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Growing evidence suggests an alerting effect of monochromatic blue light on brain activity. Little 
is known about the moderation of those effects by timing and duration of exposure. The present 
electroencephalography (EEG) study examined such moderations on delta, theta, alpha1, alpha2, 
and beta EEG bands. A counterbalanced repeated-measures design was applied. The 16-hr day-
time period was divided into three sessions: 07:00-12:20, 12:20-17:40, and 17:40-23:00 (timing of 
exposure). Two light conditions comparable in luminance but differing in wavelength were ap-
plied, namely polychromatic white light and monochromatic blue light (460 nm). There were two 
durations of exposure—the shorter one lasting 30 min and the longer one lasting 4 hrs. Thirty male 
students participated in the study. Four factors analyses of variance (ANOVAs, for light conditions, 
timing of exposure, duration of exposure, and brain area) were performed on each EEG band. Re-
sults indicated an alerting effect of short exposure to monochromatic blue light at midday and in 
the evening, which was demonstrated by a decrease in lower frequency bands (alpha1, delta, and 
theta, respectively). Long exposure to blue light may have a reverse effect, especially in the morn-
ing and at midday, when increases in lower frequency bands (theta in the morning and theta and 
alpha1 at midday) were observed. It can be concluded that the daytime effect of monochromatic 
blue light on EEG activity depends on timing and duration of exposure.
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INTRODUCTION

An alerting effect of monochromatic blue light has been consistently 

reported in recent research. Earlier experiments searching for this 

effect on brain activity applied blue light at night-time. For example, 

Lockley et al. (2006) reported that 6.5 hr exposure to monochromatic 

blue light (460 nm) administered 9.25 hrs before wake time, in com-

parison to green light (555 nm) of the same photon density (2.8 × 1.013 

ph/cm²/s), increased electroencephalography (EEG) power density 

in the high-alpha range, decreased EEG power density in the delta-

theta range, reduced subjective sleepiness, and improved performance. 

Another study demonstrated that 6-hr exposure to blue light, as com-

pared to dim broad spectrum white light of the same level of lumi-

nance (7 cd/m²) administered at night (23:30-05:30), suppressed EEG 

delta and theta activity, reduced slow eye movements, and shortened 

reaction time (Phipps-Nelson, Redman, Schlangen, & Rajaratnam, 

2009). Forty-five min of night-time exposures (00:00-03:45) to both 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Jagiellonian Univeristy Repository

https://core.ac.uk/display/132335897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ac-psych.org


Advances in Cognitive Psychologyresearch Article

http://www.ac-psych.org2017 • volume 13(3) • 241-247242

short- (470 nm) and long-wavelength (630 nm) light of two levels of 

intensity (10 and 40 lux) preceded by 1 hr of darkness significantly 

increased beta and reduced alpha EEG power (Figueiro, Bierman, 

Plitnick, & Rea, 2009). In a further study by this group, application 

of the same light parameters and night-time exposure increased EEG 

beta power, reduced subjective sleepiness, and increased positive affect 

(Plitnick, Figueiro, Wood, & Rea, 2010). In brief, the night-time studies 

applied relatively long durations of exposures to monochromatic blue 

light as well as to a range of dim light intensities and wave lengths in 

both experimental and control conditions. 

There is also increasing evidence of an alerting effect of blue light 

administered during the day. Evening exposure (21:30-23:30) to blue 

light (460 nm), compared to green light (550 nm) of equal photon 

densities (2.8 × 1,013 photons/cm−2/s−1), resulted in a reduction in EEG 

slow-wave activity in the first cycle of subsequent sleep and in shorten-

ing rapid-eye movement (REM) sleep in the first two sleep cycles. This 

was interpreted as being an alerting effect after blue light exposure that 

persisted into the sleep episode (Münch et al., 2006). Earlier daytime 

exposure (7 hr after habitual awakening time and lasting 48 min) to 

red light (630 nm) and to blue light (470 nm) of the same level of il-

luminance (18.9 µW/cm², 40 lux) resulted in significant reductions 

in alpha, alpha-theta, and theta EEG activity under red light when 

compared to darkness. However, the decrease in alpha and alpha-theta 

power in the blue light condition was nonsignificant (Sahin & Figueiro, 

2013). Daytime studies tended to use similar monochromatic blue light 

intensities as well as wavelengths, but shorter durations of exposures in 

comparison to night-time studies. 

