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ABSTRACT. Let V& be a variety of associative superalgebras over a field
F of characteristic zero. It is well-known that V" can have polynomial or
exponential growth. Here we present some classification results on varieties
of polynomial growth. In particular we classify the varieties of at most linear
growth and all subvarieties of the varieties of almost polynomial growth.

1. Introduction. The superalgebras and their graded identities play a
relevant role in the structure theory of varieties developed by Kemer (see [10]).
An effective way to distinguish varieties is that of defining invariants measuring
the growth of the corresponding identities ([9]). In particular one considers the
sequence of graded codimensions ¢ (A), n = 1,2,..., of a superalgebra A, where
the n-th term measures the dimension of the space of multilinear polynomials

in n fixed elements of the relatively free superalgebra of countable rank of the
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variety of superalgebras generated by A. It turns out that if an associative super-
algebra satisfies an ordinary identity, then its sequence of graded codimensions
is exponentially bounded. Moreover, the hyperoctahedral group Zs S,, and its
representation theory are a natural tool for studying the graded identities of a
superalgebra in characteristic zero ([9], [4]).

For superalgebras satisfying an ordinary polynomial identity, it was shown
in [1, 5] that the limit

lim {/cn (A) = exp® (A)
n—oo
exists and is a non-negative integer, called the superexponent of the algebra A.
Moreover exp® (A) can be explicitly computed and it turns out to be
equal to the dimension of a suitable finite dimensional semisimple superalgebra
over an algebraically closed field.
Given a variety of superalgebras V&', the growth of V& is the growth
of the sequence of graded codimensions of any algebra A generating V&', i.e.,
V&' = vars'(A).
The purpose of this paper is to present a survey on varieties of associative
superalgebras of polynomial growth.
In such a case, if A is an algebra with 1, it was proved in [13, 15] that

& (A) = gnF + O(n*h)

is a polynomial with rational coefficients whose leading term satisfies the inequal-
ities

.

k
1 j—i (—1)
ESQSEOQ I
1=

!

Moreover superalgebras realizing the smallest and the largest value of ¢ were
constructed.

Concerning the ordinary case, already in [3] it was proved that if A is a
unitary algebra and ¢, (A) is polynomially bounded, then

cn(A) = qn* +0(n* ) = gn*,

where ¢ is a rational number satisfying the inequalities

k .
1 (=1
TR T

j=2
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Later in [7] the authors constructed PI-algebras realizing the smallest and

the largest value of ¢q. They also proved that ¢ = i is reached only in case k is
even. For k > 1 odd the smallest value of ¢ is given by k}; 1.

A complete classification of the graded identities whose sequence of graded
codimensions is linearly bounded was given in [6]. Moreover for each such ideal
I, a finite dimensional superalgebra was exhibited having I as ideal of graded
identities.

The problem of characterizing the graded identities of a superalgebra
whose sequence of graded codimensions is polynomially bounded was studied in
[8]. It was proved that a superalgebra A has such property if and only if its
graded identities are not a consequence of the graded identities of five explicit
superalgebras. Four of these algebras are the algebras G and UT, endowed with
suitable Zy-gradings. In particular these results show that for the superalgebras,
as for the ordinary case, no intermediate growth is allowed.

As a consequence, a classification was obtained of the varieties of su-
peralgebras of almost polynomial growth. We recall that a variety has almost
polynomial growth if it has exponential growth but any proper subvariety grows
polynomially.

In [11, 12, 14] the author classified all subvarieties of the varieties and su-
pervarieties of almost polynomial growth. Such a classification was given in terms
of generators of the corresponding ideals of identities. Moreover, a complete list
of finite dimensional algebras generating such subvarieties was exhibited. Con-
cerning the ordinary variety generated by the Grassmann algebra, a complete
description of its subvarieties was presented in another language in [16].

It is worth pointing out that the results obtained are based on the classi-
fication of minimal subvarieties of polynomial growth. These are precisely those
varieties V& such that cfi (V&) ~ ¢gn* for some k > 1,q > 0, and for any proper
subvariety Y& G V&, ¢ (UE) ~ ¢'n’ with t < k.

2. Preliminaries. Throughout the paper F will denote a field of char-
acteristic zero and A an associative F-algebra satisfying a non-trivial polynomial
identity (PI-algebra). Let F'(X) be the free associative algebra on a countable set
X ={x1,29,...} and Id(A) = {f € F(X) | f = 0in A} the T-ideal of (ordinary)
polynomial identities of A. It is well known that in characteristic zero Id(A) is
completely determined by its multilinear polynomials and we denote by

Pn = spanp{s(1)** Ton) | 0 € Sp}
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the vector space of multilinear polynomials in the variables z1, ..., x,. The non-
negative integer

Py,

A) = dimp ——"
en(A) = dimp P, NId(A)’

n>1,
is called the n-th codimension of A.

