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Abstract. Robust mixture models approaches, which use non-normal distribu-

tions have recently been upgraded to accommodate data with fixed bounds. In

this article we propose a new method based on uniform distributions and Cross-

Entropy Clustering (CEC). We combine a simple density model with a cluster-

ing method which allows to treat groups separately and estimate parameters

in each cluster individually. Consequently, we introduce an effective clustering

algorithm which deals with non-normal data.
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1. Introduction

Clustering plays a basic role in many parts of data engineering, pattern recognition,
and image analysis. One of the most important clustering methods is the density
approach [1, 2]. Most of such algorithms are based on Gaussian Mixture Model [3],
which uses Expectation-maximization (EM) procedure [4]. The mixture components
describe individual clusters in the data space. Gaussian components are traditionally
successful in detecting elliptic clusters [3–5]. However, groups of a different shapes
require a solution with involved components of other distributions.

The growing need for more flexible tools to analyze datasets that exhibit non-
normal features, including asymmetry, multimodality, heavy tails, and fixed bounds,
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has led to intense development of non-normal model-based methods. The mixture
model-based clustering literature has focused on the development of mixture distri-
butions with more flexible parametric components like split distributions [6, 7], skew
distributions [8–10] and some other non-elliptical approaches [11–13].

The same situation occurs in the case of clustering non-negative or in some way
limited data. To take into account such a feature, components should have a limited
support. Therefore, we use the uniform distribution, which well covers clusters in the
shape of rectangle. Estimation of data models with the bounded support including
uniform ones was studied in various domains: clustering [14], individual state-space
and regression models [15, 16] as well as mixture models [17]. In mixture-based clus-
tering approach the challenging task is updating parameters of uniform components.
Intuitively, the prior chosen bounds of the uniform distribution are only expandable,
but they are not floating (limited support). Therefore, estimating a uniform mixture
is very hard.

In this paper we construct a new clustering model Uniform Cross-Entropy Clus-
tering (UCEC), which try to solve these problems. First of all, we use simple multi-
dimensional uniform distribution, see Fig. 1. More precisely, we use uniform pdf for
independent variables, which is a product of univariate marginal pdfs, and the distri-
bution will have generally the rectangle support. Furthermore, simpler optimization
procedure known as Cross Entropy Clustering (CEC) [18] is used instead of EM.

A goal of CEC is to optimally approximate the scatter of data set X ⊂ Rd by the
function which is a small modification of EM (for more information see Section 2). It
occurs that at the small cost of having a minimally worse density approximation [18],
we gain the ease of using more complicated density models. The method is capable
of the automatic reduction of unnecessary clusters (contrary to EM each group has
its cost). Moreover, we can treat clusters separately which is more effective from
a numerical point of view.

This paper is arranged as follows. First the theoretical background of UCEC
method is presented. We introduce the cost function which we need to minimize.
Moreover, we present three strategies to escape from local minima to reach a better
minimum. In the last part numerical experiments are presented.

(a) GMM (b) UCEC

Figure 1. The result of our approach and classical GMM in the case of the L-type
dataset.
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2. Theoretical background of UCEC

In this section the UCEC method will be presented. First, we introduce the cost
function which will be optimized by the algorithm.

Our approach is based on the CEC [18]. Therefore, we start with a short intro-
duction to the method. Since CEC is similar to EM in many aspects, let us first recall

that, in general, EM aims to find p1, . . . , pk ≥ 0,
k∑

i=1

pi = 1 and f1, . . . , fk Gaussian

densities (where k is given beforehand and denotes the number of densities for which
the convex combination builds the desired density model) such that the convex com-
bination f = p1f1 + . . .+pkfk optimally approximates the scatter of our data X with
respect to the MLE cost function

MLE(f,X) = −
∑

x∈X
ln(p1f1(x) + . . . + pkfk(x)). (1)

A goal of CEC is to minimize the cost function, which is a minor modification of
that given in (1) by substituting the sum with the maximum:

CEC(f,X) = −
∑

x∈X
ln(max(p1f1(x), . . . , pkfk(x))). (2)

Instead of focusing on the density estimation as its main task, CEC aims directly at the
clustering problem. It occurs that a small cost of having a minimally worse density
approximation [18], we obtain numerical efficient method. We can often use the
Hartigan approach to clustering, which is faster and typically finds better minimums.
This is an advantage, roughly speaking, because the models do not mix with each
other since we take the maximum instead of the sum.

To apply CEC, we need to introduce the cost function which we want to minimize.
To do so, let it be recalled that by the cross-entropy of data set X ⊂ Rd with respect
to density f is given by

H×(X‖f) = − 1

|X|
∑

x∈X
ln(f(x)).

