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1. Algebras. Throughout this talk the base field F will be arbitrary,
but we usually exclude low characteristics, especially p ≤ n where n is the degree
of the polynomial identities under consideration. The assumption p > n allows
us to assume that all polynomial identities are multilinear and that the group
algebra FSn is semisimple.

In this first section we summarize some basic concepts and well-known
facts about algebras. They have been included to indicate the parallels between
these classical results and the corresponding concepts and facts for dialgebras.

Definition 1.1. An algebra is a vector space A with a bilinear operation

µ : A × A → A.

Unless otherwise specified, we write ab = µ(a, b) for a, b ∈ A. We say that A is
associative if it satisfies the polynomial identity

(ab)c ≡ a(bc).

Throughout this paper we will use the symbol ≡ to indicate an equation that holds
for all values of the arguments; in this case, all a, b, c ∈ A.

Theorem 1.2. The free unital associative algebra on a set X of genera-
tors has basis consisting of all words of degree n ≥ 0,

x = x1x2 · · · xn, where x1, x2, . . . , xn ∈ X,

with the product defined on basis elements by concatenation and extended bilin-
early,

(x1x2 · · · xm)(y1y2 · · · yn) = x1x2 · · · xmy1y2 · · · yn.

Definition 1.3. The commutator in an algebra is the bilinear operation

[a, b] = ab − ba.

This operation is anticommutative: it satisfies [a, b] + [b, a] ≡ 0.

Lemma 1.4. In an associative algebra, the commutator satisfies the
identity

[[a, b], c] + [[b, c], a] + [[c, a], b] ≡ 0 (Jacobi)

Definition 1.5. A Lie algebra is an algebra which satisfies anticom-
mutativity and the Jacobi identity.
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Theorem 1.6 (Poincaré-Birkhoff-Witt). Every Lie algebra L has a uni-
versal associative enveloping algebra U(L) for which the canonical map L → U(L)
is injective. It follows that every polynomial identity satisfied by the commutator
in every associative algebra is a consequence of anticommutativity and the Jacobi
identity.

Remark 1.7. Most texts on Lie algebras include a proof of the PBW
Theorem. The most beautiful proof is that of Bergman [2] using noncommuta-
tive Gröbner bases; see also de Graaf [18, Ch. 6]. For the history of the PBW
Theorem, see Grivel [23]. For a survey on Gröbner-Shirshov bases, see Bokut and
Kolesnikov [4].

Definition 1.8. The anticommutator in an algebra is the bilinear
operation

a ◦ b = ab + ba;

we omit the scalar
1

2
. This operation is commutative: it satisfies a◦b−b◦a ≡ 0.

Lemma 1.9. In an associative algebra, the anticommutator satisfies the
identity

((a ◦ a) ◦ b) ◦ a − (a ◦ a) ◦ (b ◦ a) ≡ 0 (Jordan)

Definition1.10. A Jordan algebra is an algebra which satisfies com-
mutativity and the Jordan identity.

Theorem 1.11. There exist polynomial identities satisfied by the anti-
commutator in every associative algebra which do not follow from commutativity
and the Jordan identity. The lowest degree in which such identities exist is 8.

Remark 1.12. A Jordan algebra is called special if it is isomorphic to
a subspace of an associative algebra closed under the anticommutator. A poly-
nomial identity for Jordan algebras is called special if it is satisfied by all special
Jordan algebras but not by all Jordan algebras. The first special identities for
Jordan algebras were found by Glennie [20, 21]. For a computational approach,
see Hentzel [26]. Another s-identity was obtained by Thedy [48]; see also McCrim-
mon [38] and [40, Appendix B.5]. For a survey on identities in Jordan algebras,
see McCrimmon [39].

Remark 1.13. From the perspective of polynomial identities, there is
a clear dichotomy between the two bilinear operations, commutator and anti-
commutator. Both operations satisfy simple identities in low degree; for the



94 Murray R. Bremner

commutator, these identities imply all the identities satisfied by the operation,
but for the anticommutator, there exist special identities of higher degree.

2. Dialgebras. We now recall the concept of a dialgebra: a vector
space with two multiplications. Associative dialgebras were originally defined by
Loday in the 1990s, and the results quoted in this section were proved by him;
see especially his original paper [33] and his survey article [34]. Associative dial-
gebras provide the natural setting for Leibniz algebras, a “non-anticommutative”
generalization of Lie algebras; see Loday [32].

Definition 2.1. A dialgebra is a vector space A with two bilinear oper-
ations,

⊣ : A × A → A, ⊢ : A × A → A,

called the left and right products. We say that A is a 0-dialgebra if it satisfies
the left and right bar identities,

(a ⊣ b) ⊢ c ≡ (a ⊢ b) ⊢ c, a ⊣ (b ⊣ c) ≡ a ⊣ (b ⊢ c).

An associative dialgebra is a 0-dialgebra satisfying left, right, and inner

associativity:

(a ⊣ b) ⊣ c ≡ a ⊣ (b ⊣ c), (a ⊢ b) ⊢ c ≡ a ⊢ (b ⊢ c), (a ⊢ b) ⊣ c ≡ a ⊢ (b ⊣ c).

Definition 2.2. Let x = x1x2 · · · xn be a monomial in an associative
dialgebra, with some placement of parentheses and choice of operations. The
center of x, denoted c(x), is defined by induction on n:

• If n = 1 then x = x1 and c(x) = x1.

• If n ≥ 2 then x = y ⊣ z or x = y ⊢ z, and c(x) = c(y) or c(x) = c(z)
respectively.

Lemma 2.3. Let x = x1x2 · · · xn be a monomial in an associative di-
algebra with c(x) = xi. Then the following expression does not depend on the
placement of parentheses:

x = x1 ⊢ · · · ⊢ xi−1 ⊢ xi ⊣ xi+1 ⊣ · · · ⊣ xn.

Definition 2.4. The expression in Lemma 2.3 is called the normal

form of the monomial x, and is abbreviated using the hat notation:

x = x1 · · · x̂i · · · xn.
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Theorem 2.5. The free associative dialgebra on a set X of generators
has basis consisting of all monomials in normal form:

x = x1 · · · x̂i · · · xn (1 ≤ i ≤ n, x1, x2, . . . , xn ∈ X).

Two such monomials are equal if and only if they have the same permutation of
the generators and the same position of the center. The left and right products
are defined on monomials as follows and extended bilinearly:

x ⊣ y = (x1 · · · x̂i · · · xn) ⊣ (y1 · · · ŷj · · · yp) = x1 · · · x̂i · · · xny1 · · · yp,

x ⊢ y = (x1 · · · x̂i · · · xn) ⊢ (y1 · · · ŷj · · · yp) = x1 · · · xny1 · · · ŷj · · · yp.

Definition 2.6. The dicommutator in a dialgebra is the bilinear oper-
ation

〈a, b〉 = a ⊣ b − b ⊢ a.

In general, this operation is not anticommutative.

Lemma 2.7. In an associative dialgebra, the dicommutator satisfies the
identity

〈〈a, b〉, c〉 ≡ 〈〈a, c〉, b〉 + 〈a, 〈b, c〉〉 (Leibniz)

Definition 2.8. A Leibniz algebra (or Lie dialgebra) is an algebra
satisfying the Leibniz identity.

Remark 2.9. If we set b = c in the Leibniz identity then we obtain
〈a, 〈b, b〉〉 ≡ 0, and the linearized form of this identity (assuming characteristic
not 2) is

〈a, 〈b, c〉〉 + 〈a, 〈c, b〉〉 ≡ 0 (right anticommutativity)

Theorem 2.10 (Loday-Pirashvili). Every Leibniz algebra L has a univer-
sal associative enveloping dialgebra U(L) for which the canonical map L → U(L)
is injective. Hence every polynomial identity satisfied by the dicommutator in
every associative dialgebra is a consequence of the Leibniz identity.

Remark 2.11. The Loday-Pirashvili Theorem is the generalization to
dialgebras of the PBW Theorem. For the original proof, see [35]. For different
approaches, see Aymon and Grivel [1], Insua and Ladra [28].



96 Murray R. Bremner

Remark 2.12. The definition of associative dialgebra can be motivated
in terms of the Leibniz identity. If we expand the Leibniz identity in a nonasso-
ciative dialgebra using the dicommutator as the operation, then we obtain

(a ⊣ b − b ⊢ a) ⊣ c − c ⊢ (a ⊣ b − b ⊢ a) ≡

(a ⊣ c − c ⊢ a) ⊣ b − b ⊢ (a ⊣ c − c ⊢ a) + a ⊣ (b ⊣ c − c ⊢ b) − (b ⊣ c − c ⊢ b) ⊢ a.

Equating terms with the same permutation of a, b, c gives the following identities:

(a ⊣ b) ⊣ c ≡ a ⊣ (b ⊣ c), 0 ≡ (a ⊣ c) ⊣ b − a ⊣ (c ⊢ b),

(b ⊢ a) ⊣ c ≡ b ⊢ (a ⊣ c), 0 ≡ b ⊢ (c ⊢ a) − (b ⊣ c) ⊢ a,

c ⊢ (a ⊣ b) ≡ (c ⊢ a) ⊣ b, c ⊢ (b ⊢ a) ≡ (c ⊢ b) ⊢ a.

These are equivalent to the identities defining associative dialgebras.

Definition 2.13. The antidicommutator in a dialgebra is the bilinear
operation

a ⋆ b = a ⊣ b + b ⊢ a.

In general, this operation is not commutative.

Lemma 2.14. In an associative dialgebra, the antidicommutator satisfies

a ⋆ (b ⋆ c) ≡ a ⋆ (c ⋆ b) (right commutativity)

(b ⋆ a2) ⋆ a ≡ (b ⋆ a) ⋆ a2 (right Jordan identity)

〈a, b, c2〉 ≡ 2〈a ⋆ c, b, c〉 (right Osborn identity)

where a2 = a ⋆ a and 〈a, b, c〉 = (a ⋆ b) ⋆ c − a ⋆ (b ⋆ c).

Remark 2.15. These identities were obtained independently by differ-
ent authors: Velásquez and Felipe [49], Kolesnikov [29], Bremner [5]. A general-
ization of the TKK construction from Lie and Jordan algebras to Lie and Jordan
dialgebras has been given by Gubarev and Kolesnikov [24]. For further work on
the structure of Jordan dialgebras, see Felipe [19]. I have named the last identity
in Lemma 2.14 after Osborn [41]; it is a noncommutative version of the identity
stating that a commutator of multiplications is a derivation.

Definition 2.16. A Jordan dialgebra (or quasi-Jordan algebra) is an
algebra satisfying right commutativity and the right Jordan and Osborn identities.
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Remark 2.17. Strictly speaking, Leibniz algebras and Jordan dialge-
bras have two operations, but they are opposite, so we consider only one. This
will become clear when we discuss the KP algorithm for converting identities for
algebras into identities for dialgebras.

Theorem 2.18. There exist special identities for Jordan dialgebras; that
is, polynomial identities satisfied by the antidicommutator in every associative
dialgebra which are not consequences of right commutativity and the right Jordan
and Osborn identities.

Remark 2.19. This result was obtained using computer algebra by
Bremner and Peresi [11]. The lowest degree for such identities is 8; some but not
all of these identities are noncommutative versions of the Glennie identity. For a
theoretical approach to similar results, including generalizations of the classical
theorems of Cohn, Macdonald, and Shirshov, see Voronin [50].

3. From algebras to dialgebras. We now discuss a general approach
to the following problem.

Problem 3.1. Given a polynomial identity for algebras, how do we obtain
the corresponding polynomial identity (or identities) for dialgebras?

An algorithm has been developed by Kolesnikov and Pozhidaev for con-
verting multilinear identities for algebras into multilinear identities for dialgebras.
For binary algebras, see [29]; for the generalization to n-ary algebras, see [45]. The
underlying structure from the theory of operads is discussed by Chapoton [16].

