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Abstract Awareness can be measured by investigating the pat-
terns of associations between discrimination performance
(first-order decisions) and confidence judgments (knowledge).
In a typical post-decision wagering (PDW) task, participants
judge their performance by wagering on each decision made in
a detection task. If participants are aware, they wager advanta-
geously by betting high whenever decisions are correct and low
for incorrect decisions. Thus, PDW—like other awareness mea-
sures with confidence ratings—quantifies if the knowledge upon
which they make their decisions is conscious. The present study
proposes a new method of assessing the association between
advantageous wagering and awareness in the PDW task with a
combination of log-linear (LLM) modeling and neural network
simulation to reveal the computational patterns that establish this
association. We applied the post-decision wagering measure to a
backward masking experiment in which participants made
first-order decisions about whether or not a masked emotional
face was present, and then used imaginary or real monetary
stakes to judge the correctness of their initial decisions. The
LLM analysis was then used to examine whether advantageous
wagering was aware by testing a hypothesis of partial associa-
tions between metacognitive judgments and accuracy of
first-order decisions. The LLM outcomes were submitted into a
feed-forward neural network. The network served as a general
approximator that was trained to learn relationships between in-
put wagers and the output of the corresponding log-linear

function. The simulation resulted in a simple network architec-
ture that successfully accounted for wagering behavior. This was
a feed-forward network unit consisting of one hidden neuron
layer with four inputs and one output. In addition, the study
indicated no effect of the monetary incentive cues on wagering
strategies, although we observed that only low-wager input
weights of the neural network considerably contributed to advan-
tageous wagering.

Keywords Awareness . Metacognition . Connectionist
model . Post-decision wagering . Log-linear analysis

Introduction

There are several experimental methods for investigating con-
scious and unconscious processing of visual stimuli (see e.g.,
[9, 25, 39]). For instance, given the visibility threshold, the
salience of the stimulus or its presentation times manipulated
under a backward masking task enables dissociations between
conscious and unconscious perception [14, 29]. Nevertheless,
behavioral experiments in which a participant systematically
uses metacognitive judgments (e.g., confidence ratings) to as-
sess the accuracy of perceptual discriminations often encoun-
ter difficulty in estimating the subjective threshold of aware-
ness (see e.g., [33]). For example, a post-decision wagering
paradigm (see below) that rests on the assumption that advan-
tageous wagering indicates awareness may be subjected to a
variety of confounding factors such as priming effects, moti-
vation, and loss aversion. Therefore, it is important for con-
sciousness research to develop a measurement method that is
sensitive enough to reveal the subjective threshold. Here, we
propose a novel method based on log-linear modeling (LLM)
that determines metacognitive awareness in terms of the accu-
racy of first-order discriminations. We also examine the
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computational grounds underlying metacognitive awareness
using a neural network that captures the associations between
wagers and the accuracy of first-order discriminations.

The aforementioned post-decision wagering paradigm has
been extensively used to estimate metacognitive awareness in
perception [26, 28, 33]. Under a typical post-decision wager-
ing task, participants are asked to discriminate a stimulus (e.g.,
male vs. female face, fearful or neutral facial expression) and
then are required to express their confidence in the discrimi-
nation decisions using monetary stakes. Hence, participants
aim to maximize possible profits so that they use advanta-
geous wagers when they are aware of the accuracy of
first-order discriminations [13, 26]. It is often argued that
post-decision wagering does not require introspection ability;
therefore, it seems to be more natural and intuitive for partic-
ipants than other subjective measures of awareness (see [26]).
Despite the advantages of PDW, this method has been also
criticized in the literature. For instance, participants use high
bets when they are fully aware of the stimuli, but it is less
evident what levels of awareness are associated with lower
wagers [33]. This is mainly due to specific response strategies
such as loss aversion (see [31]) that can affect results collected
with the PDW scale. For this reason, some researchers argue
that post-decision wagering may be less sensitive to low-level
awareness [11, 33, 37]. In fact, the loss aversion strategy re-
sults in low wager ratings even when participants are aware of
the stimuli (but not confident in the decision), and thus, the
lowest ratings do not reflect unconscious processing (guessing
criterion [10]). Moreover, the awareness ratings collected with
post-decision wagering are also modified by the monetary
values of the available stakes [13].

