
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/132338816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Serdica Math. J. 38 (2012), 237–258

VARIETIES OF SUPERALGEBRAS
OF POLYNOMIAL GROWTH∗

Daniela La Mattina
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Abstract. Let V gr be a variety of associative superalgebras over a field
F of characteristic zero. It is well-known that V gr can have polynomial or
exponential growth. Here we present some classification results on varieties
of polynomial growth. In particular we classify the varieties of at most linear
growth and all subvarieties of the varieties of almost polynomial growth.

1. Introduction. The superalgebras and their graded identities play a
relevant role in the structure theory of varieties developed by Kemer (see [10]).
An effective way to distinguish varieties is that of defining invariants measuring
the growth of the corresponding identities ([9]). In particular one considers the
sequence of graded codimensions cgr

n (A), n = 1, 2, . . ., of a superalgebra A, where
the n-th term measures the dimension of the space of multilinear polynomials
in n fixed elements of the relatively free superalgebra of countable rank of the
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variety of superalgebras generated by A. It turns out that if an associative super-
algebra satisfies an ordinary identity, then its sequence of graded codimensions
is exponentially bounded. Moreover, the hyperoctahedral group Z2 ≀ Sn and its
representation theory are a natural tool for studying the graded identities of a
superalgebra in characteristic zero ([9], [4]).

For superalgebras satisfying an ordinary polynomial identity, it was shown
in [1, 5] that the limit

lim
n→∞

n

√

cgr
n (A) = expgr(A)

exists and is a non-negative integer, called the superexponent of the algebra A.
Moreover expgr(A) can be explicitly computed and it turns out to be

equal to the dimension of a suitable finite dimensional semisimple superalgebra
over an algebraically closed field.

Given a variety of superalgebras V gr, the growth of V gr is the growth
of the sequence of graded codimensions of any algebra A generating V gr, i.e.,
Vgr = vargr(A).

The purpose of this paper is to present a survey on varieties of associative
superalgebras of polynomial growth.

In such a case, if A is an algebra with 1, it was proved in [13, 15] that

cgr
n (A) = qnk + O(nk−1)

is a polynomial with rational coefficients whose leading term satisfies the inequal-
ities

1

k!
≤ q ≤

k∑

i=0

2k−i (−1)i

i!
.

Moreover superalgebras realizing the smallest and the largest value of q were
constructed.

Concerning the ordinary case, already in [3] it was proved that if A is a
unitary algebra and cn(A) is polynomially bounded, then

cn(A) = qnk + O(nk−1) ≈ qnk,

where q is a rational number satisfying the inequalities

1

k!
≤ q ≤

k∑

j=2

(−1)j

j!
.
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Later in [7] the authors constructed PI-algebras realizing the smallest and

the largest value of q. They also proved that q =
1

k!
is reached only in case k is

even. For k > 1 odd the smallest value of q is given by
k − 1

k!
.

A complete classification of the graded identities whose sequence of graded
codimensions is linearly bounded was given in [6]. Moreover for each such ideal
I, a finite dimensional superalgebra was exhibited having I as ideal of graded
identities.

The problem of characterizing the graded identities of a superalgebra
whose sequence of graded codimensions is polynomially bounded was studied in
[8]. It was proved that a superalgebra A has such property if and only if its
graded identities are not a consequence of the graded identities of five explicit
superalgebras. Four of these algebras are the algebras G and UT2 endowed with
suitable Z2-gradings. In particular these results show that for the superalgebras,
as for the ordinary case, no intermediate growth is allowed.

As a consequence, a classification was obtained of the varieties of su-
peralgebras of almost polynomial growth. We recall that a variety has almost
polynomial growth if it has exponential growth but any proper subvariety grows
polynomially.

In [11, 12, 14] the author classified all subvarieties of the varieties and su-
pervarieties of almost polynomial growth. Such a classification was given in terms
of generators of the corresponding ideals of identities. Moreover, a complete list
of finite dimensional algebras generating such subvarieties was exhibited. Con-
cerning the ordinary variety generated by the Grassmann algebra, a complete
description of its subvarieties was presented in another language in [16].

It is worth pointing out that the results obtained are based on the classi-
fication of minimal subvarieties of polynomial growth. These are precisely those
varieties V gr such that cgr

n (V gr) ≈ qnk for some k ≥ 1, q > 0, and for any proper
subvariety U gr $ V gr, cgr

n (U gr) ≈ q′nt with t < k.

2. Preliminaries. Throughout the paper F will denote a field of char-
acteristic zero and A an associative F -algebra satisfying a non-trivial polynomial
identity (PI-algebra). Let F 〈X〉 be the free associative algebra on a countable set
X = {x1, x2, . . .} and Id(A) = {f ∈ F 〈X〉 | f ≡ 0 in A} the T-ideal of (ordinary)
polynomial identities of A. It is well known that in characteristic zero Id(A) is
completely determined by its multilinear polynomials and we denote by

Pn = spanF {xσ(1) · · · xσ(n) | σ ∈ Sn}
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the vector space of multilinear polynomials in the variables x1, . . . , xn. The non-
negative integer

cn(A) = dimF
Pn

Pn ∩ Id(A)
, n ≥ 1,

is called the n-th codimension of A.

Now assume that the algebra A = A(0) ⊕A(1) is an associative Z2-graded
algebra (or a superalgebra) over F .