Now assume that the algebra A = A @ AM) is an associative Zy-graded
algebra (or a superalgebra) over F'.

Recall that the elements of A® and of A are homogeneous of degree
zero (or even elements) and of degree one (or odd elements), respectively. A
subalgebra B C A is a graded subalgebra if B = (BN A®) @ (Bn AW).

The free associative algebra F'(X) has a natural structure of superalgebra
as follows: write X = Y UZ, the disjoint union of two countable sets. If we denote
by F© the subspace of F(Y U Z) spanned by all monomials in the variables of
X having even degree in the variables of Z and by F() the subspace spanned by
all monomials of odd degree in Z, then F(Y U Z) = FO @ F1) is a Zy-graded
algebra called the free superalgebra on Y and Z over F.

Given a superalgebra A recall that f(y1,...,Yn,21,...,2m) € F(Y U Z)
is a graded identity of A if f(a1,...,an,b1,...,by) =0 for all a,...,a, € A©,
bi,...,bym € A, Let 1d% (A) denote the set of graded identities of A. Notice that
Id®*(A) is a Th-ideal of F(Y UZ), i.e., an ideal invariant under all endomorphisms
n of F(Y U Z) such that n(F©) € FO) and n(FM) c 7O,

It is well known that in characteristic zero, every graded identity is equiv-
alent to a system of multilinear graded identities. Hence if we denote by

P8 = spanp{wy(1) - Wo(n) | 0 € Spy, wi=y; or w; =2z, i=1,...,n}

the space of multilinear polynomials of degree n in yi,21,...,Yn, 2n, (i-€., y; or
z; appears in each monomial at degree 1) the study of Id%"(A) is equivalent to
the study of P§' N1d®"(A), for all n > 1. The non-negative integer

PE

£(A) = dimp —g—————
Cn( ) lmFPngrﬂIdgr(A)’

n>1,

is called the n-th graded codimension of A.
We define the corresponding complexity function

tn

57

(A1) = 3 e (A)

n>0
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that is the exponential generating function of the sequence of graded codimen-
sions.

Notice that any F-algebra A can be regarded as a superalgebra with trivial
grading, ie., A = A® @ AD where A = A©® and A = 0. Hence the theory
of graded identities generalizes the ordinary theory of polynomial identities. The
relation between ordinary codimensions and graded codimensions is given in [9]:
given a superalgebra A, c,(A) < cjy (A) for all n > 1 and, in case A satisfies an
ordinary polynomial identity then cf' (A) < 2%c,(A).

If A is an algebra with 1, by [2] Id®"(A) is completely determined by its
multilinear proper polynomials. Recall that f(y1, 21,...,Yn, 2n) € P$ is a proper
polynomial if it is a linear combination of elements of the type

Zil ...Zl-kwl ...wm7

where wy, ..., w,, are left normed (long) Lie commutators in the y;s and z;s.
Let T';" denote the subspace of P$ of proper polynomials in gy,
21y ..y Yny 2n and IS = span{1}.
The sequence of proper graded codimensions is defined as
re

E(A) = dim =g
771 ( ) lmr%rﬁldgr(A)’

n=0,1,2...,

and
~er T tn
(A1) = 3 (A)
n>0

is the corresponding exponential generating function.
For a unitary algebra A, the relation between ordinary graded codimen-
sions and proper graded codimensions (see for instance [2]), is given by

(1) chZE:Cvﬁ%g n=0,1,2,....
(3
=0

This easily implies the following result relating the two exponential gen-
erating functions.

Corollary 2.1.

& (A, t) = exp(t)¥8 (A, t).
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As a consequence (see [15]) we derive that, for every n =0,1,...,

" i (1)
dimI'8" = n! Z Q"ﬂT.
=0
Given a set S C F(Y U Z) of polynomials, let us denote by (S)z, the

Ts-ideal of F(Y U Z) generated by the set S. We say that a set of polynomials
S’ follows from S if S" C (S)p,.

Lemma 2.1 [15, Lemma 2.2]. Let k > 2 and i > 1. If k is odd then
F,fii follows from T'{" plus the polynomial [y1,y2) - - - [Yk, Yk+1]. Otherwise, I’,%:_i
follows simply from TF.

In particular, as a consequence we have:

Corollary 2.2. Let A be a superalgebra with 1. If for some k > 1,
Y5r(A) =0, then i (A) =0 for all m > 2k.

