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Communicated by A. Giambruno

We dedicate this paper to the 65th birthday of Yuri Bahturin.

Abstract. Let F be an algebraically closed field of characteristic 0, and
let G be the infinite dimensional Grassmann (or exterior) algebra over F .
In 2003 A. Henke and A. Regev started the study of the A-identities. They
described the A-codimensions of G and conjectured a finite generating set
of the A-identities for G. In 2008 D. Gonçalves and P. Koshlukov answered
in the affirmative their conjecture. In this paper we describe the central
A-polynomials for G.

1. Introduction. Let F be a field and let F 〈X〉 be the free unitary
associative algebra, freely generated over F by the infinite set X = {x1, x2, . . .}.
The elements of F 〈X〉 are called polynomials. All algebras considered in this
paper will be associative, unitary and over the field F .
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A polynomial f(x1, . . . , xn) is a polynomial identity for an algebra R if
f(a1, . . . , an) = 0 for all a1, . . . , an ∈ R. It is well known that the set T (R) of
all polynomial identities for R is a T-ideal, that is, an ideal invariant under all
endomorphisms of F 〈X〉. A polynomial f(x1, . . . , xn) is a central polynomial for
R if f(a1, . . . , an) ∈ Z(R), the centre of R, for all a1, . . . , an ∈ R. The set C(R)
of all central polynomials for R is a T-space of F 〈X〉, that is, C(R) is a vector
subspace invariant under all endomorphisms of F 〈X〉.

Recall that if char(F ) 6= 2 and V is a vector space over F with an infinite
basis e1, e2, . . . then the Grassmann algebra of V is the unitary associative algebra
G with a basis consisting of 1 and the elements

(1) ei1ei2 · · · ein ,

where i1 < i2 < · · · < in. The multiplication in G is induced by eiej = −ejei for
all i and j. The centre of G is the subspace G0 spanned by 1 and the elements
(1) with n even. It is well known that the polynomial [x1, x2, x3] = [[x1, x2], x3]
is a polynomial identity for G, where [x, y] = xy−yx is the commutator of x and
y. A direct consequence of this fact is that the polynomial [x1, x2] is a central
polynomial for G.

The polynomial identities for G were described in [9] by Krakowski and
Regev when char(F )=0, and by various authors in the general case (see [4] and
[10]). The central polynomials for the Grassmann algebra were described inde-
pendently by several authors, see for example [1], [2] and [6].

Let Pn be the set of all multilinear polynomials of degree n in the variables
x1, . . . , xn. The set formed by all monomials xσ(1)xσ(2) · · · xσ(n), where σ ∈ Sn,
the symmetric group of degree n, is a basis for the vector space Pn. It is known
that the multilinear identities for an algebra R generate its T-ideal T (R) when
char(F ) = 0. In other words, all polynomials identities of R are linear combina-
tions of elements

g0f(g1, . . . , gn)gn+1,

where gi ∈ F 〈X〉 for all i and f ∈ Pn ∩ T (R). Due the importance of the
multilinear identities, the quotient space

Pn

Pn ∩ T (R)

has become an object of extensive study. Its dimension, cn(R), is called the n-th
codimension of R. The codimensions of G were computed explicitly in [9].

In 2003 Henke and Regev [7] started the study of the A-identities of an
algebra. Let PA

n be the subspace of Pn spanned by the monomials xσ(1) · · · xσ(n),
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where σ ∈ An, the alternating group of degree n. The elements in PA
n have the

form

f(x1, . . . , xn) =
∑

σ∈An

ασxσ(1) · · · xσ(n),

where ασ ∈ F , and they are called A-polynomials. If f ∈ PA
n is a polynomial

identity for an algebra R, then f is called an A-identity for R. The n-th A-

codimension of R is

cAn (R) = dim

(

PA
n

PA
n ∩ T (R)

)

.

An example of an A-identity for the Grassmann algebra G is the polynomial

(2) [x1, x2x3]x4 − x4[x1, x3x2].

In [7] Henke and Regev proved the following result.

Theorem 1 ([7]). If F is an algebraically closed field and char(F ) = 0,
then

cAn (G) = dim

(

PA
n

PA
n ∩ T (G)

)

= 2n−1 − 1.

Using this theorem D. Gonçalves and P. Koshlukov [5] gave an affirmative
answer to the conjecture of Henke and Regev [7] about the description of the A-
identities of G. It was shown in [5] that the A-identities of G are determined by
the polynomial (2).

