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Abstract. Deep neural networks are currently among the most commonly

used classifiers. Despite easily achieving very good performance, one of the best

selling points of these models is their modular design – one can conveniently

adapt their architecture to specific needs, change connectivity patterns, attach

specialised layers, experiment with a large amount of activation functions, nor-

malisation schemes and many others. While one can find impressively wide

spread of various configurations of almost every aspect of the deep nets, one

element is, in authors’ opinion, underrepresented – while solving classification

problems, vast majority of papers and applications simply use log loss. In this

paper we try to investigate how particular choices of loss functions affect deep

models and their learning dynamics, as well as resulting classifiers robustness to

various effects. We perform experiments on classical datasets, as well as provide

some additional, theoretical insights into the problem. In particular we show

that L1 and L2 losses are, quite surprisingly, justified classification objectives

for deep nets, by providing probabilistic interpretation in terms of expected mis-

classification. We also introduce two losses which are not typically used as deep

nets objectives and show that they are viable alternatives to the existing ones.
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1. Introduction

For the last few years the Deep Learning (DL) research has been rapidly developing.
It evolved from tricky pretraining routines [1] to a highly modular, customisable
framework for building machine learning systems for various problems, spanning from
image recognition [2], voice recognition and synthesis [3] to complex AI systems [4].
One of the biggest advantages of DL is enormous flexibility in designing each part
of the architecture, resulting in numerous ways of putting priors over data inside
the model itself [1], finding the most efficient activation functions [5] or learning
algorithms [6]. However, to authors’ best knowledge, most of the community still
keeps one element nearly completely fixed – when it comes to classification, we use
log loss (applied to softmax activation of the output of the network). In this paper
we try to address this issue by performing both theoretical and empirical analysis of
effects various loss functions have on the training of deep nets.

It is worth noting that Tang et al. [7] showed that well fitted hinge loss can outper-
form log loss based networks in typical classification tasks. Lee et al. [8] used squared
hinge loss for classification tasks, achieving very good results. From slightly more
theoretical perspective Choromanska et al. [9] also considered L1 loss as a deep net
objective. However, these works seem to be exceptions, appear in complete separation
from one another, and usually do not focus on any effect of the loss function but the
final performance. Our goal is to show these losses in a wider context, comparing one
another under various criteria and provide insights into when – and why – one should
use them.

Table 1. List of losses analysed in this paper. y is true label as one-hot encoding, ŷ
is true label as +1/-1 encoding, o is the output of the last layer of the network, ·(j)
denotes jth dimension of a given vector, and σ(·) denotes probability estimate.

Symbol Name Equation

L1 L1 loss ‖y − o‖1
L2 L2 loss ‖y − o‖22
L1 ◦ σ expectation loss ‖y − σ(o)‖1
L2 ◦ σ regularised expectation loss1 ‖y − σ(o)‖22
L∞ ◦ σ Chebyshev loss maxj |σ(o)(j) − y(j)|
hinge hinge [7] (margin) loss

∑
j max(0, 12 − ŷ(j)o(j))

hinge2 squared hinge (margin) loss
∑
j max(0, 12 − ŷ(j)o(j))2

hinge3 cubed hinge (margin) loss
∑
j max(0, 12 − ŷ(j)o(j))3

log log (cross entropy) loss −∑j y
(j) log σ(o)(j)

log2 squared log loss −∑j [y
(j) log σ(o)(j)]2

tan Tanimoto loss
−∑

j σ(o)
(j)y(j)

‖σ(o)‖22+‖y‖22−
∑

j σ(o)
(j)y(j)

DCS Cauchy-Schwarz Divergence [10] − log
∑

j σ(o)
(j)y(j)

‖σ(o)‖2‖y‖2

1 See Proposition 1.
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This work focuses on 12 loss functions, described in Table 1. Most of them appear
in deep learning (or more generally – machine learning) literature, however some
in slightly different context than a classification loss. In the following section we
present new insights into theoretical properties of a couple of these losses and then
provide experimental evaluation of resulting models’ properties, including the effect
on speed of learning, final performance, input data and label noise robustness as well
as convergence for simple dataset under limited resources regime.