It is important to note that post-decision wagering may be
also influenced by task-induced motivation, which, in turn,
can affect either first-order discriminations (see [35]) or
metacognitive awareness (see [38]). In fact, several studies
show that task-induced motivation may be further manipulat-
ed by the usage of real or artificial stakes while wagering (see
e.g., [2, 11, 26]). Some researchers argue that wagering with
imaginary incentives is as effective as betting with real money
(see [26]). In contrast, Dienes and Seth [11] suggest that wa-
gering with real money could induce higher motivation in task
performance. These researchers also argue that PDWmay be a
less sensitive measure of awareness during anticipation of loss
of money. Taking these effects together, this clearly shows that
post-decision wageringmay be subjected to several confound-
ing factors that need to be accounted for when estimating the
subjective threshold of metacognitive awareness.

Another important issue is how to simulate advantageous
wagering and awareness. Accessing conscious evaluation re-
quires the presence of first-order discriminations; nevertheless,
it strictly depends on knowledge that corresponds to such
first-order information [4]. To address the problem of
metacognitive knowledge formation, wagering behavior can be

simulated with a neural network. In fact, neural networks have
been proven to be effective in simulating first-order discrimina-
tions such as facial perception (see e.g., [8, 17, 22, 30]). Similarly,
a simulation studywith a neural network by Cleeremans et al. [6]
demonstrated that the connectionist approach could be useful in
simulating metacognitive awareness in post-decision wagering
tasks. These researchers found that a hierarchical neural network
was able to reproduce behavioral results and could acquire
knowledge about its own behavior (see [6, 24, 36]).
Importantly, the neural network simulation by Cleeremans et al.
[6] was not focused on response strategies applied to wagering
and therefore could not provide clear assessments of the individ-
ual threshold of awareness. This was mainly due to the fact that
the neural network assumed the behavior of an ideal participant
who showed a correlation between awareness and advantageous
wagering strategy, but, in fact, was not influenced by additional
confounds, for example loss aversion.

It is important to note that Szczepanowski [33] has shown
that assessment of confounding factors on wagering perfor-
mance should be focused on responses associated with the
lowest wagers. In particular, LLM modeling demonstrated
that a typical examination of advantageous wagering fails to
measure the zero-accuracy criterion [33]. In particular, LLM
analysis of partial associations between accuracy and wager-
ing indicated that some people exhibit conscious knowledge
even though advantageous wagering was absent. Therefore, to
assess whether a participant is conscious, researchers should
examine advantageous wagering by studying partial associa-
tions among proportions of low wagers (for more details, see
the BMethod^ section). In fact, given that conscious evalua-
tion of performance is independent from expression of behav-
ior, a partial association counterpart of advantageouswagering
can be further simulated with a neural network, (see [4, 6]).
Note that during the process of learning, the neural network
predicts the next element of a sequence in the task to be
trained, and in this fashion, it acquires some form of knowl-
edge [24] which is then stored and encoded within its archi-
tecture and input weights. Thus, from a computational per-
spective, the neuronal network in some sense establishes pre-
conditions for knowledge that enables classifications between
aware vs. unaware states while wagering on the accuracy of
the first-order discrimination [24].

To sum up, in our study, we behaviorally tested participants
with a post-wagering task at two target durations (i.e., 17- and
33-ms targets) and assumed that these conditions allowed us to
compare aware and unaware wagering behavior. To manipulate
the sensory threshold, we employed a backward masking task
with emotional faces. This follows a vast body of empirical re-
ports [27, 34] demonstrating that this technique is efficient for
establishing subliminal perception [18, 23], especially for fearful
stimuli presented at near-threshold for durations less than 25 ms
(see [34]). Thus, in our study, the initial first-order decisions were
made upon fearful facial expressions, and then imaginary or real
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monetary stakes were used to reveal metacognitive awareness of
correct or incorrect first-order discriminations. To make sure that
themeasures of awareness we provide are accurate, we estimated
the subjective threshold with a metacognitive sensitivity measure
based on a Btype 2^ signal detection theory that also is thought to
be independent of response biases [21]. Next, we simulated be-
havior with a neural network that presumably encoded different
input weights associated with aware and unaware wagering. We
hypothesized that a simulated wagering strategy should reflect
behavior that is more effective when the network wagered for the
aware condition (33-ms targets) as opposed to the unaware con-
dition (17ms), for which higher wagers are more likely to follow
incorrect first-order classification.

Method

Experiment

In order to distinguish post-decision wagering judgment strat-
egies in aware and unaware conditions, we applied a sublim-
inal representation of visual stimuli by engaging subjects in a
backward masking task involving briefly presented, facial ex-
pression targets that were subsequently impaired by a mask
presentation. In this fashion, we could measure their sensory
consciousness once a threshold for the facial expression was
established below which participants reported perceiving the
prime [5]. Subsequently, participants were required to wager a
small amount of money to reveal conscious knowledge about
their perception. We hypothesized that under the backward
masking condition a longer presentation of the emotional face
should result in a more effective wagering strategy as indexed
by monetary prize winnings, as opposed to the unaware con-
dition under which subliminal presentation should be reflected
by less effective first-order discrimination that also leads the
neural network to less effective classifications.