Kolesnikov-Pozhidaev (KP) algorithm. The input is a multilinear
polynomial identity of degree d for an n-ary operation denoted by the symbol
{−, · · · ,−} with n arguments. The output of Part 1 is a collection of d multilinear
identities of degree d for n new n-ary operations denoted {−, · · · ,−}i for 1 ≤ i ≤
n. The output of Part 2 is a collection of multilinear identities of degree 2n−1
for the same new operations.

Part 1. Given a multilinear identity of degree d in the n-ary operation
{−, · · · ,−}, we describe the application of the algorithm to one monomial, and
extend this by linearity to the entire identity. Let a1a2 . . . ad be a multilinear
monomial of degree d with some placement of n-ary operation symbols. For each
i = 1, . . . , d we convert the monomial a1a2 . . . ad in the original n-ary operation
into a new monomial of the same degree in the n new n-ary operations, according
to the following rule, based on the position of the variable ai, called the central
variable of the monomial. For each occurrence of the original n-ary operation in
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the monomial, either ai occurs in one of the n arguments or not, and we have
two cases:

(a) If ai occurs in the j-th argument then we convert {−, · · · ,−} to the j-th
new operation symbol {−, · · · ,−}j .

(b) If ai does not occur in any of the n arguments, then either

• ai occurs to the left of {−, · · · ,−}: we convert {−, · · · ,−} to the first
new operation symbol {−, · · · ,−}1, or

• ai occurs to the right of {−, · · · ,−}: we convert {−, · · · ,−} to the
last new operation symbol {−, · · · ,−}n.

Part 2. We also include the following identities, generalizing the bar
identities for associative dialgebras, for all i, j = 1, . . . , n with i 6= j and all
k, ℓ = 1, . . . , n:

{a1, . . . , ai−1, {b1, · · · , bn}k, ai+1, . . . , an}j ≡

{a1, . . . , ai−1, {b1, · · · , bn}ℓ, ai+1, . . . , an}j .

This identity says that the n new operations are interchangeable in the i-th
argument of the j-th new operation when i 6= j.

Example 3.2. The definition of associative dialgebra can be obtained
by applying the KP algorithm to the associativity identity, which we write in the
form

{{a, b}, c} ≡ {a, {b, c}}.

The operation {−,−} produces two new operations {−,−}1, {−,−}2. Part 1
of the algorithm produces three identities by making a, b, c in turn the central
variable:

{{a, b}1, c}1 ≡ {a, {b, c}1}1, {{a, b}2, c}1 ≡ {a, {b, c}1}2,

{{a, b}2, c}2 ≡ {a, {b, c}2}2.

Part 2 of the algorithm produces two identities:

{a, {b, c}1}1 ≡ {a, {b, c}2}1, {{a, b}1, c}2 ≡ {{a, b}2, c}2.

If we write a ⊣ b for {a, b}1 and a ⊢ b for {a, b}2 then these are the three
associativity identities and the two bar identities.
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Example 3.3. The definition of Leibniz algebra can be obtained by
applying the KP algorithm to the identities defining Lie algebras: anticommuta-
tivity (in its bilinear form) and the Jacobi identity,

[a, b] + [b, a] ≡ 0, [[a, b], c] + [[b, c], a] + [[c, a], b] ≡ 0.

Part 1 of the algorithm produces five identities:

[a, b]1 + [b, a]2 ≡ 0, [[a, b]1, c]1 + [[b, c]2, a]2 + [[c, a]2, b]1 ≡ 0,

[a, b]2 + [b, a]1 ≡ 0, [[a, b]2, c]1 + [[b, c]1, a]1 + [[c, a]2, b]2 ≡ 0,

[[a, b]2, c]2 + [[b, c]2, a]1 + [[c, a]1, b]1 ≡ 0.

The two identities of degree 2 are equivalent to [a, b]2 ≡ −[b, a]1, so the second op-
eration is superfluous. Eliminating the second operation from the three identities
of degree 3 shows that each of them is equivalent to the identity

[[a, b]1, c]1 + [a, [c, b]1]1 − [[a, c]1, b]1 ≡ 0.

If we write 〈a, b〉 = [a, b]1 then we obtain a form of the Leibniz identity. Part 2
of the algorithm produces two identities:

[a, [b, c]1]1 ≡ [a, [b, c]2]1, [[a, b]1, c]2 ≡ [[a, b]2, c]2.

Eliminating the second operation gives right anticommutativity:

〈a, 〈b, c〉〉 + 〈a, 〈c, b〉〉 ≡ 0.

However, as we have already seen in Remark 2.9, the Leibniz identity implies
right anticommutativity, so it suffices to retain only the Leibniz identity.

Example 3.4. To apply the KP algorithm to the defining identities for
Jordan algebras, we write commutativity and the multilinear form of the Jordan
identity using the operation symbol {−,−}:

{a, b} − {b, a} ≡ 0,

{{{a, c}, b}, d} + {{{a, d}, b}, c} + {{{c, d}, b}, a}

− {{a, c}, {b, d}} − {{a, d}, {b, c}} − {{c, d}, {b, a}} ≡ 0.

From commutativity, Part 1 of the algorithm gives two identities of degree 2:

{a, b}1 − {b, a}2 ≡ 0, {a, b}2 − {b, a}1 ≡ 0,
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These two identities are equivalent to {a, b}2 ≡ {b, a}1: the second operation is
the opposite of the first, and so we may eliminate {−,−}2. From the linearized
Jordan identity, Part 1 of the algorithm gives four identities of degree 4:

{{{a, c}1, b}1, d}1 + {{{a, d}1, b}1, c}1 + {{{c, d}2 , b}2, a}2

− {{a, c}1, {b, d}1}1 − {{a, d}1, {b, c}1}1 − {{c, d}2, {b, a}2}2 ≡ 0,

{{{a, c}2, b}2, d}1 + {{{a, d}2, b}2, c}1 + {{{c, d}2 , b}2, a}1

− {{a, c}2, {b, d}1}2 − {{a, d}2, {b, c}1}2 − {{c, d}2, {b, a}1}2 ≡ 0,

{{{a, c}2, b}1, d}1 + {{{a, d}2, b}2, c}2 + {{{c, d}1 , b}1, a}1

− {{a, c}2, {b, d}1}1 − {{a, d}2, {b, c}2}2 − {{c, d}1, {b, a}1}1 ≡ 0,

{{{a, c}2, b}2, d}2 + {{{a, d}2, b}1, c}1 + {{{c, d}2 , b}1, a}1

− {{a, c}2, {b, d}2}2 − {{a, d}2, {b, c}1}1 − {{c, d}2, {b, a}1}1 ≡ 0.

We replace every instance of {−,−}2 by the opposite of {−,−}1:

{{{a, c}1, b}1, d}1 + {{{a, d}1, b}1, c}1 + {a, {b, {d, c}1}1}1

− {{a, c}1, {b, d}1}1 − {{a, d}1, {b, c}1}1 − {{a, b}1, {d, c}1}1 ≡ 0,

{{b, {c, a}1}1, d}1 + {{b, {d, a}1}1, c}1 + {{b, {d, c}1}1, a}1

− {{b, d}1, {c, a}1}1 − {{b, c}1, {d, a}1}1 − {{b, a}1, {d, c}1}1 ≡ 0,

{{{c, a}1, b}1, d}1 + {c, {b, {d, a}1}1}1 + {{{c, d}1 , b}1, a}1

− {{c, a}1, {b, d}1}1 − {{c, b}1, {d, a}1}1 − {{c, d}1, {b, a}1}1 ≡ 0,

{d, {b, {c, a}1}1}1 + {{{d, a}1, b}1, c}1 + {{{d, c}1 , b}1, a}1

− {{d, b}1, {c, a}1}1 − {{d, a}1, {b, c}1}1 − {{d, c}1, {b, a}1}1 ≡ 0.

We simplify the notation and write {a, b}1 as ab. The last four identities become:

((ac)b)d + ((ad)b)c + a(b(dc)) − (ac)(bd) − (ad)(bc) − (ab)(dc) ≡ 0,

(b(ca))d + (b(da))c + (b(dc))a − (bd)(ca) − (bc)(da) − (ba)(dc) ≡ 0,

((ca)b)d + c(b(da)) + ((cd)b)a − (ca)(bd) − (cb)(da) − (cd)(ba) ≡ 0,

d(b(ca)) + ((da)b)c + ((dc)b)a − (db)(ca) − (da)(bc) − (dc)(ba) ≡ 0.
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The first is equivalent to the third and to the fourth, so we retain only the first
and second. Part 2 of the algorithm produces two identities:

{a, {b, c}1}1 ≡ {a, {b, c}2}1, {{a, b}1, c}2 ≡ {{a, b}2, c}2.

Rewriting these using only the first operation gives

{a, {b, c}1}1 ≡ {a, {c, b}1}1, {c, {a, b}1}1 ≡ {c, {b, a}1}1.

These two identities are equivalent to right commutativity: a(bc) ≡ a(cb). We
rearrange the two retained identities of degree 4 and apply right commutativity:

((ac)b)d − (ac)(bd) + ((ad)b)c − (ad)(bc) − (ab)(cd) + a(b(cd)) ≡ 0,

(b(ac))d + (b(ad))c + (b(cd))a − (bd)(ac) − (bc)(ad) − (ba)(cd) ≡ 0.

The first identity can be reformulated in terms of associators as follows,

(ac, b, d) + (ad, b, c) − (a, b, cd) ≡ 0,

and assuming characteristic 6= 2 this is equivalent to

(a, b, c2) ≡ 2(ac, b, c).

Setting a = c = d in the second identity and assuming characteristic 6= 3 gives

(ba2)a ≡ (ba)a2,

Thus we obtain right commutativity and the right Osborn and Jordan identities.

Example 3.5. The multilinear forms of the left and right alternative
identities defining alternative algebras are:

(a, b, c) + (b, a, c) ≡ 0, (a, b, c) + (a, c, b) ≡ 0.

Expanding the associators gives

(ab)c − a(bc) + (ba)c − b(ac) ≡ 0, (ab)c − a(bc) + (ac)b − a(cb) ≡ 0.

We apply the KP algorithm to these identities, writing {−,−} for the original
bilinear operation. Part 1 gives six identities relating the two new operations
{−,−}1 and {−,−}2: in each of the two original identities we make either a, b,
or c the central argument. In this case, we retain both operations, since there
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is no identity of degree 2 relating {−,−}1 and {−,−}2. We obtain six identities
defining alternative dialgebras; in the first (second) group of three, the only
differences are in the subscripts 1 and 2 indicating the position of the central
variable:

{{a, b}1, c}1 − {a, {b, c}1}1 + {{b, a}2, c}1 − {b, {a, c}1}2 ≡ 0,

{{a, b}2, c}1 − {a, {b, c}1}2 + {{b, a}1, c}1 − {b, {a, c}1}1 ≡ 0,

{{a, b}2, c}2 − {a, {b, c}2}2 + {{b, a}2, c}2 − {b, {a, c}2}2 ≡ 0,

{{a, b}1, c}1 − {a, {b, c}1}1 + {{a, c}1, b}1 − {a, {c, b}1}1 ≡ 0,

{{a, b}2, c}1 − {a, {b, c}1}2 + {{a, c}2, b}2 − {a, {c, b}2}2 ≡ 0,

{{a, b}2, c}2 − {a, {b, c}2}2 + {{a, c}2, b}1 − {a, {c, b}1}2 ≡ 0.