A series of experiments comparing modulation of brain responses 

(assessed by functional magnetic resonance imaging [fMRI]) by 

monochromatic light while performing auditory, cognitive, and emo-

tional tasks (Vandewalle et al., 2011; Vandewalle, Gais, et al., 2007; 

Vandewalle, Schmidt, et al., 2007; Vandewalle et al., 2010) were con-

ducted in the afternoon, in the evening, and at the beginning of the 

night. The daytime exposures lasting from 40-60 s to 18 min elicited 

stronger brain responses to blue light (473 nm or 480 nm) when com-

pared to green light (527 nm) and violet light (430 nm) of the same ir-

radiance level (1,013 photons/cm2/s). These light-induced moderations 

during auditory cognitive tasks were demonstrated in alertness-related 

subcortical structures as well as in long term memory and emotion-

related areas. These daytime studies, applying fMRI and positron emis-

sion tomography (PET), used shorter durations of exposures, very low 

photon densities, and earlier timing of exposures than night-time and 

daytime studies applying EEG recordings. 

The studies demonstrating alerting effects of monochromatic blue 

light on brain activity applied a variety of timings and durations of ex-

posures as well as light parameters. Therefore, it is difficult to draw firm 

conclusions on when the timing of exposure should be or how long and 

how intensive blue light exposure needs to be in order to produce an 

alerting effect during the day. It has already been established that sensi-

tivity of the human circadian timing system to light parallels the 24-hr 

rhythm of alertness/sleepiness (Minors, Waterhouse, & Wirz-Justice, 

1991). This rhythm is modulated by an interaction of homeostatic 

sleep pressure (increasing from awakening) and circadian oscillations 

driven by the circadian pacemaker promoting optimal levels of alert-

ness during the day and consolidated sleep at night (Borbely, 1982). As 

a result, there are periods of increased sleepiness as well as sensitivity 

to light that occur several times during the 24-hr day. The first such 

period occurs in the early morning due to sleep inertia (Akerstedt & 

Folkard, 1997). The next one, the so-called “post-lunch dip” (Monk, 

2005), appears in the early afternoon when the circadian drive for 

alertness is not strong enough to counteract the increased homeostatic 

sleep pressure (Cajochen, Blatter, & Wallach, 2004; Edgar, Dement, & 

Fuller, 1993). The last period occurs in the evening and into the night 

when both homeostatic and circadian processes promote sleepiness 

(Akerstedt & Folkard, 1997). 

To sum up, in response to questions raised by the nature of previous 

blue light research, the aim of this study was to investigate the effects of 

short and long durations of daytime exposure to monochromatic blue 

light at three different times of the day. The alerting effects of blue light 

on brain EEG activity have already been demonstrated in the research 

studies cited, but more precise analyses will be possible when different 

timings and durations of exposure to light of the same parameters are 

compared. We were interested in its effect on broad-band brain EEG 

activity during a waking day. It was hypothesized that (a) daytime 

exposure to blue light increases alertness which will be marked by cor-

responding changes of spectral EEG power, namely, decreases in low 

wave activity (delta to high alpha) and increases in higher frequencies 

(beta) at times of increased sensitivity to light/daytime sleepiness; and 

(b) these alerting effects may depend on the duration and timing of 

exposure.

Materials and Methods

Participants

Thirty healthy, male student volunteers, aged 19-28 years (Mage = 20.5 

years; SD = 3.34 years) participated in the study. All subjects were paid 

and the following inclusion criteria were applied: a regular sleep-wake 

schedule (habitual sleep timing 22:00-23:30 to 07:00-08:00), inter-

mediate chronotypes as measured by the Morningness-Eveningness 

Questionnaire (Horne & Ostberg, 1976), right-handedness, no experi-

ence of shift work or travel to other time zones within 2 months before 

the experiment, normal vision, no history of head injury or neuro-

logical disorders, no sleep-related disorders, and no current taking of 

drugs. Prior to the experiment, the participants were made familiar 

with the experimental procedure and the tasks to be performed during 

practice sessions. Each participant provided written informed consent. 

