-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by Bulgarian Digital Mathematics Library at IMI-BAS

Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica
Mathematical Journal

Cepauka

MareMaTnuyeCcKo CIIMCAHUE

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on

Serdica Mathematical Journal
which is the new series of

Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica

or contact: Editorial Office

Serdica Mathematical Journal

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg


https://core.ac.uk/display/132338808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Serdica

Serdica Math. J. 38 (2012), 43-68
Mathematical Journal

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

ON SOME RECENT RESULTS
ABOUT THE GRADED GELFAND-KIRILLOV DIMENSION
OF GRADED PI-ALGEBRAS

Lucio Centrone

Communicated by Pl. Koshlukov

This paper is dedicated to Professor Y. A. Bahturin for his 65-th birthday.

ABSTRACT. We survey some recent results on graded Gelfand-Kirillov di-
mension of Pl-algebras over a field F' of characteristic 0. In particular,
we focus on verbally prime algebras with the grading inherited by that
of Vasilovsky and upper triangular matrices, i.e., UT,(F), UT,(F) and
UT, (E), where E is the infinite dimensional Grassmann algebra.

1. Introduction. The interest of algebraists in this invariant started in
1966 from two papers published by Gelfand and Kirillov (see [25], [26]). The first
study of the properties of the Gelfand-Kirillov (GK) dimension started in 1976
in a paper of Borho and Kraft ([16]). Now this dimension is a standard tool in
the study of non-commutative algebras. Before 1976 a key role has been played
by Krull dimension in the investigation over non-commutative rings. Moreover,
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the Gelfand-Kirillov dimension sometimes provides information about the Krull
dimension but it is often easier to compute. For a more detailed account of the
algebraic properties and related topics of the GK dimension of algebras, we refer
to the book of Krause and Lenagan ([33]).

The GK dimension is an important tool also in the theory of algebras
with polynomial identities (PI-algebras). It is well known that PI-algebras are
a generalization of commutative algebras; in particular they have nice structure
theory, similar to that of commutative algebras (see [39]). Due to the fact that the
Gelfand-Kirillov dimension is well behaved for commutative algebras, it might be
hoped that it could be very useful in the study of Pl-algebras. Nevertheless, there
are non-commutative Pl-algebras whose GK dimensions are real (non integer)
numbers, exhibiting one of the possible undesirable behaviors with respect to the
commutative case.

Although the previous facts may not realize a full parallelism between
commutative algebras and non-commutative Pl-algebras, the GK dimension pro-
vides a nice tool in order to measure “how big” is the algebra of the polynomials
under the polynomial conditions of the identities of a certain algebra. More pre-
cisely, if A is a Pl-algebra, we use to define the GK dimension of A as the GK
dimension of its relatively free algebra in a certain number of variables. In [12]
Berele proved that the GK dimension of a finitely generated PI-algebra is finite.
Indeed, if A and B are Pl-algebras that are Pl-equivalent, i.e., with the same
ideal of polynomial identities, they have the same GK dimensions. In the light of
this fact, Alves ([3], [4]) and Azevedo, Fidelis and Koshlukov ([6]) were able to
determine some important PI-non equivalences in positive characteristic proving
the fact that the Tensor Product Theorem is no more valid in positive character-
istic. We suggest the survey of Drensky ([23]) for a general overlook of problems
concerning the GK dimension of Pl-algebras.

By the theorem of Kemer ([30]), we have that the T-ideals of polynomial
identities of associative algebras over fields of characteristic 0 are finitely basis.
Nevertheless the finite set of generators of the T-ideals is well known only for few
classes of algebras, then we are allowed to study something “weaker” than the
polynomial identities, i.e., the graded polynomial identities. In [2] Aljadeff and
Kanel-Belov proved the analog of the theorem of Kemer in the graded case. As
well as for the ordinary case, the GK dimension of the relatively free graded alge-
bra can give an idea of “how big” is the set of the graded polynomials under the
polynomial conditions of the graded identities of a graded algebra. In this survey
we want to recall some standard facts about the GK dimension of Pl-algebras
and we want to summarize the first results of the author (see [17] and [18]) con-
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cerning the graded GK dimension of graded Pl-algebras already presented in the
occasion of the international workshop “Polynomial identities in algebras II”. We
also provide sketches of the proofs of the main results and we present some “work
in progress” problems linked to this topic.

2. Preliminary results. We fix a field F' and we consider associative
F-algebras with 1. We start off with the following definition:

Definition 2.1. Let A be an F'-algebra generated by a finite set {ry, ... ,rm}.
Let

V" =span(ry, ---1, |4, =1,...,m),n=0,1,2,...
we assume VO = F. The function of the non-negative argument n

gv(n) =dimp(VO+ V4 + V") n=0,1,2,...
is called the growth function of A (with respect to V.= V). The Gelfand-Kirillov
dimension of A is defined by

GKdim(A) := limsup(log,, gy (n)) = limsup M.

n—oo n—oo ].Og n

We shall recall now some of the properties of the GK dimension. The
proofs can be found in [33].

Proposition 2.2. Let A be a finitely generated F-algebra. Then:
(1) The Gelfand-Kirillov dimension of A does not depend on the generating
space V.
(2) If B is either a subalgebra or a homomorphic image of A, then

GKdim(B) < GKdim(A).
(3) GKdim(A) = 0 if and only if A is finite dimensional. Otherwise
GKdim(A) =1 or GKdim(A) > 2.