Participants

Twenty-six students (19 females) of the Wroclaw Faculty of
Psychology, SWPS School of Social Sciences and Humanities
in Wroclaw participated in this study. Their age ranged from
19 to 37, with an average of 23. The research was approved by
the Ethics Committee of SWPS University of Social Sciences
and Humanities. All subjects had normal or corrected-to-
normal vision. The population sample was randomly assigned
to both groups in terms of incentive treatment (real vs. imag-
inary monetary incentives), i.e., half the participants wagered
with real money, while the second group wagered with imag-
inary money. Due to failures to perform the wagering task,
datasets from two participants were removed from the sample.
Instructions for the Breal money^ group led subjects to believe
that winnings were dependent on task performance; however,

all participants were given maximum of 50 PLN at the end of
the experiment.

Stimuli and Procedure

Participants were seated in a darkened room and their heads
were positioned on a chinrest to fix their position and reduce
head movement. The stimuli were displayed in the centre of
an Iiyama MA203DT Vision Master Pro 513 monitor at a
screen refresh rate of 120 Hz, driven by an ATI Radeon HD
4800 Series graphics card.

In each trial, participants saw a green fixation cross
(300 ms), then a blank screen (50 ms) and a target face,
depicting either fearful or neutral facial expressions (17- or
33-ms face target) (see Fig. 1). The facial target was followed
by a neutral face, which was a mask. The total duration of the
target-mask pair was established at 133 ms, resulting in 100-
or 117-ms durations of the mask. After presentation of the
masked target, participants had to discriminate emotion, indi-
cating whether the target face was fearful or not, and then were
asked to rate their decision awareness by selecting one of two
coins (1 or 2 PLN) on the visual display as monetary wagers;
the decision periods were limited to 2 and 2.5 s, respectively.
Participants started with no winnings and subsequently won
the wagered amount of money; however, when they gambled
wrongly, they lost that amount. No feedback on actual win-
nings was provided throughout the procedure. Both responses
were recorded using a numerical response pad. After a 500-ms
inter-trial interval, a new trial started. The total duration of
each trial was 5 s. Trials were presented in a random order,
with half the trials containing fearful-neutral target-mask pairs
and the other half containing neutral-neutral target-mask pairs.
Forty fearful and 40 neutral faces were selected as targets and
an additional 80 neutral face stimuli were used as masks. We
used images from three sets of faces: the Paul Ekman set [12],
the set described by Öhman and colleagues (KDEF, [19]), and
a third set validated by Alumit Ishai at NIMH (Bethesda,

Fig. 1 Experimental procedure of post-decision wagering with masked
faces. At the beginning of each trial, a green fixation cross was presented
at the center of the computer screen for 300 ms. A blank screen followed
for 50ms. The target face depicting either a fearful or a neutral expression
with equal probability was displayed at the central position for 17- or 33-
ms and was immediately masked by a neutral face. The total duration of
the target-mask pair was fixed at 133 ms, resulting in 100- or 117-ms
exposures to the mask. After presentation of the target-mask pair,
participants had 2 s to determine whether the target face was fearful or
neutral, and were given an additional 2.5 s to express confidence with low
and high wagers (1 PLN or 2 PLN)

Cogn Comput (2017) 9:457–467 459



USA; [16]). Each stimulus subtended 4° × 5° of the visual
angle and was presented in the center of the computer screen
at a viewing distance of 50 cm. Participants performed the
masking task in two experimental conditions (17- and 33-ms
targets), divided into eight blocks (40 trials each). The order of
blocks was randomized across the experiment.

Awareness Measure Using Log-Linear Modeling

It has been argued that post-decision wagering demon-
strates that perception can occur without conscious aware-
ness when wagering is independent of task performance
(for the correctness of the first-order discriminations, see
[26]). Szczepanowski [33] indicated that the LLM method
is useful for examining whether participants are aware or
unaware of having information about the correctness of
their decisions. In particular, the log-linear approach ac-
cepts that a null hypothesis needs only partial association
between low wagers to be tested. Thus, to examine the
hypothesis of no partial association between awareness
and advantageous wagering, a special case of the likeli-
hood ratio statistic (LRT) should be used that examines
the difference of goodness-of-fit between two log-linear
models, i.e., the M0 model of partial independence and the
full M1 model that represents a more general saturated
alternative. The likelihood ratio statistics G2 takes into
account both models with a formula such as

G2 M 0jM 1ð Þ ¼ −2 L0−L1ð Þ
where L0 and L1 are the likelihood functions (for more
information, see [33]). G2 is distributed as a chi-square
distribution with degrees of freedom equal to the differ-
ences between both component models.