We revert to standard notation: ⊣ for {−,−}1 and ⊢ for {−,−}2:

(a ⊣ b) ⊣ c − a ⊣ (b ⊣ c) + (b ⊢ a) ⊣ c − b ⊢ (a ⊣ c) ≡ 0,

(a ⊢ b) ⊣ c − a ⊢ (b ⊣ c) + (b ⊣ a) ⊣ c − b ⊣ (a ⊣ c) ≡ 0,

(a ⊢ b) ⊢ c − a ⊢ (b ⊢ c) + (b ⊢ a) ⊢ c − b ⊢ (a ⊢ c) ≡ 0,

(a ⊣ b) ⊣ c − a ⊣ (b ⊣ c) + (a ⊣ c) ⊣ b − a ⊣ (c ⊣ b) ≡ 0,

(a ⊢ b) ⊣ c − a ⊢ (b ⊣ c) + (a ⊢ c) ⊢ b − a ⊢ (c ⊢ b) ≡ 0,

(a ⊢ b) ⊢ c − a ⊢ (b ⊢ c) + (a ⊢ c) ⊣ b − a ⊢ (c ⊣ b) ≡ 0.

We rewrite these in terms of the left, right and inner associators:

(a, b, c)⊣ + (b, a, c)× ≡ 0, (a, b, c)× + (b, a, c)⊣ ≡ 0,

(a, b, c)⊢ + (b, a, c)⊢ ≡ 0, (a, b, c)⊣ + (a, c, b)⊣ ≡ 0,

(a, b, c)× + (a, c, b)⊢ ≡ 0, (a, b, c)⊢ + (a, c, b)× ≡ 0.

These six identities show how the associators change under various transpositions
of the arguments. In particular, the identities in the second row show that the
right operation a ⊢ b is left alternative, and the left operation a ⊣ b is right
alternative. (We do not have two alternative operations.) Part 2 of the algo-
rithm simply gives the left and right bar identities. To summarize, we define an
alternative dialgebra to be a 0-dialgebra satisfying

(a, b, c)⊣ + (c, b, a)⊢ ≡ 0, (a, b, c)⊣ − (b, c, a)⊢ ≡ 0, (a, b, c)× + (a, c, b)⊢ ≡ 0,
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where the left, right, and inner associators are defined by

(a, b, c)⊣ = (a ⊣ b) ⊣ c − a ⊣ (b ⊣ c), (a, b, c)⊢ = (a ⊢ b) ⊢ c − a ⊢ (b ⊢ c),

(a, b, c)× = (a ⊢ b) ⊣ c − a ⊢ (b ⊣ c).

This definition was originally obtained in a different way by Liu [31].

Example 3.6. Malcev algebras [44] can be defined by the polynomial
identities of degree ≤ 4 satisfied by the commutator in every alternative algebra.
Bremner, Peresi and Sánchez-Ortega [12] used computer algebra to study the
identities satisfied by the dicommutator in every alternative dialgebra, and proved
that every such identity of degree ≤ 6 is a consequence of the identities of degree
≤ 4. They showed that the identities of degree ≤ 4 are equivalent to those
obtained by applying the KP algorithm to linearized forms of anticommutativity
the Malcev identity, namely right anticommutativity and a “noncommutative”
version of the Malcev identity:

a(bc) + a(cb) ≡ 0, ((ab)c)d − ((ad)b)c − (a(cd))b − (ac)(bd) − a((bc)d) ≡ 0.

These two identities define the variety of Malcev dialgebras.

4. Multilinear operations. We now consider generalizations of the
commutator ab − ba and anticommutator ab + ba to operations of arbitrary “ar-
ity” (number of arguments). The following definitions and examples are based
primarily on Bremner and Peresi [10].

Definition 4.1. A multilinear n-ary operation ω(a1, a2, . . . , an), or
more concisely an n-linear operation, is a linear combination of permutations of
the monomial a1a2 · · · an regarded as an element of the free associative algebra on
n generators:

ω(a1, a2, . . . , an) =
∑

σ∈Sn

xσ aσ(1)aσ(2) · · · aσ(n) (xσ ∈ F).

We identify ω(a1, a2, . . . , an) with an element of FSn, the group algebra of the
symmetric group Sn which acts by permuting the subscripts of the generators.

Definition 4.2. Two multilinear operations are equivalent if each is a
linear combination of permutations of the other; this is the same as saying that
the two operations generate the same left ideal in FSn.
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Example 4.3. For n = 2, we have the Wedderburn decomposition FS2 ≈
F⊕F, where the two simple ideals correspond to partitions 2 and 1 + 1 and have
bases ab + ba and ab − ba respectively (writing a, b instead of a1, a2). There are
four equivalence classes, corresponding to the commutator, the anticommutator,
the zero operation, and the original associative operation ab.

Example 4.4. For n = 3, we have the Wedderburn decomposition

FS3 ≈ F ⊕ M2(F) ⊕ F,

where the simple ideals correspond to partitions 3, 2 + 1 and 1 + 1 + 1. As
representatives of the equivalence classes of trilinear operations we take ordered
triples of matrices in row canonical form:

[
x,

[
y11 y12

y21 y22

]
, z

]

The first and third components are either 0 or 1; the second can be one of

[
0 0
0 0

]
,

[
1 q
0 0

]
(q ∈ F),

[
0 1
0 0

]
,

[
1 0
0 1

]
.

There are infinitely many equivalence classes: four infinite families (for which the
2 × 2 matrix has rank 1) and six isolated operations (for which the 2 × 2 matrix
has rank 0 or 2). In order to classify these operations, we consider two bases for
the group algebra FS3, assuming that the characteristic of F is not 2 or 3. The
first basis consists of the permutations in lexicographical order:

abc, acb, bac, bca, cab, cba.

The second basis consists of the matrix units for the Wedderburn decomposition:

S =
1

6
(abc + acb + bca + bca + cab + cba),

E11 =
1

3
(abc + bca − bca − cba), E12 =

1

3
(acb − bca + bca − cab),

E21 =
1

3
(acb − bca + cab − cba), E22 =

1

3
(abc − bca − cab + cba),

A =
1

6
(abc − acb − bca + bca + cab − cba).
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Table 1. Simplified trilinear operations

reduced matrix form permutation form

1

[
0,

[
0 1
0 0

]
, 0

]
abc − bac− cab + cba

2

[
0,

[
1 1/2
0 0

]
, 0

]
abc + acb − bca − cba

3

[
1,

[
0 1
0 0

]
, 0

]
abc + cba

4

[
1,

[
1 0
0 0

]
, 0

]
abc + bac

5

[
1,

[
1 1
0 0

]
, 0

]
abc + acb

6

[
1,

[
1 1/2
0 0

]
, 0

]
2abc + acb + 2bac + bca

7

[
0,

[
0 1
0 0

]
, 1

]
2abc− acb − 2bac + bca

8

[
0,

[
1 −1
0 0

]
, 1

]
abc − acb

9

[
0,

[
1 2
0 0

]
, 1

]
abc − bac

10

[
0,

[
1 1/2
0 0

]
, 1

]
abc − cba

11

[
1,

[
0 1
0 0

]
, 1

]
abc − bac + bca

12

[
1,

[
1 0
0 0

]
, 1

]
abc + cab − cba

13

[
1,

[
1 1
0 0

]
, 1

]
abc + bca− cba

14

[
1,

[
1 −1
0 0

]
, 1

]
abc + bac + cab

15

[
1,

[
1 2
0 0

]
, 1

]
abc + acb + bca

16

[
1,

[
1 1/2
0 0

]
, 1

]
abc + acb + bac

17

[
0,

[
1 0
0 1

]
, 0

]
abc − bca

18

[
1,

[
1 0
0 1

]
, 0

]
abc + acb + bac − cba

19

[
0,

[
1 0
0 1

]
, 1

]
abc + acb − bca − cab
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The change of basis matrices are

M =
1

6





1 2 0 0 2 1

1 0 2 2 0 −1

1 2 −2 0 −2 −1

1 −2 2 −2 0 1

1 0 −2 2 −2 1

1 −2 0 −2 2 −1





, M−1 =





1 1 1 1 1 1

1 0 1 0 −1 −1

0 1 0 1 −1 −1

0 1 −1 −1 1 0

1 0 −1 −1 0 1

1 −1 −1 1 1 −1





Except for the associative operation abc, all these operations satisfy polynomial
identities in degree 3. Bremner and Peresi [10] identified 19 of these operations
which satisfy polynomial identities in degree 5 which do not follow from the iden-
tities in degree 3. These operations are given in Table 1, which contains the
representative of the equivalence class in matrix form and the simplest operation
in that class written as a linear combination of permutations. (The simplified
forms of the operations were found by enumerating all 56 = 15625 linear combi-
nations of the permutations with coefficients {0,±1,±2}, computing the reduced
matrix form of each of the resulting group algebra elements, and recording those
which belong to the same equivalence class as one of the operations from [10].)
This list includes the Lie and anti-Lie triple products,

abc − bac − cab + cba, abc + bac − cab − cba,

and the Jordan and anti-Jordan triple products,

abc + cba, abc − cba.

The list does not include the symmetric, alternating, and cyclic sums,

abc + acb + bca + bca + cab + cba, abc − acb − bca + bca + cab − cba,

abc + bca + cab,

since every polynomial identity of degree 5 satisfied by these operations is a
consequence of the identities in degree 3. In other words, there are no new
identities until degree 7; see Bremner and Hentzel [8].

We now discuss a general approach to the following problem.

Problem 4.5. Given a multilinear operation for algebras, how do we
obtain the corresponding operation (or operations) for dialgebras?
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A simple algorithm which converts a multilinear operation of degree n in
an associative algebra into n multilinear operations of degree n in an associative
dialgebra was introduced by Bremner and Sánchez-Ortega [13].

Bremner–Sánchez-Ortega (BSO) algorithm. The input is a multi-
linear n-ary operation ω in an associative algebra:

ω(a1, a2, . . . , an) =
∑

σ∈Sn

xσ aσ(1)aσ(2) · · · aσ(n) (xσ ∈ F).

For each i = 1, 2, . . . , n we partition the set of all permutations into subsets
according to the position of i:

Sj,i
n = {σ ∈ Sn | σ(j) = i }.

For each i = 1, 2, . . . , n we collect the terms of ω in which ai is in position j:

ωi(a1, a2, . . . , an) =
n∑

j=1

∑

S
j,i
n

xσ aσ(1) · · · aσ(j−1)aiaσ(j+1) · · · aσ(n).

The output consists of n new multilinear n-ary operations ω̂1, . . . , ω̂n in an
associative dialgebra, obtained from ω by making ai the center of each term:

ω̂i(a1, a2, . . . , an) =
n∑

j=1

∑

S
j,i
n

xσ aσ(1) · · · aσ(j−1) âi aσ(j+1) · · · aσ(n).

Example 4.6. The commutator ab − ba produces two dicommutators;
the second is the negative of the opposite of the first, 〈a, b〉2 = −〈b, a〉1:

〈a, b〉1 = âb − bâ, 〈a, b〉2 = ab̂ − b̂a.

The anticommutator ab + ba produces two antidicommutators; the second is the
opposite of the first, 〈a, b〉2 = 〈b, a〉1:

〈a, b〉1 = âb + bâ, 〈a, b〉2 = ab̂ + b̂a.

Example 4.7. We apply the BSO algorithm to the Lie triple product,

ω(a, b, c) = abc − bac − cab + cba.
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We obtain these three dialgebra operations:

ω̂1(a, b, c) = âbc − bâc − câb + cbâ, ω̂2(a, b, c) = ab̂c − b̂ac − cab̂ + ĉba,

ω̂3(a, b, c) = abĉ − baĉ − ĉab + ĉba.

We have

ω̂2(a, b, c) = −ω̂1(b, a, c), ω̂3(a, b, c) = ω̂1(c, b, a) − ω̂1(c, a, b),

so we only retain ω̂1(a, b, c).

Example 4.8. We apply the BSO algorithm to the Jordan triple product,

ω(a, b, c) = abc + cba.