The participants were asked to keep their usual and stable timing of 

sleep two weeks before the experiment and while participating in the 

experiment and to refrain from alcohol and caffeine intake during the 

experiment. All individuals had to participate in all the sessions in dif-

ferent sequences (every day and one session per day). For control pur-

poses, participants’ sleep timing and sleep quality were assessed using 

the Pittsburgh Sleep Quality Index (Buysse, Reynolds, Monk, Berman, 

& Kupfer, 1989) every day.

http://www.ac-psych.org


Advances in Cognitive Psychologyresearch Article

http://www.ac-psych.org2017 • volume 13(3) • 241-247243

Experimental procedure
A counterbalanced repeated-measures design was applied. There were 

two light conditions differing in wavelength, namely, monochromatic 

blue LED light (peak at 460 nm) of irradiance equal to 1.1902E−1 μW/

cm² and polychromatic white LED light of 6.5 lux intensity. Both light 

conditions were comparable in luminance level on room surfaces at eye 

level while sitting (0.677 cd/m²–0.762 cd/m²). Measurements of actual 

lighting conditions were performed using an Ocean Optics HR400 

high-resolution spectrometer (Välisuo, Harju, & Alander, 2010) with 

an optical sensor set at a solid angle of 2*Pi sr (Field of View = 180°). 

The experiment took place in a light laboratory with no windows and 

with all surfaces (including the floor) coloured white. The light labora-

tory was equipped with a ceiling mounted, automatically controlled 

light system with four luminaires containing LED emitting monochro-

matic blue light (460 nm +/− 20 nm of wavelength and light intensity 

from 0 to 28 μW/cm²) or polychromatic white light (light intensity 

from 0 to 500 lux). Each luminaire included a Barrisol diffusor which 

diffused light evenly. 

There were three experimental sessions (timings of exposure) 

within a 16-hr daytime period (07:00-12:20; 12:20-17:40, and 17:40-

23:00) and two durations of exposure (measurements were taken after 

30 min and after 4 hr exposure). One participant was examined during 

one session and each participant took part in each session (one session 

per day) in both light conditions in a random order. There were purifi-

cation periods (almost complete darkness)—15 min long at the begin-

ning and 5 min long at the end of each session. A semi-constant rou-

tine protocol was applied to keep stable experimental conditions and 

activity of participants. There was a constant level of noise, humidity, 

and ambient temperature (20 °C). During the experimental sessions, 

the participants remained seated at a desk and were permitted to read 

or listen to the music during the periods free from measurements.

Measures
EEG measurements were taken two times during each session. EEG 

data were recorded with Mitsar 19-channel EEG 201 equipment 

(Plechawska-Wójcik & Kaczorowska, 2016) set to 250 Hz sampling 

rate. An additional electrode was placed over a participant’s left eye for 

further blink correction and two more electrodes were used for offline 

linked mastoid reference. All impedances were kept in a recommended 

range, below 5 kΩ. Preprocessing was carried out using EEGLab tool-

box version 13 (Fratantoni, DeLaRosa, Didehbani, Hart, & Kraut, 

2017). The signal was filtered with 1 Hz high-pass and 40 Hz low-pass 

filters. Ocular correction was performed using the conventional recur-

sive least squares (CRLS) regression method (Wilson, He, & Russell, 

2004). Whole recordings were divided into 2-s epochs, overlapping for 

0.5 s. The epochs which still contained artifacts (absolute signal ampli-

tude > 70 μV) were removed. For spectral power estimation, the fast 

Fourier transform was applied (Wilson et al., 2004). The obtained spec-

tral power values were aggregated into delta (1-3 Hz), theta (4-7 Hz), 

alpha1 (8-10 Hz), alpha2 (10-12 Hz), and beta (15-30 Hz) bands. One 

of the typical divisions found in the literature (Besserve et al., 2007; 

Yu et al., 2013) was used to make the alpha and beta more dissociated 

from each other in terms of functional significance as the transition be-

tween the bands is to some extent arbitrary and the neighboring ranges 

can be moderately correlated (Lorig & Schwartz, 1989).  