2. Theory

Let us begin with showing interesting properties of Lp functions, typically considered
as purely regressive losses, which should not be used in classification. L1 is often used
as an auxiliary loss in deep nets to ensure sparseness of representations. Similarly, L2

is sometimes (however nowadays quite rarely) applied to weights in order to prevent
them from growing to infinity. In this section we show that – despite their regression
roots – they still have reasonable probabilistic interpretation for classification and can
be used as a main classification objective.

We use the following notation: {(xi,yi)}Ni=1 ⊂ Rd × {0, 1}K is a training set, an
iid sample from unknown P (x,y) and σ denotes a function producing probability
estimates (usually sigmoid or softmax).

Proposition 1. L1 loss applied to the probability estimates p̂(y|x) leads to minimi-
sation of expected misclassification probability (as opposed to maximisation of fully
correct labelling given by the log loss). Similarly L2 minimises the same factor, but
regularised with a half of expected squared L2 norm of the predictions probability esti-
mates.

Proof. In K-class classification dependent variables are vectors yi ∈ {0, 1}K with
L1(yi) = 1, thus using notation pi = p̂(y|xi)

L1 = 1
N

∑
i

∑
j
|p(j)
i − y

(j)
i | = 1

N

∑
i
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(j)
i (1− p
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i ) + (1− y

(j)
i )p
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i

]

= 1
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(j)
i p

(j)
i

]
.

Consequently if we sample label according to pi then probability that it actually

matches one hot encoded label in yi equals P (l̂ = l|l̂ ∼ pi, l ∼ yi) =
∑
j y

(j)
i p

(j)
i , and

consequently

L1 = 2− 2 1
N

∑
i

[∑
j
y
(j)
i p

(j)
i

]
≈ −2EP (x,y)

[
P (l̂ = l|l̂ ∼ pi, l ∼ yi)

]
+ const.

Analogously for L2,

L2 = −2 1
N

∑
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y
(j)
i p

(j)
i

]
+ 1

N

∑
i
L2(yi)

2 + 1
N

∑
i
L2(pi)

2

≈ −2EP (x,y)

[
P (l̂ = l|l̂ ∼ pi, l ∼ yi)

]
+ EP (x,y)[L2(pi)

2] + const.
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For this reason we refer to these losses as expectation loss and regularised expec-
tation loss respectively. One could expect that this should lead to higher robustness
to the outliers/noise, as we try to maximise the expected probability of good classi-
fication as opposed to the probability of completely correct labelling (which log loss
does). Indeed, as we show in the experimental section – this property is true for all
losses sharing connection with expectation losses.

So why is using these two loss functions unpopular? Is there anything funda-
mentally wrong with this formulation from the mathematical perspective? While
the following observation is not definitive, it shows an insight into what might be the
issue causing slow convergence of such methods.

Proposition 2. L1, L2 losses applied to probabilities estimates coming from sigmoid
(or softmax) have non-monotonic partial derivatives wrt. to the output of the final
layer (and the loss is not convex nor concave wrt. to last layer weights). Further-
more, they vanish in both infinities, which slows down learning of heavily misclassified
examples.

Proof. Let us denote sigmoid activation as σ(x) = (1 + e−x)−1 and, without loss of
generality, compute partial derivative of L1 when network is presented with xp with
positive label. Let op denote the output activation for this sample.

∂(L1 ◦ σ)

∂o
(op) =

∂

∂o

(
|1− (1 + e−o)−1|

)
(op) = − e−op

(e−op + 1)2

lim
o→−∞

− e−o

(e−o + 1)2
= 0 = lim

o→∞
− e−o

(e−o + 1)2
,

while at the same time − e0

(e0+1)2 = − 1
4 < 0, completing the proof of both non-

monotonicity as well as the fact it vanishes when point is heavily misclassified. Lack
of convexity comes from the same argument since second derivative wrt. to any weight
in the final layer of the model changes sign (as it is equivalent to first derivative being
non-monotonic). This comes directly from the above computations and the fact that
op = 〈w,hp〉+ b for some internal activation hp, layer weights w and layer bias b. In
a natural way this is true even if we do not have any hidden layers (model is linear).
Proofs for L2 and softmax are completely analogous.