We obtain these three dialgebra operations:

ω̂1(a, b, c) = âbc + cbâ, ω̂2(a, b, c) = ab̂c + ĉba, ω̂3(a, b, c) = abĉ + ĉba.

We have ω̂3(a, b, c) = ω̂1(c, b, a), so we only retain ω̂1(a, b, c) and ω̂2(a, b, c). The
second operation is symmetric in its first and third arguments: ω̂2(c, b, a) =
ω̂2(a, b, c).

5. Leibniz triple systems. We consider the dialgebra analogue of Lie
triple systems. We apply the KP algorithm to the defining polynomial identities,
and then find the identities satisfied by the operations obtained from the BSO
algorithm applied to the Lie triple product. We then use computer algebra to
verify that the results are equivalent. This section is a summary of Bremner and
Sánchez-Ortega [14]. We assume that the base field F does not have characteristic
2, 3 or 5.

Definition 5.1. A Lie triple system is a vector space T with a trilinear
operation T × T × T → T denoted [a, b, c] satisfying these multilinear identities:

[a, b, c] + [b, a, c] ≡ 0,

[a, b, c] + [b, c, a] + [c, a, b] ≡ 0,

[a, b, [c, d, e]] − [[a, b, c], d, e] − [c, [a, b, d], e] − [c, d, [a, b, e]] ≡ 0.

These identities are satisfied by the Lie triple product in any associative algebra.
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5.1. KP algorithm. Applying Part 1 of the algorithm to the identities
of degree 3 in Definition 5.1 gives

[a, b, c]1 + [b, a, c]2 ≡ 0, [a, b, c]1 + [b, c, a]3 + [c, a, b]2 ≡ 0,

[a, b, c]2 + [b, a, c]1 ≡ 0, [a, b, c]2 + [b, c, a]1 + [c, a, b]3 ≡ 0,

[a, b, c]3 + [b, a, c]3 ≡ 0, [a, b, c]3 + [b, c, a]2 + [c, a, b]1 ≡ 0.

The first two identities on the left are equivalent and show that [−,−,−]2 is
superfluous; the three on the right are equivalent and show that [−,−,−]3 is
superfluous:

[a, b, c]2 ≡ −[b, a, c]1, [a, b, c]3 ≡ −[b, c, a]2 − [c, a, b]1 ≡ [c, b, a]1 − [c, a, b]1.

We retain only the first operation which we write as 〈−,−,−〉. Applying Part 1 of
the algorithm to the identity of degree 5 in Definition 5.1 gives five identities, two
of which are redundant. We use the previous equations to eliminate [−,−,−]2
and [−,−,−]3 from the remaining three identities and obtain:

(1)






〈a, b, 〈c, d, e〉〉 − 〈〈a, b, c〉, d, e〉 + 〈〈a, b, d〉, c, e〉 − 〈〈a, b, e〉, d, c〉

+ 〈〈a, b, e〉, c, d〉 ≡ 0,

〈〈c, d, e〉, b, a〉 − 〈〈c, d, e〉, a, b〉 − 〈〈c, b, a〉, d, e〉 + 〈〈c, a, b〉, d, e〉

− 〈c, 〈a, b, d〉, e〉 − 〈c, d, 〈a, b, e〉〉 ≡ 0,

〈〈e, d, c〉, b, a〉 − 〈〈e, c, d〉, b, a〉 − 〈〈e, d, c〉, a, b〉 + 〈〈e, c, d〉, a, b〉

− 〈e, d, 〈c, b, a〉〉 + 〈e, d, 〈c, a, b〉〉 + 〈e, 〈c, b, a〉, d〉 − 〈e, 〈c, a, b〉, d〉

− 〈e, 〈d, b, a〉, c〉 + 〈e, 〈d, a, b〉, c〉 + 〈e, c, 〈d, b, a〉〉 − 〈e, c, 〈d, a, b〉〉

− 〈〈e, b, a〉, d, c〉 + 〈〈e, a, b〉, d, c〉 + 〈〈e, b, a〉, c, d〉 − 〈〈e, a, b〉, c, d〉 ≡ 0.

Part 2 produces 12 identities; after eliminating [−,−,−]2 and [−,−,−]3 we ob-
tain:

(2)






〈a, 〈b, c, d〉, e〉 + 〈a, 〈c, b, d〉, e〉 ≡ 0,

〈a, 〈b, c, d〉, e〉 + 〈a, 〈c, d, b〉, e〉 + 〈a, 〈d, b, c〉, e〉 ≡ 0,

〈a, b, 〈c, d, e〉〉 + 〈a, b, 〈d, c, e〉〉 ≡ 0,

〈a, b, 〈c, d, e〉〉 + 〈a, b, 〈d, e, c〉〉 + 〈a, b, 〈e, c, d〉〉 ≡ 0.

These identities show that the inner triple in a monomial of the second or third
association types, 〈−, 〈−,−,−〉,−〉 and 〈−,−, 〈−,−,−〉〉, has properties analo-
gous to the identities of degree 3 in the definition of Lie triple system: the ternary
analogues of skew-symmetry and the Jacobi identity.
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5.2. BSO algorithm. We saw in Example 4.7 that we need only one
operation,

〈a, b, c〉 = âbc − bâc − câb + cbâ.

Every identity of degree at most 5 satisfied by this operation follows from the
two identities in the next definition. Furthermore, the seven identities (1) and
(2) are equivalent to the next two identities.

Definition 5.2. A Leibniz triple system (or Lie triple disystem) is
a vector space T with a trilinear operation 〈−,−,−〉 : T × T × T → T satisfying
these identities:

〈a, 〈b, c, d〉, e〉 ≡ 〈〈a, b, c〉, d, e〉 − 〈〈a, c, b〉, d, e〉 − 〈〈a, d, b〉, c, e〉 + 〈〈a, d, c〉, b, e〉,

〈a, b, 〈c, d, e〉〉 ≡ 〈〈a, b, c〉, d, e〉 − 〈〈a, b, d〉, c, e〉 − 〈〈a, b, e〉, c, d〉 + 〈〈a, b, e〉, d, c〉.

In the right sides of these identities, the signs and permutations of b, c, d and c, d, e
correspond to the expansion of the Lie triple products [[b, c], d] and [[c, d], e].

Theorem 5.3. Any subspace of a Leibniz algebra which is closed under
the iterated Leibniz bracket is a Leibniz triple system.

P r o o f. This follows from 〈a, b, c〉 = (a ⊣ b−b ⊢ a) ⊣ c−c ⊢ (a ⊣ b−b ⊢ a).

�

Theorem 5.4. Every identity satisfied by the iterated Leibniz bracket
〈〈a, b〉, c〉 in every Leibniz algebra is a consequence of the defining identities for
Leibniz triple systems.

P r o o f. This follows from the construction in [14] of universal Leibniz
envelopes for Leibniz triple systems. �

The next result from [14] generalizes the classical result that the associator
in a Jordan algebra satisfies the defining identities for Lie triple systems.

Theorem 5.5. Let L be a subspace of a Jordan dialgebra which is closed
under the associator (a, b, c). Then L is a Leibniz triple system with the trilinear
operation defined to be the permuted associator 〈a, b, c〉 = (a, c, b).

6. Jordan triple disystems. We consider the dialgebra analogue of
the variety of Jordan triple systems. This section is a summary of Bremner,
Felipe and Sánchez-Ortega [7]. We assume that the base field F does not have
characteristic 2, 3 or 5.



Algebras, dialgebras, and polynomial identities 111

Definition 6.1. A Jordan triple system is a vector space T with a
trilinear operation T × T × T → T denoted {−,−,−} satisfying these identities:

{a, b, c} − {c, b, a} ≡ 0,

{a, b, {c, d, e}} − {{a, b, c}, d, e} + {c, {b, a, d}, e} − {c, d, {a, b, e}} ≡ 0.

These identities are satisfied by the Jordan triple product in any associative alge-
bra.

6.1. KP algorithm. We first consider Part 1 of the algorithm. In the
identity of degree 3, we make a, b, c in turn the central argument and obtain

{a, b, c}1 − {c, b, a}3 ≡ 0, {a, b, c}2 − {c, b, a}2 ≡ 0, {a, b, c}3 − {c, b, a}1 ≡ 0.

The third operation is superfluous and the second is symmetric in its first and
third arguments. In the identity of degree 5, we make a, b, c, d, e in turn the
central argument. Replacing {a, b, c}3 by {c, b, a}1 in these five identities gives

{a, b, {c, d, e}1}1 − {{a, b, c}1, d, e}1 + {c, {b, a, d}2 , e}2 − {{a, b, e}1, d, c}1 ≡ 0,

{a, b, {c, d, e}1}2 − {{a, b, c}2, d, e}1 + {c, {b, a, d}1 , e}2 − {{a, b, e}2, d, c}1 ≡ 0,

{{c, d, e}1 , b, a}1 − {{c, b, a}1, d, e}1 + {c, {b, a, d}1 , e}1 − {c, d, {a, b, e}1}1 ≡ 0,

{{c, d, e}2 , b, a}1 − {{c, b, a}1, d, e}2 + {c, {d, a, b}1 , e}2 − {c, d, {a, b, e}1}2 ≡ 0,

{{e, d, c}1 , b, a}1 − {e, d, {c, b, a}1}1 + {e, {d, a, b}1 , c}1 − {{e, b, a}1, d, c}1 ≡ 0.

Part 2 of the algorithm produces the following identities, in which we have re-
placed {a, b, c}3 by {c, b, a}1:

{a, {b, c, d}1 , e}1 ≡ {a, {b, c, d}2 , e}1 ≡ {a, {d, c, b}1, e}1,

{a, b, {c, d, e}1}1 ≡ {a, b, {c, d, e}2}1 ≡ {a, b, {e, d, c}1}1,

{{a, b, c}1, d, e}2 ≡ {{a, b, c}2, d, e}2 ≡ {{c, b, a}1, d, e}2,

{a, b, {c, d, e}1}2 ≡ {a, b, {c, d, e}2}2 ≡ {a, b, {e, d, c}1}2.

Definition 6.2. A Jordan triple disystem is a vector space with
trilinear operations {−,−,−}1 and {−,−,−}2 satisfying these eight identities:

{a, b, c}2 ≡ {c, b, a}2, {{a, b, c}1, d, e}2 ≡ {{a, b, c}2, d, e}2,
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{a, {b, c, d}1 , e}1 ≡ {a, {b, c, d}2, e}1, {a, b, {c, d, e}1}1 ≡ {a, b, {c, d, e}2}1,

{{e, d, c}1 , b, a}1 ≡ {{e, b, a}1, d, c}1 − {e, {d, a, b}1 , c}1 + {e, d, {c, b, a}1}1,

{{e, d, c}2 , b, a}1 ≡ {{e, b, a}1, d, c}2 − {e, {d, a, b}1 , c}2 + {e, d, {c, b, a}1}2,

{a, b, {c, d, e}1}1 ≡ {{a, b, c}1, d, e}1 − {c, {b, a, d}2 , e}2 + {{a, b, e}1, d, c}1,

{a, b, {c, d, e}1}2 ≡ {{a, b, c}2, d, e}1 − {c, {b, a, d}1 , e}2 + {{a, b, e}2, d, c}1.

6.2. BSO algorithm. We saw in Example 4.8 that we need only two
operations,

(a, b, c)1 = âbc + cbâ, (a, b, c)2 = ab̂c + ĉba.

We use computer algebra to find the identities of low degree for these operations.

Lemma 6.3. Operation (−,−,−)1 satisfies no polynomial identity of
degree 3.

P r o o f. An identity is a linear combination of the six permutations of
(a, b, c)1:

x1(a, b, c)1 + x2(a, c, b)1 + x3(b, a, c)1 + x4(b, c, a)1 + x5(c, a, b)1 + x6(c, b, a)1 ≡ 0.