Statistical Analysis
A four-factor analysis of variance (ANOVA) with repeated-measures 

(with the Bonferroni adjustment) was performed on the results of each 

EEG frequency band separately using SPSS 23.0. The first factor was 

light condition (LC). There were two light conditions: polychromatic 

white light (PWL) and monochromatic blue light (MBL). The second 

factor was timing of exposure (TE) with three levels (morning, midday, 

and evening sessions of exposure). The third factor was duration of 

exposure (DE) with two levels of duration: the short one after 30 min of 

exposure to LC (first measurement time within each session) and long 

duration after 4 hrs of exposure to LC (the second measurement time 

within each session). The fourth factor was the brain region of interest 

(ROI). Electrode choice and placement were made in accordance with 

typical procedures reported in earlier EEG-based research. Therefore, 

in accord with studies described in the literature (e.g., Gumenyuk et 

al., 2001; Kiehl, Bates, Laurens, Hare, & Liddle, 2006), we distinguished 

ten different brain areas in several configurations to reflect the explora-

tive nature of the present analyses. The following ROIs were used as 

measurement sites: left frontal lobe (Fp1, F7, F3), right frontal lobe 

(Fp2, F4, F8), motor cortex (C3, Cz, C4), left temporal lobe (T3, T5), 

right temporal lobe (T4, T6), anterior temporal lobes (T3, T4), poste-

rior temporal lobes (T5, T6), parietal lobe (P3, Pz, P4), occipital lobe 

(O1, O2), and midline central (Fz, Cz, Pz). Two-tailed paired t tests 

were used to further compare the main effects and interactions when 

significant effects were detected by an ANOVA.

Results

Light Conditions and Duration of 
Exposure Effects by Brain Region 

EEG delta spectral power band
Three-way interaction effects (LC × DE × ROI) on EEG delta were 

observed, F(9, 261) = 2.07, p = .032, ŋ2 = .067. This incorporated effects 

for the left frontal, F(1, 29) = 4.35, p = .046, ŋ2 = .130, right temporal, 

F(1, 29) = 26.87, p < .001, ŋ2 = .481, anterior temporal, F(1, 29)= 14.26, 

p = .001, ŋ2 = .330, posterior temporal, F(1, 29) = 7.63, p = .010, ŋ2 = 

.208, and occipital, F(1, 29) = 4.25, p = .048, ŋ2 = .128, brain regions 

(see Table 1). Compared to short exposure to PWL, there was a sig-

nificant decrease in delta activity after short exposure to MBL in the 

occipital lobe region, t(29) = 2.41, p = .022. Long exposure to MBL, 

compared to long exposure to PWL, resulted in a significant increase 

in delta activity in the anterior temporal lobes, t(29) = −2.19, p = .036. 

In comparison to short exposure, long exposure to PWL resulted in 

a statistically significant decrease in the delta band in the left frontal 

region, t(29) = 2.09, p = .046, the right-, anterior-, and posterior tem-

poral regions, t(29) = 5.18, p = .001, t(29) = 3.78, p = .001, and t(29) = 

2.76, p = .010, respectively, as well as in the occipital brain areas, t(29) 

= 2.06, p = .048. There was no effect of timing of exposure to MBL on 

EEG delta activity.
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EEG theta spectral power band
A significant 3-way (LC × DE × ROI) interaction, F(9, 261) = 2.03, 

p = .037, ŋ2 = .065, was found for three brain areas, namely, the motor 

cortex, F(1, 29) = 4.32, p = .047, ŋ2 = .130, the right temporal region, 

F(1, 29) = 6.49, p = .016, ŋ2 = .183, and the midline central region, F(1, 

29) = 5.10, p = .032, ŋ2 = .149 (see Table 2). 

