\right\}
$$

and let $m=x_{\sigma(1)} \cdots x_{\sigma(n)}$, where $\sigma \in A_{n}$.
(a) If n is odd, then there exists $f \in W_{n}$ such that

$$
m \equiv f \bmod U_{n}
$$

Consequently, $P_{n}^{A}=W_{n}+U_{n}$.
(b) If n is even and x_{n} occupies an even position in m (that is if $\sigma(i)=n$ then i is even), then there exists $f \in W_{n}$ such that

$$
m \equiv f \bmod U_{n}
$$

Proof. (a) Suppose $\sigma(i)=n$, with $i \neq n$. One has

$$
x_{\sigma(1)} \cdots x_{\sigma(n-1)} x_{\sigma(n)}=g_{\sigma}+x_{\sigma(n)} x_{\sigma(1)} \cdots x_{\sigma(n-1)}
$$

Since the cycle $\mu=\left(\begin{array}{lllll}n & n-1 & \ldots & 2 & 1\end{array}\right)$ is an even permutation we have $\sigma \mu \in A_{n}$ and hence $x_{\sigma(n)} x_{\sigma(1)} \ldots x_{\sigma(n-1)} \in P_{n}^{A}$. Applying this argument several times, we have the result.
(b) The argument is the same from item (a). Note that

$$
x_{\sigma(1)} \cdots x_{\sigma(n-2)} x_{\sigma(n-1)} x_{\sigma(n)}=h_{\sigma}+x_{\sigma(n-1)} x_{\sigma(n)} x_{\sigma(1)} \cdots x_{\sigma(n-2)}
$$

and $\sigma \mu^{2} \in A_{n}$.
The following result is proved in [2]. Here we give another proof.
Proposition 5. If $f\left(x_{1}, \ldots, x_{n-1}\right) x_{n} \in P_{n}$ is a central polynomial for G, then $f\left(x_{1}, \ldots, x_{n-1}\right)$ is a polynomial identity for G.

Proof. Since $g=f x_{n} \in C(G)$ we have $f \in C(G)$. Thus $\left[g, x_{n+1}\right]$ and [f, x_{n+1}] are identities for G. But

$$
\left[g, x_{n+1}\right]=\left[f x_{n}, x_{n+1}\right]=\left[f, x_{n+1}\right] x_{n}+f\left[x_{n}, x_{n+1}\right]
$$

and $\left[f, x_{n+1}\right]$ vanishes on G. Hence $f\left[x_{n}, x_{n+1}\right]$ is an identity for G. Let a_{1}, a_{2}, \ldots, a_{n-1} be arbitrary elements from the basis (1) of G. Suppose e_{i}, e_{j} are different
letters that do not appear in the composition of the words a_{l}, for all l. Since

$$
0=f\left(a_{1}, \ldots, a_{n-1}\right)\left[e_{i}, e_{j}\right]=2 f\left(a_{1}, \ldots, a_{n-1}\right) e_{i} e_{j}
$$

we have $f\left(a_{1}, \ldots, a_{n-1}\right)=0$. Thus f is an identity for G.
The next result is an immediate consequence of Proposition 5.
Corollary 6. If $f\left(x_{1}, \ldots, x_{n-1}\right) x_{n} \in P_{n}^{A}$ is a central A-polynomial for G, then $f\left(x_{1}, \ldots, x_{n-1}\right)$ is an A-identity for G. Consequently,

$$
C(G) \cap W_{n} \subseteq P_{n}^{A} \cap T(G)
$$

The next theorem gives the description of the central A-polynomials of odd degree for G.

Theorem 7. If n is odd, then $P_{n}^{A} \cap C(G)=U_{n}$.
Proof. By (6) it suffices to prove that $P_{n}^{A} \cap C(G) \subseteq U_{n}$. If $f \in P_{n}^{A} \cap C(G)$ then by Lemma 4 (a) there exist polynomials $f_{1} \in W_{n}$ and $f_{2} \in U_{n}$ such that $f=f_{1}+f_{2}$. Since $U_{n} \subseteq P_{n}^{A} \cap C(G)$ it follows that $f_{1} \in W_{n} \cap C(G)$. By Corollary 6 we have $f_{1} \in P_{n}^{A} \cap T(G) \subseteq U_{n}$ and hence $f \in U_{n}$.