In the case of splitting X ⊂ Rd into X1, . . . , Xk so that we describe elements of Xi

using a function from the family of all multidimensional uniform densities U(Rd).
As it was mentioned, we use simple multidimensional uniform distributions. Let

us start from one dimensional density

U(x; a, b) =

{
1

b−a x ∈ [a, b]

0 x /∈ [a, b]
,

for a, b ∈ R.
For a dataset X ⊂ R the maximum likelihood (ML) estimation of parameters

a, b ∈ R of uniform distribution is given by maximal and minimal elements of X [19].
In our work we use multidimensional uniform distribution, which is product of

univariate marginal pdfs.
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Definition 1. For a vector x ∈ Rd the multidimensional uniform distribution is given
by

Ud(x; a,b) =

d∏

j=1

U(xj ; aj , bj),

for x = [x1, . . . , xd] ∈ Rd, a = [a1, . . . , ad] ∈ Rd, b = [b1, . . . , bd] ∈ Rd, where ai < bi
for i = 1, . . . , d.

Similar to the one dimensional case the maximum likelihood estimators are given
by by maximal and minimal elements of X [19].

Theorem 1. Let X = {x1, . . . , xn} be a random sample from Ud(x; a,b). Then the
maximum likelihood estimators of a and b are

â = min(X) = [min(X1), . . . ,min(Xd)],

b̂ = max(X) = [max(X1), . . . ,max(Xd)].

The support of uniform density distributions Ud(x; a,b) is hyperrectangle

supp(Ud(x; a,b)) = {Ud(x; a,b) 6= 0, x ∈ Rd} = [a1, b1]× . . .× [ad, bd].

Therefore, for given uniform distribution Ud(x; a,b) volume of his support is equal to
VUd(x;a,b) = |b1 − a1| · . . . · |bd − ad|. Now we are ready to present the cost function,
which will be used in our algorithm

E(X1, . . . , Xk;U(Rd)) =
k∑

i=1

pi ·
(
− ln(pi) + H×(Xi‖U(Rd))

)
, (3)

where pi = |Xi|
|X| and H×(Xi‖U(Rd)) = inff∈U(Rd) H

×(Xi‖f).

The aim of CEC is to split dataset X into subsets Xi which minimize the function
given in (3). It is easy to see that in the case of one cluster X, the cross-entropy is
equivalent to the log-likelihood function:

H×(X‖Ud(a,b)) = − 1
|X|

∑
x∈X

ln(Ud(a,b)) = − 1
|X| ln(L(X; a,b)).

Consequently, we can minimize cross-entropy by maximizing log-likelihood. This
approach allows us to fit optimal parameters in each cluster and minimize the cost
function (3).

In the case of uniform distributions the formula for negative log-likelihood function
is given as follows

H×(X‖Ud(a,b)) = − 1

|X| ln(L(X; a,b)) = − 1

|X|
∑

x∈X
ln(Ud(x, a,b)) = ln

(
VUd(x;a,b)

)
.

Therefore, our cost function depends on the volume of the support of densities which
describes clusters:
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E(X1, . . . , Xk;U(Rd)) =
k∑

i=1

pi
(
− ln(pi) + ln(VUd(x;ai,bi))

)
,

where ai = min(Xi),bi = max(Xi).
Let us now introduce the algorithm step by step. The UCEC method starts from

an initial clustering, which can be obtained randomly or with use of the k-means++
approach.

In our work we use the Hartigan method [20–22]. The aim of Hartigan method
is to find partition X1, . . . , Xn of X which cost function (3) is as close as possible to
the minimum by subsequently reassigning membership of elements from X.

To explain Hartigan approach more precisely we need the notion of group mem-
bership function gr : {1, . . . , n} → {0, . . . , k}, which describes the membership of i-th
element, where 0 value is a special symbol which denotes that xi is as yet unassigned.
In other words: if gr(i) = l > 0, then xi is a part of the l-th group, and if gr(i) = 0
then xi is unassigned.

Basic idea of Hartigan is relatively simple – we repeatedly go over all elements of
X and apply the following steps:

� if the chosen element xi is unassigned, assign it to the first nonempty group;

� reassign xi to these group, which decrease cost function;

� check if no group needs to be removed/unassigned, if this is the case unassign
its all elements;

until no group membership has been changed.
To implement Hartigan approach for discrete measures we still have to add a con-

dition when we unassign given group. For example in the case of Uniform clustering
in Rd to avoid overfitting we cannot consider clusters which contain less then d + 1
points. In practice while applying Hartigan approach on discrete data we usually
removed clusters which contained less then three percent of all data-set.

Observe that in the crucial step in Hartigan approach we compare the cross-
entropy after and before the switch, while the switch removes a given set from one
cluster and adds it to the other. It means that to apply efficiently the Hartigan
approach in clustering it is essential to update parameters.