Short exposure to MBL, compared to short exposure to PWL, re-

sulted in a statistically significant decrease in theta activity in the motor 

cortex, t(29) = 2.08, p = .047. In comparison to short exposure to MBL, 

long exposure to MBL increased theta activity in the motor cortex, 

t(29) = 9.00, p = .001, and at midline central brain sites, t(29) = 9.19, p 

= .001. There was an increase in theta in the motor cortex, t(29) = 8.65, 

p = .047, and the midline central region, t(29) = 8.24, p = .032, follow-

ing long exposure to PWL compared to short exposure to PWL, while 

in the right temporal lobes, there was a decrease, t(29) = 6.20, p = .016. 

No statistically significant differences in EEG theta activity were found 

between MBL and PWL treatments for longer exposures. 

No statistically significant interactions of light conditions and 

duration of exposure on alpha1, alpha2, and beta EEG bands were 

observed.

Light Conditions, Duration of 
Exposure, and Timing of Exposure 
Effects

EEG theta spectral power band
A significant interaction between LC, DE, and TE was found for the 

EEG theta band, F(2, 58) = 3.35, p = .042, ŋ2 = .104 (see Table 3). 

In the morning, long MBL exposure, compared to short MBL ex-

posure, was reflected by increased theta activity, t(29) = −2.09, p = .046. 

A similar effect was observed for PWL, t(29) = −2.18, p = .037 (see 

Figure 1). At midday, long exposure to MBL produced significantly 

Table 1.  
Mean Values of EEG Delta Spectral Power Band  
in Two Light Conditions in Five Brain Regions

EEG band: Delta (1-3 Hz) 

LC: DE:
Left

Frontal 
Right

Temporal 
Anterior
Temporal 

Posterior
Temporal 

Occipital 

PWL
1 48.54 

(.34)
50.17 
(.26)

50.94 
(.28)

52.50 
(.26)

53.27 
(.30)

2 48.06 
(.31)

49.14 
(.25)

50.08 
(.26)

52.08 
(.23)

53.00 
(.26)

MBL
1 48.29 

(.32)
49.94 
(.27)

50.56 
(.27)

52.33 
(.21)

52.93 
(.25)

2 48.39 
(.36)

49.74 
(.36)

50.65 
(.31)

52.42 
(.32)

53.11 
(.28)

Note. Light Conditions (LC); Polychromatic White Light (PWL); Monochromatic Blue 
Light (MBL); Short (1), Long (2) Duration of Exposure (DE). Standard Deviation (in 
brackets).

Table 2.  
Mean Values of EEG Theta Spectral Power Band 

in Two Light Conditions in Three Brain Regions

EEG band: Theta (4-7 Hz)  

LC: DE:
Motor
Cortex

Right
Temporal 

Midline
Central 

PWL
1 48.74 

(.31)
45.19 
(.34)

48.86 
(.34)

2 48.98 
(.33)

44.78 
(.38)

49.14 
(.31)

MBL
1 48.53 

(.32)
44.86 
(.36)

48.68 
(.32)

2 49.02 
(.30)

45.10 
(.39)

49.18 
(.36)

Note. Light Conditions (LC); Polychromatic White Light (PWL); Monochromatic Blue 
Light (MBL); Short (1), Long (2) Duration of Exposure (DE). Standard Deviation (in 
brackets).

Table 3.  
Mean Values of EEG Theta Spectral Power Band 

in Two Light Conditions in Three Brain Regions

in Different Timing of Exposure 

EEG band:
Theta (4-7 Hz)  

Timimg of exposure (TE):

LC: DE:
Morning

(7.00-12.20) 
Midday

(12.20-17.40) 
Evening

(17.40-23.00)

PWL
1 46.93 

(.36)
47.05 
(.35)

47.49 
(.34)

2 47.28 
(.36)

46.99 
(.38)

47.30 
(.31)

MBL
1 46.73 

(.34)
46.86 
(.33)

47.07 
(.28)

2 47.05 
(.30)

47.67 
(.37)

47.19 
(.34)

Note. Light Conditions (LC); Polychromatic White Light (PWL); Monochromatic Blue 
Light (MBL); Short (1), Long (2) Duration of Exposure (DE), Timing of Exposure (TE). 
Standard Deviation (in brackets).