Recall that the elements of A(0) and of A(1) are homogeneous of degree
zero (or even elements) and of degree one (or odd elements), respectively. A
subalgebra B ⊆ A is a graded subalgebra if B = (B ∩ A(0)) ⊕ (B ∩ A(1)).

The free associative algebra F 〈X〉 has a natural structure of superalgebra
as follows: write X = Y ∪Z, the disjoint union of two countable sets. If we denote
by F (0) the subspace of F 〈Y ∪ Z〉 spanned by all monomials in the variables of
X having even degree in the variables of Z and by F (1) the subspace spanned by
all monomials of odd degree in Z, then F 〈Y ∪ Z〉 = F (0) ⊕ F (1) is a Z2-graded
algebra called the free superalgebra on Y and Z over F .

Given a superalgebra A recall that f(y1, . . . , yn, z1, . . . , zm) ∈ F 〈Y ∪ Z〉
is a graded identity of A if f(a1, . . . , an, b1, . . . , bm) = 0 for all a1, . . . , an ∈ A(0),
b1, . . . , bm ∈ A(1). Let Idgr(A) denote the set of graded identities of A. Notice that
Idgr(A) is a T2-ideal of F 〈Y ∪Z〉, i.e., an ideal invariant under all endomorphisms
η of F 〈Y ∪ Z〉 such that η(F (0)) ⊆ F (0) and η(F (1)) ⊆ F (1).

It is well known that in characteristic zero, every graded identity is equiv-
alent to a system of multilinear graded identities. Hence if we denote by

P gr
n = spanF{wσ(1) · · ·wσ(n) | σ ∈ Sn, wi = yi or wi = zi, i = 1, . . . , n}

the space of multilinear polynomials of degree n in y1, z1, . . . , yn, zn, (i.e., yi or
zi appears in each monomial at degree 1) the study of Idgr(A) is equivalent to
the study of P gr

n ∩ Idgr(A), for all n ≥ 1. The non-negative integer

cgr
n (A) = dimF

P gr
n

P gr
n ∩ Idgr(A)

, n ≥ 1,

is called the n-th graded codimension of A.

We define the corresponding complexity function

c̃gr(A, t) =
∑

n≥0

cgr
n (A)

tn

n!
,
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that is the exponential generating function of the sequence of graded codimen-
sions.

Notice that any F -algebra A can be regarded as a superalgebra with trivial
grading, i.e., A = A(0) ⊕ A(1) where A = A(0) and A(1) = 0. Hence the theory
of graded identities generalizes the ordinary theory of polynomial identities. The
relation between ordinary codimensions and graded codimensions is given in [9]:
given a superalgebra A, cn(A) ≤ cgr

n (A) for all n ≥ 1 and, in case A satisfies an
ordinary polynomial identity then cgr

n (A) ≤ 2ncn(A).
If A is an algebra with 1, by [2] Idgr(A) is completely determined by its

multilinear proper polynomials. Recall that f(y1, z1, . . . , yn, zn) ∈ P gr
n is a proper

polynomial if it is a linear combination of elements of the type

zi1 · · · zikw1 · · ·wm,

where w1, . . . , wm are left normed (long) Lie commutators in the yis and zis.
Let Γgr

n denote the subspace of P gr
n of proper polynomials in y1,

z1, . . ., yn, zn and Γgr
0 = span{1}.

The sequence of proper graded codimensions is defined as

γgr
n (A) = dim

Γgr
n

Γgr
n ∩ Idgr(A)

, n = 0, 1, 2, . . . ,

and

γ̃gr(A, t) =
∑

n≥0

γgr
n (A)

tn

n!

is the corresponding exponential generating function.
For a unitary algebra A, the relation between ordinary graded codimen-

sions and proper graded codimensions (see for instance [2]), is given by

(1) cgr
n A) =

n∑

i=0

(
n

i

)

γgr
i (A), n = 0, 1, 2, . . . .

This easily implies the following result relating the two exponential gen-
erating functions.

Corollary 2.1.

c̃gr(A, t) = exp(t)γ̃gr(A, t).
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As a consequence (see [15]) we derive that, for every n = 0, 1, . . .,

dim Γgr
n = n!

n∑

i=0

2n−i (−1)i

i!
.

Given a set S ⊆ F 〈Y ∪ Z〉 of polynomials, let us denote by 〈S〉T2
the

T2-ideal of F 〈Y ∪ Z〉 generated by the set S. We say that a set of polynomials
S′ follows from S if S′ ⊆ 〈S〉T2

.

Lemma 2.1 [15, Lemma 2.2]. Let k ≥ 2 and i ≥ 1. If k is odd then

Γgr
k+i follows from Γgr

k plus the polynomial [y1, y2] · · · [yk, yk+1]. Otherwise, Γgr
k+i

follows simply from Γgr
k .

In particular, as a consequence we have:

Corollary 2.2. Let A be a superalgebra with 1. If for some k ≥ 1,
γgr
2k(A) = 0, then γgr

m (A) = 0 for all m ≥ 2k.

Corollary 2.3. Let A be a superalgebra with 1. If the sequence cgr
n (A),

n = 0, 1, 2, . . ., is polynomially bounded, then

cgr
n (A) = qnk + q1n

k−1 + · · ·

is a polynomial with rational coefficients. Moreover its leading term satisfies the

inequalities

1

k!
≤ q ≤

k∑

i=0

2k−i (−1)i

i!
.