Statistical Analysis

We deemed the response strategy asmore efficient with higher
G2 values achieved by subjects. We also fitted GLM to the
behavioral data (monetary gains) to determine how an aware
response strategy influenced winnings in the monetary and
imaginary incentive cue conditions. The GLM fitting was per-
formed with a fitglm function provided by the MATLAB sta-
tistics toolbox (Mathworks Inc.), and the ANOVA analysis
was conducted with SPSS. For the GLM results, we reported
t statistics and p values of individual effects in the model. The
hypothesis testing procedures were complemented with effect
size measures provided by the Matlab toolbox BMeasures of
Effect Size^ by Hentschke and Stüttgen [15]. For computation
of the effect size, we used Hedges’ g parameters either for
independent or dependent samples as recommended by
Hentschke and Stüttgen [15].

Metacognitive Sensitivity of Wagering Based on BType 2^
Signal Detection Theory

To validate LLM outcomes, we also used an alternative mea-
sure of metacognitive awareness based on a BType 2^ signal
detection theory: the so-called a meta-d’ measure invented by
Maniscalco and Lau [20, 21]. This type of sensitivity measure
quantifies how much information is available for metacogni-
tion, and, in fact, can assess how efficient the confidence re-
sponses are at discriminating correct from incorrect classifica-
tions [20, 21]. It is emphasized that meta-d’ can be thought of
as a measurement of the signal which is available to perform a
type 2 task such as discrimination accuracy. In the case of
PDW usage, if observers’ wagers are informative with regard
to the correctness of first-order discriminations, the observer
can be deemed as being metacognitively aware of the
first-order representation. The calculations of meta-d’ mea-
sures were conducted with the free Matlab code provided by
Maniscalco and Lau [20]. It is important to mention that this
measure of metacognition is based on the assumption that type
1 data is normally distributed, whereas the proposed LLM
analysis uses a non-parametric assumption. Estimation of
meta-d’ was based on unequal variance SDT assumptions
and, pertinently, the meta-d’ parameter is a single measure of
sensitivity that jointly corresponds to the areas under the
response-specific type 2 ROCs [21].

Simulation of Wagering Behavior with Neural Network

To simulate choice wagering behavior, we employed a stan-
dard neural network modeling based on feed-forward archi-
tecture, as implemented in the Neural Network Toolbox pro-
vided in MATLAB. The feed-forward architecture consisted
of one hidden layer of sigmoid neurons that was followed by
an output layer of linear neurons (see Fig. 2). Such a network
is typically used to approximate any function and its discon-
tinuities [3]. In our case, the network served as a general
approximator that was intended to learn the relations between
four input wagers and the output of the corresponding LLM
function. In the sense of a function approximation problem,
the feed-forward network was trained to perform non-linear
regression based on the mean square error used to estimate the
error between the network output and the target output of the
log-linear function G2 (for more details, see [3]). The model-
ing was based on standard multi-layer networks with a
non-linear hyperbolic tangent transfer function. The Neural
Network toolbox was employed for matrix manipulation, net-
work generation, training, as well as the evaluation stages.
Before the process of network training, the data division was
automatically performed, which is a standard practice in neu-
ral modeling [3]. In particular, the entire dataset was randomly
divided into three disjunctive sets: the training set (80% of
data samples), used for the neural network training; the
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validation set (10% of data), used for current assessment of the
network quality while training; and the test set, used for final
testing of the neural network quality (10% of data).

The neural network simulation operated in two modes. In
the learningmode, multiple samples of expected behavior, i.e.,
the contingency data represented by four wagers (inputs)
along with its relevant G2 value (outputs), were used to teach
to the neural network. The learning mode was stopped when
the assumed approximation error was reached or there was no
further improvement in the quality of approximation. In addi-
tion, the learning proceeded by making noise adjustments by
randomly removing inputs with a probability of 0.03. The
variability of the input-output training sets was generated with
a multinomial sampling procedure [1, 33]. In terms of the
sampling procedure, variability of the contingency data was
sampled with respect to the marginal proportions and the as-
sociations between variables. The cell probabilities were de-
termined by fixing a total sample at 160 trials, and the input
contingency data was sampled. To avoid the effect of
overfitting the network to the data, it is advised to use as few
neurons in the hidden layer as possible [3].