To calculate cost function we need to calculate minimum and maximum for every
dimension of new clusters. If we use simple arrays to keep data, it will take O(d ·k ·n2)
time per loop (k is number of clusters, d dimension of data). So we use BST tree
for every dimension, which gives us min and max in O(lnn) time. Moreover, we can
calculate maximum only after switching point – for change cost function we can just
take maximum of current maximums and added point. It enable to decrease time per
loop to O(n · d(lnn + k)).

In classical Hartigan approach we switch elements one by one. In the case of
uniform distribution this approach is ineffective since the algorithms stacks in local
minimums. The effect is caused by the finite support of uniform distributions. In most
cases switching one point does not decrease the size of hyperrectangle. Therefore, we
consider three possible scenarios of switching points. The classical UCEC switch only
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one point. In the second version random UCEC (UCEC-r), we sometimes randomly
move some points to another class and minimize it using Hartigan again. It gives
better results, but it is time consuming, especially when we apply many random
switches.

In the third version multi-points movement UCEC (UCEC-m), we move subsets
of points which lie in the borders of supports of uniform densities. The motivation
for the solution comes from the observation that for two clusters X1, X2 ⊂ Rd which
supports have nonempty intersection, it is profitable to add all points from intersection
to the same cluster.

Theorem 2. Let X1, X2 ⊂ Rd such that X1 ∩X2 = ∅, X1 ∪X2 = X be given. Let

X∩ = X ∩ supp(Ud(a1,b1)) ∩ supp(Ud(a2,b2)) 6= ∅

where a1 = min(X1),b1 = max(X1), a2 = min(X2),b2 = max(X2) be such that
X∩ ⊂ X1 and E(X1, X2,U(Rd)) ≤ E(X1 \X∩, X2 ∪X∩,U(Rd)). Then

E(X1, X2,U(Rd)) ≤ E(Y1, Y2,U(Rd)),

for any other clustering such that min(X1) = min(Y1),max(X1) = max(Y1),min(X2) =
min(Y2),max(X2) = max(Y2).

(a) GMM (b) CEC (c) Uniform EM

(d) UCEC (e) UCEC-r (f) UCEC-m

Figure 2. The effect of different clustering algorithms in the case of E-type dataset.

Proof. Cross entropy is equal to:

E(X1, X2,U(Rd)) =p ·
(
− ln(p) + VUd(x;a1,b1)

)
+ (1− p) ·

(
− ln(1− p) + VUd(x;a2,b2)

)

= p · ln
(
VUd(x;a1,b1)

p

)
+ (1− p) · ln

(
VUd(x;a2,b2)

1− p

)
.
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We consider only such clustering which does not change maximal and minimal
values in cluster. Therefore, value of a cost function depends only on p. We can
consider a simpler function

f(p) = p · ln
(
V1

p

)
+ (1− p) · ln

(
V2

1− p

)
.

where V1, V2 are constant. By analyzing the first derivative of f

f ′(p) = ln

(
V1

p

)
− p · p

V1
· V1

p2
− ln

(
V2

1− p

)
+ (1− p) · 1− p

V2
· V2

(1− p)2
=

= ln

(
V1

p

)
− ln

(
V2

1− p

)
,

we obtain that f has one local maximum and no local minimums. Therefore minimum
is at one of ends of domain. As a simple corollary we obtain that E(X1, X2,U(Rd))
obtain minimum when all points from X∩ are in one cluster.

In natural way it is impossible to verify all possibles subsets which lies in the bor-
ders of clusters. But we can take advantage by using Theorem 2 Therefore instead of
considering one point we will use all elements which lie in the intersection of supports
of considered clusters. k-d trees [23] can be used to increase performance and enable
faster search.

Thanks to above modifications and suitable data structures (like k-d trees or BST
trees) we obtain effective algorithm for clustering datasets by uniform distributions.

3. Experiments

In this section, we present a comparison of our method with different scenario (UCEC,
UCEC-r, UCEC-m) and classical clustering algorithms k-means, GMM, CEC and
uniform EM.

In the first example we use letters type datasets (D, E and L), see Fig. 2. To
compare the results, we use the standard Bayesian Information Criterion BIC =
?2LL + k ln(n) and Akaike Information Criterion AIC = ?2LL + 2k, where k is the
number of parameters in the model, n is the number of points, and LL is a maximized
value of the log-likelihood function. We need a number of parameters which are used
in our model. The UCEC model uses two scalars for minimal and maximal value for
each dimensions k ·2d. The results of our experiment are presented in Table 1. In the
case of letters which contains uniform distributions on rectangles (letters E and L)
our approach (UCEC-m) gives the best results. On the other hand, if data contains
curve types structures (letter D) classical approaches fit data with higher precision.