P r o o f. If γgr
2k(A) 6= 0 for all k ≥ 0, then by (1)

cgr
n (A) =

n∑

i=0

(
n

i

)

γgr
i (A) ≥

[n/2]
∑

k=0

(
n

2k

)

= 2n−1,

where [n/2] denotes the integer part of n/2. Hence, since cgr
n (A) is polynomially

bounded, we must have γgr
2k(A) = 0, for some k ≥ 1.

Let k be such that γgr
k (A) 6= 0 and γgr

m (A) = 0 for all m > k. Such an
integer exists by Corollary 2.2. Hence by the above relation we have that

cgr
n (A) =

k∑

i=0

(
n

i

)

γgr
i (A) =

(
n

k

)

γgr
k (A) + · · ·
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which is a polynomial in n of degree k with rational coefficients and leading term

q =
γgr

k (A)

k!
. Since 1 ≤ γgr

k (A) ≤ dim Γgr
k , we have

1

k!
≤ q ≤

k∑

i=0

2k−i (−1)i

i!
. 2

In the next section we shall show that the upper bound and the lower
bound of q are actually reached for every k ≥ 1.

The problem of characterizing the graded identities of a superalgebra
whose sequence of graded codimensions is polynomially bounded was studied in
[8]. The authors generalized Kemer’s theorem on the characterization of varieties
of polynomial growth in the setting of varieties of superalgebras. We shall describe
this result below.

For the infinite dimensional Grassmann algebra

G = 〈1, e1, e2, . . . | eiej = −ejei〉,

we write G to mean G with the trivial grading and Ggr to mean G with the
grading (G(0), G(1)) where G(0) is the span of all monomials in the eis of even
length and G(1) is the span of all monomials in the eis of odd length.

Also let UT2 denote the algebra of 2×2 upper triangular matrices over F

with trivial grading and let UT gr
2 denote the algebra UT2 with grading (UT

(0)
2 ,

UT
(1)
2 ) where UT

(0)
2 = Fe11 + Fe22 is the subspace of diagonal matrices and

UT
(1)
2 = Fe12. Finally, let F ⊕ tF be the commutative algebra with grading

(F, tF ) where t2 = 1.

The following result describes the graded identities and codimensions of
the above superalgebras.

Lemma 2.2.

– Idgr(G) = 〈[y1, y2, y3], z〉T2
and cgr

n (G) = 2n−1.

– Idgr(Ggr) = 〈[y1, y2], [y, z], z1z2 + z2z1〉T2
and cgr

n (Ggr) = 2n.

– Idgr(UT2) = 〈[y1, y2][y3, y4], z〉T2
and cgr

n (UT2) = 2n−1.

– Idgr(UT gr
2 ) = 〈[y1, y2], z1z2〉T2

and cgr
n (UT gr

2 ) = 1 + n2n−1.

– Idgr(F ⊕ tF ) = 〈[y1, y2], [y, z], [z1, z2]〉T2
and cgr

n (F ⊕ tF ) = 2n.
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The main result of [8] says that the above five superalgebras characterize
the graded varieties of polynomial growth.

Theorem 2.1. Let A be a superalgebra. Then the sequence of graded

codimensions cgr
n (A), n = 1, 2, . . ., is polynomially bounded if and only if

G,Ggr, UT2, UT gr
2 , F ⊕ tF 6∈ vargr(A).

Hence vargr(G), vargr(UT2), var
gr(Ggr), vargr(UT gr

2 ), vargr(F⊕tF ) are the
only varieties of superalgebras of almost polynomial growth. In particular these
results show that also for the superalgebras no intermediate growth is allowed.

Recall that, given superalgebras A and B, we say that A is T2-equivalent
to B and we write A ∼T2

B if Idgr(A) = Idgr(B). The following result gives
the structure of a finite dimensional generating superalgebra of a given variety of
polynomial growth.

Lemma 2.3 [6]. Let A be a superalgebra and suppose that cgr
n (A) is poly-

nomially bounded. Then A ∼T2
B where B = B1⊕· · ·⊕Bm with B1, . . . , Bm finite

dimensional superalgebras over F and dim Bi/J(Bi) ≤ 1 for all i = 1, . . . ,m,

where J(Bi) denotes the Jacobson radical of Bi.

3. Superalgebras with 1 of polynomial codimension growth.
In this section we shall construct, for any fixed k ≥ 1, a finite dimensional asso-
ciative Z2-graded algebras with 1, whose graded codimension sequence behaves

asymptotically like qnk where q =
1

k!
or q =

k∑

i=0
2k−i (−1)i

i!
. These are the largest

and smallest possible values determined in Corollary 2.3.

Let Uk = Uk(F ) be the algebra of k × k upper triangular matrices with
equal entries in the main diagonal. Hence if the eijs are the usual matrix units
and E = Ek×k denotes the identity k × k matrix,

Uk =






αE +

∑

1≤i<j≤k

αijeij | α,αij ∈ F






.

Next we consider an elementary Z2-grading on Uk. Recall that if g =
(g1, . . . , gk) ∈ Zk

2 is an arbitrary k-tuple of elements of Z2, then g defines an
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elementary Z2-grading on Uk by setting

U
(0)
k = span {E, eij | gi + gj = 0} and U

(1)
k = span {eij | gi + gj = 1}

(recall that the equalities are taken modulo 2). We denote by Ug

k the algebra Uk

with elementary Z2-grading induced by g.
Notice that the element g′ = (g1+g1, . . . , gk+g1) defines the same grading

as g. Hence, without loss of generality, we may assume that g = (0, g2, . . . , gk). If
A is a graded subalgebra of Uk, the induced grading on A is also called elementary.