(4) If A is commutative, then its GK dimension equals its transcendence degree.
(5) If B is a finitely generated subalgebra of Z(A), i.e., the center of A, such
that A is finitely generated as a B-module, then

GKdim(A) = GKdim(B).
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We consider now algebras with polynomial identities. We recall that if
X = {z1,z2,...} is a countable set of variables, a polynomial f(z1,...,z,) €
F(X) (free associative algebra, freely generated by X) is said to be a polynomial
identity for the algebra A if f(aq,...,a,) =0 for all ay,...,a, € A. The algebra
A is said to be an algebra with polynomial identities (or PI-algebra), if there
exists a non-trivial polynomial identity for A. The set T'(A) of all polynomial
identities of A is a two-sided ideal of F'(X), called T-ideal of A. The algebra

Fk(A) = F<J}1, o ,.I'k>/(F<.I‘1,. .. ,ZCk> ﬂT(A))

is called the relatively free algebra of rank k of A. Using the language of variaties,
the class V = V(A) of all algebras S such that T'(A) C T'(S) is called the variety
of algebras generated by A.

In the case A is a Pl-algebra, it is often used the definition of GK dimen-
sion in k variables:

Definition 2.3. Let A be a Pl-algebra, then the GK dimension of A in
k wvariables s
GKdimg(A) := GKdim(Fy(A)).

In the next proposition we shall recall some important results concerning
the GK dimension of Pl-algebras.

Proposition 2.4. Let A be a Pl-algebra, then:
(1) If A is finitely generated, then GKdim(A) < oo.
(2) If A is prime, then GKdim(A) = tr.degp(A) .
(3) If A is finitely generated prime, then GKdim(A) is a non-negative integer.
(4) GKdimg(A) is a non-negative integer.
(5)

5) If T(A) = T(A1)T(As) then GKdimy,(A) = GKdimy(A;) + GKdimy,(As).

In order to give the definition of graded GK dimension for graded PI-
algebras, we shall recall some basic facts about graded polynomial identities.
From now on all fields we refer to are of characteristic 0.

Let (G,-) = {g1,...,9s} be any group of finite order s and A be an
algebra. Then A is said to be a G-graded algebra if there exist subspaces A9 for
each g € GG such that

A= @AQ and A9A" C A9,
geG

If 0 #£ a € A9 we say that a is homogeneous of G-degree g or G-graded homoge-
neous of G-degree g, and we write ||a|| = g.
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Let {X¥ | g € G} be a family of disjoint countable sets. Let X = (J, o X7
and denote by F'(X) the free associative algebra freely generated by the set X. An
indeterminate = € X is said to be of homogeneous G-degree g, written ||z| = g,
if x € X9. We shall always write 29 if x € X9. The homogeneous G-degree
of a monomial m = wm;,x;, - -, is defined to be |m| = ||z - ||z - --- -
|zi.||. For every g € G, denote by F(X)9 the subspace of F'(X) spanned by
all the monomials having homogeneous G-degree g. Notice that F'(X) is also a
G-graded algebra. The elements of the G-graded algebra F(X) are referred to
as G-graded polynomials or graded polynomials. If A is a G-graded algebra, a
G-graded polynomial f(z1,...,x,) is said to be a graded polynomial identity of
Aif f(ai,ag,...,a,) = 0 for all a1, as,...,a, € UQGGAQ such that a; € All*rl
k=1,--- ,n. Moreover, we say that the G-graded algebra A is a G-graded PI-
algebra if it satisfies a graded polynomial identity. Notice that if G is a finite
group and A is a G-graded Pl-algebra, then A is a Pl-algebra, too (see [9] for
more details). We denote by Tg(A) the ideal of all graded polynomial identities
of A.

We shall denote with the symbol F, kG (A) the relatively free algebra

Feft, oo et oa, a1l J(Fay, o ooadt, el a)) N Ta(A)).

It is called the relatively free G-graded algebra of A in k variables.

The theory of G-graded Pl-algebras is strictly related to the representa-
tion theory of the symmetric group. For this purpose, the following set plays a
key role:

Definition 2.5. Let

PY = span(:z:il(ll)xcg;é) e Q;Zi&)\gi € G,o0€8y).

The elements of PT? are called the multilinear polynomials of degree n of F(X).
We observe that P& is a left S,-module under the natural action of the

symmetric group S, and a vector space over F'; we denote the S,-character of

the factor module P& /(PS NTa(A)) by x&(A), and by & (A) its dimension over

F. We say that

(XE(A))%N is the G-graded cocharacter sequence of A;

(CS(A))neN is the G-graded codimension sequence of A.
Now, for lg,,...,ls, € N let us consider the blended components of the

multilinear polynomials in the indeterminates labeled as follows: z7',... ,:cfgll,
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g2 g2 e 1 G
then T AERTRRERE Mt and so on. We denote this linear space by Plglv---,lgs' Of
course, this is a left 5;, x---x .5, -module. We shall denote by Xgl ol (A) the
G G
character of the module Plgl,...,lgs/(Plgl odgs ) Ta(A)).

We remark that, given the cocharacter Xg1 ol (A), the graded cochar-

E]

acter X% (A) is known as well as in the next proposition of Di Vincenzo (see [20],
Theorem 2):

Proposition 2.6. Let A be a G-graded algebra with graded cocharacter
sequences chgjl,...,lg (A). Then

(A= > X, (A

(lgl 7"'7195)
lgl +...+1g3:n

We consider now the following definition:

Definition 2.7 (Graded Gelfand-Kirillov dimension in k variables). Let
G ={g1,...,9s} be a finite group and A a G-graded Pl-algebra. The G-graded
Gelfand-Kirillov dimension of A in k variables is

CKdim$ (A) := GKdim(F (A))

where the new sk non-commutative variables are z7*,..., 29, ... ,:czl, e ,xi‘“.