Theorem 2 ([5]). Let F be an algebraically closed field of characteristic

0. If σ ∈ An and 0 ≤ r ≤ n− 4, denote by ur,σ the polynomial

ur,σ = [xσ(r+1), xσ(r+2)xσ(r+3)]xσ(r+4) − xσ(r+4)[xσ(r+1), xσ(r+3)xσ(r+2)]

and denote by fr,σ the polynomial

(3) fr,σ = xσ(1) · · · xσ(r) · (ur,σ) · xσ(r+5) · · · xσ(n).

Then the polynomials fr,σ span all A-identities of degree n for G.

In this paper we describe the central A-polynomials for the infinite di-
mensional Grassmann algebra G. Our main result is the following theorem.

Theorem 3. Let F be an algebraically closed field of characteristic 0.
Given σ ∈ An, consider the polynomials

gσ = [xσ(1) · · · xσ(n−1), xσ(n)] and hσ = [xσ(1) · · · xσ(n−2), xσ(n−1)xσ(n)].
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(a) If n is odd, then the set

(4) {fr,σ | σ ∈ An and 0 ≤ r ≤ n− 4} ∪ {gσ | σ ∈ An}

spans all central A-polynomials of degree n for G. Futhermore

dim

(

PA
n

PA
n ∩ C(G)

)

= 2n−2 − 1.

(b) If n is even, then the set

(5) {fr,σ | σ ∈ An and 0 ≤ r ≤ n− 4} ∪ {hσ | σ ∈ An}

spans all central A-polynomials of degree n for G. Futhermore

dim

(

PA
n

PA
n ∩ C(G)

)

= 2n−2.

The other main result of this paper is the description of theAn-cocharacters
of C(G).

2. Central A-polynomials for G. In this section F will be a field,
char(F ) 6= 2. Let Un be the subspace of PA

n spanned by

(i) PA
n ∩ T (G) and {gσ | σ ∈ An}, if n is odd.

(ii) PA
n ∩ T (G) and {hσ | σ ∈ An}, if n is even.

Since [x1, x2] ∈ C(G) we have

(6) Un ⊆ PA
n ∩ C(G).

From now on we denote by Vn an arbitrary subspace of PA
n such that

Un ⊆ Vn ⊆ PA
n ∩ C(G).

If mxpxqxrxsm
′ is a monomial in PA

n , then

ζ(x1, . . . , xn) = m([xp, xqxr]xs − xs[xp, xrxq])m
′

is an A-identity for G. This polynomial will be called principal polynomial.
For future reference we write ζ as follows

ζ = +mxpxqxrxsm
′(7)

−mxsxpxrxqm
′(8)

−mxqxrxpxsm
′(9)

+mxsxrxqxpm
′.(10)



Central A-polynomials for the Grassmann algebra 301

Note that since ζ is an A-identity for G we have ζ ∈ Vn.
If σ ∈ An we say that xσ(i) occupies the i-th position of the monomial

xσ(1)xσ(2) · · · xσ(n). We will study the subspace Wn of PA
n spanned by monomials

whose last position is occupied by xn.

Lemma 4. Let Wn be the subspace of PA
n spanned by

{xγ(1) · · · xγ(n) | γ ∈ An, γ(n) = n}

and let m = xσ(1) · · · xσ(n), where σ ∈ An.

(a) If n is odd, then there exists f ∈Wn such that

m ≡ f modUn.

Consequently, PA
n = Wn + Un.

(b) If n is even and xn occupies an even position in m (that is if σ(i) = n then i
is even), then there exists f ∈Wn such that

m ≡ f modUn.

P r o o f. (a) Suppose σ(i) = n, with i 6= n. One has

xσ(1) · · · xσ(n−1)xσ(n) = gσ + xσ(n)xσ(1) · · · xσ(n−1).

Since the cycle µ = (n n− 1 . . . 2 1) is an even permutation we have σµ ∈ An

and hence xσ(n)xσ(1) . . . xσ(n−1) ∈ PA
n . Applying this argument several times, we

have the result.
(b) The argument is the same from item (a). Note that

xσ(1) · · · xσ(n−2)xσ(n−1)xσ(n) = hσ + xσ(n−1)xσ(n)xσ(1) · · · xσ(n−2)

and σµ2 ∈ An. �

The following result is proved in [2]. Here we give another proof.

Proposition 5. If f(x1, . . . , xn−1)xn ∈ Pn is a central polynomial for G,

then f(x1, . . . , xn−1) is a polynomial identity for G.