Corollary 2.3. Let A be a superalgebra with 1. If the sequence cfi (A),
n=20,1,2,..., is polynomially bounded, then
' (A) = qn® + @™ -

is a polynomial with rational coefficients. Moreover its leading term satisfies the
inequalities

7!

k .
1 ki (=)'
TELEDIE: —.
1=0
Proof. If 75 (A) # 0 for all k > 0, then by (1)

n n [n/2] n
(A =3 (i)vfr(A) >y <2k) = 2",
=0 k=0
where [n/2] denotes the integer part of n/2. Hence, since ci (A) is polynomially
bounded, we must have ~§ (A) = 0, for some k > 1.
Let k be such that v¢'(A) # 0 and 45, (A) = 0 for all m > k. Such an

integer exists by Corollary 2.2. Hence by the above relation we have that

) =3 (M) = (D) -

=0
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which is a polynomial in n of degree k with rational coefficients and leading term

Ve (4)
- kk' . Since 1 < 7' (A) < dimT§", we have
k
1 ki (=1)°
Ga<) 27 O
i=0

In the next section we shall show that the upper bound and the lower
bound of ¢ are actually reached for every k£ > 1.

The problem of characterizing the graded identities of a superalgebra
whose sequence of graded codimensions is polynomially bounded was studied in
[8]. The authors generalized Kemer’s theorem on the characterization of varieties
of polynomial growth in the setting of varieties of superalgebras. We shall describe
this result below.

For the infinite dimensional Grassmann algebra

G = <1,€1,€2,. e | €ie; = _€j€i>7

we write G to mean G with the trivial grading and G® to mean G with the
grading (G, GMW) where G is the span of all monomials in the e;s of even
length and GM) is the span of all monomials in the e;s of odd length.

Also let UTs denote the algebra of 2 x 2 upper triangular matrices over F'
with trivial grading and let UT5" denote the algebra UTh with grading (UT: 2(0),
UT. 2(1)) where U TQ(O) = Fey1 + Fegy is the subspace of diagonal matrices and

UTQ(I) = Feja. Finally, let F' @& tF be the commutative algebra with grading
(F,tF) where t? = 1.

The following result describes the graded identities and codimensions of
the above superalgebras.

Lemma 2.2.
- 1d%(G) = {[y1, y2, 3], 2)1, and ci (G) =271,

- 1d¥(G*) = ([y1,92), [y, 2], 2122 + 2221) 7, and ci (GET) = 2m.

(

(
- 14 (UTy) = ([y1, v2llys, val, 2) g, and i (UTy) =271,
- 1A (UTS) = ([y1, 2], 2122)p, and cF (UTS) =14 n2mL.
(

~ 1d¥(F @ tF) = ([y1, 52, [y, 2, [21, 22])p, and i (F @ tF) = 2",
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The main result of [8] says that the above five superalgebras characterize
the graded varieties of polynomial growth.

Theorem 2.1. Let A be a superalgebra. Then the sequence of graded

codimensions cp (A), n=1,2,..., is polynomially bounded if and only if

G,G¥ UTy, UTE,F & tF ¢ var®(A).

Hence var®'(G), var® (UTh), var® (Ge"), var® (UTs" ), var® (F ©tF) are the
only varieties of superalgebras of almost polynomial growth. In particular these
results show that also for the superalgebras no intermediate growth is allowed.

Recall that, given superalgebras A and B, we say that A is To-equivalent
to B and we write A ~p, B if 1d®"(A) = Id®"(B). The following result gives
the structure of a finite dimensional generating superalgebra of a given variety of
polynomial growth.

Lemma 2.3 [6]. Let A be a superalgebra and suppose that i (A) is poly-
nomially bounded. Then A ~7, B where B = B1@---@®B,,, with By, ..., By, finite
dimensional superalgebras over F and dim B;/J(B;) < 1 for all i = 1,...,m,
where J(B;) denotes the Jacobson radical of B;.

3. Superalgebras with 1 of polynomial codimension growth.

In this section we shall construct, for any fixed k > 1, a finite dimensional asso-

ciative Zo-graded algebras with 1, whose graded codimension sequence behaves
1 1

asymptotically like gn* where ¢ = T o= E ok— ’( )
7!

and smallest possible values determined in Corollary 2.3.