Notice that we have defined the G-graded GK dimension of A in k vari-
ables as the GK dimension of F¥(A) that is generated by sk variables. That
is because in the original definition suggested by Di Vincenzo the idea was to
“spread” each of the k ordinary variables into |G| = s graded variables.

Definition 2.8. Let G = {¢1,...,9s} be a finite abelian group of order
s. Let A be a G-graded Pl-algebra and Fy, . 1, be its relatively free G-graded
algebra in the variables Ty == {t11,...,tig, }, .- s Ts := {ts1,. .., tsk, }, where the
variables in T are of G-degree 1 and the variables in T are of G-degree gs. It is

well known that Fy, 1, 15 a ZF1ttks _graded algebra. The formal power series

s

HG(A;Tlv"' 7TS) =

@

N1y My 5o sMg—1 yeeny Tl 8 Ns—1

( 1 ’ sz k41 -Zl kz) - SZ o1 nzg: L

— 3 1=1 = n1 1 i=1 T

= g dlkalquS ‘ t13 '--t1k1 N =1
n

is called the Hilbert Series of A in the sets of variables Ty, ..., Ts.
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Indeed, the growth function of Fy, ;. with respect to the vector space

s

V =spanp(Th U---UTs)

(nl"“’ni k:)
gv(n) = Z dimp Fklk B

n1+---+nzf=1 ;="

is

We note that if the coefficients of the G-graded Hilbert series of A are bounded
by a polynomial of degree g, then the growth function of Fj, 1, is bounded by
a polynomial of degree ¢ + 1 and GKdimkG(A) <q+1.

Moreover, notice that the Hilbert series H%(A;Ty,...,Ts) is uniquely
determined by the integers my, ..., ms counting the number of variables in T U
-+ UTy of G-degrees respectively equal to 1g,...,9s. We denote such series by

s

Hml,...,ms (A7 T17 ce 7TS)'

The G-graded cocharacters of a G-graded algebra A are strictly related with the
Hilbert series of the relatively free algebra of A. We have the following (see
[13],[24]):

Proposition 2.9. Let A be a G-graded algebra and mq,...,ms € N.
Suppose that Xm,,...m, = Zul,---,us My Xpat yoooprs - LIEN

Hypyoom (AT T = Y gy Sy (T1) -+ Sy (T)
S il =Y mi

where Sy, (T1),...,Su,(Ts) are the Schur functions with shape 1, ..., js in the
sets of variables 11, ..., Ts respectively.

3. General results about graded GK dimension. In this section
we present some general results about the algebraic properties of the graded
GK dimension of graded Pl-algebras. In order to make a comparison with the
ordinary case, these results are to be seen in the light of Proposition 2.4. We
start with the following definition:

Definition 3.1. Let ¢ and x be characters of the symmetric group Sp.
We consider the decompositions of ¢ and x into irreducible characters, say

P=maxa X = mixa

AFn AFn
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where my and m\ are non-negative integers. We shall write
¢ < x if and only if my < m/, for all A\ Fn.

We have now the following proposition (see [20] Theorem 2):

Proposition 3.2. Let A be a G-graded algebra with ordinary cocharacter
sequence xn(A). Then

Xn(A4) < x;7(A).
The next results gives us an upper bound for GKdim$ (A):

Proposition 3.3. Let G be a finite abelian group such that |G| = s and
A be a G-graded algebra. Then for any k € N, k> 1,

GKdim{ (4) < GKdim,(A).
Proof. Let G = {g1,...,9s} and let us consider the map

©: Fu.(A) — FF(A)

such that
T —
Ty — )
zp — x)
g2
Tpp1 +— i

Lok Ty

T(s—1k+1 = 27

Tgp +— xis.

If we extend ¢ by linearity it turns out that ¢ is a onto homomorphism.
Now the assertion comes in the light of the point (2) of Proposition 2.2. O

From the previous result it turns out that:
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Corollary 3.4. Let A be a G-graded Pl-algebra, where G is a finite
abelian group. Then for any k > 1

GKdim$ (A) < oo.

Proof. We have just to observe that for any ¢ > 2, GKdim;(A) < oo,
then we use the previous proposition. O

Proposition 3.5. Let G be a finite abelian group such that |G| = s and
A be a G-graded algebra. Then for any k € N, k > 2,

GKdimy(A4) < GKdim{ (A).
Proof. By Proposition 3.2 we have that

Xn(A) <x§(A) = > XSG L (AP
S ni=n

The right hand side of the previous inequality equals

Z m>\17---7>\sx)\1,~“7>\s'
> [Ail=n

In the light of Proposition 2.9, we have that

Hy(A) < ) Hupon,(4)
>oni=n

if you consider one variable only. Now the result follows comparing the growth
functions. O
We have the following proposition:

Proposition 3.6. Let G be a finite abelian group such that |G| = s and
A be a finitely generated G-graded Pl-algebra. Then for any k € N we have that:

GKdimy(A) < GKdim$ (A4) < GKdimgy(A).

We consider now some structural aspects. From the structure theory of
Pl-algebras we have the following theorem of Posner (see [37]):

Theorem 3.7. Let A be a prime Pl-algebra, then its central quotient
algebra is a finite dimensional simple algebra.