Given this negative result, it seems natural to ask whether a similar property can
be proven to show which loss functions should lead to fast convergence. It seems
like the answer is again positive, however based on the well known deep learning
hypothesis that deep models learn well when dealing with piece-wise linear functions.
An interesting phenomenon in classification based on neural networks is that even
in a deep linear model or rectifier network the top layer is often non-linear, as it
uses softmax or sigmoid activation to produce probability estimates. Once this is
introduced, also the partial derivatives stop being piece-wise linear. We believe that
one can achieve faster, better convergence when we ensure that architecture together
with loss function, produces a piecewise linear partial derivatives (but not constant)
wrt. to final layer activations, especially while using first order optimisation methods.
This property is true only for L2 loss and squared hinge loss (see Figure 1) among all
considered ones in this paper.



53

Figure 1. Left: Visualisation of analysed losses as functions of activation on positive
sample. Middle: Visualisation of partial derivatives wrt. to output neuron for losses
based on linear output. Right: Visualisation of partial derivatives wrt. to output
neuron for losses based on probability estimates.

Finally we show relation between Cauchy-Schwarz Divergence loss and the log
loss, justifying its introduction as an objective for neural nets.

Proposition 3. Cauchy-Schwarz Divergence loss is equivalent to cross entropy loss
regularised with half of expected Renyi’s quadratic entropy of the predictions.

Proof. Using the fact that ∀i∃!j : y
(j)
i = 1 we get that log
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log ‖pi‖22 ≈ Llog + 1

2EP (x,y)[H2(pi)]

3. Experiments

We begin the experimental section with two simple 2D toy datasets. The first one
is checkerboard – 4 class classification problem where [-1,1] square is divided into
64 small squares with cyclic class assignment. The second one, spiral, is a 4 class
generalisation of the well known 2 spirals dataset. Both datasets have 800 training
and 800 testing samples. We train rectifier neural network having from 0 to 5 hidden
layers with 200 units in each of them. Training is performed using Adam [6] with
learning rate of 0.00003 for 60,000 iterations with batch size of 50 samples. In these
simple problems one can distinguish (Figure 2) two groups of losses – one able to
fit to our very dense, low-dimensional data and one struggling to reduce error to
0. The second group consists of L1, Chebyshev, Tanimoto and expectation loss.
This division becomes clear once we build a relatively deep model (5 hidden layers),
while for shallow ones this distinction is not very clear (3 hidden layers) or is even
completely lost (1 hidden layer or linear model). To further confirm the lack of
ability to easily overfit we also ran an experiment in which we tried to fit 800 samples
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Figure 2. Top row: Learning curves for toy datasets. Bottom row: examples of
decision boundaries, from left: L1 loss, log loss, L1 ◦ σ loss, hinge2 loss.

from uniform distribution over [−1, 1] with randomly assigned 4 labels and achieved
analogous partitioning.

During following, real data-based experiments, we focus on further investigation
of loss functions properties emerging after application to deep models, as well as
characteristics of the created models. In particular, we show that lack of ability to
reduce training error to 0 is often correlated with robustness to various types of noise
(despite not underfitting the data).

Let us now proceed with one of the most common datasets used in deep learning
community – MNIST [11]. We train network consisting from 0 to 5 hidden layers, each
followed by ReLU activation function and dropout [12] with 50% probability. Each
hidden layer consists of 512 neurons, and whole model is trained using Adam [6] with
learning rate of 0.00003 for 100,000 iterations using batch size of 100 samples. There
are few interesting findings, visible on Figure 3. First, results obtained for a linear
model (lack of hidden layers) are qualitatively different from all the remaining ones.
For example, using regularised expectation loss leads to the strongest model in terms
of both training accuracy and generalisation capabilities, while the same loss function
is far from being the best one once we introduce non-linearities. This shows two
important things: first – observations and conclusions drawn from linear models do
not seem to transfer to deep nets, and second – there seems to be an interesting co-
dependence between learning dynamics coming from training rectifier nets and loss
functions used. As a side note, 93% testing accuracy, obtained by L2 ◦ σ and DCS, is
a very strong result on MNIST using linear model without any data augmentation or
model regularisation.

Second interesting observation regards the speed of learning. It appears that
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Figure 3. Top two rows: learning curves for MNIST dataset. Bottom row: (left)
speed of learning expressed as expected training/testing accuracy when we sample it-
eration uniformly between 10k and 100k; (right) learning curves for CIFAR10 dataset.