Let

Ak =
⊕

g∈Z
k

2

Ug

k

be the direct sum of the algebras Uk with all possible elementary Z2-gradings.

Notice that Idgr(Ak) =
⋂

g∈Z
k

2

Idgr(Ug

k ).

The next theorem shows that the graded codimension sequence of Ak

realizes the largest possible value for q. For every j ≥ 1, set

θj =
dim Γgr

j

j!
=

j
∑

i=0

2j−i (−1)i

i!
.

Theorem 3.1 [15, Theorem 3.1]. For every k ≥ 2 we have:

1) Idgr(Ak) = 〈Γgr
k 〉T2

, if k is even and Idgr(Ak) = 〈Γgr
k , [y1, y2] · · · [yk, yk+1]〉T2

in case k is odd.

2) cgr
n (Ak) =

k−1∑

j=0

n!

(n − j)!
θj ≈ θk−1n

k−1, n → ∞.

The relevance of Ak is shown in the following.

Theorem 3.2. Let A be a unitary Z2-graded algebra such that cgr
n (A) ≈

ank for some a ∈ Q and k ≥ 1. Then Idgr(A) ⊇ Idgr(Ak+1).

P r o o f. By (1) we have that cgr
n (A) =

k∑

i=0

(
n

i

)

γgr
i (A) and γgr

k+i(A) = 0,

i ≥ 1. This says that Γgr
k+i = Γgr

k+i ∩ Idgr(A), i.e., Γgr
k+i ⊆ Idgr(A), i ≥ 1 and, so,

by the previous theorem, Idgr(Ak+1) ⊆ Idgr(A). �
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We now turn to the problem of constructing finite dimensional Z2-graded
algebras of polynomial graded codimension growth realizing the minimal possible
value for q.

For k ≥ 1, let Gk be the Grassmann algebra with 1 on a k-dimensional
vector space over a field F of characteristic not equal to two. Recall that

Gk = 〈1, e1, . . . , ek | eiej = −ejei〉.

In the ordinary case the lower bound
1

k!
is reached only in case k is even

by Gk [7]. If Gk denotes the algebra Gk endowed with the trivial Z2-grading, then
the graded codimensions are equal to the ordinary codimensions for all n ≥ 1.
Hence the lower bound is realized by Gk. More precisely we have the next result
which follows from [7].

Theorem 3.3. For every k ≥ 1 we have:

1) Idgr(G2k) = 〈[y1, y2, y3], [y1, y2] · · · [y2k+1, y2k+2], z〉T2

2) cgr
n (G2k) =

k∑

j=0

(
n

2j

)

≈
1

(2k)!
n2k, n → ∞.

Next we show that the lower bound is reached for every k ≥ 1 by a
commutative subalgebra of Uk with a suitable non-trivial Z2-grading. We define
the commutative subalgebra

Ck = Ck(F ) = {αE +
∑

1≤i<k

αiE
i
1 | α,αi ∈ F} ⊆ Uk,

of Uk with elementary grading induced by g = (0, 1, 0, 1, . . .) ∈ Zk
2, where

E1 =

k−1∑

i=1

ei,i+1.

Theorem 3.4 [15, Theorem 3.4]. Let k ≥ 2. Then

1) Idgr(Ck) = 〈[y1, y2], [y, z], [z1, z2], z1 · · · zk〉T2
.

2) cgr
n (Ck) =

k−1∑

j=0

(
n

j

)

≈
1

(k − 1)!
nk−1.
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4. Classifying varieties of polynomial growth. The purpose of
this section is to present a classification of the subvarieties of vargr(F ⊕ tF ),
vargr(G) and vargr(Ggr), where G and Ggr denote the Grassmann algebra en-
dowed with the trivial and natural Z2-grading, respectively.

In [11, 12, 14] such a classification was given by exhibiting a complete
list of finite dimensional algebras generating their subvarieties. The complete
description of the subvarieties of vargr(G) was presented in a different language
in [16].

The following theorem gives a classification of the subvarieties of the va-
riety of superalgebras generated by G. Notice that, since vargr(G) = var(G), this
is equivalent to the classification of the ordinary subvarieties of var(G).

Theorem 4.1. Let A ∈ vargr(G). Then either A ∼T2
G or A ∼T2

G2k ⊕N or A ∼T2
G1 ⊕N or A ∼T2

N , where N is a nilpotent superalgebra and

k ≥ 1.

Notice that the previous theorem allows us to classify all graded codimen-
sion sequences of the superalgebras lying in the variety generated by G.

Corollary 4.1. Let A ∈ vargr(G) be such that vargr(A) $ vargr(G).
Then there exists n0 such that for all n > n0 we must have either cgr

n (A) = 0 or

cgr
n (A) =

k∑

j=0

(
n

2j

)

≈
1

(2k)!
n2k

for some k ≥ 0.

Recall that if V gr = vargr(A) is the variety of superalgebras generated
by A, then cgr

n (V gr) = cgr
n (A) and the growth of V gr is the growth of the graded

codimensions of A.

Definition 4.1. A variety V gr is minimal of polynomial growth if

cgr
n (V gr) ≈ qnk for some k ≥ 1, q > 0, and for any proper subvariety U gr $ V gr

we have that cgr
n (U gr) ≈ q′nt with t < k.

As a consequence of Theorem 4.1 we have

Corollary 4.2. A superalgebra A ∈ vargr(G) generates a minimal variety

if and only if A ∼T2
G2k, for some k ≥ 1.