We mention that the Theorem of Posner is one of the main tool in the
proof of the point (2) of Proposition 2.4. As well as in the ordinary case, the
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graded version of the Theorem of Posner of Balaba ([11]) has a key role in the
proof of the following (see [18]):

Theorem 3.8. Let G be an abelian or an ordered group. If A is a
G-graded prime Pl-algebra, then

GKdim(A) = tr.deg(A).

In order to sketch the proof of the previous theorem, we recall some
definitions and results. If G is any group and A is a G-graded algebra, we denote
with the symbol h(A) the set of the G-homogeneous elements of A. We denote by
Zgr(A) the maximal graded subalgebra in the center of A, i.e., the graded center
of A. Now we have the following definition:

Definition 3.9. A graded ideal P of a graded ring A is called graded
prime if whenever aAb C P, where a,b € h(A), either a € P or b € P. Moreover,
a graded ring A is called graded prime if (0) is a graded prime ideal of A.

Recall that by Proposition 1 of [11], the localization Ag of A over S, where
S is a set of homogeneous elements of the center Z(A) of A, is a G-graded PI-
algebra of central quotients of A. An algebra Q(A) O A is called the left (right)
graded algebra of quotients of A if:
(1) each homogeneous regular element from A is invertible in Q(A);
(2) each homogeneous element x € Q(A) has the form a~'b (ba—!), where
a,b € h(A) and a is a regular element.
The following theorems generalize the Theorem of Posner for the graded
case:

Theorem 3.10. Let A be a G-graded graded prime Pl-algebra, Z(A) the
center of A and S the set of homogeneous reqular elements of Z(A). Then:
(1) S = h(Z(A)):
(2) the algebra of quotients Ag is a G-graded graded prime PI-algebra;
(3) Zyr(As) = Zyr(A)s.

Theorem 3.11. Let A be a G-graded graded prime Pl-algebra and Ag
the algebra of central quotients of A. Then:
(1) Ag is finite dimensional graded-simple over its graded center Z and Z is
the graded field of quotients of Zy-(A);
(2) Ay is the graded algebra of quotients of A;
(3) A and Ay satisfy the same identities.

We consider the G-graded algebra A, then by the graded version of the
Theorem of Posner we can consider its graded algebra of quotients, to say, @
such that GKdim(@)) = GKdim(A). In the light of Theorems 3.10 and 3.11, A
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has a graded algebra of quotients @) satisfying the same identities of A. By the
point (2) of Theorem 3.11, we have that @ is finite dimensional over its graded
center Zg,(Q) = Z(Q). Hence GKdim(Q) = GKdim(Z(Q)) but GKdim(Z(Q)) =
tr.degp(Z(Q)) then the Theorem 3.8 follows.

4. The verbally prime algebras. In order to motivate the study of
the invariant of graded GK dimension for the verbally prime algebras, we give a
short account of the structure theory of T-ideals developed by Kemer [29].

Definition 4.1. The T-ideal S of F(X) is called T-semiprime or verbally
semiprime if any T-ideal U such that U¥ C S for some k, lies in S, i.e., U C S.
The T-ideal P is T-prime or verbally prime if the inclusion UyUs C P for some
T-ideals Uy and Us tmplies Uy C P or Uy C P.

The Grassmann algebra E of an infinite dimensional vector space with
basis {e1, es, ...} has a natural Zo-grading E = E© @ EW. Let a,b, where a > b,
be positive integers and let M,,;(E™M) be the vector space of all a x b matrices
with entries from E(). The vector subspace of M, ,(E), where M, (E) is the
n X n matrix algebra with entries from the Grassmann algebra,

is an algebra. The building blocks in the theory of Kemer are the polynomial iden-
tities of the matrix algebras, the Grassmann algebra and the algebras M, ;,(E).
In fact, we have the following theorem:

Theorem 4.2.
(1) For every T-ideal U of F(X) there exist a T-semiprime T-ideal S and a
positive integer k such that

skcucs

(2) Every T-semiprime T-ideal S is an intersection of a finite number of T-
prime T-ideals Q1,...,Qm,

S=QiN- N Qm.
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(3) A T-ideal P is T-prime if and only if P coincides with one of the following
T-ideals:

T(Mn(F))v T(Mn(E))v T(Ma,b(E))a (0)7 F<X>

By the theory of Kemer one can appreciate the importance of the verbally
prime algebras. In [38] Procesi and in [14] Berele gave a natural construction of
the relatively free algebras of M, (F), M,(E) and M,;(E) in terms of generic
matrix algebras. These descriptions of the relatively free algebras simplified the
computation of the GK dimension in k variables of the verbally prime algebras.
In particular, we have the following theorem (Procesi ([38]) for (1) and Berele
([14]) for (2) and (3)):

Theorem 4.3. Let k > 2, then:

(1) GKdimy(M,(F)) = (k — 1)n? + 1;
(2) GKdimy(M,(E)) = (k — 1)n? + 1;
(3) GKdimg (M, ,(E)) = (k —1)(a® + %) + 2.

Concerning the graded case, in [17] and [18], the author considered the
verbally prime algebras endowed with the grading induced by that of Vasilovsky.
We recall that if we consider M, (F'), the grading of Vasilovsky is an elementary
Zy-grading over M, (F') obtained by the n-tuple (0, 1,...,n—1). This elementary
grading extends in a natural way to a Z, x Zg-grading over M,,(E) and a Z g4 X Za-
grading over M, ,(E).