We expand each ternary monomial to obtain a linear combination of the 18
multilinear dialgebra monomials of degree 3 ordered as follows:

âbc, âcb, b̂ac, b̂ca, ĉab, ĉba, ab̂c, aĉb, bâc, bĉa, câb, ĉba, abĉ, aĉb, baĉ, bcâ, cab̂, cbâ.

We construct an 18 × 6 matrix E whose (i, j) entry is the coefficient of the i-th
dialgebra monomial in the expansion of the j-th diproduct monomial:

Et =





1 . . . . . . . . . . . . . . . . 1
. 1 . . . . . . . . . . . . . 1 . .
. . 1 . . . . . . . . . . . . . 1 .
. . . 1 . . . . . . . . . 1 . . . .
. . . . 1 . . . . . . . . . 1 . . .
. . . . . 1 . . . . . . 1 . . . . .





The coefficient vectors of the polynomial identities satisfied by (−,−,−)1 are the
vectors in the nullspace of E, which is zero. �

Lemma 6.4. Every polynomial identity of degree 3 satisfied by operation
(−,−,−)2 is a consequence of (a, b, c)2 ≡ (c, b, a)2.
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P r o o f. Following the same method as in the previous Lemma gives

Et =





. . . . . . 1 . . . . 1 . . . . . .

. . . . . . . 1 . 1 . . . . . . . .

. . . . . . . . 1 . 1 . . . . . . .

. . . . . . . 1 . 1 . . . . . . . .

. . . . . . . . 1 . 1 . . . . . . .

. . . . . . 1 . . . . 1 . . . . . .





The canonical basis of the nullspace consists of three vectors representing the
three permutations of the stated identity. �

These computations were extended to degree 5 to produce a list of iden-
tities satisfied by (−,−,−)1 and (−,−,−)2 separately and together, such that
every identity of degree at most 5 satisfied by these operations follows from the
identities in the list. It can then be verified that these identities are equivalent to
the defining identities for Jordan triple disystems. In this way we obtain a large
class of examples of special Jordan triple disystems.

Theorem 6.5. If D is a subspace of an associative dialgebra which is
closed under the Jordan diproducts (−,−,−)1 and (−,−,−)2, then D is a Jordan
triple disystem with respect to these operations.

6.3. Jordan dialgebras and Jordan triple disystems. A Jordan
algebra with product a ◦ b becomes a Jordan triple system by means of the
trilinear operation

〈a, b, c〉 = (a ◦ b) ◦ c − (a ◦ c) ◦ b + a ◦ (b ◦ c).

Similarly, a Jordan dialgebra with operation ab becomes a Jordan triple disystem
by means of two trilinear operations; the first is obtained by replacing a ◦ b by
ab:

〈a, b, c〉1 = (ab)c − (ac)b + a(bc), 〈a, b, c〉2 = (ba)c + (bc)a − b(ac).

In a special Jordan dialgebra, we have ab = a ⊣ b+b ⊢ a, and these two operations
reduce (up to a scalar multiple) to the first and second dialgebra operations in
Example 4.8, namely 2(âbc + cbâ) and 2(ab̂c + ĉba). This construction provides
a larger class of examples of Jordan triple disystems.

Theorem 6.6. If D is a subspace of a Jordan dialgebra which is closed
under the trilinear operations 〈−,−,−〉1 and 〈−,−,−〉2, then D is a Jordan triple
disystem with respect to these operations.
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P r o o f. This is a sketch of a computational proof of this result, starting
with degree 3. We must show that every polynomial identity of degree 3 satisfied
by 〈a, b, c〉1 and 〈a, b, c〉2 follows from the symmetry of 〈a, b, c〉2 in its first and
third arguments. We construct an 18 × 24 matrix E in which columns 1–12
correspond to the 12 multilinear monomials of degree 3 in the free nonassociative
algebra,

(ab)c, (ac)b, (ba)c, (bc)a, (ca)b, (cb)a, a(bc), a(cb), b(ac), b(ca), c(ab), c(ba),

and columns 13–24 correspond to the 12 trilinear monomials of degree 3 in the
trilinear operations 〈· · · 〉1 and 〈· · · 〉2,

〈a, b, c〉1, 〈a, c, b〉1, 〈b, a, c〉1, 〈b, c, a〉1, 〈c, a, b〉1, 〈c, b, a〉1,

〈a, b, c〉2, 〈a, c, b〉2, 〈b, a, c〉2, 〈b, c, a〉2, 〈c, a, b〉2, 〈c, b, a〉2.

The matrix E has the following block structure,

E =

[
R O
X I

]
,

and its entries are determined as follows:

• the upper left 6× 12 block R contains the coefficient vectors of the permu-
tations of the right commutative identity;

• the lower left 12× 12 block X contains the coefficient vectors of the expan-
sions of the operations 〈−,−,−〉1 and 〈−,−,−〉2;

• the upper right 6 × 12 block O contains the zero matrix;

• the lower right 12 × 12 block I contains the identity matrix.

This matrix is displayed in Table 2 using ·,+,− for 0, 1,−1. The row canonical
form is displayed in Table 3 using ∗ for 1

2 ; the rank is 15. The dividing line between
the upper and lower parts of the row canonical form lies immediately above row
13: the uppermost row whose leading 1 is in the right part of the matrix. The
rows below this line represent the dependence relations among the expansions of
the trilinear monomials which hold as a result of the right commutative identities.
The rows of the lower right 3×12 block represent the permutations of 〈a, b, c〉2 −
〈c, b, a〉2 ≡ 0. �
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Table 2. The matrix E





. . . . . . + − . . . . . . . . . . . . . . . .

. . . . . . − + . . . . . . . . . . . . . . . .

. . . . . . . . + − . . . . . . . . . . . . . .

. . . . . . . . − + . . . . . . . . . . . . . .

. . . . . . . . . . + − . . . . . . . . . . . .

. . . . . . . . . . − + . . . . . . . . . . . .
+ − . . . . + . . . . . + . . . . . . . . . . .
− + . . . . . + . . . . . + . . . . . . . . . .
. . + − . . . . + . . . . . + . . . . . . . . .
. . − + . . . . . + . . . . . + . . . . . . . .
. . . . + − . . . . + . . . . . + . . . . . . .
. . . . − + . . . . . + . . . . . + . . . . . .
. . + + . . . . − . . . . . . . . . + . . . . .
. . . . + + . . . . − . . . . . . . . + . . . .
+ + . . . . − . . . . . . . . . . . . . + . . .
. . . . + + . . . . . − . . . . . . . . . + . .
+ + . . . . . − . . . . . . . . . . . . . . + .
. . + + . . . . . − . . . . . . . . . . . . . +





We can extend these computations to degree 5; the matrix E has the
same block structure but is much larger. In degree 5, there are 5! permutations
of the variables, and 14 association types for a nonassociative binary operation,

(((ab)c)d)e, ((a(bc))d)e, ((ab)(cd))e, (a((bc)d))e, (a(b(cd)))e,

((ab)c)(de), (a(bc))(de), (ab)((cd)e), (ab)(c(de)), a(((bc)d)e),

a((b(cd))e), a((bc)(de)), a(b((cd)e)), a(b(c(de))),

giving 1680 monomials labeling the columns in the left part. There are 10 asso-
ciation types in degree 5 for two trilinear operations, assuming that the second
operation is symmetric in its first and third arguments:

〈〈a, b, c〉1, d, e〉1, 〈a, 〈b, c, d〉1, e〉1, 〈a, b, 〈c, d, e〉1〉1, 〈〈a, b, c〉2, d, e〉2,

〈a, 〈b, c, d〉2 , e〉2, 〈〈a, b, c〉2, d, e〉1, 〈a, 〈b, c, d〉2, e〉1, 〈a, b, 〈c, d, e〉2〉1,

〈〈a, b, c〉1, d, e〉2, 〈a, 〈b, c, d〉1, e〉2.

Using the symmetry of 〈−,−,−〉2 we obtain the number of multilinear monomials
in each type, giving 120 + 120 + 120 + 60 + 60 + 60 + 120 + 60 + 60 + 30 = 810
monomials labeling the columns in the right part.
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Table 3. The row canonical form of E





+ . . . . . . . . . . . ∗ . . . . . . . . . ∗ .
. + . . . . . . . . . . . ∗ . . . . . . . . ∗ .
. . + . . . . . . . . . . . ∗ . . . . . . . . ∗
. . . + . . . . . . . . . . . ∗ . . . . . . . ∗
. . . . + . . . . . . . . . . . ∗ . . . . ∗ . .
. . . . . + . . . . . . . . . . . ∗ . . . ∗ . .
. . . . . . + . . . . . ∗ ∗ . . . . . . . . . .
. . . . . . . + . . . . ∗ ∗ . . . . . . . . . .
. . . . . . . . + . . . . . ∗ ∗ . . . . . . . .
. . . . . . . . . + . . . . ∗ ∗ . . . . . . . .
. . . . . . . . . . + . . . . . ∗ ∗ . . . . . .
. . . . . . . . . . . + . . . . ∗ ∗ . . . . . .
. . . . . . . . . . . . . . . . . . + . . . . −
. . . . . . . . . . . . . . . . . . . + . − . .
. . . . . . . . . . . . . . . . . . . . + . − .





We next generate all the consequences in degree 5 of the defining identities
for Jordan dialgebras. A multilinear identity I(a1, . . . , an) of degree n produces
n+2 identities of degree n+1; we have n substitutions and two multiplications:

I(a1an+1, . . . , an), . . . , I(a1, . . . , anan+1), I(a1, . . . , an)an+1, an+1I(a1, . . . , an).

The right commutative identity of degree 3 produces 5 identities of degree 4, and
each of these produces 6 identities of degree 5, for a total of 30. The linearized
versions of the right Osborn and right Jordan identities of degree 4 each produce
6 identities of degree 5, for a total of 12. Altogether we have 42 identities of
degree 5, and each allows 5! permutations of the variables, for a total of 5040.
The upper left block R of the matrix E has size 5040 × 1680.

The lower left block X has size 810 × 1680 and contains the coefficients
of the expansions of the ternary monomials. The upper right block O is the
5040 × 810 zero matrix, and the lower right block I is the 810 × 810 identity
matrix:

E =





consequences in degree 5 of
the Jordan dialgebra identities

zero matrix

expansions of the monomials
in degree 5 for 〈· · · 〉1 and 〈· · · 〉2

identity matrix





We compute the row canonical form and find that the rank is 2215. We ignore
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the first 1655 rows since their leading 1s are in the left part; we retain only the
560 rows which have their leading 1s in the right part. We sort these rows by
increasing number of nonzero components. These rows represent the identities in
degree 5 satisfied by the Jordan triple diproducts in a Jordan dialgebra.

We construct another matrix M with an upper block of size 810 × 810
and a lower block of size 120 × 810. For each of the 560 identities satisfied by
the operations 〈−,−,−〉1 and 〈−,−,−〉2, we apply all 5! permutations of the
variables, store the permuted identities in the lower block, and compute the row
canonical form. We record the index numbers of the identities which increase the
rank:

identity 1 121 241 301 331 342 451 454

rank 120 240 360 390 450 470 530 560

We then verify directly that these eight identities generate the same S5-module
as the defining identities for Jordan triple disystems obtained from the KP algo-
rithm.

7. The cyclic commutator. In this section, we present some new
results about a trilinear operation called the cyclic commutator, (a, b, c) =
abc − bca. This operation provides a “noncommutative” version of Lie triple
systems different from Leibniz triple systems.

7.1. Polynomial identities. The next result appears in Bremner and
Peresi [10] in a slightly different form.

Lemma 7.1. Every multilinear polynomial identity of degree 3 satisfied
by the cyclic commutator follows from the ternary Jacobi identity,

(a, b, c) + (b, c, a) + (c, a, b) ≡ 0.