P r o o f. Since g = fxn ∈ C(G) we have f ∈ C(G). Thus [g, xn+1] and
[f, xn+1] are identities for G. But

[g, xn+1] = [fxn, xn+1] = [f, xn+1]xn + f [xn, xn+1]

and [f, xn+1] vanishes on G. Hence f [xn, xn+1] is an identity for G. Let a1, a2, . . .,
an−1 be arbitrary elements from the basis (1) of G. Suppose ei, ej are different
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letters that do not appear in the composition of the words al, for all l. Since

0 = f(a1, . . . , an−1)[ei, ej ] = 2f(a1, . . . , an−1)eiej ,

we have f(a1, . . . , an−1) = 0. Thus f is an identity for G. �

The next result is an immediate consequence of Proposition 5.

Corollary 6. If f(x1, . . . , xn−1)xn ∈ PA
n is a central A-polynomial for

G, then f(x1, . . . , xn−1) is an A-identity for G. Consequently,

C(G) ∩Wn ⊆ PA
n ∩ T (G).

The next theorem gives the description of the central A-polynomials of
odd degree for G.

Theorem 7. If n is odd, then PA
n ∩C(G) = Un.

P r o o f. By (6) it suffices to prove that PA
n ∩C(G) ⊆ Un. If f ∈ PA

n ∩C(G)
then by Lemma 4 (a) there exist polynomials f1 ∈ Wn and f2 ∈ Un such that
f = f1 +f2. Since Un ⊆ PA

n ∩C(G) it follows that f1 ∈Wn∩C(G). By Corollary
6 we have f1 ∈ PA

n ∩ T (G) ⊆ Un and hence f ∈ Un. �

Lemma 8. Let W ∗
n be the subspace

(11) W ∗
n =

Wn + Vn

Vn

of the quotient space PA
n /Vn. If n ≥ 2 then dimW ∗

n = cAn−1(G).

P r o o f. Consider the linear map ψ : PA
n−1 →W ∗

n defined by

ψ(f(x1, . . . , xn−1)) = f(x1, . . . , xn−1)xn + Vn.

It follows from Corollary 6 that f ∈ ker(ψ) if and only if f ∈ PA
n−1 ∩T (G). Since

ψ is surjective and ker(ψ) = PA
n−1 ∩ T (G), it follows that

dimW ∗
n = dim

(

PA
n−1

PA
n−1 ∩ T (G)

)

= cAn−1(G). 2

Proposition 9. Let n be an even number, n ≥ 4. Consider σ ∈ An such

that xn occupies an odd position in the monomial y = xσ(1)xσ(2) · · · xσ(n).

(a) If y = mxaxbxnxcm
′, where m and m′ are monomials, then

y ≡ mxnxaxbxcm
′ mod (Wn + Un).

(b) If y = mxaxbxnxcm
′, where m and m′ are monomials, then

y ≡ mxcxaxnxbm
′ mod (Wn + Un).
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(c) If y = mxaxnxbxcm
′, where m and m′ are monomials, then

y ≡ mxcxnxaxbm
′ mod (Wn + Un).

P r o o f. (a) If we identify y with the monomial (9) in the principal polyno-
mial, then xn occupies even positions in the monomials (8) and (10). By Lemma
4 (b) the monomials (8) and (10) belong to Wn + Un. Now observe that the
right-hand side in our congruence is the monomial (7).

(b) If we identify y with the monomial (7) in the principal polynomial,
then xn occupies even positions in the monomials (9) and (10). Observe that the
right-hand side in the congruence is the monomial (8).

(c) If we identify y with the monomial (9) in the principal polynomial,
then xn occupies even positions in the monomials (7) and (8). Observe that the
right-hand side in the congruence is the monomial (10). �

Theorem 10. If n is even, then PA
n ∩C(G) = Un.

P r o o f. Suppose n even. Let Qn be the subspace of PA
n spanned by the

monomial x1x2 · · · xn−4xn−2xn−3xnxn−1 and let Q∗
n = (Qn + Vn)/Vn. We shall

prove that

(12)
PA

n

Vn
= W ∗

n ⊕Q∗
n.

First we show that PA
n = Wn + Vn +Qn. Let σ ∈ An and let y = xσ(1) · · · xσ(n).