Let X and Y be two countable sets of variables and we consider the free
associative algebra F'(X UY). We observe that the latter algebra is a Zo-graded
algebra, where ||z|| = 0 and [|y|| = 1 for all x € X and y € Y. Moreover, we
consider the following relation on F(X UY): if a,b are Zo-homogeneous elements,
then ab = (—1)lellblpg. We denote this algebra with the symbol F[X;Y].

Let k,n € N and a, b such that a + b = n and set

X:{:L‘g)\jzl,...,n,r:1,...,k}

and
Y:{yz(;)h,j:l,,n,’r‘: 1,,]{3}

In analogy with the ordinary case, for every s = 1,...,k, let us consider
the following:

AW = Z a:z(;fl)epq,

llepqlI=(2)
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” %: o x;f])epq ifa=0¢€Z
Epq||=(2
> yz(gfl) epg fa=1¢€Z

llepql=(2)

Bgi’a) —

> 331(51) €pq

llepqll=(2)
ifa=0€Zyand1<p, ¢g<aora+1<p qg<a+b
(ia) —
Cs > yz(ufz)epq
llepqll=(4)

fa=1€Zoand1<g<a,a+1<p<a+bd
orl<p<a,a+1<qg<a+hb

\

Theorem 4.4.

(1) The algebra generated by AW s s isomorphic to FkZ" (M, (F)).

(2) The algebra generated by B g s isomorphic to FkZ"XZQ (M, (E)).

(3) The algebra generated by {9 s s isomorphic to F,?”XZ? (Mg p(E)).
Using direct computations with generic algebras, in [18], the author found

the growth functions of the following relatively free graded algebras:

Proposition 4.5.

(1)
g(n)(FE2 (M(F))) = 20+ 20+ 241
and
GKdim?? (My(F)) = 3
(2)
g(n)(F2"% (My1(E))) = n® + n +2
and

GKdim?*%2 (M, 1 (E)) = 2.

The knowledge of the Zs-cocharacter sequence of Ms(F') (Di Vincenzo
[19]) gave the possibility to generalize the previous result. In particular (see

[18]):

Proposition 4.6.

g(n)(F2 (Ma(F))) =
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B ism_s(s—iﬂ)s_%H s—i+k—1\[i+k—2
B L £ k—1 k—2 k—2

m—s—2j+1/m—-—s—j+k—1\[/j+k—2
k—2 k—2

that is a polynomial in n of degree 4k — 1, then

GKdim2? (M (F)) = 4k — 1.

An easy computation shows that tr.degF(FkZ”(Mn(F))) =kn?—n+1.
Combining the latter equation with Theorem 3.8, one has the following theorem
(see [17]):

Theorem 4.7.

GKdim" (M, (F)) = kn* —n + 1.

Finally, a joint combination of computation with graded cocharacters and
the previous theorem, gives the following theorem (see [18]):

Theorem 4.8.

(1) GKdim;™ (M, (F)) = kn*> —n+ 1.
(2) GKdimZ"*"2(M,(E)) = kn® —n + 1.
(3) GKdim,“*"*" (M, ,(E)) = k(a2 +b?) —a + 1.

We would like to sketch the technique used in [18] in order to prove
the point (3) of the previous theorem. For any r = 1,...,k and for any i =
0,...,n—1, let

DWW — o) 4 @1

T T T
and consider the algebra D generated by
{Dﬁi)\r: 1,...,kand i=0,...,n—1}.
It is easy to observe that Dy embeds into F,CZ”XZQ (Mg p(E)), then
GKdim(Dy,) < GKdim2"*%2 (M, ,(E)).

We also observe that Dy, is a homomorphic image of Fy(A) by the homomorphism
¢ such that
A,(f) — D,Ei).
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In order to compute the GK dimension of Dj we are allowed to study the
asymptotic behavior of the 0-component of Dy because in Dy, as for F(A), any
monomial of degree i is determined by its (1,7 + 1)-entry.

First of all, we observe that there exists a one-to-one correspondence
between the monomials M of Fi(A) of Z,-degree 0 that are independent modulo
the Ty, -ideal of M, (F'), and the monomials m = $1(Di11q)l e xéitgt in the commuting
variables {xg(fhhq)h , appearing in the (1, 1)-entry of M, such that q;, = pp41 for any
h, and ||g: — p1|| = 0. Let M} be the algebra generated by the monomials M and
mg be the algebra generated by the monomials m, then M ,8 and mg are isomorphic
F-algebras through the homomorphism . Analogously, there exists a one-to-
one correspondence between the monomials M’ of Dy, of Z,-degree 0 that are

independent modulo the 77, -ideal of Dy, and the monomials m’ = z]gillq)l e zz(,itq)t in

the commuting variables {:L‘J(D%)h, yg(,iqiz)qj}, appearing in the (1,1)-entry of M’, such
that g, = ppt1, for any h, and ||z — p1]| = 0. Let W} be the algebra generated
by the monomials M’ and w) be the algebra generated by the monomials m’,
then W,g and wg are isomorphic F-algebras through the homomorphism ¢’. It is
easy to see that W = o(M}), then there exists an unique onto homomorphism

v mg — wg such that the following diagram is commutative:

MY L W

o v

o
my ——> wy

We note that the homomorphism ~ is such that :L‘I(JZ) — :L‘I(JZ) if (p,q) € J, where
J is the set of indices lying in the left upper corner of size a or in the lower right
corner of size b, and 331(71;1) — y](gz) otherwise.