Lemma 8. Let W_{n}^{*} be the subspace

$$
\begin{equation*}
W_{n}^{*}=\frac{W_{n}+V_{n}}{V_{n}} \tag{11}
\end{equation*}
$$

of the quotient space P_{n}^{A} / V_{n}. If $n \geq 2$ then $\operatorname{dim} W_{n}^{*}=c_{n-1}^{A}(G)$.
Proof. Consider the linear map $\psi: P_{n-1}^{A} \rightarrow W_{n}^{*}$ defined by

$$
\psi\left(f\left(x_{1}, \ldots, x_{n-1}\right)\right)=f\left(x_{1}, \ldots, x_{n-1}\right) x_{n}+V_{n}
$$

It follows from Corollary 6 that $f \in \operatorname{ker}(\psi)$ if and only if $f \in P_{n-1}^{A} \cap T(G)$. Since ψ is surjective and $\operatorname{ker}(\psi)=P_{n-1}^{A} \cap T(G)$, it follows that

$$
\operatorname{dim} W_{n}^{*}=\operatorname{dim}\left(\frac{P_{n-1}^{A}}{P_{n-1}^{A} \cap T(G)}\right)=c_{n-1}^{A}(G)
$$

Proposition 9. Let n be an even number, $n \geq 4$. Consider $\sigma \in A_{n}$ such that x_{n} occupies an odd position in the monomial $y=x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(n)}$.
(a) If $y=m x_{a} x_{b} x_{n} x_{c} m^{\prime}$, where m and m^{\prime} are monomials, then

$$
y \equiv m x_{n} x_{a} x_{b} x_{c} m^{\prime} \bmod \left(W_{n}+U_{n}\right)
$$

(b) If $y=m x_{a} x_{b} x_{n} x_{c} m^{\prime}$, where m and m^{\prime} are monomials, then

$$
y \equiv m x_{c} x_{a} x_{n} x_{b} m^{\prime} \bmod \left(W_{n}+U_{n}\right)
$$

(c) If $y=m x_{a} x_{n} x_{b} x_{c} m^{\prime}$, where m and m^{\prime} are monomials, then

$$
y \equiv m x_{c} x_{n} x_{a} x_{b} m^{\prime} \bmod \left(W_{n}+U_{n}\right)
$$

Proof. (a) If we identify y with the monomial (9) in the principal polynomial, then x_{n} occupies even positions in the monomials (8) and (10). By Lemma 4 (b) the monomials (8) and (10) belong to $W_{n}+U_{n}$. Now observe that the right-hand side in our congruence is the monomial (7).
(b) If we identify y with the monomial (7) in the principal polynomial, then x_{n} occupies even positions in the monomials (9) and (10). Observe that the right-hand side in the congruence is the monomial (8).
(c) If we identify y with the monomial (9) in the principal polynomial, then x_{n} occupies even positions in the monomials (7) and (8). Observe that the right-hand side in the congruence is the monomial (10).

Theorem 10. If n is even, then $P_{n}^{A} \cap C(G)=U_{n}$.
Proof. Suppose n even. Let Q_{n} be the subspace of P_{n}^{A} spanned by the monomial $x_{1} x_{2} \cdots x_{n-4} x_{n-2} x_{n-3} x_{n} x_{n-1}$ and let $Q_{n}^{*}=\left(Q_{n}+V_{n}\right) / V_{n}$. We shall prove that

$$
\begin{equation*}
\frac{P_{n}^{A}}{V_{n}}=W_{n}^{*} \oplus Q_{n}^{*} \tag{12}
\end{equation*}
$$