. These are the largest

Let Ur = Ug(F) be the algebra of k x k upper triangular matrices with
equal entries in the main diagonal. Hence if the e;;s are the usual matrix units
and E = Ej« denotes the identity k£ x k£ matrix,

U,=<aF + E Qijj€ij ‘ Q, 0y € F
1<i<j<k

Next we consider an elementary Zs-grading on Ug. Recall that if g =
(g1,---,9K) € Z’g is an arbitrary k-tuple of elements of Zs, then g defines an
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elementary Zo-grading on Uy by setting
U,EO) =span{F,e;; |gi+g; =0} and U,gl) =span{e;; | ¢;+g; =1}

(recall that the equalities are taken modulo 2). We denote by U k,g the algebra Uy
with elementary Zs-grading induced by g.

Notice that the element g’ = (g1+g1, - - ., gr+91) defines the same grading
as g. Hence, without loss of generality, we may assume that g = (0, g2, ..., g%). If
A is a graded subalgebra of Uy, the induced grading on A is also called elementary.

Let
A= P U

gezk

be the direct sum of the algebras Uy with all possible elementary Zs-gradings.
Notice that Id#"(A;) = (1) 1d&(U§).
gezk
The next theorem shows that the graded codimension sequence of Ay
realizes the largest possible value for g. For every j > 1, set

_dmIF Y
T i

) = gt 2
J! z;

Theorem 3.1 [15, Theorem 3.1]. For every k > 2 we have:

1) 1d%"(Ag) = (T3 )1y, if k is even and 1A% (Ay) = (TF, [y1,92] - - [Wks Ykt 1)) 1o
i case k is odd.

k-1
n! B
2) & (Ay) = Z mgj ~ 0P n oo
=0 1)

The relevance of Ay is shown in the following.

Theorem 3.2. Let A be a unitary Zs-graded algebra such that cj (A) ~
ank for some a € Q and k > 1. Then 1d®"(A) D Id® (Apy1).
k

Proof. By (1) we have that ¢&(4) = > <”) YE(A) and A, (A) = 0,
1
=0

i > 1. This says that '}, = T}, N1d®(A), i.e., I}, C1d®(A), 7 > 1 and, so,
by the previous theorem, Id8"(Axy1) C Id8"(A4). O
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We now turn to the problem of constructing finite dimensional Zs-graded
algebras of polynomial graded codimension growth realizing the minimal possible
value for q.

For k > 1, let Gi be the Grassmann algebra with 1 on a k-dimensional
vector space over a field F' of characteristic not equal to two. Recall that

Gk = <1,61,. .5 €k | €i€j = —€j€i>.

1
In the ordinary case the lower bound = is reached only in case k is even

by Gy [7]. If Gi, denotes the algebra Gy, endowed with the trivial Zo-grading, then
the graded codimensions are equal to the ordinary codimensions for all n > 1.
Hence the lower bound is realized by G. More precisely we have the next result
which follows from [7].

Theorem 3.3. For every k > 1 we have:
1) 1d¥(Gak) = ([y1:y2, ysl, [y1,92] - [Y2kt1, Yak+2]s 2)
b on 1
gr _ ~ 2k
2 () =3 (Qj) ~ G e

Next we show that the lower bound is reached for every £ > 1 by a
commutative subalgebra of U with a suitable non-trivial Zs-grading. We define
the commutative subalgebra

Cip=Cp(F)={aE+ > FE}|a,a; € F} C U,
1<i<k

of Uy with elementary grading induced by g = (0,1,0,1,...) € Z’g, where
k—1

E = Z €iit1-
i=1

Theorem 3.4 [15, Theorem 3.4]. Let k > 2. Then

1) Idgr(ck) = <[y17 y2]v [y’ Z]v [Zl? 22]7 E2 Zk>T2'

k—1
2 e =Y (0) ~ gt

J=0
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4. Classifying varieties of polynomial growth. The purpose of
this section is to present a classification of the subvarieties of var® (F @ tF),
var®' (G) and var®'(G®e"), where G and G& denote the Grassmann algebra en-
dowed with the trivial and natural Zs-grading, respectively.

In [11, 12, 14] such a classification was given by exhibiting a complete
list of finite dimensional algebras generating their subvarieties. The complete
description of the subvarieties of var®'(G) was presented in a different language
in [16].

The following theorem gives a classification of the subvarieties of the va-
riety of superalgebras generated by G. Notice that, since var8"(G) = var(G), this
is equivalent to the classification of the ordinary subvarieties of var(G).

Theorem 4.1. Let A € var®(G). Then either A ~p, G or A ~p,
Gox ®N or A~p, G1 &N or A~p, N, where N is a nilpotent superalgebra and
k>1.

Notice that the previous theorem allows us to classify all graded codimen-

sion sequences of the superalgebras lying in the variety generated by G.