For any v € N consider the F-subspace M ,871, of M} formed by all mono-
mials in M,? of total degree v. If R = {p1,...,pq} is a basis of MOW, due to
the fact that + is an epimorphism, v(¢)(R)) is a system of generators of the

vector space w , then the elements in v(¢)(R)) are monomials £a]"' 232 - -

ylia . ylingiar o gman such that > (ijyes Mij + 2 jy¢s lij = v- Notice that
for any (i,j) ¢ J, l;; is limited by 1. Then the number of variables that give a
non-zero contribute to the Gelfand-Kirillov dimension of D, is the total number

of variables minus the number of variables ?Jz(az) such that (p,q) ¢ J and, from the

latter, we have not to take into account those .I‘S), a+1 <1 <n. In particular,
they are in number of k(a + b)? —n + 1 — 2kab + b that is k(a® + %) —a+ 1. In
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other words:
CKdim(Dy) = k(a* + b*) —a + 1.

Now the theorem follows from Proposition 5.8 of [17].

5. Upper triangular matrices. We shall present the results concern-
ing the ordinary and the graded GK dimension of the upper triangular matrices,
ie., UT,(F), UT,(F) and UT, ;(E) that is UT,(E)NM,(E). We recall that the
algebra of upper triangular matrices UT,,(F) is a central object in the theory of
PI-algebras satisfying a non-matrix polynomial identity or, equivalently, having
identities that do not hold for My(F'). For example, in [34] Latyshev proved that
every finitely generated Pl-algebra satisfying a non-matrix identity satisfies the
identities of UT, (F) for a certain n. It follows that the polynomial identities
of UT,(F) may serve as a measure of the complexity of the polynomial identi-
ties of finitely generated algebras with non-matrix identity in the same way as
the polynomial identities of M, (F) measure the complexity of the identities of
arbitrary Pl-algebras. Moreover, the T-ideals of UT,(F') and UT,(FE) are also
important because they are examples of maximal T-ideals of a given exponent of
the codimension sequences (for more details, see the work of Drensky [22]).

We start with the following easy result:

Proposition 5.1. For any k > 2 and any n > 1,
GKdimg (UT,(F)) = kn.

As an easy consequence of the Theorem of Lewin ([35]) and of the previous
result, one has that:

Proposition 5.2. For any k> 2 and any n > 1,
(1)
GKdimg (UT,(E)) = kn,

(2)
GKdlmk(UTmb(E)) = k:(a + b)

The next three results of Markov (see [36]) concern the GK dimension of
finitely generated Pl-algebras satisfying non-matrix polynomial identities.
Theorem 5.3. Let A be a finitely generated algebra satisfying a non-

matriz polynomial identity. Then GKdimg(A) = kd, where d is the mazimal
integer such that UTy(F) € V = V(A).

Proposition 5.4. The following conditions on a variety of algebras V
are equivalent:
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(1) UTy(F) ¢ V;
(2) GKdim(S) = GKdim(S/J(S)) for any finitely generated algebra S from V,
where J(S) is the Jacobson radical of S.

Proposition 5.5. The following conditions on a variety of algebras V

are equivalent:
(1) UT5(F) ¢ V;
(2) GKdim(S) is an integer for any finitely generated algebra S from V.

We consider now the graded case. In [21], Di Vincenzo, Koshlukov and
Valenti, found an explicit basis for the Tg-ideal of the algebra UT,(F) with
any elementary G-grading and where G is a finite group. In particular, UT, (F')
inherits the Vasilovsky Z,-grading from M, (F'). We have that (see [32] and [21]):

Theorem 5.6. The Ty, -ideal of UT,(F) with the Vasilovsky grading is
generated as a Zyn-ideal by

0) (0
2”25
and
22 where n < r + s.

As long as for the verbally prime algebras, for every s = 1,...,k, let us
consider the following:

UAY = Z x;f]) €pqs

llepqll=(2),p<q

> J:J(Dsq)epq ifa=0¢€Zo

UB(i,a) — llepgll=(?),p<q
’ > y,ﬂf}epq ifa=1€Z
llepqll=(2)
$1(0f1)€pq
llepqll=(%).p<q
o) fa=0€Zoand 1<p<g<aora+1<p<qg<a+bd
ucg =
> yz(afz)epq
llepqll=(2)
| fa=1€Zyand1<p<a,a+1<qg<a+bd
Theorem 5.7.

(1) The algebra generated by UAD s s isomorphic to FkZ" (UT,(F)).
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(2) The algebra generated by UB&) %5 s isomorphic to F,?”XZ? (UT,(E)).
(3) The algebra generated by Uct s s isomorphic to FkZ"XZQ (UT,p(E)).

In the light of the previous theorem, the next propositions ([17]) give
a complete description of the multi-homogeneous monomials of FkZ"(U T.(F)),
FF*P2(UT,(E)) and FP*7(UT, 4(E)).

Proposition 5.8. Let M := M(xy,...,zy) and N := N(z1,...,2,,) be
two non-zero monomials of R := F(zY,... ,x?il, e ,xZA). Suppose further that
M, N belong to the same multi-homogeneous component of R. If M = x;, - - - x;,,
and N = xj, ---xj,,, let S =: {s|||z;,|| =0} and T := {sl|||z;,|| = 0}. Then M =
N(mod I) if and only if for any k ¢ S, ix, = ji. and if {s,s+1,s4+2,...,s+k} C S,

for any 1l =0,...,k one has that x; ., = x; . for some m=0,... k.