First we show that $P_{n}^{A}=W_{n}+V_{n}+Q_{n}$. Let $\sigma \in A_{n}$ and let $y=x_{\sigma(1)} \cdots x_{\sigma(n)}$. If x_{n} occupies an even position in y then $y \in W_{n}+V_{n}$ by Lemma 4 (b). Thus suppose x_{n} occupies an odd position in y. Using Proposition 9 (a) we can "join" x_{n} and x_{1}, that is, we can show that

$$
y \equiv u x_{n} x_{1} v \quad \bmod \left(W_{n}+U_{n}\right) \quad \text { or } \quad y \equiv u x_{1} x_{n} v \quad \bmod \left(W_{n}+U_{n}\right)
$$

where u and v are monomials. We will show that

$$
y \equiv x_{1} m^{\prime} \quad \bmod \left(W_{n}+U_{n}\right)
$$

for some monomial m^{\prime}. We consider two cases:
Case 1. $y \equiv u x_{n} x_{1} v \bmod \left(W_{n}+U_{n}\right)$.
(i) If u is a monomial of lenght 0 , then by Proposition 9 (a) we have

$$
y \equiv x_{n} x_{1} x_{b} \bar{v} \equiv x_{1} x_{b} x_{n} \bar{v} \quad \bmod \left(W_{n}+U_{n}\right)
$$

where $v=x_{b} \bar{v}$ for some monomial \bar{v}.
(ii) If u is a monomial of lenght >0, then $u=m x_{a} x_{b}$, because y_{n} occupies an odd position in y. By Proposition 9 (b)

$$
y \equiv m x_{a} x_{b} x_{n} x_{1} v \equiv m x_{1} x_{a} x_{n} x_{b} v \quad \bmod \left(W_{n}+U_{n}\right)
$$

Note that x_{1} "walked" 3 positions to the left in the new monomial. Now we use Proposition 9 (a) again and we have

$$
y \equiv m x_{1} x_{a} x_{n} x_{b} v \equiv m x_{n} x_{1} x_{a} x_{b} v \quad \bmod \left(W_{n}+U_{n}\right)
$$

Using the same procedure in (i) and (ii), after several steps we will obtain

$$
y \equiv x_{1} m^{\prime} \quad \bmod \left(W_{n}+U_{n}\right)
$$

for some monomial m^{\prime}.
Case 2. $y \equiv u x_{1} x_{n} v \bmod \left(W_{n}+U_{n}\right)$.
Since $u x_{1} x_{n} v$ is of even length and x_{n} occupies an odd position it follows that u and v have lengths ≥ 1. Thus $u x_{1} x_{n} v=u^{\prime} x_{a} x_{1} x_{n} x_{c} v^{\prime}$ for some monomials u^{\prime} and v^{\prime}. We have

$$
y \equiv u^{\prime} x_{a} x_{1} x_{n} x_{c} v^{\prime} \equiv u^{\prime} x_{c} x_{a} x_{n} x_{1} v^{\prime} \quad \bmod \left(W_{n}+U_{n}\right)
$$

Since $u^{\prime} x_{c} x_{a} x_{n} x_{1} v^{\prime}$ is a monomial satisfying Case 1 we have

$$
y \equiv x_{1} m^{\prime} \quad \bmod \left(W_{n}+U_{n}\right)
$$

for some monomial m^{\prime}.
Using Proposition 9 and similar arguments for x_{2} it follows that

$$
y \equiv x_{1} x_{2} m^{\prime \prime} \quad \bmod \left(W_{n}+U_{n}\right)
$$

for some monomial $m^{\prime \prime}$. In this way we prove that

$$
y \equiv x_{1} x_{2} \cdots x_{n-5} x_{n-4} w \quad \bmod \left(W_{n}+U_{n}\right)
$$

for some monomial w. Note that x_{n} occupies either the first or the third position in w. By Proposition 9 (a) we have

$$
y \equiv x_{1} x_{2} \cdots x_{n-5} x_{n-4} x_{a} x_{b} x_{n} x_{c} \quad \bmod \left(W_{n}+U_{n}\right)
$$

where $\left\{x_{a}, x_{b}, x_{c}\right\}=\left\{x_{n-1}, x_{n-2}, x_{n-3}\right\}$. Since $x_{1} x_{2} \cdots x_{n-5} x_{n-4} x_{a} x_{b} x_{n} x_{c}$ is an A-polynomial it follows that $x_{a} x_{b} x_{n} x_{c}$ is one of the three monomials

$$
x_{n-2} x_{n-3} x_{n} x_{n-1}, \text { or } x_{n-3} x_{n-1} x_{n} x_{n-2}, \text { or } x_{n-1} x_{n-2} x_{n} x_{n-3}
$$