Every multilinear polynomial identity of degree 5 satisfied by the cyclic commu-
tator follows from the ternary Jacobi identity and the (right) ternary derivation
identity,

((a, b, c), d, e) ≡ ((a, d, e), b, c) + (a, (b, d, e), c) + (a, b, (c, d, e)).

We now extend these computations to degree 7. For a general trilinear
operation, the number of association types in (odd) degree n equals the number of
ternary trees with n leaf nodes; see sequence A001764 in Sloane [47] and Example
5 on page 360 of Graham et al. [22]. There is a simple formula for this number:

t(k) =
1

2k + 1

(
3k

k

)
(n = 2k + 1).
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The first few values are as follows:

k 1 2 3 4 5 6 7 8 9 10

n 3 5 7 9 11 13 15 17 19 21

t(k) 1 3 12 55 273 1428 7752 43263 246675 1430715

We order the 12 ternary association types in degree 7 as follows:

(−,−, (−,−, (−,−,−))), (−,−, (−, (−,−,−),−)), (−,−, ((−,−,−),−,−)),

(−, (−,−,−), (−,−,−)), (−, (−,−, (−,−,−)),−), (−, (−, (−,−,−),−),−),

(−, ((−,−,−),−,−),−), ((−,−,−),−, (−,−,−)), ((−,−,−), (−,−,−),−),

((−,−, (−,−,−)),−,−), ((−, (−,−,−),−),−,−), (((−,−,−),−,−),−,−).

Using the ternary Jacobi identity, we can eliminate types 3, 7, 9, 10, 11, 12 by
means of the following equations and retain only types 1, 2, 4, 5, 6, 8:

(3)






(a, b, ((c, d, e), f, g)) = −(a, b, (f, g, (c, d, e))) − (a, b, (g, (c, d, e), f)),

(a, ((b, c, d), e, f), g) = −(a, (e, f, (b, c, d)), g) − (a, (f, (b, c, d), e), g),

((a, b, c), (d, e, f), g) = −((d, e, f), g, (a, b, c)) − (g, (a, b, c), (d, e, f)),

((a, b, (c, d, e)), f, g) = −(f, g, (a, b, (c, d, e))) − (g, (a, b, (c, d, e)), f),

((a, (b, c, d), e), f, g) = −(f, g, (a, (b, c, d), e)) − (g, (a, (b, c, d), e), f),

(((a, b, c), d, e), f, g) = (f, g, (d, e, (a, b, c))) + (f, g, (e, (a, b, c), d))

+(g, (d, e, (a, b, c)), f) + (g, (e, (a, b, c), d), f).

Using the ternary Jacobi identity again, we can further reduce multilinear mono-
mials in the remaining 6 types by means of the following equations:

(4)






(a, b, (c, d, (g, e, f))) = −(a, b, (c, d, (e, f, g))) − (a, b, (c, d, (f, g, e))),

(a, b, (c, (f, d, e), g)) = −(a, b, (c, (d, e, f), g)) − (a, b, (c, (e, f, d), g)),

(a, (d, b, c), (g, e, f)) = −(a, (b, c, d), (g, e, f)) − (a, (c, d, b), (g, e, f)),

= −(a, (d, b, c), (e, f, g)) − (a, (d, b, c), (f, g, e)),

(a, (b, c, (f, d, e)), g) = −(a, (b, c, (d, e, f)), g) − (a, (b, c, (e, f, d)), g),

(a, (b, (e, c, d), f), g) = −(a, (b, (c, d, e), f), g) − (a, (b, (d, e, c), f), g),

((c, a, b), d, (g, e, f)) = −((a, b, c), d, (g, e, f)) − ((b, c, a), d, (g, e, f)),

= −((c, a, b), d, (e, f, g)) − ((c, a, b), d, (f, g, e)).
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The basic principle is that when all three arguments have degree 1, the first ar-
gument should not lexicographically follow both the second and third arguments.
It follows that the total number of multilinear monomials in degree 7 equals

(
2

3
+

2

3
+

(
2

3

)2

+
2

3
+

2

3
+

(
2

3

)2
)

· 7! = 17920.

In order to prove that these multilinear monomials are linearly independent, we
first write the ternary Jacobi identity as follows:

I(a, b, c) = (a, b, c) + (b, c, a) + (c, a, b).

We consider the following consequences of I(a, b, c) in degree 5:

(5)

{
I((a, d, e), b, c), I(a, (b, d, e), c), I(a, b, (c, d, e)),

(I(a, b, c), d, e), (d, I(a, b, c), e), (d, e, I(a, b, c)).

Every consequence of I(a, b, c) in degree 5 is a linear combination of permutations
of these 6 identities. We write J(a, b, c, d, e) for one of these identities. We
consider the following 8 consequences of J(a, b, c, d, e) in degree 7:

(6)






J((a, f, g), b, c, d, e), J(a, (b, f, g), c, d, e), J(a, b, (c, f, g), d, e),

J(a, b, c, (d, f, g), e), J(a, b, c, d, (e, f, g)), (J(a, b, c, d, e), f, g),

(f, J(a, b, c, d, e), g), (f, g, J(a, b, c, d, e)).

Every consequence of I(a, b, c) in degree 7 is a linear combination of permutations
of the resulting 48 identities. We now reduce each of these identities in degree
7 using equations (3) and (4), and verify that in every case the result collapses
to 0. This proves that the multilinear monomials are linearly independent, and
hence form a basis for the multilinear subspace of degree 7 in the free ternary
algebra in the variety defined by the ternary Jacobi identity.

We now write the ternary derivation identity in the form

J(a, b, c, d, e) = ((a, b, c), d, e) − ((a, d, e), b, c) − (a, (b, d, e), c) − (a, b, (c, d, e)),

and consider its consequences in degree 7 using (6). Every consequence in degree
7 is a linear combination of permutations of these 8 identities; we reduce each
of them using equations (3) and (4). We create a matrix of size 22960 × 17920
with an upper block of size 17920× 17920 and a lower block of size 5040× 17920.
In order to control memory allocation, we use modular arithmetic with p = 101.
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(Since the group algebra FSn is semisimple for p > n, the structure constants from
characteristic 0 are well-defined for any p > n. It follows that we can do these
computations using modular arithmetic with any p > n and then use rational
reconstruction to recover the correct results for characteristic 0.) For each of the
8 consequences of the ternary derivation identity, we apply all 5040 permutations
of the variables, store the coefficient vectors of the resulting identities in the lower
block, and compute the row canonical form. At the end of this calculation, the
matrix has rank 13372; the row space of this matrix consists of the coefficient
vectors of all polynomial identities in degree 7 for the ternary commutator which
are consequences of the ternary derivation identity.

We construct another matrix of size 5040× 17920; in each column we put
the coefficient vector of the expansion of the corresponding ternary monomial
into the free associative algebra using the ternary commutator. The expansions
for association types 1, 2, 4, 5, 6, 8 with the identity permutation are as follows:

(a, b, (c, d, (e, f, g))) = abcdefg − bcdefga − abdefgc + bdefgca

− abcdfge + bcdfgea + abdfgec − bdfgeca,

(a, b, (c, (d, e, f), g)) = abcdefg − bcdefga − abdefgc + bdefgca

− abcefdg + bcefdga + abefdgc − befdgca,

(a, (b, c, d), (e, f, g)) = abcdefg − bcdefga − abcdfge + bcdfgea

− acdbefg + cdbefga + acdbfge − cdbfgea,

(a, (b, c, (d, e, f)), g) = abcdefg − bcdefga − acdefbg + cdefbga

− abcefdg + bcefdga + acefdbg − cefdbga,

(a, (b, (c, d, e), f), g) = abcdefg − bcdefga − acdefbg + cdefbga

− abdecfg + bdecfga + adecfbg − decfbga,

((a, b, c), d, (e, f, g)) = abcdefg − defgabc − abcdfge + dfgeabc

− bcadefg + defgbca + bcadfge − dfgebca.

Still using arithmetic modulo p = 101, we compute the row canonical form of
this matrix and extract the canonical basis of the nullspace. The rank is 4128
and hence the dimension of the nullspace is 13792. Comparing this result with
that of the previous paragraph, we see that there is a quotient space of dimension
13792−13372 = 420 consisting of polynomial identities in degree 7 for the ternary
commutator which are not consequences of the identities of lower degree. We sort
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these identities by increasing number of nonzero entries in the coefficient vector.
Starting with the matrix of rank 13372 from the previous paragraph, we process
each identity in this sorted list by applying all 5040 permutations to the variables,
storing the results in the lower block, and reducing the matrix. Only two identities
increase the rank: an identity with 20 terms increases the rank to 13722, and an
identity with 45 terms increases the rank to 13792. Further calculations show
that the first identity is a consequence of the second.

The second identity is given in the following Theorem. The fact that this
identity is satisfied by the cyclic commutator can be verified directly by expanding
each term into the free associative algebra. But to prove that this identity is not
a consequence of the identities of lower degree requires a computation such as
that just described.

Theorem 7.2. Every multilinear polynomial identity of degree 7 satis-
fied by the cyclic commutator is a consequence of the ternary Jacobi identity, the
ternary derivation identity, and the following identity with 45 terms and coeffi-
cients ± 1:

(ab(cd(efg))) − (ab(cf(deg))) − (ab(cf(egd))) − (ab(ce(dgf))) − (ab(cg(fed)))

− (ab(dc(feg))) + (ab(df(cge))) + (ab(de(cfg))) + (ab(de(fgc))) − (ab(fc(dge)))

− (ab(fc(edg))) − (ab(fd(egc))) + (ab(fg(dec))) + (ab(ec(fgd))) + (ab(ed(cgf)))

+ (ab(ed(fcg))) − (ab(eg(cfd))) − (ab(eg(dcf))) + (ab(gf(dce))) − (ab(ge(cdf)))

+ (ac(fb(deg))) − (ac(gb(dfe))) − (ac(gb(fed))) − (ad(eb(cfg))) − (ad(gb(fce)))

− (ag(db(cfe))) − (ag(db(fec))) + (ag(fb(ced))) − (a(bcd)(efg)) + (a(bcf)(deg))

− (a(bcg)(dfe)) − (a(bde)(cfg)) − (a(bdg)(fce)) + (a(beg)(dcf)) − (a(bgd)(cfe))

− (a(bgd)(fec)) + (a(bgf)(ced)) − (a(cbd)(feg)) + (a(cbe)(dfg)) + (a(cbe)(fgd))

− (a(cdb)(efg)) + (a(cgb)(fed)) − (a(dbf)(ceg)) − (a(dbf)(egc)) + (a(egb)(dcf))

≡ 0.

Remark 7.3. The following identity with 20 terms and coefficients ± 1
is the simplest identity in degree 7 for the cyclic commutator which increased the
rank in the computation described above:

(ab(cd(efg))) + (ab(cd(gef))) − (ab(ed(gfc))) − (ab(gd(ecf))) − (ab(fd(ceg)))

− (ad(cb(egf))) − (ad(cb(gfe))) + (ad(eb(gcf))) + (ad(gb(efc))) + (ad(fb(cge)))
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− (a(bdc)(egf)) − (a(bdc)(gfe)) + (a(bde)(gcf)) + (a(bdg)(efc)) + (a(bdf)(cge))

+ (a(dbc)(efg)) + (a(dbc)(gef)) − (a(dbe)(gfc)) − (a(dbg)(ecf)) − (a(dbf)(ceg))

≡ 0.

Theorem 7.4. There are no new identities for the cyclic commutator in
degree 9: every multilinear polynomial identity of degree 9 satisfied by the cyclic
commutator is a consequence of the identities in degrees 3, 5 and 7.