If xn occupies an even position in y then y ∈ Wn + Vn by Lemma 4 (b). Thus
suppose xn occupies an odd position in y. Using Proposition 9 (a) we can “join”
xn and x1, that is, we can show that

y ≡ uxnx1v mod (Wn + Un) or y ≡ ux1xnv mod (Wn + Un),

where u and v are monomials. We will show that

y ≡ x1m
′ mod (Wn + Un)

for some monomial m′. We consider two cases:

Case 1. y ≡ uxnx1v mod (Wn + Un).

(i) If u is a monomial of lenght 0, then by Proposition 9 (a) we have

y ≡ xnx1xbv ≡ x1xbxnv mod (Wn + Un),

where v = xbv for some monomial v.
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(ii) If u is a monomial of lenght > 0, then u = mxaxb, because yn occupies an
odd position in y. By Proposition 9 (b)

y ≡ mxaxbxnx1v ≡ mx1xaxnxbv mod (Wn + Un).

Note that x1 “walked” 3 positions to the left in the new monomial. Now we use
Proposition 9 (a) again and we have

y ≡ mx1xaxnxbv ≡ mxnx1xaxbv mod (Wn + Un).

Using the same procedure in (i) and (ii), after several steps we will obtain

y ≡ x1m
′ mod (Wn + Un)

for some monomial m′.

Case 2. y ≡ ux1xnv mod (Wn + Un).
Since ux1xnv is of even length and xn occupies an odd position it follows that
u and v have lengths ≥ 1. Thus ux1xnv = u′xax1xnxcv

′ for some monomials u′

and v′. We have

y ≡ u′xax1xnxcv
′ ≡ u′xcxaxnx1v

′ mod (Wn + Un).

Since u′xcxaxnx1v
′ is a monomial satisfying Case 1 we have

y ≡ x1m
′ mod (Wn + Un)

for some monomial m′.
Using Proposition 9 and similar arguments for x2 it follows that

y ≡ x1x2m
′′ mod (Wn + Un),

for some monomial m′′. In this way we prove that

y ≡ x1x2 · · · xn−5xn−4w mod (Wn + Un)

for some monomial w. Note that xn occupies either the first or the third position
in w. By Proposition 9 (a) we have

y ≡ x1x2 · · · xn−5xn−4xaxbxnxc mod (Wn + Un),

where {xa, xb, xc} = {xn−1, xn−2, xn−3}. Since x1x2 · · · xn−5xn−4xaxbxnxc is an
A-polynomial it follows that xaxbxnxc is one of the three monomials

xn−2xn−3xnxn−1, or xn−3xn−1xnxn−2, or xn−1xn−2xnxn−3.

Therefore applying twice Proposition 9 (b) it follows that

y ≡ x1x2 · · · xn−4xn−2xn−3xnxn−1 mod (Wn + Un).
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Since Un ⊆ Vn we have the equality PA
n = Wn + Vn +Qn as desired.

To finish the proof of equality (12) we shall prove that the intersection of
the subspaces involved is {0}. Let

f =





∑

σ∈An−1

ασxσ(1) · · · xσ(n−1)xn



+ βx1x2 · · · xn−4xn−2xn−3xnxn−1,

where ασ, β ∈ F . If f ∈ Vn then [f(x1, . . . , xn), xn+1] ∈ T (G). Looking for the
basis elements of G in (1) it follows that

[f(e1, . . . , en−1, enen+1), en+2] = 2(γ − β)e1e2 · · · en+2 = 0,

where

γ =
∑

σ∈An−1

ασ.

Hence

(13) γ − β = 0.

Since

[f(e1e2, . . . , e2n−3e2n−2, e2n−1), e2n] = 2(γ + β)e1e2 · · · e2n = 0

we have

(14) γ + β = 0.

From (13) and (14) it follows that β = 0 and hence the equality (12) is proved.
By Lemma 8 we have dim(PA

n /Vn) = cAn−1(G) + 1. Since Vn is any subspace that
satisfies Un ⊆ Vn ⊆ PA

n ∩ C(G) it follows that PA
n ∩ C(G) = Un. �

3. Proof of Theorem 3. Let F be an algebraically closed field of char-
acteristic 0. According to Theorem 2, T (G) ∩ PA

n is spanned by the polynomials
fr,σ, with 0 ≤ r ≤ n− 4 and σ ∈ An.

The space C(G) ∩ PA
n is spanned by T (G) ∩ PA

n and {gσ | σ ∈ An} in
the case when n is odd (Theorem 7), and by PA

n ∩ T (G) and {hσ | σ ∈ An} in
the case of n even (Theorem 10). Thus we have the generating sets (4) and (5)
for C(G) ∩ PA

n (as a vector space), in the cases when n is odd, and n is even,
respectively.