Therefore applying twice Proposition 9 (b) it follows that

$$
y \equiv x_{1} x_{2} \cdots x_{n-4} x_{n-2} x_{n-3} x_{n} x_{n-1} \quad \bmod \left(W_{n}+U_{n}\right)
$$

Since $U_{n} \subseteq V_{n}$ we have the equality $P_{n}^{A}=W_{n}+V_{n}+Q_{n}$ as desired.
To finish the proof of equality (12) we shall prove that the intersection of the subspaces involved is $\{0\}$. Let

$$
f=\left(\sum_{\sigma \in A_{n-1}} \alpha_{\sigma} x_{\sigma(1)} \cdots x_{\sigma(n-1)} x_{n}\right)+\beta x_{1} x_{2} \cdots x_{n-4} x_{n-2} x_{n-3} x_{n} x_{n-1}
$$

where $\alpha_{\sigma}, \beta \in F$. If $f \in V_{n}$ then $\left[f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right] \in T(G)$. Looking for the basis elements of G in (1) it follows that

$$
\left[f\left(e_{1}, \ldots, e_{n-1}, e_{n} e_{n+1}\right), e_{n+2}\right]=2(\gamma-\beta) e_{1} e_{2} \cdots e_{n+2}=0
$$

where

$$
\gamma=\sum_{\sigma \in A_{n-1}} \alpha_{\sigma}
$$

Hence

$$
\begin{equation*}
\gamma-\beta=0 \tag{13}
\end{equation*}
$$

Since

$$
\left[f\left(e_{1} e_{2}, \ldots, e_{2 n-3} e_{2 n-2}, e_{2 n-1}\right), e_{2 n}\right]=2(\gamma+\beta) e_{1} e_{2} \cdots e_{2 n}=0
$$

we have

$$
\begin{equation*}
\gamma+\beta=0 \tag{14}
\end{equation*}
$$

From (13) and (14) it follows that $\beta=0$ and hence the equality (12) is proved. By Lemma 8 we have $\operatorname{dim}\left(P_{n}^{A} / V_{n}\right)=c_{n-1}^{A}(G)+1$. Since V_{n} is any subspace that satisfies $U_{n} \subseteq V_{n} \subseteq P_{n}^{A} \cap C(G)$ it follows that $P_{n}^{A} \cap C(G)=U_{n}$.
3. Proof of Theorem 3. Let F be an algebraically closed field of characteristic 0 . According to Theorem $2, T(G) \cap P_{n}^{A}$ is spanned by the polynomials $f_{r, \sigma}$, with $0 \leq r \leq n-4$ and $\sigma \in A_{n}$.

The space $C(G) \cap P_{n}^{A}$ is spanned by $T(G) \cap P_{n}^{A}$ and $\left\{g_{\sigma} \mid \sigma \in A_{n}\right\}$ in the case when n is odd (Theorem 7), and by $P_{n}^{A} \cap T(G)$ and $\left\{h_{\sigma} \mid \sigma \in A_{n}\right\}$ in the case of n even (Theorem 10). Thus we have the generating sets (4) and (5) for $C(G) \cap P_{n}^{A}$ (as a vector space), in the cases when n is odd, and n is even, respectively.