For k ≥ 1, let Ggr
k denote the algebra Gk endowed with the grading

induced by Ggr.
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Next we describe explicitly the identities of Ggr
k for any k ≥ 1.

Theorem 4.2. Let k ≥ 1. Then

1) Idgr(Ggr
k ) = 〈[y1, y2], [y, z], z1z2 + z2z1, z1 · · · zk+1〉T2

.

2) cgr
n (Ggr

k ) =

k∑

j=0

(
n

j

)

≈
1

(k)!
nk.

Theorem 4.3 [14, Theorem 7.2]. For any k ≥ 1, Ggr
k generates a minimal

variety.

In the following theorem all the subvarieties of vargr(Ggr) are classified.

Theorem 4.4 [14, Theorem 7.3]. Let A ∈ vargr(Ggr). Then either

A ∼T2
Ggr or A ∼T2

N or A ∼T2
C ⊕ N or A ∼T2

Ggr
k ⊕ N , for some k ≥ 1,

where N is a nilpotent superalgebra and C is a commutative superalgebra with

trivial grading.

P r o o f. If A ∼T2
Ggr there is nothing to prove. Now let A generate a

proper subvariety of vargr(Ggr). Since vargr(Ggr) has almost polynomial growth,
vargr(A) has polynomial growth and let cgr

n (A) ≈ qnr for some r ≥ 0.
By Lemma 2.3 we may assume that

A = A1 ⊕ · · · ⊕ Am,

where A1, . . . , Am are finite dimensional superalgebras such that dimAi/J(Ai) ≤
1, 1 ≤ i ≤ m. Moreover (see for instance [14])

A = A1 ⊕ · · · ⊕ An = B ⊕ N,

where B is a unitary superalgebra, N is a nilpotent superalgebra and, for n large
enough,

cgr
n (A) = cgr

n (B) =
r∑

i=0

(
n

i

)

γgr
i (B).

In particular we derive that Γgr
r+1 ⊆ Idgr(B). This implies that B ∈

vargr(Ggr
r ). Since Ggr

r generates a minimal variety and cgr
n (Ggr

r ) ≈ q′nr, we obtain
that B ∼T2

Ggr
r , and, so, A ∼T2

Ggr
r ⊕ N . �

As a consequence we have the following corollaries.
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¯
Corollary 4.3.Let A ∈ vargr(Ggr) be such that vargr(A) $ vargr(Ggr).

Then there exists n0 such that for all n > n0 we must have either cgr
n (A) = 0 or

cgr
n (A) =

k∑

j=0

(
n

j

)

≈
1

(k)!
nk

for some k ≥ 0.

Corollary 4.4. A superalgebra A ∈ vargr(Ggr) generates a minimal

variety if and only if A ∼T2
Ggr

k , for some k ≥ 1.

P r o o f. The proof follows from Theorem 4.3 and the previous theorem. �

Recall that if A = F + J is a finite dimensional superalgebra over F ,
where B is a semisimple graded subalgebra and J = J(A) is its Jacobson radical,
then J can be decomposed into the direct sum of graded B-bimodules

J = J00 ⊕ J01 ⊕ J10 ⊕ J11,

where for i ∈ {0, 1}, Jik is a left faithful module or a 0-left module according as
i = 1 or i = 0, respectively. Similarly, Jik is a right faithful module or a 0-right
module according as k = 1 or k = 0, respectively. Moreover, for i, k, l,m ∈ {0, 1},
JikJlm ⊆ δklJim where δkl is the Kronecker delta and J11 = BN for some nilpotent
subalgebra N of A commuting with B.

Next we state a result that will be needed for the proof of the minimality
of varieties inside the variety generated by F ⊕ tF .

Lemma 4.1. Let A = F + J be a superalgebra with J = J10 + J01 +
J11 + J00. If A satisfies the graded identity [y1, y2, . . . , yr] ≡ 0 (respectively

[z1, y2, . . . , yr] ≡ 0) for some r ≥ 2, then J
(0)
10 = J

(0)
01 = 0 (respectively J

(1)
10 =

J
(1)
01 = 0). In particular if [y1, y2, . . . , yr] ≡ 0 and [z1, y2, . . . , yr] ≡ 0 are graded

identities of A, then A = (F + J11) ⊕ J00, a direct sum of algebras.

P r o o f. The proof is obvious because

J01 = J
(0)
01 + J

(1)
01 = [J

(0)
01 , F, · · · , F

︸ ︷︷ ︸

r−1

] + [J
(1)
01 , F, · · · , F

︸ ︷︷ ︸

r−1

]

and

J10 = J
(0)
10 + J

(1)
10 = [J

(0)
10 , F, · · · , F

︸ ︷︷ ︸

r−1

] + [J
(1)
10 , F, · · · , F

︸ ︷︷ ︸

r−1

].
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Now we are in a position to prove that the superalgebras Ck, introduced
in the previous section, generate minimal varieties. �

Theorem 4.5. For any k ≥ 2, Ck generates a minimal variety.

P r o o f. Suppose that the algebra A ∈ vargr(Ck) generates a subvariety
of vargr(Ck) and cgr

n (A) ≈ qnk−1 for some q > 0. We shall prove that in this case
A ∼T2

Ck and this will complete the proof.