Proof. (Sketches) Suppose M = N (mod I) and, for simplicity, that
M| = ||N| = 0. If Ay,..., A, are graded homogeneous elements, we shall
denote

M::M(Al,...,Am)

and
N:Z N(Al,,Am)

then, M and N have at the same positions the same non zero entries. We shall
compare the (1,1) entry of M with the (1,1) entry of N. Then

Myp = (@) (afy )l

)

. e (1) 2,1, . (p(n=1) lp+2,n—1
leal Xapyolp+l (xap+1 yOp41 ) (xaerl yQp+1 ) )

Nia = (i)™ - (gl )y,

)

(1) (n,]‘) .
X1 Xp, 8,01 (xﬂpﬂ,ﬁpﬂ)mpﬂ’l e (lnﬁpﬂﬂpﬂ)mpw, 1

where we indicate with capitol X the variables appearing in the A;’s with Z,-
degree different from 0. We have that the sets

A = {Xl,alaXal,OQv e 7X0tp,ap+1}

and
B := {Xl,ﬂleﬁlﬂw s 7Xﬂp,ﬂp+1}v

where 1 < a1 <ag < -+ < aprrand 1 < B < o < -+ < Bpq1 must coincide

and it is easy to verify that X, = Xpg,, for any ¢ = 0,...,p. Finally,

041 Bi+1



Graded GK-dimension 61

we observe that the homogeneous element of Z,-degree 0 commute and we are
done. O

Proposition 5.9. Let M := M(xy,...,zy) and N := N(z1,...,2,,) be
two non-zero monomials of

S = F(xgo’o), ... 7x](€0,0)7 ... 7xgn71,0)’ ... ,x,(gnfl’o), J:gnfl’l), o ,x,(gnfl’l))

Suppose further that M, N belong to the same multi-homogeneous component.
If M = ;- 2, and N = xj,---xj,., let S1 =: {s|||zs,]| = (0,0)}, S =:
{slllzill = (0,1)}, T1 =: {slllzj. | = (0,0)} and Ty := {s|[|lx;,[| = (0,1)}. If
Jj € {1,2}, then M = N(mod I;) if and only if for any k ¢ S1 U Sa, i = ji, if
{s,5+1,5+2,...,5+k} €51, foranyl =0,...,k one has that x; _, = j,,.,
for somem =0,...,k and if {s,s+1,s+2,...,s+k} C So, foranyl =0,...,k
one has that x;_, = x;,., for some m =0,..., k. Moreover, |Sa| < 2.

Now we have the following result:

Theorem 5.10. GKdim"(UT,(F)) = nk.

Proof. (Sketches) In order to compute the growth function of
F, an (UT,(F)), we may compute the number n(m) of monomials of degree m of
the type
w=Y ---YXY--.YXY ---YXY--.Y

where the variables Y have Z,-degree 0 and the X have Z,-degree different from
0, for any m € N. In the light of Proposition 5.8, we have that n(m) depends only
on the variables of Z,-degree 0. Suppose w has [ variables of Z,-degree different
from 0, to say, Xi,...,X; and let my,...,mi41 be respectively the number of
variables of w of Z,-degree 0 lying respectively before Xi, between X; and Xo
and so on. If n(mq),...,n(my1) are the numbers of commutative monomials
in k variables of degree respectively my, ..., m;11, then the number of different
monomials w of degree m with [ element of Z,-degree different from 0 is

m—Il m—my—I m—Zf,-;} m;—l -1
mp+k—1 m—> . mi+k—1
0 5 oty X

m1=0 mo=0 m;=0

where a(X) is limited by (n — 1)!. Standard combinatorial arguments show that
n(m); is a polynomial in m of degree k(I + 1) — 1. It turns out that the growth
function of F, k,Z" (UT,(F)) is a polynomial in m of degree kn and the theorem
follows. O

Analogously we have that:
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Theorem 5.11. For any k,n > 1 and a,b € N such that a > b and
a+b=n,
(1)
GKdim2"**2(UT,(E)) = nk;

(2)
GKdim?"**(UT, (E)) = nk.

We can draw a sort of parallelism between the ordinary case and the
graded one. In fact, the graded GK dimensions seem to preserve the “relations”
among the ordinary GK dimensions of a certain Pl-algebra. For example, in the
ordinary case GKdimg (M, (F)) = GKdimg (M, (E)) and this equality holds also
in the graded case. Moreover,

GKdimy,(UT,(F)) = GKdim, (UT,(E)) = GKdimg (UT, 4(E))
but it is also true that
GKdimz™ (UT,,(F)) = GKdim2"*? (UT,(E)) = GKdim}" " (UT, (E)).

This means that the definition of graded GK dimension is, in a certain sense,
quite “natural”.

6. Open problems. In what follows we shall draw some problems
arising as advances of the recent studies and results in the theory of algebras
with polynomial identities.

We recall that an F-algebra A is said to be representable if it is isomorphic
to a subalgebra of M, (S), where S is a commutative ring. For example, the
relatively free algebras are representable (see [31]). We consider the following
result of Markov (see [36]):

Proposition 6.1. Finitely generated representable algebras over infinite
fields have integer GK dimension.

As a corollary, we have the following (see point (4) of Proposition 2.4):

Corollary 6.2. The GK dimension of any finitely generated relatively
free algebra over an infinite field is a non-negative integer.

We suggest to generalize the notion of representability to the graded case
in the following way:

Definition 6.3. Let A be a finitely generated G-graded algebra, where G
is a finite group. We say that A is G-representable if there exists a G-graded iso-

morphism from A to a G-graded subalgebra of M, (S), where S is a commutative
Ting.
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Following the idea of Markov, we state the following conjectures:

Conjecture 6.4. Finitely generated G-representable algebras over infi-
nite fields have integer GK dimension.