If n is odd it follows from Lemma 4 (a), Lemma 8 and Theorem 1 that

$$
\operatorname{dim}\left(\frac{P_{n}^{A}}{P_{n}^{A} \cap C(G)}\right)=\operatorname{dim} W_{n}^{*}=c_{n-1}^{A}(G)=2^{n-2}-1
$$

If n is even it follows from equality (12) and Theorem 1 that

$$
\operatorname{dim}\left(\frac{P_{n}^{A}}{P_{n}^{A} \cap C(G)}\right)=\operatorname{dim}\left(W_{n}^{*}\right)+1=2^{n-2}
$$

Thus Theorem 3 is proved.
4. $\boldsymbol{A}_{\boldsymbol{n}}$-cocharacter of $\boldsymbol{C}(\boldsymbol{G})$. Let F be a field of characteristic 0 and let $\eta: F S_{n} \rightarrow P_{n}$ be the isomorphism of S_{n}-modules defined by

$$
\eta(\sigma)=\sigma\left(x_{1} \cdots x_{n}\right)=x_{\sigma(1)} \cdots x_{\sigma(n)}
$$

where $\sigma \in S_{n}$.
In this section we will study the $S_{n^{-}}$and $A_{n^{\prime}}$-cocharacters of $C(G)$. The dimension of the vector space $P_{n} /\left(P_{n} \cap C(G)\right)$ is called the n-th codimension of $C(G)$. The codimensions of $C(G)$ are given by following result.

Theorem 11 ([2]). If F is a field of characteristic 0, then

$$
\operatorname{dim}\left(\frac{P_{n}}{P_{n} \cap C(G)}\right)=2^{n-2}
$$

Let $\chi_{n}(C(G))$ be the character of the S_{n}-module $P_{n} /\left(P_{n} \cap C(G)\right)$. We say that $\chi_{n}(C(G))$ is the n-th cocharacter of $C(G)$.

Let λ_{t} be the partition of n defined by

$$
\lambda_{t}=\left(n-t+1,1^{t-1}\right)=(n-t+1,1,1, \ldots, 1)
$$

where $1 \leq t \leq n$. We will denote by χ_{t} and T_{t} the irreducible character and the standard Young tableau

$$
T_{t}=\begin{array}{|c|c|c|c|c|}
\hline 1 & t+1 & t+2 & \cdots & n \\
\hline 2 & & & & \\
\cline { 1 - 1 } 3 & & & \\
\cline { 1 - 1 } \vdots & & & \\
\cline { 1 - 1 } t & & & \\
\cline { 1 - 1 } & & & \\
\hline
\end{array}
$$

corresponding to λ_{t}, respectively. The codimensions and cocharacters of G (or $T(G)$) are described by following result.

Theorem 12 ([9, 11]). Let F be a field of characteristic 0 . The n-th cocharacter of $T(G)$ is

$$
\chi_{n}(T(G))=\sum_{t=1}^{n} \chi_{t}
$$

Moreover, the n-th codimension of $T(G)$ is 2^{n-1}.
Let g_{t} be the element of the group algebra $F S_{n}$ defined by

$$
g_{t}=\sum_{\sigma \in R_{t}} \sum_{\gamma \in C_{t}}(-1)^{\gamma} \sigma \gamma,
$$

where R_{t} is the set of the row permutations and C_{t} is the set of the column permutations of T_{t}. From now on we will denote by $\eta_{t}\left(x_{1}, \ldots, x_{n}\right)$ the polynomial

$$
\eta_{t}=\eta\left(g_{t}\right)=g_{t} \cdot\left(x_{1} x_{2} \cdots x_{n}\right)
$$

Note that

$$
\eta_{1}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{n}} x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(n)}
$$

and

$$
\begin{aligned}
\eta_{t}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{\sigma \in R_{t}} \sigma\left(s_{t}\left(x_{1}, x_{2}, \ldots, x_{t}\right) x_{t+1} \cdots x_{n}\right) \\
& =\sum_{\sigma \in R_{t}} s_{t}\left(x_{\sigma(1)}, x_{2}, \ldots, x_{t}\right) x_{\sigma(t+1)} \cdots x_{\sigma(n)}
\end{aligned}
$$

if $t>1$, where s_{t} is the standard polynomial of degree t.
Lemma 13. If t is odd then η_{t} is not a central polynomial for G.
Proof. Consider $e_{1}, e_{2}, e_{3}, \ldots$, the canonic generators of G. Since

$$
\eta_{1}\left(e_{1} e_{2}, \ldots, e_{2 n-3} e_{2 n-2}, e_{2 n-1}\right)=n!e_{1} e_{2} \cdots e_{2 n-1} \notin Z(G)
$$

we have $\eta_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \notin C(G)$.
Consider $t>1$ odd. Suppose that

$$
\eta_{t}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in R_{t}} s_{t}\left(x_{\sigma(1)}, x_{2}, \ldots, x_{t}\right) x_{\sigma(t+1)} \cdots x_{\sigma(n)} \in C(G)
$$