Corollary 4.1. Let A € var®(G) be such that var®(A) G var®(G).
Then there exists ng such that for all n > ny we must have either ¢ (A) =0 or

for some k > 0.

Recall that if V& = var®'(A) is the variety of superalgebras generated
by A, then ci (V&) = c5i (A) and the growth of V& is the growth of the graded
codimensions of A.

Definition 4.1. A wvariety V& is minimal of polynomial growth if
S (V&) a qn for some k > 1, ¢ > 0, and for any proper subvariety UE ; yer
we have that cg (UE) ~ ¢'n' with t < k.

As a consequence of Theorem 4.1 we have
Corollary 4.2. A superalgebra A € var®'(G) generates a minimal variety
if and only if A ~1, Gag, for some k > 1.

For k > 1, let G denote the algebra Gj endowed with the grading
induced by G*'.
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Next we describe explicitly the identities of G,%r for any k£ > 1.

Theorem 4.2. Let k > 1. Then

1) 1d¥(GYY) = ([y1, vals [y, 2], 2122 + 2221, 21 - - - 2pg1) 1

b 1
gr gr: N_k
S (G JZ() )

Theorem 4.3 [14, Theorem 7.2|. For anyk > 1, G}’ generates a minimal
variety.

In the following theorem all the subvarieties of vars"(G#") are classified.

Theorem 4.4 [14, Theorem 7.3]. Let A € var®(G®"). Then either
A ~rp, GB or A ~p, N or A ~p, C®N or A ~p, G ® N, for some k > 1,
where N is a nilpotent superalgebra and C' is a commutative superalgebra with
trivial grading.

Proof. If A ~p, G® there is nothing to prove. Now let A generate a
proper subvariety of vars"(G#"). Since var8"(G#") has almost polynomial growth,
var® (A) has polynomial growth and let ¢ (A) ~ ¢gn” for some r > 0.

By Lemma 2.3 we may assume that

A=410---d Ay,

where Ay,..., A, are finite dimensional superalgebras such that dim 4;/J(A;) <
1, 1 < i < m. Moreover (see for instance [14])

A=A @ --®A,=BoN,

where B is a unitary superalgebra, N is a nilpotent superalgebra and, for n large
enough,

o (A) = e (B) = 2; (7)o,

In particular we derive that I'¥), C Id®(B). This implies that B €
var® (G7'). Since Gy generates a minimal variety and ¢ (G5') = ¢/n", we obtain
that B ~p, G§', and, so, A ~p, GE" ® N. O

As a consequence we have the following corollaries.
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Corollary 4.3.Let A € var® (G#) be such that var®'(A) G var® (G*=").
Then there exists ng such that for all n > ny we must have either ¢i (A) = 0 or

k
n 1
¥ (A) = )~ ——nk
W=%(})~m
for some k > 0.

Corollary 4.4. A superalgebra A € var8'(G®") generates a minimal
variety if and only if A ~, G,fr, for some k > 1.

Proof. The proof follows from Theorem 4.3 and the previous theorem. O

Recall that if A = F + J is a finite dimensional superalgebra over F,
where B is a semisimple graded subalgebra and J = J(A) is its Jacobson radical,
then J can be decomposed into the direct sum of graded B-bimodules

J = Joo ® Jo1 ® Jio @ Ji1,

where for ¢ € {0,1}, J, is a left faithful module or a 0-left module according as
i =1 or ¢ = 0, respectively. Similarly, J;; is a right faithful module or a 0-right
module according as k = 1 or k = 0, respectively. Moreover, for i, k,l,m € {0,1},
Jik Jim < Og1Jim Where 9y is the Kronecker delta and .JJ11 = BN for some nilpotent
subalgebra N of A commuting with B.

Next we state a result that will be needed for the proof of the minimality
of varieties inside the variety generated by F @ tF.

Lemma 4.1. Let A = F + J be a superalgebra with J = Jig + Jo1 +
Jii + Joo. If A satisfies the graded identity [y1,vy2,...,yr] = 0 (respectively
[21,Y2,...,yr] = 0) for some r > 2, then Jl(g) = Jé(l)) = 0 (respectively Jl((l)) =
Jéi) = 0). In particular if [y1,y2,.--,y-] =0 and [z1,y2,...,y-] = 0 are graded
identities of A, then A = (F + J11) ® Joo, a direct sum of algebras.

Proof. The proof is obvious because
01 = 01+0 [0177 ’ +[0137 )
r—1 r—1

and

0 1 1
Jo=J0 + 0 =W F ... P+ P F)
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Now we are in a position to prove that the superalgebras C, introduced
in the previous section, generate minimal varieties. O

Theorem 4.5. For any k > 2, C}, generates a minimal variety.