If n is odd it follows from Lemma 4 (a), Lemma 8 and Theorem 1 that

dim

(

PA
n

PA
n ∩ C(G)

)

= dimW ∗
n = cAn−1(G) = 2n−2 − 1.
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If n is even it follows from equality (12) and Theorem 1 that

dim

(

PA
n

PA
n ∩ C(G)

)

= dim(W ∗
n) + 1 = 2n−2.

Thus Theorem 3 is proved. �

4. An-cocharacter of C(G). Let F be a field of characteristic 0 and
let η : FSn → Pn be the isomorphism of Sn-modules defined by

η(σ) = σ(x1 · · · xn) = xσ(1) · · · xσ(n),

where σ ∈ Sn.
In this section we will study the Sn- and An-cocharacters of C(G). The

dimension of the vector space Pn/(Pn ∩ C(G)) is called the n-th codimension of

C(G). The codimensions of C(G) are given by following result.

Theorem 11 ([2]). If F is a field of characteristic 0, then

dim

(

Pn

Pn ∩ C(G)

)

= 2n−2.

Let χn(C(G)) be the character of the Sn-module Pn/(Pn ∩ C(G)). We
say that χn(C(G)) is the n-th cocharacter of C(G).

Let λt be the partition of n defined by

λt = (n− t+ 1, 1t−1) = (n− t+ 1, 1, 1, . . . , 1),

where 1 ≤ t ≤ n. We will denote by χt and Tt the irreducible character and the
standard Young tableau

Tt =

1 t+ 1 t+ 2 · · · n

2
3
...
t

corresponding to λt, respectively. The codimensions and cocharacters of G (or
T (G)) are described by following result.

Theorem 12 ([9, 11]). Let F be a field of characteristic 0. The n-th
cocharacter of T (G) is

χn(T (G)) =
n
∑

t=1

χt.
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Moreover, the n-th codimension of T (G) is 2n−1.

Let gt be the element of the group algebra FSn defined by

gt =
∑

σ∈Rt

∑

γ∈Ct

(−1)γσγ,

where Rt is the set of the row permutations and Ct is the set of the column
permutations of Tt. From now on we will denote by ηt(x1, . . . , xn) the polynomial

ηt = η(gt) = gt · (x1x2 · · · xn).

Note that

η1(x1, . . . , xn) =
∑

σ∈Sn

xσ(1)xσ(2) · · · xσ(n)

and

ηt(x1, . . . , xn) =
∑

σ∈Rt

σ(st(x1, x2, . . . , xt)xt+1 · · · xn)

=
∑

σ∈Rt

st(xσ(1), x2, . . . , xt)xσ(t+1) · · · xσ(n),

if t > 1, where st is the standard polynomial of degree t.

Lemma 13. If t is odd then ηt is not a central polynomial for G.

P r o o f. Consider e1, e2, e3, . . . , the canonic generators of G. Since

η1(e1e2, . . . , e2n−3e2n−2, e2n−1) = n!e1e2 · · · e2n−1 /∈ Z(G)

we have η1(x1, x2, . . . , xn) /∈ C(G).

Consider t > 1 odd. Suppose that

ηt(x1, . . . , xn) =
∑

σ∈Rt

st(xσ(1), x2, . . . , xt)xσ(t+1) · · · xσ(n) ∈ C(G).

Thus

ηt(x1, . . . , xt, 1, . . . , 1) = (n− t)! st(x1, x2, . . . , xt) ∈ C(G)

and hence st(x1, . . . , xt) ∈ C(G). But

st(e1, . . . , et) = t! e1 · · · et /∈ Z(G).

Contradiction. Therefore ηt is not a central polynomial for G. �
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Fix 1 ≤ t ≤ n odd and consider the map

f : (FSn)ηt −→
Pn

Pn ∩ C(G)
α 7−→ α+ (Pn ∩ C(G))

.

Since (FSn)ηt is an irreducible Sn-module and f(ηt) 6= 0 (by Lemma 13), it fol-
lows that f is an injective Sn-homomorphism. Taking Mt = Im (f) we have Mt ≃
(FSn)ηt. Thus M1, M3, . . . , Mn1

are minimal Sn-submodules of Pn/(Pn ∩C(G))
(where n1 is the greatest odd number in {1, 2, . . . , n}) and pairwise nonisomor-
phic. Hence the sum M1 + · · · +Mn1

is direct. By the Hook formula we have

dimMt = dim[(FSn)ηt] = dim[(FSn)gt] =

(

n− 1

t− 1

)

.