Thus

$$
\eta_{t}\left(x_{1}, \ldots, x_{t}, 1, \ldots, 1\right)=(n-t)!s_{t}\left(x_{1}, x_{2}, \ldots, x_{t}\right) \in C(G)
$$

and hence $s_{t}\left(x_{1}, \ldots, x_{t}\right) \in C(G)$. But

$$
s_{t}\left(e_{1}, \ldots, e_{t}\right)=t!e_{1} \cdots e_{t} \notin Z(G)
$$

Contradiction. Therefore η_{t} is not a central polynomial for G.

Fix $1 \leq t \leq n$ odd and consider the map

$$
\begin{aligned}
f:\left(F S_{n}\right) \eta_{t} & \longrightarrow \frac{P_{n}}{P_{n} \cap C(G)} \\
\alpha & \longmapsto
\end{aligned} .
$$

Since $\left(F S_{n}\right) \eta_{t}$ is an irreducible S_{n}-module and $f\left(\eta_{t}\right) \neq 0$ (by Lemma 13), it follows that f is an injective S_{n}-homomorphism. Taking $M_{t}=\operatorname{Im}(f)$ we have $M_{t} \simeq$ $\left(F S_{n}\right) \eta_{t}$. Thus $M_{1}, M_{3}, \ldots, M_{n_{1}}$ are minimal S_{n}-submodules of $P_{n} /\left(P_{n} \cap C(G)\right)$ (where n_{1} is the greatest odd number in $\{1,2, \ldots, n\}$) and pairwise nonisomorphic. Hence the sum $M_{1}+\cdots+M_{n_{1}}$ is direct. By the Hook formula we have

$$
\operatorname{dim} M_{t}=\operatorname{dim}\left[\left(F S_{n}\right) \eta_{t}\right]=\operatorname{dim}\left[\left(F S_{n}\right) g_{t}\right]=\binom{n-1}{t-1}
$$

Opening the expression $(1+1)^{n-1}+(1-1)^{n-1}$ as a sum of binomial coefficients we have that

$$
\sum_{\substack{t=1 \\ \text { todd }}}^{n}\binom{n-1}{t-1}=2^{n-2}
$$

Thus

$$
2^{n-2}=\operatorname{dim}\left(\frac{P_{n}}{P_{n} \cap C(G)}\right) \geq \operatorname{dim}\left(\bigoplus_{\substack{t=1 \\ t \text { odd }}}^{n} M_{t}\right)=\sum_{\substack{t=1 \\ t \text { odd }}}^{n}\binom{n-1}{t-1}=2^{n-2}
$$

Therefore the following result is proved.
Theorem 14. If F is a field of characteristic 0, then

$$
\begin{equation*}
\frac{P_{n}}{P_{n} \cap C(G)} \simeq \bigoplus_{\substack{t=1 \\ t \text { odd }}}^{n} M_{t} \tag{15}
\end{equation*}
$$

Moreover the n-th cocharacter of $C(G)$ is

$$
\chi_{n}(C(G))=\sum_{\substack{t=1 \\ t \text { odd }}}^{n} \chi_{t}
$$

From now on F will be algebraically closed of characteristic 0 . We will make a summary extracted from [7], on some basic results of the theory of representations of the alternating group A_{n}. For more details on the subject see [8].