P r o o f. Owing to the large size of this problem, we use the representation
theory of the symmetric group to decompose the computation into smaller pieces
corresponding to the irreducible representations. A summary of the theory and
algorithms underlying this method has been given by Bremner and Peresi [11].
We briefly explain this computation in the present case; see Table 4. A partition
will be denoted λ = (n1, . . . , nk), n ≥ n1 ≥ · · · ≥ nk ≥ 1, n1 + · · · + nk = 9.
These partitions label the irreducible representations of S9; the dimension of the
representation corresponding to λ will be denoted dλ. Given a partition λ and
a permutation π ∈ S9, the algorithm of Clifton [17] shows how to efficiently
compute a matrix Aλ(π). Furthermore, the formula

Rλ(π) = Aλ(1)−1Aλ(π),

where 1 is the identity permutation, gives the matrix representing π in the rep-
resentation corresponding to λ.

We have already seen in (5) and (6) how to generate, for n = 3 and
n = 5, the consequences in degree n + 2 of a ternary identity in degree n. A
similar process generates the consequences in degree 9 of a ternary identity in
degree 7: from K(a, b, . . . , g) we perform (i) seven substitutions, replacing x by
(x, h, i) for x = a, b, . . . g, and (ii) three multiplications, namely (K,h, i), (h,K, i)
and (h, i,K). In this way we generate all consequences in degree 9 of the ternary
Jacobi identity, the (right) ternary derivation identity, and the 45-term identity
of Theorem 7.2; the total number of these identities is 6 · 8 · 10 + 8 · 10 + 10 =
570. Every identity in degree 9, which is satisfied by the cyclic commutator
and is a consequence of the identities of lower degree, is a linear combination
of permutations of these 570 identities. For each representation λ of dimension
d = dλ, we construct a matrix of size 570d × 55d consisting of d × d blocks. In
the (i, j) block we put the representation matrix, computed by Clifton’s method,
of the terms of identity i with association type j. (Note that we are using all
55 ternary association types in degree 9.) The rank of this matrix of “lifted
identities” is denoted “lifrank” in Table 4.
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Table 4. Ranks of identities in degree 9 for cyclic commutator

# partition dimension lifrank exprank toprank allrank
1 9 1 55 55 0 55

2 81 8 435 440 5 435

3 72 27 1464 1485 21 1464

4 711 28 1519 1540 21 1519

5 63 48 2600 2640 40 2600

6 621 105 5686 5775 89 5686

7 6111 56 3034 3080 46 3034

8 54 42 2272 2310 38 2272

9 531 162 8768 8910 142 8768

10 522 120 6496 6600 104 6496

11 5211 189 10231 10395 164 10231

12 51111 70 3790 3850 60 3790

13 441 84 4546 4620 74 4546

14 432 168 9091 9240 149 9091

15 4311 216 11689 11880 191 11689

16 4221 216 11689 11880 191 11689

17 42111 189 10231 10395 164 10231

18 411111 56 3034 3080 46 3034

19 333 42 2274 2310 36 2274

20 3321 168 9091 9240 149 9091

21 33111 120 6496 6600 104 6496

22 3222 84 4546 4620 74 4546

23 32211 162 8768 8910 142 8768

24 321111 105 5686 5775 89 5686

25 3111111 28 1519 1540 21 1519

26 22221 42 2272 2310 38 2272

27 222111 48 2600 2640 40 2600

28 2211111 27 1464 1485 21 1464

29 21111111 8 435 440 5 435

30 111111111 1 55 55 0 55

For each representation λ of dimension d = dλ, we construct a second
matrix of size 55d× 56d consisting of d× d blocks. In the (i, 1) block we put the
representation matrix of the terms of the expansion in the free associative algebra
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of the ternary monomial with association type i and the identity permutation of
the variables; in the (i, i+1) block we put the identity matrix; the other blocks are
zero. The rank of this “expansion matrix” is always 55d; this number is denoted
“exprank” in Table 4. We compute the row canonical form of this matrix and
identify the rows whose leading 1s occur within the first column of blocks; the
number of these rows is denoted “toprank”. The number of remaining rows, whose
leading 1s occur to the right of the first column of blocks, is denoted “allrank”;
these rows represent all the identities satisfied by the cyclic commutator in this
representation.

For every representation, we find that “lifrank = allrank”; every identity
in degree 9 satisfied by the cyclic commutator is a consequence of identities of
lower degree. This completes the proof. �

Definition 7.5. A noncommutative Lie triple system is a vector
space T with a trilinear operation (−,−,−) : T ×T×T → T satisfying the ternary
Jacobi identity, the (right) ternary derivation identity, and the 45-term identity
of Theorem 7.2.

An open problem is the existence of special identities for noncommuta-
tive Lie triple systems: polynomial identities satisfied by the cyclic commutator
in every associative algebra, but which do not follow from the identities of Defin-
tion 7.5.

7.2. Universal associative envelopes. We can obtain more informa-
tion about a nonassociative structure by studying its irreducible finite dimen-
sional representations. For a structure defined by a multilinear operation, the
first step toward classifying the representations is to construct the universal as-
sociative enveloping algebra. This generalizes the familiar construction of the
universal enveloping algebras of Lie and Jordan algebras, where an important di-
chotomy arises: a finite dimensional simple Lie algebra has an infinite dimensional
universal envelope and infinitely many isomorphism classes of irreducible finite
dimensional representations, but a finite dimensional simple Jordan algebra has
a finite dimensional envelope and only finitely many irreducible representations.

The general definition of the universal associative envelope is as follows.
Suppose that B is a subspace, of an associative algebra A over the field F, closed
under the n-ary multilinear operation

(a1, . . . , an) =
∑

σ∈Sn

xσaσ(1) · · · aσ(n) (xσ ∈ F).

Write d = dim B and let b1, . . . , bd be a basis of B over F; we then have the
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structure constants for the resulting n-ary algebra structure on B:

(bi1 , . . . , bin) =

d∑

j=1

cj
i1···in

bj (1 ≤ i1, . . . , in ≤ d).

Let F 〈B〉 be the free associative algebra generated by the symbols b1, . . . , bd (this
ambiguity should not cause confusion). Consider the ideal I ⊆ F 〈B〉 generated
by the dn elements

∑

σ∈Sn

xσbiσ(1)
· · · biσ(n)

−

d∑

j=1

cj
i1···in

bj (1 ≤ i1, . . . , in ≤ d).

The quotient algebra U(B) = F 〈B〉/I is the universal associative enveloping al-
gebra of the n-ary structure on B; by assumption, the natural map B → U(B)
will be injective, since the n-ary structure on B is defined in terms of the associa-
tive structure on A. This generalizes the construction of the enveloping algebras
of Lie algebras, where I is generated by the elements bibj − bjbi − [bi, bj ], and of
Jordan algebras, where I is generated by bibj + bjbi − bi ◦ bj . If B is a finite-
dimensional Lie (resp. Jordan) algebra, then U(B) is infinite-dimensional (resp.
finite-dimensional).

More generally, the same construction applies to any n-ary algebra which
satisfies the same low-degree polynomial identities as the n-ary operation (a1, . . . ,
an). This gives rise to a universal associative enveloping algebra; however, the
natural map B → U(B) is no longer necessarily injective: for example, the
universal enveloping algebra of an exceptional Jordan algebra. Once a set of
generators for the ideal I is known, one can compute a noncommutative Gröbner
basis for this ideal, and then use this to obtain a basis and structure constants
for U(B).

7.3. An example. We make the vector space of n× n matrices of trace
0 into a ternary algebra Cn with the cyclic commutator ω(x, y, z) = xyz − yzx
as the trilinear operation. In the simplest case, n = 2, we have this basis for C2:

a =

[
1 0
0 −1

]
, b =

[
0 1
0 0

]
, c =

[
0 0
1 0

]
.

The universal associative envelope U(C2) is the quotient of the free associative
algebra with three generators (also denoted a, b, c) modulo the ideal generated by
the elements xyz − yzx− ω(x, y, z) for x, y, z ∈ {a, b, c}. This gives the following
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set of 24 ideal generators, in reverse degree lexicographical order:

(7)






c2b − bc2, c2b − cbc + c, c2a − ac2, c2a − cac,

cbc − bc2 − c, cb2 − bcb + b, cb2 − b2c, cba − acb,

cba − bac − a, cac − ac2, cab − bca + a, cab − abc + a,

ca2 − aca − 2c, ca2 − a2c, bcb − b2c − b, bca − abc,

b2a − ab2, b2a − bab, bac − acb + a, bab − ab2,

ba2 − aba − 2b, ba2 − a2b, aca − a2c + 2c, aba − a2b + 2b.

We compute a Gröbner basis for this ideal following the ideas of Bergman [2]
and the exposition by de Graaf [18]. We self-reduce the set of generators (7) by
performing noncommutative division with remainder in order to eliminate terms
which contain leading monomials of other terms. This leaves a set of 16 ideal
generators:

(8)






c2b − bc2, c2a − ac2, cbc − bc2 − c, cb2 − b2c,

cba − acb, cac − ac2, cab − abc + a, ca2 − a2c,

bcb − b2c − b, bca − abc, b2a − ab2, bac − acb + a,

bab − ab2, ba2 − a2b, aca − a2c + 2c, aba − a2b + 2b.

We find all compositions of these generators, obtaining 93 elements, and then
compute the normal forms of the compositions by reducing them modulo the
ideal generators; we obtain 18 elements which must be included as new ideal
generators:

(9)






a3cb − a3bc + 2abc + a3 − 2a, a3cb − a3bc − 2acb − a3 + 2a,

a2cb − a2bc − 2cb + a2, a2cb − a2bc + 2bc − a2,

c3, bc2, b2c, b2c − a2b + b,

b3, ac2, acb + abc − a, ab2,

a2c − c, a2b − b, c2, ca + ac,

b2, ba + ab.

We combine the generators (8) with the compositions (9), and self-reduce the
resulting set, obtaining a new set of 8 ideal generators:

(10) a2c − c, a2b − b, a3 − a, c2, cb + bc − a2, ca + ac, b2, ba + ab.
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We repeat the same process once more: finding all compositions of the generators,
and computing the normal forms of the compositions modulo the generators.
Every composition reduces to 0, and hence (10) is a Gröbner basis for the ideal.
From this we easily obtain a vector space basis for the universal envelope U(C2):
the cosets of the monomials which do not contain the leading monomial of any
element of the Gröbner basis. Hence U(C2) is finite dimensional and has this
basis:

(11) 1, a, b, c, a2, ab, ac, bc, abc.

The multiplication for this monomial basis is given in Table 5, where we write
monomials but mean cosets. If the product of two basis monomials is not a basis
monomial, then we must compute its normal form modulo the Gröbner basis.

Table 5. Multiplication table for monomial basis of U(C2)

· 1 a b c a2 ab ac bc abc

1 1 a b c a2 ab ac bc abc

a a a2 ab ac a b c abc bc

b b −ab 0 bc b 0 −abc 0 0

c c −ac a2 − bc 0 c −a + abc 0 c −ac

a2 a2 a b c a2 ab ac bc abc

ab ab −b 0 abc ab 0 −bc 0 0

ac ac −c a − abc 0 ac −a2 + bc 0 ac −c

bc bc abc b 0 bc ab 0 bc abc

abc abc bc ab 0 abc b 0 abc bc

We now compute the Wedderburn decomposition of U(C2) using the algo-
rithms described in the author’s survey paper [6]. The radical of U(C2) consists
of the elements whose coefficient vectors with respect to the ordered basis (11)
belong to the nullspace of the Dickson matrix (Table 6), but this matrix has full
rank. It follows that U(C2) is semisimple, and hence a direct sum of full matrix
algebras.