Proof. Suppose that the algebra A € var® (Cy) generates a subvariety
of var# (Cy) and c§ (A) =~ gn*~! for some ¢ > 0. We shall prove that in this case
A ~1, C) and this will complete the proof.

By Lemma 2.3 we may assume that

A=A -®An,

where Ay,..., A, are finite dimensional superalgebras such that dim 4;/J(A;) <
1, 1 <i < m. Notice that this says that either A; = F' + J(A4;) or A; = J(A;) is
a nilpotent algebra. Since

ey (A) < i (A1) + -+ 4 ' (Am),
then there exists A; such that c§ (A;) ~ bn*~! for some b > 0. Hence
var® (Cy) D var® (A) D var® (F 4+ J(A;)) 2D var® (F + J11(4;))

and ¢ (F + J(A;)) =~ bnF~! for some b > 0. By Lemma 4.1, since F + J(A;)
satisfies the identities [z1,y2] = 0 and [y1,y2] = 0, we obtain that F' + J(4;) =
(F+J11(4))® Joo(A;) and ¢ (F+J(A;)) = cn (F+ J11(A;)) for n large enough.
Hence, in order to prove that A ~p, Cy, it is enough to show that F'+.J11(A;) ~,
C). Therefore, without loss of generality, we may assume that A is a unitary
algebra. Hence

=Y (),

1=0

and, by Lemma 2.1, we get 72 (A) # 0 for all i > 2. Now, since A € var®"(C}),
we have that v£"(A4) < A8 (Ck) = 1. It follows that ¢f' (A) = ¢ (Cy) for all n
and so, A ~7, Ci. O

As in the proof of Theorem 4.3 we can easily prove the following theorem.
Theorem 4.6. Let A € var® (F @ tF). Then either A ~p, F & tF or

A~p, N, or A~p, C®N, or A ~q, Cx, ® N for some k > 2, where N s a
nilpotent superalgebra and C' is a commutative superalgebra with trivial grading.
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Notice that the previous theorem allows us to classify all codimension
sequences of the superalgebras belonging to the variety generated by F @ tF.

Corollary 4.5. Let A € var8' (F @©tF) be such that var® (A) G var® (F ©
tF). Then there exists ng such that for all n > ng we must have either ¢y (A) = 0
or

for some k > 0.

We can also classify all superalgebras generating minimal varieties.

Corollary 4.6. A superalgebra A € var8'(F @ tF) generates a minimal
variety if and only if A ~1, Cy for some k > 2.

5. Classifying varieties of slow growth. In this section we present
a classification, up to Th-equivalence, of all the superalgebras generating varieties
of at most linear growth.

In [6] the authors gave a complete list of finite dimensional superalgebras
generating varieties of at most linear growth.

Moreover they also found a list of 24 superalgebras M;, 1 < i < 24,
characterizing the supervarieties of linear growth, i.e., ci' (A) < kn if and only if
Ml, ey M24 ¢ vargr(A).

Before stating their results, we start by constructing the superalgebras
involved in the classification. These are associative superalgebras belonging to
the variety generated by UT, or UTy" and whose graded codimensions grow
polynomially ([14]).

For k > 2, let

2 k—2
Ny = span{E, ElaElv s 7E1 ;€12,€13, - - - 7elk} C Uy,

k-1
where E denotes the k& x k identity matrix and Fq = Z €iit1-
i=1
We write N to mean Nj with trivial grading.
We next state the following result characterizing the graded polynomial
identities and the graded codimensions of Nj (see [7]).

Theorem 5.1. Let k > 3. Then
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1) 1d¥(Ng) = [y, - wnls [v1, v2llys, val, 2)m

k—1
or . . n\ _ E—-2 .4
2) cn (Nk)—l—i—j;(j 1)<j> ~ (k‘—l)!n , M — 0.

Notice that Ny € vars"(UT) for any k > 2.

Definition 5.1. Let k > 2 and g = (0,1,...,1) € Z5. Let NE" be the
algebra Ny with the elementary Zo-grading induced by g.

Notice that N}go) is a commutative subalgebra of Nj. This says that
[y1,y2] = 0 is a graded identity of N'. Moreover, since ngl)
eir}, we have that z12; = 0 is also a graded identity for N2

Since by Lemma 2.2 Id®(UT5") = ([y1, 2], z1z2>T2, we have that N €
var8" (UTy") for any k > 2.

The following theorem describes the graded identities and the codimen-
sions of Ng".