Given a S_{n}-character χ, denote by $\bar{\chi}$ its restriction to the group A_{n}. If $\lambda \vdash n$, denote by χ_{λ} the irreducible character associated with λ and denote by d_{λ} the degree of such character. Let λ^{\prime} be the conjugate partition of λ. Below we describe the irreducible characters of A_{n} :
(i) If $\lambda \neq \lambda^{\prime}$, then

$$
\overline{\chi \lambda}=\overline{\chi \lambda^{\prime}}
$$

Moreover, $\overline{\chi_{\lambda}}$ is A_{n}-irreducible.
(ii) If $\lambda=\lambda^{\prime}$, then

$$
\overline{\chi \lambda}=\overline{\chi \lambda}^{+}+\overline{\chi \lambda}^{-}
$$

where $\overline{\chi \lambda}^{ \pm}$are A_{n}-irreducibles. Moreover ${ }^{\circ} \overline{\chi \lambda}^{ \pm}=d_{\lambda} / 2$.
(iii) All irreducible A_{n}-characters were found in items (i) and (ii).

Denote by $\chi_{n}^{A}(C(G))$ the A_{n}-character corresponding to the quotient

$$
\frac{P_{n}^{A}}{P_{n}^{A} \cap C(G)}
$$

We say that it is the A_{n}-cocharacter of $C(G)$.
Theorem 15. Let F be an algebraically closed field of characteristic 0 . The decomposition of the A_{n}-cocharacter of $C(G)$ as sum of irreducible A_{n} characters is given as follows:
(a) If $n \geq 2$ is even, then

$$
\chi_{n}^{A}(C(G))=\sum_{\substack{t=1 \\ t \text { odd }}}^{n} \overline{\chi_{t}}
$$

(b) If $n \geq 5$ is odd, then

$$
\chi_{n}^{A}(C(G))=\overline{\chi_{1}}+{\overline{\chi_{(n+1) / 2}}}^{+}+{\overline{\chi_{(n+1) / 2}}}^{-}+\sum_{\substack{t=3 \\ t \text { odd }}}^{(n-1) / 2} 2 \cdot \overline{\chi_{t}}
$$

(c) If $n=3$, then $\chi_{n}^{A}(C(G))=\overline{\chi_{1}}$.

Proof. Let

$$
\iota: P_{n}^{A} \rightarrow \frac{P_{n}}{P_{n} \cap C(G)}
$$

be the A_{n}-homomorphism defined by $\iota(u)=u+\left(P_{n} \cap C(G)\right)$. Since $\operatorname{ker}(\iota)=$ $P_{n}^{A} \cap C(G)$ we have the isomorphism of A_{n}-modules:

$$
\frac{P_{n}^{A}}{P_{n}^{A} \cap C(G)} \cong \iota\left(P_{n}^{A}\right)
$$

If n is even then by the Theorem 11 and Theorem 3 we have the isomorphism of A_{n}-modules

$$
\frac{P_{n}^{A}}{P_{n}^{A} \cap C(G)} \cong \frac{P_{n}}{P_{n} \cap C(G)}
$$

Therefore

$$
\chi_{n}^{A}(C(G))=\overline{\chi_{n}(C(G))}=\sum_{\substack{t=1 \\ t \text { odd }}}^{n} \overline{\chi_{t}}
$$

by Theorem 14.
Suppose $n \geq 5$ odd. If t is odd and $1 \leq t \leq(n-1) / 2$ then $\lambda_{t} \neq \lambda_{t}^{\prime}=$ λ_{n-t+1}. Hence

$$
\overline{\chi_{t}}=\overline{\chi_{n-t+1}}
$$

If $t=(n+1) / 2$ then

$$
\overline{\chi_{t}}={\overline{\chi_{t}}}^{+}+{\overline{\chi_{t}}}^{-} .
$$

By Theorem 14 we have

$$
\begin{equation*}
\overline{\chi_{n}(C(G))}={\overline{\chi_{(n+1) / 2}}}^{+}+{\overline{\chi_{(n+1) / 2}}}^{-}+\sum_{\substack{t=1 \\ t \text { odd }}}^{(n-1) / 2} 2 \cdot \overline{\chi_{t}} . \tag{16}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\chi_{n}^{A}(C(G))=a^{+} \cdot \overline{\chi(n+1) / 2}^{+}+a^{-} \cdot \overline{\chi(n+1) / 2}^{-}+\sum_{\substack{t=1 \\ t \text { odd }}}^{(n-1) / 2} a_{t} \cdot \overline{\chi_{t}}, \tag{17}
\end{equation*}
$$