Initially, our modeling resulted in a neural network with ten
neurons in the hidden layer (see Fig. 2a). Then, some optimi-
zation attempts were performed to reduce the number of hid-
den neurons and, as a result, a simple network architecture
was achieved that consisted of one hidden neuron with four
inputs and one output (see Fig. 2b). Then, the network model-
ing switched to Bproduction mode^ and the neural network
along with its architectural information and weight values
were complete. After a neural network simulation, the out-
comes of input weights were extracted and submitted to fur-
ther statistical analyses of GLM. For GLM fitting, to identify
factors that best described wagering performance, we evalu-
ated alternative combinations of the main effects and interac-
tions between the main effects, and finally the best-supported
model was chosen.

Results

Behavioral Data

First, we began our analysis by examining whether the incen-
tive cue had a significant effect on wagering. The yes-no dis-
criminations were reorganized into contingency tables accom-
modating both levels of wagers (high vs. low) and the accu-
racy (correct vs. incorrect response), accordingly. Then, we
submitted the data to a mixed repeated-measures analysis of
variance (ANOVA) and compared the responses from the wa-
gering task between the two groups (i.e., monetary vs. imag-
inary incentives) across three within-subject factors such as
stimulus durations (17 vs. 33 ms), accuracy (correct vs. incor-
rect), and wager (low vs. high). The analysis indicated no
effect of the between-group factor (incentive cue) on perfor-
mance, F < 1, and no interaction between this group factor
and the stimulus duration F(1,22) = 1.30, p > 0.05, no inter-
action with the wager variable, F(1,22) = 1.12, p > 0.05, and
no higher-order interaction with all within-subject factors,
F < 1. We found the main effect for the accuracy of response,
F(1,22) = 71.42, p < 0.0001, η2p = 0.77, the main effect of the
wager, F(1,22) = 8.87, p < 0.01, η2p = 0.29, and the interaction
between accuracy and the stimulus exposure, F(1,22)= 49.46,
p < 0.0001, η2p = 0.69, the interaction between the time dura-
tion and wagering, F(1,22) = 26.32, p < 0.0001, η2p = 0.55,
and the second-order interaction between the time exposure,
accuracy, and wagering, F(1,22) = 81.2, p < 0.05, η2p = 0.79.
These results suggested that there was no impact of the mon-
etary incentive cue on wagering performance whatsoever.

Then, for each participant, we investigated whether re-
sponse strategy was aware or unaware by examining partial
associations between accuracy and wagering with the LRT
statistics. For each stimulus duration, we computed the indi-
vidual G2 value and then assessed awareness of wagering
strategies by checking whether the G2 statistics reached a

Fig. 2 Architecture of neural network unit. To model the data, we used a
simple one-module architecture that captures the essence of the post-
wagering task. The module takes wagers as an input (CH, CL, IH, IL)
and produces log-linear statistics as output. a Initially, a network with 10
neurons in the hidden layer and a hyperbolic tangent transfer function was
used. StandardMatlab-compatible tools for matrixmanipulation, network

generation, training, and evaluation were employed. As a result of
training, the neural network along with architectural information and
weight values was obtained. b The network architecture was optimized.
The optimization results were surprising, since an extremely simple
network was achieved that consisted of a single non-linear neuron with
four inputs and one output
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cut-off of 3.84 according to the chi-square distribution with 1
degree of freedom (p value of 0.05). For example, the G2

statistics for subject S4 from the real monetary incentive group
for the 17-ms exposure was 0.67. Because this value was
deemed not significant, p = 0.41, this indicated that wagering
strategy was unaware for this individual. In the case of the
33-ms condition, the hypothesis of partial association between
accuracy and wagering was rejected for this participant, since
the G2 parameter of 4.38 yielded a p value of 0.04 that indi-
cated that this participant used an aware strategy while wager-
ing on the correctness of the first-order discriminations. To
investigate whether wagering strategies were aware at the
group level, we ran analysis of binomial data with a two-tail
binomial test (p < 0.05), where the presence or absence of the
aware strategy was coded as 1 or 0, respectively. The resulting
two-tailed p value from this test indicated the chance of ob-
serving metacognitive awareness at the group level. In case of
17-ms targets, 14 participants (14/24) showed awareness,
which was a chance of p = 0.54, revealing the fact that strat-
egies were unaware when wagered on the correctness of their
decisions at the group level. For the 33-ms presentation, we
observed that 21 participants (21/24) performed successfully
in the post-decision wagering task (p < 0.001, two-tail bino-
mial test). Taking these results together, we concluded that for
the 17-ms targets, participants at the group level tended to use
unaware wagering strategies when judging the correctness of
their decisions, while for the 33-ms targets, participants tended
to use aware wagering strategies. Finally, we also examined
how wagering strategies intended to maximize monetary
profits were dependent on the awareness factor. The results
of the GLM fitting are summarized in Table 1. There was
evidence that there was an important increase in monetary
gains for the predictor variable of awareness, t(42) = 2.49,
p < 0.05, and no other main effect or interaction was signifi-
cant. This result indicated that aware strategies substantially
contributed to monetary gains in the post-wagering task.