= span{ej2,€13. ..,

Theorem 5.2. If k > 2, then

1) Id(ngr) = <[y1>y2]> [zvyh cee aykfl]a 2122>Tg'

1
2) &'(NF) = 1—|—Z< ) 2)'nk71,n—>oo.

Let UT, = UTy(F) be the algebra of k x k upper triangular matrices
over F.

Given A C UTy, we shall denote by A* the subalgebra of UT} obtained
by flipping A along its second diagonal. Suppose that A is a subalgebra of UTy,
endowed with some Zs-grading. Then A* is also a graded subalgebra of UTy,. This
is easily seen by observing that if A = A @AM then A* = (A©)* @ (AW)* is
a Zo-grading on A*.

Remark. Notice that f is a graded identity of A if and only if f*,
which is the polynomial obtained by reversing the order of the variables in each
monomial of f, is a graded identity of A*.

For k > 2, let

Ak = Ak(F) = span{en,El,E%, .. .,Ef_2;612,€13, .. .,elk} g UTk.
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We write Ag to mean the algebra Aj with trivial grading. Hence
A;: = Span{ekku E17 E%7 s 7E{€72; €1k, €2k, - - - 7ek—1,k}

is endowed with trivial grading.

The following result describes explicitly the graded identities of Ay and
A7 for any k > 2.

Theorem 5.3. If k > 2, then

1) 1d® (Ag) = ((y1, y2llys, yal, W1, v2)y3 - - - Yrt1, 2) 1 -

e

—2
2) B (Ay) = <7) (n—1-1)+1~ gn*, where ¢ € Q is a non-zero
l

I
o

constant.

Hence 1d%" (A}) = ([y1, y2)lys, yal, u3 - - - Y 1[y1, v2], 2)1, and i (Ay) = e (Ag).

Notice that Aj and A} belong to the variety generated by UT5.
Next we construct two algebras without unity with elementary Zo-grading
in the variety generated by UTs" .

Definition 5.2. For k > 2, A} is the algebra Ay with elementary Za-
grading induced by g = (0,1,...,1).
Hence (AF")* is a superalgebra with grading ((A,(CO))*, (A,(Cl))*).

We have the following:
Theorem 5.4. If k > 2, then

1) Id®(AL") = ([y1, v2], 2192 - - - Yk, 2122) 75, -

k—2
2) cB(AY) = Z (7) (n—1)+1 =~ qn*~L, where ¢ € Q is a non-zero constant.
=0

Hence 1d%" ((AZ")*) = ([y1, yal, 2 - - - yr21, 2122)1, O

k—2

Ay =% (1) m-n+1

=0
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Theorem 5.5. The superalgebras N,, NP, Ay, A, AY, and (AF)*
generate minimal varieties for any r > 2 and k > 2.

In what follows we state the results given in [6] in our notation. We
start by giving a classification, up to Ts-equivalence, of the superalgebras whose
sequence of codimensions is bounded by a constant.

Theorem 5.6. For a superalgebra A, the following conditions are equiv-
alent:

1) Ag, AS", A5, (AS")*, N5' N3 ¢ vars'(A).

2) A is Ty-equivalent to either N or C® N, where N is a nilpotent superalgebra
and C' is a commutative algebra with trivial grading.

3) i’ (A) < k for some constant k > 0, for all n > 1.
4) i (A) = cp(A) <1 for n large enough.

The classification, up to T»-equivalence, of the superalgebras whose se-
quence of codimensions is linearly bounded is given in the following theorem.

Theorem 5.7. For a superalgebra A the following conditions are equiv-
alent.

1) A is Ty-equivalent to either N, a nilpotent superalgebra, or C & N, where
C is a commutative algebra with trivial grading, or N5 & N, or B& N, or
B®&NS' &N, or Bi&Bay®N, or Bi®&Bad NS &N, where B € C1UCy, By € C;
and By € Co with C; = { A5, (AS")*, A5 @ (A5')*}, Co = {Aq, A5, Ay AS'}.

2) ci (A) < kn for alln > 1 for some constant k.

As a consequence it is easily seen that the only allowed linearly bounded
sequences of graded codimensions are the following, for n sufficiently large:

0,1,n,n+1,2n—-1,2n,2n+1,3n —1,3n,3n + 1,4n — 1,4n,5n — 1.

6. Classifying the subvarieties of var8" (UT:) and var8" (UTy").
The following theorem gives a classification of the subvarieties of the variety gen-
erated by UT, ([11, 12, 14]).
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Theorem 6.1. If A € var® (UT3), then A is Th-equivalent to one of the
following superalgebras:

UTy, NN, ® NN, ® Ay @ N,N, & A*®& N,N,® A, ® A* @ N,

where N is a nilpotent superalgebra and k,r,t > 2.