In the second example we use real datasets with labels from UCI repository. In
the experiment we use BIC, AIC measures for verify which model fits data best.
On the other hand, we use adjusted rand index to check which model is able to
recover reference clustering. The results of our experiment one presented in Table 2.
Results of recovering clustering for UCEC are comparable with k-means and worse
than GMM.
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Table 1. The results of classical algorithms in the case of letter-type data.

data cl.
scoring

GMM CEC U-EM UCEC UCEC-r UCEC-m
function

D

4
avg l-l 0,479 0,588 -0,057 0,487 0,541 0,579
AIC -3206 -3974 424 -3259 -3625 -3884
BIC -3089 -3943 540 -3143 -3509 -3768

5
avg l-l 0,506 0,736 -0,070 0,483 0,457 0,606
AIC -3377 -4973 504 -3224 -3045 -4057
BIC -3230 -4931 590 -3077 -2898 -3910

6
avg l-l 0,627 0,798 -0,055 0,473 0,600 0,679
AIC -4192 -5387 378 -3149 -4008 -4545
BIC -4014 -5338 403 -2972 -3830 -4367

E

4
avg l-l 0,440 0,695 0,284 0,368 0,393 0,839
AIC -2176 -3487 -1384 -1813 -1941 -4186
BIC -2065 -3452 -1274 -1702 -1831 -4074

5
avg l-l 0,609 0,829 0,329 0,488 0,534 0,972
AIC -3019 -4159 -1627 2410 -2589 -4846
BIC -2880 -4118 -1546 -2270 -2449 -4706

6
avg l-l 0,631 0,829 0,379 0,645 0,677 1,073
AIC -3117 -4159 -1878 -3191 -3348 -5345
BIC -2948 -4118 -1797 -3021 -3179 -5176

L

4
avg l-l 1,121 1,273 0,506 0,961 1,243 1,351
AIC -4460 -5097 -2010 -3816 -4950 -5381
BIC -4353 -5063 -1959 -3710 -4843 -5274

5
avg l-l 1,164 1,315 0,504 1,141 1,255 1,419
AIC -4623 -5262 -2005 -4528 -4986 -5644
BIC -4489 -5223 -1955 -4394 -4851 -5510

6
avg l-l 1,160 1,332 0,504 1,077 1,287 1,432
AIC -4597 -5327 -2005 -4264 -5106 -5685
BIC -4435 -5283 -1955 -4101 -4944 -5523

4. Conclusions

In the paper we construct UCEC, a fast clustering algorithm which describes compo-
nents by using uniform distributions. In our algorithm we use a data structure like
k-d trees or BST trees which allows to implement effective from a numerical opti-
mization point of view, algorithm. Therefore, we obtain a flexible tool for analyzing
data with finite support. Moreover, due to its nature UCEC automatically removes
unnecessary clusters and therefore can be successfully applied in typical situations
where the correct number of groups is not known.
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Table 2. The results of classical algorithms in the case of data from UCI repository.

data
scoring

k-m GMM CEC U-EM UCEC UCEC-r UCEC-m
function

iris

a-rand 0,730 0,758 0,901 0,512 0,772 0,772 0,772
avg l-l - -2,058 -1,208 -3,608 -2,270 -2,27 -2,27
AIC - 670 386 1134 733 733 733
BIC - 748 422 1213 811 811 811

cancer

a-rand 0,491 0,755 0,000 0,068 0,458 0,439 0,545
avg l-l - -3,308 -11,5 -18,70 -3,212 -3,074 -3,069
AIC - 4006 13193 21520 3898 3740 3735
BIC - 4532 13454 22046 4423 4266 4260

seeds

a-rand 0,717 0,679 0,630 0,515 0,632 0,640 0,671
avg l-l - -1,409 6,079 -3,080 -1,276 -1,273 -1,311
AIC - 680 -2493 1382 624 623 639
BIC - 827 -2393 1529 771 770 786

wine

a-rand 0,371 0,915 0,023 0,203 0,571 0,421 0,383
avg l-l - -18,5 -17,32 -22,07 -19,97 -19,91 -19,93
AIC - 6750 6351 8016 7268 7247 7256
BIC - 7005 6644 8271 7522 7502 7510
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[21] Śmieja M., Tabor J., Spherical wards clustering and generalized voronoi diagrams.
In: Data Science and Advanced Analytics (DSAA), 2015. 36678 2015. IEEE
International Conference on, IEEE, 2015, pp. 1–10.

[22] Telgarsky M., Vattani A., Hartigan’s method: k-means clustering without
voronoi. In: AISTATS, 2010, pp. 820–827.

[23] Bentley J.L., Multidimensional binary search trees used for associative searching.
Communications of the ACM, 1975, 18 (9), pp. 509–517.