By Lemma 2.3 we may assume that

A = A1 ⊕ · · · ⊕ Am,

where A1, . . . , Am are finite dimensional superalgebras such that dimAi/J(Ai) ≤
1, 1 ≤ i ≤ m. Notice that this says that either Ai

∼= F + J(Ai) or Ai = J(Ai) is
a nilpotent algebra. Since

cgr
n (A) ≤ cgr

n (A1) + · · · + cgr
n (Am),

then there exists Ai such that cgr
n (Ai) ≈ bnk−1 for some b > 0. Hence

vargr(Ck) ⊇ vargr(A) ⊇ vargr(F + J(Ai)) ⊇ vargr(F + J11(Ai))

and cgr
n (F + J(Ai)) ≈ bnk−1 for some b > 0. By Lemma 4.1, since F + J(Ai)

satisfies the identities [z1, y2] ≡ 0 and [y1, y2] ≡ 0, we obtain that F + J(Ai) =
(F +J11(Ai))⊕J00(Ai) and cgr

n (F +J(Ai)) = cgr
n (F +J11(Ai)) for n large enough.

Hence, in order to prove that A ∼T2
Ck, it is enough to show that F +J11(Ai) ∼T2

Ck. Therefore, without loss of generality, we may assume that A is a unitary
algebra. Hence

cgr
n (A) =

k∑

i=0

(
n

i

)

γgr
i (A),

and, by Lemma 2.1, we get γgr
i (A) 6= 0 for all i ≥ 2. Now, since A ∈ vargr(Ck),

we have that γgr
i (A) ≤ γgr

i (Ck) = 1. It follows that cgr
n (A) = cgr

n (Ck) for all n
and so, A ∼T2

Ck. �

As in the proof of Theorem 4.3 we can easily prove the following theorem.

Theorem 4.6. Let A ∈ vargr(F ⊕ tF ). Then either A ∼T2
F ⊕ tF or

A ∼T2
N , or A ∼T2

C ⊕ N , or A ∼T2
Ck ⊕ N for some k ≥ 2, where N is a

nilpotent superalgebra and C is a commutative superalgebra with trivial grading.
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Notice that the previous theorem allows us to classify all codimension
sequences of the superalgebras belonging to the variety generated by F ⊕ tF .

Corollary 4.5. Let A ∈ vargr(F ⊕ tF ) be such that vargr(A) $ vargr(F ⊕
tF ). Then there exists n0 such that for all n > n0 we must have either cgr

n (A) = 0
or

cgr
n (A) =

k−1∑

j=0

(
n

j

)

for some k ≥ 0.

We can also classify all superalgebras generating minimal varieties.

Corollary 4.6. A superalgebra A ∈ vargr(F ⊕ tF ) generates a minimal

variety if and only if A ∼T2
Ck for some k ≥ 2.

5. Classifying varieties of slow growth. In this section we present
a classification, up to T2-equivalence, of all the superalgebras generating varieties
of at most linear growth.

In [6] the authors gave a complete list of finite dimensional superalgebras
generating varieties of at most linear growth.

Moreover they also found a list of 24 superalgebras Mi, 1 ≤ i ≤ 24,
characterizing the supervarieties of linear growth, i.e., cgr

n (A) ≤ kn if and only if
M1, . . . ,M24 /∈ vargr(A).

Before stating their results, we start by constructing the superalgebras
involved in the classification. These are associative superalgebras belonging to
the variety generated by UT2 or UT gr

2 and whose graded codimensions grow
polynomially ([14]).

For k ≥ 2, let

Nk = span{E,E1, E
2
1 , . . . , Ek−2

1 ; e12, e13, . . . , e1k} ⊆ Uk,

where E denotes the k × k identity matrix and E1 =
k−1∑

i=1

ei,i+1.

We write Nk to mean Nk with trivial grading.
We next state the following result characterizing the graded polynomial

identities and the graded codimensions of Nk (see [7]).

Theorem 5.1. Let k ≥ 3. Then
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1) Idgr(Nk) = 〈[y1, . . . , yk], [y1, y2][y3, y4], z〉T2
.

2) cgr
n (Nk) = 1 +

k−1∑

j=2

(j − 1)

(
n

j

)

≈
k − 2

(k − 1)!
nk−1, n → ∞.

Notice that Nk ∈ vargr(UT2) for any k ≥ 2.

Definition 5.1. Let k ≥ 2 and g = (0, 1, . . . , 1) ∈ Zk
2. Let N gr

k be the

algebra Nk with the elementary Z2-grading induced by g.

Notice that N
(0)
k is a commutative subalgebra of Nk. This says that

[y1, y2] ≡ 0 is a graded identity of N gr
k . Moreover, since N

(1)
k = span{e12, e13 . . . ,

e1k}, we have that z1z2 ≡ 0 is also a graded identity for N gr
k .

Since by Lemma 2.2 Idgr(UT gr
2 ) = 〈[y1, y2], z1z2〉T2

, we have that N gr
k ∈

vargr(UT gr
2 ) for any k ≥ 2.

The following theorem describes the graded identities and the codimen-
sions of N gr

k .

Theorem 5.2. If k ≥ 2, then

1) Id(N gr
k ) = 〈[y1, y2], [z, y1, . . . , yk−1], z1z2〉T2

.

2) cgr
n (N gr

k ) = 1 +
k−1∑

j=1

(
n

j

)

j ≈
1

(k − 2)!
nk−1, n → ∞.

Let UTk = UTk(F ) be the algebra of k × k upper triangular matrices
over F .