Figure 1.

EEG theta spectral power band mean values and SEs (vertical 
bars) after short exposure (striped pillar) and long exposure 
(filled pillar) in three timings of exposure (1-morning, 2-mid-
day, 3-evening) in polychromatic white light (PWL, yellow 
pillars) and monochromatic blue light (MBL, blue pillars).
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p = .005. Duration of exposure effects on the alpha1 band were not 

significant under PWL conditions at any time during the waking day. 

No statistically significant interaction effects on alpha2 and beta 

bands were observed.

Discussion

The aim of this study was to investigate the effects of timing and 

duration of daytime exposure to MBL on a range of EEG frequency 

bands (delta, theta, alpha1, alpha2, and beta). It was hypothesized 

that alerting effects of daytime exposure to MBL would depend on 

its timing and duration. EEG activity has been utilized as an index or 

proxy for conscious alertness levels (e.g., Wyczesany, Kaiser, & Coenen, 

2008) and, consistent with existing neuropsychological research, the 

decreases in delta (locally), and theta and alpha1 (globally) after short 

duration exposure to MBL in this study may mean an increase in 

alertness. The lower frequency EEG rhythms (up to alpha) have been 

reported to be more sensitive to changes in vigilance than the higher 

frequency rhythms (beta, gamma) (Kubicki, Rieger, Busse, & Barckow, 

1970; Wyczesany et al., 2008). Drowsiness has been marked by notice-

able changes in low theta band amplitude, whereby increased low theta 

power was associated with lower levels of arousal, vigilance, or alertness 

(e.g., Makeig, Jung, & Sejnowski, 2000). Increases in delta and theta 

waves have correlated positively with subjective sleepiness (Strijkstra, 

Beersma, Drayer, Halbesma, & Daan, 2003) and fatigue (Lal & Craig, 

2002). Furthermore, neuroimaging studies demonstrated that brain ar-

eas involved in the effect of MBL included wake promoting subcortical 

structures in the brain stem, hypothalamus, and thalamus related with 

alertness (Vandewalle, Gais, et al., 2007; Vandewalle, Maquet, & Dijk, 

2009; Vandewalle, Schmidt, et al., 2007). 

In the present study, an alerting effect of light dependent on light 

conditions and exposure duration was found locally in several brain 

regions with respect to EEG delta and theta bands. The effect of light on 

EEG delta activity was found locally in five brain regions (left frontal, 

right-, anterior-, and posterior temporal, and occipital lobes). In com-

parison to short exposure to PWL, similar MBL exposure decreased 

delta activity in the occipital lobes. Short exposures to PWL were re-

flected in decreased delta activity in the remaining four brain regions. 

EEG theta band was modulated by light conditions and duration of 

exposure in several brain regions including motor cortex, right tem-

poral, and midline central areas. Significant decrease in theta activity 

after short exposure to MBL when compared to PWL appeared locally 

in the motor cortex region. Long exposures to both MBL and PWL 

resulted in increase of theta activity in the remaining two brain areas 

(i.e., right temporal and midline central). 

In addition, global effects on EEG theta band and alpha1 band 

were observed for all brain regions, dependent upon light conditions, 

timing, and duration of exposure. EEG theta and alpha1 activity were 

moderated jointly by light conditions as well as timing and duration 

of exposure to MBL, irrespective of brain area. There were differen-

tial effects for time of day of light exposure. Significant decreases in 

theta activity were observed following short exposure to MBL in the 

Table 4.  
Mean Values of EEG  Alpha1 Spectral Power Band 

in Two Light Conditions in Three Brain Regions

in Different Timing of Exposure 

EEG band:
Alpha1 (8-10 Hz)   

Timimg of exposure (TE):

LC: DE:
Morning

(7.00-12.20) 
Midday

(12.20-17.40) 
Evening

(17.40-23.00)

PWL
1 47.14 

(.58)
47.19
(.58)

47.33 
(.57)

2 47.38 
(.56)

47.00 
(.59)

47.22 
(.56)

MBL
1 47.01 

(.56)
46.76 
(.58)

46.93
(.53)

2 47.10 
(.52)

47.31 
(.56)

46.83
(.54)

Note. Light Conditions (LC); Polychromatic White Light (PWL); Monochromatic Blue 
Light (MBL); Short (1), Long (2) Duration of Exposure (DE), Timing of Exposure (TE). 
Standard Deviation (in brackets).

higher values of theta power than both long exposure to PWL, t(29) 

= −2.18, p = .037, and short exposure to MBL, t(29) = −3.42, p = .002. 