A basis for the center of U(C2) is easily found, and consists of these three
elements: 1, a − 2abc, a2. From this we obtain a basis of orthogonal primitive
idempotents for the center:

1 − a2,
1

2
a +

1

2
a2 − abc, −

1

2
a +

1

2
a2 + abc.
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Table 6. Dickson matrix for U(C2)





9 0 0 0 8 0 0 4 0

0 8 0 0 0 0 0 0 4

0 0 0 4 0 0 0 0 0

0 0 4 0 0 0 0 0 0

8 0 0 0 8 0 0 4 0

0 0 0 0 0 0 −4 0 0

0 0 0 0 0 −4 0 0 0

4 0 0 0 4 0 0 4 0

0 4 0 0 0 0 0 0 4





Table 7. The change of basis matrix for U(C2)

M =
1

2





2 0 0 0 0 0 0 0 0

0 1 0 0 0 −1 0 0 0

0 0 0 1 0 0 0 −1 0

0 0 1 0 0 0 −1 0 0

−2 1 0 0 0 1 0 0 0

0 0 0 −1 0 0 0 −1 0

0 0 1 0 0 0 1 0 0

0 −1 0 0 1 −1 0 0 1

0 −1 0 0 −1 1 0 0 1





The first idempotent generates a 1-dimensional ideal, and the second and third
each generate a 4-dimensional ideal. From this it follows that

(12) U(C2) ≈ F ⊕ M2(F) ⊕ M2(F).

Hence C2 has exactly three distinct irreducible finite dimensional representations:
the 1-dimensional trivial representation, the 2-dimensional natural representa-
tion, and another 2-dimensional representation which is in fact the negative of
the natural representation. Moreover, U(C2) satisfies the standard identity for
2 × 2 matrices. From this point of view C2 is more like a Jordan structure than
a Lie structure.

Further calculations give the matrix units in the 4-dimensional ideals, and
so we obtain another basis for U(C2):

E
(1)
11 , E

(2)
11 , E

(2)
12 , E

(2)
21 , E

(2)
22 , E

(3)
11 , E

(3)
12 , E

(3)
21 , E

(3)
22 .
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The columns of the matrix M in Table 7 give the coefficients of these basis
elements in terms of the original basis elements (11). The inverse matrix M−1

gives the coefficients of the original basis in terms of the matrix units, and from
the columns of the inverse we extract the representation matrices.

Remark 7.6. The theory of noncommutative Gröbner bases has been
extended recently to associative dialgebras by Bokut et al. [3]. An interesting
open problem is to use these results to construct the universal associative en-
veloping dialgebras of certain finite dimensional nonassociative dialgebras. In
the case that the enveloping dialgebra is finite dimensional, then it would be
useful to have a generalization to dialgebras of the classical Wedderburn struc-
ture theory for associative algebras. A first step in this direction has been taken
recently by Mártin-González [37].

7.4. Dialgebra analogues of the cyclic commutator. Applying the
KP algorithm to the ternary Jacobi identity gives three identities, each of which
is equivalent to the following identity relating the three new operations:

(a, b, c)3 + (b, c, a)2 + (c, a, b)1 ≡ 0.

Hence the third new operation can be eliminated using the equation

(a, b, c)3 ≡ − (c, a, b)1 − (b, c, a)2.

Applying the KP algorithm to the ternary Jacobi identity gives five identities:

(a, b, (c, d, e)1)1 ≡ ((a, b, c)1, d, e)1 + (c, (a, b, d)1, e)2 + (c, d, (a, b, e)1)3,

(a, b, (c, d, e)1)2 ≡ ((a, b, c)2, d, e)1 + (c, (a, b, d)2, e)2 + (c, d, (a, b, e)2)3,

(a, b, (c, d, e)1)3 ≡ ((a, b, c)3, d, e)1 + (c, (a, b, d)1, e)1 + (c, d, (a, b, e)1)1,

(a, b, (c, d, e)2)3 ≡ ((a, b, c)3, d, e)2 + (c, (a, b, d)3, e)2 + (c, d, (a, b, e)1)2,

(a, b, (c, d, e)3)3 ≡ ((a, b, c)3, d, e)3 + (c, (a, b, d)3, e)3 + (c, d, (a, b, e)3)3.

Eliminating the third operation gives five identities relating the first two opera-
tions:

(a, b, (c, d, e)1)1 − ((a, b, c)1, d, e)1 − (c, (a, b, d)1 , e)2 + ((a, b, e)1, c, d)1

+ (d, (a, b, e)1 , c)2 ≡ 0,

(a, b, (c, d, e)1)2 − ((a, b, c)2, d, e)1 − (c, (a, b, d)2 , e)2 + ((a, b, e)2, c, d)1

+ (d, (a, b, e)2 , c)2 ≡ 0,
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((c, d, e)1, a, b)1 + (b, (c, d, e)1 , a)2 − ((c, a, b)1, d, e)1 − ((b, c, a)2, d, e)1

+ (c, (a, b, d)1 , e)1 + (c, d, (a, b, e)1)1 ≡ 0,

((c, d, e)2, a, b)1 + (b, (c, d, e)2 , a)2 − ((c, a, b)1, d, e)2 − ((b, c, a)2, d, e)2

− (c, (d, a, b)1 , e)2 − (c, (b, d, a)2 , e)2 + (c, d, (a, b, e)1)2 ≡ 0,

((e, c, d)1, a, b)1 + ((d, e, c)2 , a, b)1 + (b, (e, c, d)1 , a)2 + (b, (d, e, c)2 , a)2

− (e, (c, a, b)1 , d)1 − (e, (b, c, a)2 , d)1 − (d, e, (c, a, b)1)2 − (d, e, (b, c, a)2)2

− (e, c, (d, a, b)1)1 − (e, c, (b, d, a)2)1 − ((d, a, b)1, e, c)2 − ((b, d, a)2, e, c)2

− ((e, a, b)1, c, d)1 − ((b, e, a)2, c, d)1 − (d, (e, a, b)1 , c)2 − (d, (b, e, a)2 , c)2 ≡ 0.

Applying the KP algorithm to the 45-term identity of Theorem 7.2 will produce
seven identities from which we can eliminate the third operation. All these iden-
tities together will define the dialgebra analogue of noncommutative Lie triple
systems.

If we apply the BSO algorithm to the cyclic commutator, ω(a, b, c) =
abc − bca, then we obtain these three dialgebra operations:

ω̂1(a, b, c) = âbc − bcâ, ω̂2(a, b, c) = ab̂c − b̂ca, ω̂3(a, b, c) = abĉ − bĉa.

We have the linear dependence relation,

ω̂1(a, b, c) + ω̂2(c, a, b) + ω̂3(b, c, a) = 0,

so we only retain ω̂1(a, b, c) and ω̂2(a, b, c). It is an open problem to determine
the polynomial identities of degrees 3, 5 and 7 satisfied by these operations in
every associative dialgebra, and to check whether these identities are equivalent
to those produced by the KP algorithm.

8. Conjecture relating the KP and BSO algorithms. In this
section we state a conjecture first formulated by Bremner, Felipe, and Sánchez-
Ortega [7]. Let F be a field, and let ω be a multilinear n-ary operation over F.
Fix a degree d and consider the multilinear polynomial identities of degree e ≤ d
satisfied by ω. Precisely, let Ae be the multilinear subspace of degree e in the
free nonassociative n-ary algebra on e generators. Let Ie ⊆ Ae be the subspace
of polynomials which vanish identically when the n-ary operation is replaced by
ω. The multilinear identities of degree ≤ d satisfied by ω are then

Id(ω) =
⊕

1≤e≤d

Ie.
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Applying the KP algorithm to the identities in Id(ω) produces multilinear iden-
tities for n new n-ary operations. Precisely, let Be be the multilinear subspace
of degree e in the free nonassociative algebra with n operations of arity n. Let
KP(Ie) ⊆ Be be the subspace obtained by applying the KP algorithm to Ie, and
define

KPd(ω) =
⊕

1≤e≤d

KP(Ie).

We now consider a different path to the same goal. Applying the BSO algorithm
to ω produces n multilinear n-ary operations ω̂1, . . . , ω̂n. Consider the multilinear
polynomial identities of degree e ≤ d satisfied by ω̂1, . . . , ω̂n. Precisely, let Je ⊆ Be

be the subspace of polynomials which vanish identically when the n operations
are replaced by ω̂1, . . . , ω̂n and define

Jd(ω̂1, . . . , ω̂n) =
⊕

1≤e≤d

Je.

Conjecture 8.1. If F has characteristic 0 or p > d then

KPd(ω) = Jd(ω̂1, . . . , ω̂n).

The conjecture states that these two processes give the same results when
the group algebra FSd is semisimple:

• Find the multilinear polynomial identities satisfied by ω, and apply the KP
algorithm.

• Apply the BSO algorithm, and find the multilinear polynomial identities
satisfied by ω̂1, . . . , ω̂n.

The conjecture is equivalent to the commutativity of this diagram:

ω
BSO

−−−−→ ω̂1, . . . , ω̂ny
y

Id(ω)
KP

−−−−→
Jd(ω̂1, . . . , ω̂n)

?
= KPd(ω)

The vertical arrows indicate the process of determining the multilinear polynomial
identities satisfied by the given operations.

Remark 8.2. A proof of this conjecture has recently been announced
by Kolesnikov and Voronin [30].
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9. Open problems. In this final section we list some open problems
related to generalizing well-known varieties of algebras to the setting of dialgebras.

The next step beyond Lie and Malcev algebras leads to the notion of Bol
algebras. Just as Lie algebras (respectively Malcev algebras) can be defined by
the polynomial identities satisfied by the commutator in every associative algebra
(respectively alternative algebra), so also Bol algebras can be defined by the
identities satisfied by the commutator and associator in every right alternative
algebra; see Pérez-Izquierdo [42], Hentzel and Peresi [27]. One can find the
defining identities for right alternative dialgebras by an application of the KP
algorithm, and then use computer algebra to determine the identities satisfied
by the dicommutator and the left, right, and inner associators in every right
alternative dialgebra. On the other hand, one can apply the KP algorithm to the
defining identities for Bol algebras. Are these two sets of identities equivalent?

Beyond Bol algebras, one obtains structures with binary, ternary and qua-
ternary operations, which are closely related to the tangent algebras of monoas-
sociative loops; see Bremner and Madariaga [9]. These structures can be de-
fined by the identities satisfied by the commutator, associator and quaternator
〈a, b, c, d〉 = (ab, c, d) − (a, c, d)b − a(b, c, d) in every power associative algebra.
What is the dialgebra analogue of these structures?

The tangent algebras of analytic loops have binary and ternary opera-
tions, which correspond to the commutator and associator in a free nonassociative
algebra; these operations are related by the Akivis identity:

[[a, b], c] + [[b, c], a] + [[c, a], b] ≡

(a, b, c) − (a, c, b) − (b, a, c) + (b, c, a) + (c, a, b) + (c, b, a).

To obtain the correct generalization of Lie’s third theorem to an arbitrary ana-
lytic loop, one must consider the infinite family of multilinear operations whose
polynomial identities define the variety of Sabinin algebras. The basic references
on Akivis and Sabinin algebras are Pérez-Izquierdo [43], Shestakov and Umirbaev
[46]. What can one say about Akivis dialgebras and Sabinin dialgebras?

In a different direction, a generalization of dialgebras to structures with
three associative operations has been considered by Loday and Ronco [36]; see
also Casas [15]. It would be interesting to generalize the KP algorithm to the
setting of trialgebras: that is, for any variety of nonassociative structures, give a
functorial definition of the corresponding variety of trialgebras. For recent work
on this problem, see Gubarev and Kolesnikov [25]. One can also consider the
application of the KP algorithm to the variety of associative dialgebras: this
would produce a variety of structures with four associative operations satisfying



Algebras, dialgebras, and polynomial identities 133

various identities. This procedure can clearly be iterated n times to produce
a variety of structures with 2n associative operations related by certain natural
identities.
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les algèbres de Leibniz. Comm. Algebra 31 (2003), 527–544.

[2] G. M. Bergman. The diamond lemma for ring theory. Adv. Math. 29
(1978), 178–218.

[3] L. A. Bokut, Y. Chen, C. Liu. Gröbner-Shirshov bases for dialgebras.
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