Given A ⊆ UTk, we shall denote by A∗ the subalgebra of UTk obtained
by flipping A along its second diagonal. Suppose that A is a subalgebra of UTk,
endowed with some Z2-grading. Then A∗ is also a graded subalgebra of UTk. This
is easily seen by observing that if A = A(0) ⊕A(1), then A∗ = (A(0))∗ ⊕ (A(1))∗ is
a Z2-grading on A∗.

Remark. Notice that f is a graded identity of A if and only if f∗,
which is the polynomial obtained by reversing the order of the variables in each
monomial of f , is a graded identity of A∗.

For k ≥ 2, let

Ak = Ak(F ) = span{e11, E1, E
2
1 , . . . , Ek−2

1 ; e12, e13, . . . , e1k} ⊆ UTk.
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We write Ak to mean the algebra Ak with trivial grading. Hence

A∗
k = span{ekk, E1, E

2
1 , . . . , Ek−2

1 ; e1k, e2k, . . . , ek−1,k}

is endowed with trivial grading.

The following result describes explicitly the graded identities of Ak and
A∗

k for any k ≥ 2.

Theorem 5.3. If k ≥ 2, then

1) Idgr(Ak) = 〈[y1, y2][y3, y4], [y1, y2]y3 . . . yk+1, z〉T2
.

2) cgr
n (Ak) =

k−2∑

l=0

(
n

l

)

(n − l − 1) + 1 ≈ qnk−1, where q ∈ Q is a non-zero

constant.

Hence Idgr(A∗
k) = 〈[y1, y2][y3, y4], y3 . . . yk+1[y1, y2], z〉T2

and cgr
n (A∗

k) = cgr
n (Ak).

Notice that Ak and A∗
k belong to the variety generated by UT2.

Next we construct two algebras without unity with elementary Z2-grading
in the variety generated by UT gr

2 .

Definition 5.2. For k ≥ 2, Agr
k is the algebra Ak with elementary Z2-

grading induced by g = (0, 1, . . . , 1).

Hence (Agr
k )∗ is a superalgebra with grading ((A

(0)
k )∗, (A

(1)
k )∗).

We have the following:

Theorem 5.4. If k ≥ 2, then

1) Idgr(Agr
k ) = 〈[y1, y2], z1y2 · · · yk, z1z2〉T2

.

2) cgr
n (Agr

k ) =
k−2∑

l=0

(
n

l

)

(n− l)+1 ≈ qnk−1, where q ∈ Q is a non-zero constant.

Hence Idgr((Agr
k )∗) = 〈[y1, y2], y2 · · · ykz1, z1z2〉T2

and

cgr
n ((Agr

k )∗) =

k−2∑

l=0

(
n

l

)

(n − l) + 1.
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Theorem 5.5. The superalgebras Nr, N gr
k , Ak, A∗

k, Agr
k , and (Agr

k )∗

generate minimal varieties for any r > 2 and k ≥ 2.

In what follows we state the results given in [6] in our notation. We
start by giving a classification, up to T2-equivalence, of the superalgebras whose
sequence of codimensions is bounded by a constant.

Theorem 5.6. For a superalgebra A, the following conditions are equiv-

alent:

1) A2, A
gr
2 , A∗

2, (A
gr
2 )∗, N gr

2 , N3 /∈ vargr(A).

2) A is T2-equivalent to either N or C⊕N , where N is a nilpotent superalgebra

and C is a commutative algebra with trivial grading.

3) cgr
n (A) ≤ k for some constant k ≥ 0, for all n ≥ 1.

4) cgr
n (A) = cn(A) ≤ 1 for n large enough.

The classification, up to T2-equivalence, of the superalgebras whose se-
quence of codimensions is linearly bounded is given in the following theorem.

Theorem 5.7. For a superalgebra A the following conditions are equiv-

alent.

1) A is T2-equivalent to either N , a nilpotent superalgebra, or C ⊕ N , where

C is a commutative algebra with trivial grading, or N gr
2 ⊕N , or B ⊕N , or

B⊕N gr
2 ⊕N , or B1⊕B2⊕N , or B1⊕B2⊕N gr

2 ⊕N , where B ∈ C1∪C2, B1 ∈ C1

and B2 ∈ C2 with C1 = {A∗
2, (A

gr
2 )∗, A∗

2 ⊕ (Agr
2 )∗}, C2 = {A2, A

gr
2 , A2 ⊕Agr

2 }.

2) cgr
n (A) ≤ kn for all n ≥ 1 for some constant k.

As a consequence it is easily seen that the only allowed linearly bounded
sequences of graded codimensions are the following, for n sufficiently large:

0, 1, n, n + 1, 2n − 1, 2n, 2n + 1, 3n − 1, 3n, 3n + 1, 4n − 1, 4n, 5n − 1.

6. Classifying the subvarieties of vargr(UT2) and vargr(UT
gr
2 ).

The following theorem gives a classification of the subvarieties of the variety gen-
erated by UT2 ([11, 12, 14]).
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Theorem 6.1. If A ∈ vargr(UT2), then A is T2-equivalent to one of the

following superalgebras:

UT2, N,Nt ⊕ N,Nt ⊕ Ak ⊕ N,Nt ⊕ A∗
r ⊕ N,Nt ⊕ Ak ⊕ A∗

r ⊕ N,

where N is a nilpotent superalgebra and k, r, t ≥ 2.

The previous theorem allows to classify all graded codimension sequences
of the superalgebras belonging to the variety generated by UT2.