Comparison Between Metacognitive Sensitivity and LLM
Partial Associations

In the next step of our analysis, we validated the LLM results
with the alternative measure of awareness by applying an
analysis of meta-d’ sensitivity to wagering behavior. Initially,
we investigated metacognition by submitting the meta-d’
values into a mixed repeated ANOVA that indicated no effect
of the incentive on metacognition, F < 1. Furthermore, we
examined simple effects for both stimulus durations. For the
17-ms targets, we found that metacognitive sensitivity for the
monetary group yielded a mean meta-d’ of 0.57 (SD = 0.47),
whereas for the imaginary group the meta-d’ sensitivity was
0.49 (SD = 0.47). As opposed to the shorter stimulus expo-
sure, metacognitive capacities increased significantly for the
33-ms presentation, resulting in larger values of meta-d’ for
either the monetary group, 1.48 (SD = 1.03) (paired t test,
p < 0.05, Hedges’ g = 0.85), or the imaginary group, 1.40
(SD = 0.75) (paired t test, p < 0.001, Hedges’ g = 1.40). We
then examined metacognitive awareness at the group level by
checking whether the zero metacognitive sensitivity was in-
cluded in the 95% confidence interval. According to
one-sample t test statistics, the monetary group for the 17-ms
targets exhibited a lack of metacognitive awareness,
t(11) = 1.98, p > 0.05, g1 = 0.57, as opposed to the 33-ms
targets, for which metacognitive awareness was present,
t(11) = 4.94, p < 0.001, g1 = 1.43. For the imaginary group,
the results indicated that participants used aware wagering
strategies either for 17-ms targets, t(11) = 3.63, p < 0.01,
g1 = 1.05, or for 33-ms conditions, t(11) = 6.47, p < 0.0001,
g1 = 1.05. This suggested that the SDT and LLM measures
were consistent with indicating awareness for the 33-ms tar-
gets, although according to the SDT measure the imaginary
incentive group was aware for 17-ms as opposed to LLM.
Furthermore, we plotted both metacognitive measures side
by side (see Fig. 3a, b). Strikingly, as can be seen, both
metacognitive measures for both stimulus exposures show
very similar patterns across all subjects. Furthermore, exami-
nation of the correlation coefficients between partial associa-
tion outcomes (G2 values) and meta-d’ sensitivities indicated
that the SDTand LLMmeasures were highly correlated. In the
case of the monetary group, the correlation coefficients
yielded values of r = 0.77, p < 0.01, and r = 0.72, p < 0.01
for 17- and 33-ms conditions, respectively. In the case of the
imaginary group, the correlation coefficients reached r = 0.74,
p < 0.01, and r = 0.92, p < 0.0001 for 17- and 33-ms condi-
tions, respectively. This suggested that the predictions given
by SDT and LLM analyses were largely overlapping.

Neural Simulation of Wagering Behavior

For each individual, we then analyzed wagering behavior at
the 17- and 33-ms conditions by inspecting input weights of

Table 1 Analysis of behavioral data with generalized linear regression
model

Generalized linear regression model:
Monetary_gain ∼ 1 + awareness * incentive_cue
Distribution = normal

Estimated coefficients:

Estimate SE t stat p value

(Intercept) −1.9147 5.0185 −0.38153 0.70473

Awareness 6.8875 2.76 2.4955 0.016594

Incentive_cue 0.13528 3.0948 0.043711 0.96534

Awareness:Incentive_cue −0.24847 1.7071 −0.14555 0.88497

46 observations, 42 error degrees of freedom. Estimated dispersion, 6.06.
F statistic vs. constant model, 19.6; p value = 4.2e−08
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the neural network unit. The resulting input weights across all
subjects are presented in Fig. 4. As can be seen, after averag-
ing, distinguished patterns of initial weights appeared for cor-
rect and incorrect low wagers. Note that the other two input
weights received negligible values and were not considered
for further investigations. In particular, for the monetary in-
centive group, for the correct low wagers the values of input
weights were 0.57 and 0.26 for the 17- and 33-ms conditions,

respectively; for the incorrect low wagers, the input weights
were −0.81 and −0.52, for the 17- and 33-ms conditions, re-
spectively. For the imaginary incentive group, we found that
the neural input weights were 0.34 and 1.08 for correct low
wagers, whereas for incorrect responses the input weights
were equal to −0.58 and −1.14 for 17- and 33-ms conditions,
respectively. This indicated that the input weights for correct
low wagers could be associated with excitation, while the