Opening the expression (1 + 1)n−1 + (1− 1)n−1 as a sum of binomial coefficients
we have that

n
∑

t=1

t odd

(

n− 1

t− 1

)

= 2n−2.

Thus

2n−2 = dim

(

Pn

Pn ∩ C(G)

)

≥ dim







n
⊕

t=1

t odd

Mt






=

n
∑

t=1

t odd

(

n− 1

t− 1

)

= 2n−2.

Therefore the following result is proved.

Theorem 14. If F is a field of characteristic 0, then

(15)
Pn

Pn ∩ C(G)
≃

n
⊕

t=1

t odd

Mt.

Moreover the n-th cocharacter of C(G) is

χn(C(G)) =
n
∑

t=1

t odd

χt.

From now on F will be algebraically closed of characteristic 0. We will
make a summary extracted from [7], on some basic results of the theory of rep-
resentations of the alternating group An. For more details on the subject see [8].
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Given a Sn-character χ, denote by χ its restriction to the group An. If λ ⊢ n,
denote by χλ the irreducible character associated with λ and denote by dλ the de-
gree of such character. Let λ′ be the conjugate partition of λ. Below we describe
the irreducible characters of An:

(i) If λ 6= λ′, then

χλ = χλ′ .

Moreover, χλ is An-irreducible.

(ii) If λ = λ′, then

χλ = χλ
+ + χλ

−,

where χλ
± are An-irreducibles. Moreover ◦ χλ

± = dλ/2.

(iii) All irreducible An-characters were found in items (i) and (ii).

Denote by χA
n (C(G)) the An-character corresponding to the quotient

PA
n

PA
n ∩ C(G)

.

We say that it is the An-cocharacter of C(G).

Theorem 15. Let F be an algebraically closed field of characteristic

0. The decomposition of the An-cocharacter of C(G) as sum of irreducible An-

characters is given as follows:

(a) If n ≥ 2 is even, then

χA
n (C(G)) =

n
∑

t=1

t odd

χt.

(b) If n ≥ 5 is odd, then

χA
n (C(G)) = χ1 + χ(n+1)/2

+ + χ(n+1)/2
− +

(n−1)/2
∑

t=3

t odd

2 · χt.

(c) If n = 3, then χA
n (C(G)) = χ1.
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P r o o f. Let

ι : PA
n →

Pn

Pn ∩ C(G)

be the An-homomorphism defined by ι(u) = u + (Pn ∩ C(G)). Since ker(ι) =
PA

n ∩ C(G) we have the isomorphism of An-modules:

PA
n

PA
n ∩ C(G)

∼= ι(PA
n ).

If n is even then by the Theorem 11 and Theorem 3 we have the isomorphism of
An-modules

PA
n

PA
n ∩ C(G)

∼=
Pn

Pn ∩C(G)
.

Therefore

χA
n (C(G)) = χn(C(G)) =

n
∑

t=1

t odd

χt

by Theorem 14.

Suppose n ≥ 5 odd. If t is odd and 1 ≤ t ≤ (n − 1)/2 then λt 6= λ′t =
λn−t+1. Hence

χt = χn−t+1.

If t = (n+ 1)/2 then

χt = χt
+ + χt

−.

By Theorem 14 we have

(16) χn(C(G)) = χ(n+1)/2
+ + χ(n+1)/2

− +

(n−1)/2
∑

t=1

t odd

2 · χt.

Hence

(17) χA
n (C(G)) = a+ · χ(n+1)/2

+ + a− · χ(n+1)/2
− +

(n−1)/2
∑

t=1

t odd

at · χt,

where 0 ≤ a+, a− ≤ 1 and 0 ≤ at ≤ 2. Let dt be the degree of character χt. By
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(16) and Theorem 14 we have the following

2n−2 =
d(n+1)/2

2
+
d(n+1)/2

2
+ 2d1 +

(n−1)/2
∑

t=3

t odd

2dt.

By (17) and Theorem 3 we have

2n−2 − 1 = a+ d(n+1)/2

2
+ a−

d(n+1)/2

2
+ a1d1 +

(n−1)/2
∑

t=3

t odd

atdt.

Since

dt =

(

n− 1

t− 1

)

we have d1 = dn = 1 and dt ≥ 4 otherwise. Hence a+ = a− = a1 = 1 and at = 2
otherwise.

We leave to the reader the proof of the case n = 3. �
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