As a consequence we have:

Corollary 6.1. Let A ∈ vargr(UT2). Then A generates a minimal variety

if and only if either A ∼T2
Nt or A ∼T2

Ak or A ∼T2
A∗

k for some k ≥ 2, t > 2.

Next we state some technical lemmas that will be needed for the classifi-
cation of the proper subvarieties of UT gr

2 (see for instance [14]).

Lemma 6.1. Let A ∈ vargr(UT gr
2 ) be a superalgebra with 1 such that

vargr(A) & vargr(UT gr
2 ). Then either A ∼T2

C or A ∼T2
N gr

k for some k ≥ 2,
where C is a commutative superalgebra with trivial grading.

P r o o f. Since A generates a proper subvariety of UT gr
2 , then

cgr
n (A) =

k−1∑

i=0

(
n

i

)

γgr
i (A) ≈ ank−1

for some k ≥ 1. If k = 1 then by Theorem 5.6 A ∼T2
C, where C is a commutative

superalgebra with trivial grading. Now we assume that k > 1. Since γgr
k (A) = 0

then [z1, y2 . . . , yk] ∈ Idgr(A). Hence

Idgr(N gr
k ) = 〈[y1, y2], [z, y1, . . . , yk−1], z1z2〉T2

⊆ Idgr(A).

Since by Theorem 5.5, N gr
k generates a minimal variety and cgr

n (N gr
k ) ≈ qnk−1 for

some constant q, it follows that A ∼T2
N gr

k . �

Lemma 6.2. Let A = F + J ∈ vargr(UT gr
2 ). Then

A ∼T2
(F + J11 + J10 + J00) ⊕ (F + J11 + J01 + J00).

Lemma 6.3. Let A = F + J11 + J10 + J00 ∈ vargr(UT gr
2 ) with J10 6= 0

(respectively A = F +J11 +J01 +J00 ∈ var(UT gr
2 ) with J01 6= 0). Then there exist

constants k, u ≥ 2 such that
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1) if J
(1)
11 = 0, A ∼T2

Agr
k ⊕ N (respectively A ∼T2

(Agr
k )∗ ⊕ N), where N is a

nilpotent superalgebra;

2) if J
(1)
11 6= 0, A ∼T2

Nu ⊕ Agr
k ⊕ N (respectively A ∼T2

Nu ⊕ (Agr
k )∗ ⊕ N).

From the previous lemmas we derive the following.

Lemma 6.4. Let A = F + J ∈ vargr(UT gr
2 ) with J10 6= 0 and J01 6= 0.

Then either A ∼T2
Agr

k ⊕ (Agr
r )∗ ⊕N or A ∼T2

N gr
t ⊕Agr

k ⊕ (Agr
r )∗ ⊕N , where N

is a nilpotent superalgebra for some constants k, r, t ≥ 2.

Now we are in a position to classify all the subvarieties of the variety
generated by UT gr

2 .

Theorem 6.2 [14, Theorem 6.1]. If A ∈ vargr(UT gr
2 ) then A is T2-

equivalent to one of the following algebras: UT gr
2 , N , C ⊕N , N gr

t ⊕N , Agr
k ⊕N ,

(Agr
r )∗ ⊕ N , N gr

t ⊕ Agr
k ⊕ N , N gr

t ⊕ (Agr
r )∗ ⊕ N , Agr

k ⊕ (Agr
r )∗ ⊕ N , N gr

t ⊕ Agr
k ⊕

(Agr
r )∗⊕N , where N is a nilpotent superalgebra, C is a commutative superalgebra

with trivial grading and k, r, t ≥ 2.

P r o o f. If A ∼T2
UT gr

2 there is nothing to prove. Hence we may assume
that A generates a proper subvariety of UT gr

2 and, so, cgr
n (A) is polynomially

bounded. By Lemma 2.3 we may assume that

A = A1 ⊕ · · · ⊕ Am,

where A1, . . . , Am are finite dimensional superalgebras such that dimAi/J(Ai) ≤
1, 1 ≤ i ≤ m. Now, if dimAi/J(Ai) = 0, Ai is nilpotent. Suppose that i is such
that dimAi/J(Ai) = 1. Then Ai = F +J(Ai) and let J(Ai) = J11+J10+J01+J00.

If J10 = J01 = 0, then by Lemma 6.1, either Ai ∼T2
C⊕N or Ai ∼T2

N gr
ti
⊕

N for some ti ≥ 2, where N is a nilpotent superalgebra and C is a commutative
superalgebra with trivial grading. Otherwise, by Lemmas 6.3 and 6.4, Ai is T2-
equivalent to one of the algebras Agr

ki
⊕ N , N gr

ti
⊕ Agr

ki
⊕ N , (Agr

ri
)∗ ⊕ N , N gr

ti
⊕

(Agr
ri

)∗⊕N , Agr
ki
⊕(Agr

ri
)∗⊕N , N gr

ti
⊕Agr

ki
⊕(Agr

ri
)∗⊕N for some ki, ri, ti ≥ 2. Since

A = A1 ⊕ · · · ⊕ Am, by collecting together these results we obtain the desired
conclusion. �

It is worth noticing that the previous theorem allows us to classify all
algebras generating minimal varieties.

Corollary 6.2. Let A ∈ vargr(UT gr
2 ). Then A generates a minimal

variety if and only if either A ∼T2
N gr

k or A ∼T2
Agr

k , or A ∼T2
(Agr

k )∗ for

some k ≥ 2.
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