Fig. 3 a Comparison between
metacognitive sensitivity and
LLM partial associations for the
Breal incentive^ group. The
validation of the LLM results with
meta-d’ sensitivity indicated that
both measures largely
overlapped. b Comparison
between metacognitive sensitivity
and LLM partial associations for
the Bimaginary incentive^ group
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input of the neural network for handling incorrect low wagers
was associated with inhibition behavior. To investigate further
how activation was encoded in the neural network module
across the stimulus durations, we inspected variability of sim-
ulated inhibitory and excitatory input weights with the
Mann-Whitney U tests (p < 0.05). No differences were ob-
served for the excitatory and inhibitory neural inputs for each
group at each stimulus exposure. This suggested similar pat-
terns of neural network activation when engaging unaware
and aware strategies.

Finally, we investigated the impact of the neural network
on wagering behavior with the GLM model (see Table 2).
Here, the dependent variable was the amount of gambled
money predicted by the positive and negative input weights
of the network and the stimulus duration; the incentive cue
categorical variable was excluded from the model to achieve
the best-supported GLM model. The analysis revealed in-
creases of monetary gains for the excitatory neural input,
t(41) = 5.11, p < 0.0001, for the inhibitory neural input,
t(41) = 4.87, p < 0.0001 as well as for the stimulus duration,
t(41) = 3.11, p <0.01. There was also evidence of decreases in
winnings for the interaction of the excitatory input and the
time stimulus, t(41) = −3.32, p < 0.01, for the interaction of
inhibitory input and the stimulus duration, t(41) = −3.20,
p < 0.01. Note that the GLM model included categorical var-
iables of stimulus durations; the 17-ms condition was used as
the reference level, whereas the dummy variable was
employed for the 33-ms condition. Hence, GLM prediction
of the decrease for this second interaction term indicated that
the inhibitory weight parameter (negative value) contributed
to increasing monetary gains for the 33-ms condition. The
GLM also predicted that there was an increase for the
second-order interaction between both input weights and the
stimulus exposure, t(41) = 4.37, p < 0.01, and again this term
contributed to lowering monetary gains due to the negative
value of inhibitory weight. These interactions with longer

exposures suggested that the neural network unit allowed
more effective strategies by letting participants increase their
monetary gains.

Discussion

The contemporary connectionist analysis for empirical studies
on human faces focuses either on isolating perceptual and
emotional processes engaged in detection of facial expressions
(see e.g., [22]) or proposes more complex frameworks that
aim to capture a variety of different aspects related to emotion
processing (e.g., action, motivation and metacognition—see
e.g., [32]). Nevertheless, the present research concentrated on
the metacognitive awareness of perceiving facial expressions,
which is a topic rarely analyzed with connectionist ap-
proaches. In particular, in this study, we employed a new
method of measuring awareness based on log-linear analysis
to test the association between wagering and accuracy in de-
tecting masked facial expressions. Following the connection-
ist approach, we further used the LLM results to simulate
activation of the neural network for the higher-order classifi-
cations that underlie aware and unaware wagering behavior.
The resulting neural network allowed us to predict wagering
outcomes based on log-linear accuracy. Surprisingly, the neu-
ral network simulations were effectively performed with a
simple architecture consisting of one hidden neuron unit with
input weights sensitive to low wagers.

Our behavioral results show that participants were more
inclined to employ effective response strategies to increase
winnings when they were aware of their processing results,
i.e., first-order discrimination outcomes for the 33-ms facial
targets. In addition, these patterns of responding were support-
ed by the neural network performance that underlies wagering
responses. Indeed, it can be seen from the GLM analysis that
participants made more monetary gains via wagering when
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Fig. 4 Results of simulation for wagering performance. Neural input
weights for 17- and 33-ms conditions. CH correct response and high
wager, CL correct response and low wager, IH incorrect response and
high wager, IL incorrect response and low wager. The simulation results

indicated that correct low wagers are characterized by positive value
weights, which indicates some kind of excitation, while for incorrect
values, the neural input weights showed patterns of excitation
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the longer stimulus duration was applied. Clearly, our results
suggest that larger input weights of the network (we observed
three significant interaction terms in the model) must arrive at
the network unit to promote aware response. Taken together,
both behavioral and simulation results can lead us to conclude
that awareness enables more effective post-decision wagering
response strategies by providing participants with the ability
to increase their monetary gains.