In comparison to short exposures to PWL, short exposures to MBL 

resulted in significant decreases in theta in the evening, t(29) = 2.04, p 

= .050, but nonsignificant lower values at the other times of day.

EEG alpha1 spectral power band
A significant 3-way interaction (LC × DE × TE) effect on the EEG 

alpha1 band was observed, F(2, 58) = 3.72, p = .030, ŋ2 = .114. At 

midday, compared to short exposure to PWL, short exposure to MBL 

resulted in a significant decrease in alpha1, t(29) = 2.09, p = .045 (see 

Table 4).

In addition, compared to short MBL exposure, longer exposure to 

MBL at midday resulted in a significant increase in alpha1, t(29) = 5.52, 

Figure 2.

EEG alpha 1 spectral power band mean values and SEs (verti-
cal bars) after short exposure (striped pillar) and long expo-
sure (filled pillar) in three timings of exposure (1-morning, 
2-midday, 3-evening) in polychromatic white light (PWL, 
yellow pillars) and monochromatic blue light (MBL, blue pil-
lars).
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evening but, for alpha1, activity decreased at midday. In contrast to 

short exposures, long exposures to MBL significantly increased theta 

in the morning and at midday and increased alpha1 activity at midday. 

The decrease in alpha1 activity as a result of short exposure to MBL at 

midday (independently of brain region) disagrees with the findings of 

Sahin and Figureiro’s (2013) study which reported no significant alert-

ing effects of 48 min exposures to MBL on alpha and alpha-theta activ-

ity. This may result from different timings and durations of exposure as 

well as MBL light parameters (especially light intensity) applied in the 

different studies. 

One intriguing finding of the current study is an increase in both 

theta (reflective of increased sleepiness) and alpha1 (typically repre-

sentative of wakefulness) activity after long exposure to MBL at midday 

(close to the post-lunch dip period). This apparently contradictory ef-

fect may be explained in terms of sleep and sleepiness/alertness models 

(Akerstedt & Folkard, 1997; Borbely, 1982). That is, the circadian drive 

for alertness, augmented possibly by long MBL exposure, is not suf-

ficiently strong at that time of day to counteract an increasing homeo-

static sleep pressure. Moreover, findings from research on circadian 

effects of light (resetting the timing of the circadian pacemaker) show 

that increased sleep homeostatic pressure, as a result of deficient sleep, 

attenuated the alertness that should be consequent to the circadian ef-

fect (Burgess, 2010).

While corroborating earlier research to some extent, the results of 

this study require replication to confirm the observed effects, perhaps 

focusing on those brain areas considered to be most responsive to the 

light treatment and indexing subjective alertness and cognitive per-

formance. In addition, the homogeneity of the present group of sub-

jects with regard to sex and age tends to limit the possibility of broader 

generalization of the conclusions and would need to be addressed in 

future research. Having said this, the systematic approach taken to 

examining monochromatic blue light effects during the waking day 

appears to be a robust procedure. 

Overall, it may be concluded that an alerting effect of daytime ex-

posure to monochromatic blue light was observed for lower frequency 

EEG bands including delta (locally), theta (locally and globally), and 

alpha1 (globally), and that this alerting effect depended on duration 

and timing of exposure. The examination of the literature to date 

revealed that the potential alerting effects of duration and timing of 

daytime exposure to monochromatic blue light of the same parameters 

has not been studied yet. From a practical and human performance 

perspective, future research might be directed at trying to establish the 

underlying mechanisms which prevent alerting effects of long expo-

sure to monochromatic blue light at midday and in the morning.  
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