where $0 \leq a^{+}, a^{-} \leq 1$ and $0 \leq a_{t} \leq 2$. Let d_{t} be the degree of character χ_{t}. By
(16) and Theorem 14 we have the following

$$
2^{n-2}=\frac{d_{(n+1) / 2}}{2}+\frac{d_{(n+1) / 2}}{2}+2 d_{1}+\sum_{\substack{t=3 \\ t \text { odd }}}^{(n-1) / 2} 2 d_{t}
$$

By (17) and Theorem 3 we have

$$
2^{n-2}-1=a^{+} \frac{d_{(n+1) / 2}}{2}+a^{-} \frac{d_{(n+1) / 2}}{2}+a_{1} d_{1}+\sum_{\substack{t=3 \\ t \text { odd }}}^{(n-1) / 2} a_{t} d_{t} .
$$

Since

$$
d_{t}=\binom{n-1}{t-1}
$$

we have $d_{1}=d_{n}=1$ and $d_{t} \geq 4$ otherwise. Hence $a^{+}=a^{-}=a_{1}=1$ and $a_{t}=2$ otherwise.

We leave to the reader the proof of the case $n=3$.
Acknowledgement. The authors would like to thank Plamen Koshlukov for proposing the study of the A_{n}-cocharacters of $C(G)$.

REFERENCES

[1] C. Bekh-Ochir, S. A. Rankin. The central polynomials of the infinite dimensional unitary and nonunitary Grassmann algebras. J. Algebra Appl. 9 (2010), 687-704.
[2] A. Brandão Jr., P. Koshlukov, A. Krasilnikov, E. A. Silva. The central polynomials for the Grassmann algebra. Israel J. Math. 179 (2010), 127-144.
[3] V. Drensky. Free Algebras and PI-Algebras. Graduate Course in Algebra. Singapore, Springer, 2000.
[4] A. Giambruno, P. Koshlukov. On the identities of the Grassmann algebras in characteristic $p>0$. Israel J. Math. 122 (2001), 305-316.
[5] D. J. Gonçalves, P. Koshlukov. A-identities for the Grassmann algebra: the conjecture of Henke and Regev. Proc. Amer. Math. Soc. 136 (2008), 2711-2717.
[6] A. V. Grishin. On the structure of the centre of a relatively free Grassmann algebra. Uspekhi Mat. Nauk 65, 4 (2010), 191-192 (in Russian); English translation in Russ. Math. Surv. 65 (2010), 781-782.
[7] A. Henke, A. Regev. A-codimensions and A-cocharacters. Israel J. Math. 133 (2003), 339-355.
[8] G. D. James, A. Kerber. The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and its Applications, vol. 16, AddisonWesley, 1981.
[9] D. Krakowski, A. Regev. The polynomial identities of the Grassmann algebra. Trans. Amer. Math. Soc. 181 (1973), 429-438.
[10] V. N. Latyshev. On the choice of basis in a T-ideal. Sibirsk. Mat. Zh. 4 (1963), 1122-1126 (in Russian).
[11] J. B. Olsson, A. Regev. An application of representation theory to PIalgebras. Proc. Amer. Math. Soc. 55 (1976), 253-257.

Antônio Pereira Brandão Jr.
UAME/CCT, UFCG, P.O.Box 10044
58109-970 Campina Grande, PB, Brazil
e-mail: brandao@dme.ufcg.edu.br
Dimas José Gonçalves
Departamento de Matemática
Universidade de Brasília
70910-900 Brasília, DF, Brazil
e-mail: dimasjog@gmail.com

[^0]: 2010 Mathematics Subject Classification: 16R10, 16R40, 16R50.
 Key words: A-identity, central A-polynomial, Grassmann algebra.
 *Partially supported by CNPq/Brazil 620150/2008-4, and by INCT.
 **Supported by DPP/UnB and by CNPq-FAPDF PRONEX grant 2009/00091-0 (193.000.580/2009).