Conjecture 6.5. The G-graded relatively free algebras over infinite fields
are G-representable. Moreover, the graded GK dimension of a G-graded PI-
algebra is a non-negative integer.

Given a G-graded algebra A, where G is a finite group, the PI-properties
of the component A'¢ to a large extent predetermine the PI-properties of A. It
is well known that if A'¢ is PI, then A satisfies a non-trivial polynomial identity
(see [15]). More precisely, we have the following ([9], Theorem 5.3):

Theorem 6.6. Let G be a finite group. Consider a G-graded algebra
A= @geG A9. Suppose that A'G satisfies a polynomial identity of degree d. Then
A satisfies a polynomial identity of degree n where n is any integer satisfying the
nequality
G]" (IG]d —1)*"
(IG|d—1)!

In particular, if n is the least integer such that ¢|G|(|G|d — 1)? < n then A
satisfies a polynomial identity of degree n where e is the basis of the natural
logarithm.

We recall that in [28], [27] Giambruno and Zaicev proved that:
Theorem 6.7. If A is any Pl-algebra, then there exists the limit

exp(A) = lim /¢, (A)

n—~o0

and it is a non-negative integer called the Pl-exponent of A.

The relations between the identities of A'¢ and A have been studied in
a number of papers. For example, it is easy to show that if G is a finite group
and A'¢ is nilpotent then A is also nilpotent. If A'¢ satisfies a standard identity
of degree m then A satisfies some power of the standard identity of degree dm.,
where d is the order of G (see [15]).

The relations between identities of A and A'¢ can be defined in terms
of Pl-exponents of A and A!¢. Clearly, exp(A!¢) < exp(A) since A¢ is a
subalgebra of A. On the other hand, there are a lot of examples of graded
algebras satisfying the inequality

(1) exp(4) < |G exp(A'9).
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In [10], Bahturin and Zaicev conjectured that the inequality (1) holds for any
graded algebra with a non-trivial polynomial identity. Recently, this conjecture
has been solved into affirmative in the case G is a finite abelian group in a joint
work of Aljadeff, Giambruno and La Mattina (see [1]).

In the spirit of 1 and in the light of the result of [1], Aljadeff and the
author conjectured that:

Conjecture 6.8. Let G be a finite abelian group and A be a G-graded
Pl-algebra, then for any k > 1

CKdim{ (4) < |G|?GKdimy(A'¢).

We recall that if two algebras A and B satisfy the same polynomial iden-
tities we say that A is Pl-equivalent to B and denote by A ~ B. An important
corollary to the structure theory of Kemer is the Tensor Product Theorem (TPT):

Theorem 6.9. Let a,b,c,d € N such that a > b and ¢ > d and F be a
field of characteristic 0, then:
(1) Map(E) @ E ~ Mayp(E);
(2) ( ) ® Mc d(E) ~ Mac+bd,ad+bc(E);
(3) M11( )~EQE.

We focus on the fact that the behavior of the corresponding T-ideals in
positive characteristic has been studied in [6], [7] and [8]. It has also been proved
that the Tensor product theorem is still valid over infinite fields of characteristic
p > 2 as long as one considers multilinear polynomials only. In the paper [8]
the authors constructed an appropriate model for the relatively free algebra in
the variety of algebras determined by F ® E when the field F' has characteristic
p > 2. This model is the generic algebra of A = F'@ M, 1(E’) where E’ stands for
the Grassmann algebra without unit. It turned out that £ ® E and A satisfy the
same graded and hence ordinary polynomial identities. In [6] the authors used
the properties of A in order to show that that T'(M; 1 (E)) € T(E® E) in positive
characteristic. Using the ordinary GK dimension Alves and Koshlukov (see [5])
were able to prove the PI non-equivalence of some of the T-prime algebras in
positive characteristic. For example, we have the following:

Proposition 6.10. Let F' be a field of characteristic p > 2. Then for
any k > 2
GKdimi(F ® F) =k

and
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Due to the fact that for any k& > 2 one has that GKdimyg (M 1(E)) = 2k
and GKdimg (M2 (E)) = 4k — 2, it turns out that:

Corollary 6.11. Let F be a field of characteristic p > 2, then
EQFE = Ml,l(E)

and
Ml,l(E) QR FE ~ MQ(E)

In [7] the subalgebras Agp of M,yp(E) were introduced and these were
useful in establishing that T'(My(E)) € T(M1,1(F)). We recall that A, is the
subalgebra of M, ,(E) of all block matrices whose diagonal blocks of size a X a
and b x b have entries from F while the other two blocks are with entries from E’.
It was shown in [7] that M; 1(E) ® E ~ A; ;. In [7] the authors asked whether
M,p(E) ® E ~ Agp. In [4] Mota Alves proved that:

Proposition 6.12. Let F' be a field of characteristic p > 2 and a,b € N
such that a > b, then A, and Mo i(E) are not PI equivalent.

In the spirit of these results and keeping in mind that to show EQ F ~ A
one uses the graded identities, Koshlukov suggested to compute
GKdim_ "7 (M, ,(E)@ E) and GKdim_****?2(M,4(E)). For this purpose, we
notice that the graded identities of the latter algebras (either in characteristic 0 or
in characteristic p > 2) are well known. For the same reason it should be useful to
compute the graded GK dimensions of M, ,(E) ® M. 4(E) and Mactbd adtbe(E).

Acknowledgements. The author is very grateful to Prof. O. M. Di
Vincenzo for introducing him the problem.
The author wants to thank the referee for his/her valuable comments.
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