In this work, in contrast to Pasquali et al. [24], we focus on
evaluation of individual performance by adapting the neural net-
work only to metacognitive judgments. Thus, we develop the
connectionist model of metacognitive ratings on visual identifi-
cation that aimed to test how participants rate awareness with
post-decision wagering, but not the sensory perception of emo-
tional stimuli. The important property of our neural network
model was its feed-forward architecture with one hidden neuron
layer. Here, the inputs were wagers’ sequences presented to the
neural network, while the target outputs were represented by a
log-linear function and its relevant G2 values. The input-output
relationships were then subjected to a feed-forward learning al-
gorithm that adapted the input weights of the network to approx-
imate the wagering behavior. Thus, the resulting input weights of
the network were preconditions for wagers on facial discrimina-
tion to reach consciousness.

Interestingly, our neural network simulation results clearly
show that only input weights of the network associated with
low wagers significantly contributed to wagering performance
in both the aware or unaware conditions. In other words, only
low wager inputs were informative in predicting metacognitive
awareness. Interestingly, for the subset of the low wager inputs,
correct responses were associated with positive input weights,
while incorrect responses were associated with negative weights.
Thus, at the neural network level, wagering performance is in-
formed mainly by the correctness of low wagers. The high wa-
gers do not discriminate between aware and unaware states, since
they are observed mainly in conscious conditions. Such results
may speak against applying post-decision wagering to studies

investigating awareness. This arises from the fact that wagering
is predictive for awareness only at lowwagers so that lowwagers
may be associated with both aware and unaware conditions. This
is additional evidence that post-decision wagering could be po-
tentially influenced by loss aversion. Thus, if post-decision wa-
gering studies are to be used in consciousness studies further
investigations should instead be focused on scrutiny of low wa-
gers, as suggested elsewhere (see also [7]).

We have not observed any difference in conscious response
strategies depending on the type of incentives applied.
Wagering behavior with imaginary and real money was com-
parable. This confirms the claim by Persaud et al. [26], who
argued that wagering with imaginary money is as effective as
betting with real money. Similarly, the connectionist model
did not confirm that real money incentives are more influ-
enced by response strategy, as it was suggested by Dienes
and Seth [11]. Thus, one is free to choose which version of
the method should be applied in a particular study. However, if
real incentives are needed in the experimental design, our
study suggests that outcomes should not to be influenced by
loss aversion more than under imaginary incentive conditions.
Thus, our version of the PDW method may be successively
applied in studies involving participants with limited reporting
abilities, particularly for whom the real incentives may be
easier to apply over the ongoing task procedure.

To sum up, our LLM analysis and neural network simula-
tion allowed us to confirm and further conduct in-depth inves-
tigations of loss aversion, which is commonly observed in
post-decision wagering studies (see e.g., [7, 31]). It seems that
in both cases—either for real or imaginary monetary incen-
tives—it is likely that participants start to believe that gam-
bling will lead to a loss. Hence, post-decision with imaginary
money may be reasonably effective in experiments designed
to examine awareness. Thus, in our study, we propose a con-
nectionist model of post-decision wagering that is not ulti-
mately intended to simulate meta-knowledge establishing
awareness but rather focuses on the impact of loss aversion

Table 2 Analysis of behavioral
data with generalized linear
regression

Gain ∼ [linear formula with 7 terms in 3 predictors]

Distribution = normal

Estimated coefficients:

Estimate SE t stat p value

(Intercept) 145.21 19.753 7.3511 5.2882e−09
Excitatory_weight 305.02 59.634 5.1149 7.7448e−06
Inhibitory_weight 315.32 64.781 4.8675 1.7161e−05
Stimulus_duration 81.646 26.26 3.1091 0.0034059

Excitatory_weight:Stimulus_duration −253.52 76.356 −3.3202 0.0018963

Inhibitory_weight:Stimulus_duration −263.67 82.521 −3.1951 0.0026886

Excitatory_weight:Inhibitory_weight:Stimulus_duration 51.229 11.727 4.3686 8.3141e−05

48 observations, 41 error degrees of freedom. Estimated dispersion, 1.47e+03. F statistic vs. constant model, 21.5;
p value = 3.17e−11
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on aware and unaware wagering. Our work also demonstrates
that neural networksmay be applicable, not only to investigate
low-level phenomena related to emotion (see [32]) but also to
reveal a computational view on patterns of association be-
tween awareness and advantageous wagering.
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