The previous theorem allows to classify all graded codimension sequences
of the superalgebras belonging to the variety generated by UTs.
As a consequence we have:

Corollary 6.1. Let A € var®"(UTy). Then A generates a minimal variety
if and only if either A ~1, Ny or A ~7, Ay or A ~1, Aj for somek > 2,t > 2.

Next we state some technical lemmas that will be needed for the classifi-
cation of the proper subvarieties of UT§" (see for instance [14]).

Lemma 6.1. Let A € var® (UTy") be a superalgebra with 1 such that
var® (A) & var® (UTy"). Then either A ~1, C or A ~p, N2 for some k > 2,
where C' is a commutative superalgebra with trivial grading.

Proof. Since A generates a proper subvariety of UTy", then

ey (A) = kz_:l (?) VE(A) = an*!

=0

for some k£ > 1. If £ = 1 then by Theorem 5.6 A ~7,, C, where C' is a commutative
superalgebra with trivial grading. Now we assume that k£ > 1. Since v£'(A4) =0
then [z1,y2...,yx] € Id®"(A). Hence

IA® (NS = (w1, v2), [z, 1, - - -, Yk—1), 2122)m, C 1d®F(A).

Since by Theorem 5.5, N£* generates a minimal variety and cj (Ng') & gn*~! for
some constant g, it follows that A ~p, N¥. O

Lemma 6.2. Let A=F + J € var® (UTS"). Then
A~y (F 4 Jun + Jio + Joo) @ (F + Jin + Joi + Joo).
Lemma 6.3. Let A = F + Ji1 + Jio + Joo € var®(UTy") with Jig # 0

(respectively A = F+ Ji1 + Jo1 + Joo € var(UTy") with Jo # 0). Then there exist
constants k,u > 2 such that
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1) if Jl(l) =0, A~p, AF & N (respectively A ~p, (AF)* & N), where N is a
nilpotent superalgebra;

2) if Jl(i) #0, A~p, Ny ® AP @ N (respectively A ~7, N, & (AF)* & N).
From the previous lemmas we derive the following.

Lemma 6.4. Let A= F + J € var®(UT§") with Jip # 0 and Jo1 # 0.
Then either A ~1, AY @ (AF)*@® N or A ~p, NF' & AY' @ (AF')* @& N, where N
is a nilpotent superalgebra for some constants k,r,t > 2.

Now we are in a position to classify all the subvarieties of the variety
generated by UTS".

Theorem 6.2 [14, Theorem 6.1]. If A € var®(UTY") then A is Ts-
equivalent to one of the following algebras: UTY"', N, C®& N, N & N, A,%r DN,
(AF)*@® N, NF oA &N, NF @ (AF)* @ N, A @ (AF')*® N, NF ¢ A &
(AF)*® N, where N is a nilpotent superalgebra, C is a commutative superalgebra
with trivial grading and k,r,t > 2.

Proof. If A ~p, UTS" there is nothing to prove. Hence we may assume
that A generates a proper subvariety of UTy and, so, ¢y (A) is polynomially
bounded. By Lemma 2.3 we may assume that

A=A & An,

where Ay, ..., Ay, are finite dimensional superalgebras such that dim A4;/J(A4;) <
1,1 <i<m. Now, if dim A;/J(A4;) = 0, A; is nilpotent. Suppose that ¢ is such
that dlmAZ/J(AZ) = 1. Then A; = F+J(4;) and let J(A;) = J11+J10+ o1+ Joo-

If J1o = Jo1 = 0, then by Lemma 6.1, either A; ~Ty CON or A; ~Ty thi;r@
N for some t; > 2, where NN is a nilpotent superalgebra and C is a commutative
superalgebra with trivial grading. Otherwise, by Lemmas 6.3 and 6.4, A; is To-
equivalent to one of the algebras A]%: ®N, NF' & A,%: @ N, (AF)*® N, NF' &
(AZ)*©N, AL ©(A%)* N, N @ AF @ (AF)* @ N for some ki, 7;,t; > 2. Since
A=A & - A, by collecting together these results we obtain the desired
conclusion. O

It is worth noticing that the previous theorem allows us to classify all
algebras generating minimal varieties.

Corollary 6.2. Let A € var®(UT§"). Then A generates a minimal
variety if and only if either A ~p, NP or A ~q, AY, or A ~p, (AF)* for
some k > 2.
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