(apart from linear models) hinge2 and hinge3 losses are consistently the fastest in
training, and once we have enough hidden layers (basically more than 1) also L2. This
matches our theoretical analysis of these losses in the previous section. At the same
time both expectation losses are much slower to train, which we believe to be a result
of their vanishing partial derivatives in heavily misclassified points (Proposition 2).
It is important to notice that while higher order hinge losses (especially 2nd) actually
help in terms of both speed and final performance, the same property does not hold
for higher order log losses. One possible explanation is that taking a square of log
loss only reduces model’s certainty in classification (since any number between 0 and
1 taken to 2nd power decreases), while for hinge losses the metric used for penalising
margin-outliers is changed, and both L1 metric (leading to hinge) as well as any other
Lp norm (leading to hingep) make perfect sense.

Third remark is that pure L1 does not learn at all (ending up with 20% accuracy)
due to causing serious “jumps” in the model because of its partial derivatives wrt. to
net output always being either -1 or 1. Consequently, even after classifying a point
correctly, we are still heavily penalised for it, while with losses like L2 the closer we
are to the correct classification – the smaller the penalty is.

Finally, in terms of generalisation capabilities margin-based losses seem to out-
perform the remaining families. One could argue that this is just a result of lack of
regularisation in the rest of the losses, however we underline that all the analysed
networks use strong dropout to counter the overfitting problem, and that typical L1

or L2 regularisation penalties do not work well in deep networks.
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For CIFAR10 dataset we used a simple convnet, consisting of 3 layers of con-
volutions, each of size 5x5 and 64 filters, with ReLU activation functions, batch-
normalisation and pooling operations in between them (max pooling after first layer
and then two average poolings, all 3x3 with stride 2), followed by a single fully con-
nected hidden layer with 128 ReLU neurons, and final softmax layer with 10 neurons.
As one can see in Figure 3, despite completely different architecture than before, we
obtain very similar results – higher order margin losses lead to faster training and
significantly stronger models. Quite surprisingly – L2 loss also exhibits similar prop-
erty. Expectation losses again learn much slower (with the regularised one – training
at the level of log loss and unregularised – significantly worse). We would like to un-
derline that this is a very simple architecture, far from the state-of-the art models for
CIFAR10, however we wish to avoid using architectures which are heavily overfitted to
the log loss. Furthermore, the aim of this paper is not to provide any state-of-the-art
models, but rather to characterise effects of loss functions on deep networks.

As the final interesting result in these experiments, we notice that Cauchy-Schwarz
Divergence as the optimisation criterion seems to be a consistently better choice than
log loss. It performs equally well or better on both MNIST and CIFAR10 in terms
of both learning speed and the final performance. At the same time this information
theoretic measure is very rarely used in DL community, and rather exploited in shallow
learning (for both classification [10] and clustering [13]).

Now we focus on the impact these losses have on noise robustness of the deep
nets. We start by performing the following experiment on previously trained MNIST
classifiers: we add noise sampled from N (0, εI) to each xi and observe how quickly
(in terms of growing ε) network’s training accuracy drops (Figure 4). The first crucial
observation is that both expectation losses perform very well in terms of input noise
robustness. We believe that this is a consequence of what Proposition 1 showed about
their probabilistic interpretation – that they lead to minimisation of the expected
misclassification, which is less biased towards outliers than log loss (or other losses
that focus on maximisation of probability of correct labelling of all samples at the
same time). For log loss a single heavily misclassified point has an enormous impact
on the overall error surface, while for these two losses – it is minor. Secondly, margin
based losses also perform well on this test, usually slightly worse than the expectation
losses, but still better than log loss. This shows that despite no longer maximising
the misclassification margin while being used in deep nets – they still share some
characteristics with their linear origins (SVM). In another, similar experiment, we
focus on the generalisation capabilities of the networks trained with increasing amount
of label noise in the training set (Figure 4) and obtain analogous results, showing that
robustness to the noise of expectation and margin losses is high for both input and
label noise for deep nets, while again – slightly different results are obtained for linear
models, where log loss is more robust than the margin-based ones. What is even
more interesting, a completely non-standard loss function – Tanimoto loss – performs
extremely well on this task. We believe that its exact analysis is one of the important
future research directions.
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Figure 4. Top row: Training accuracy curves for the MNIST trained models, when
presented with training examples with added noise fromN (0, εI), plotted as a function
of ε. Middle and bottom rows: Testing accuracy curves for the MNSIT experiment
with ε of training labels changed, plotted as a function of training iteration. If L1 ◦ σ
is not visible, it is almost perfectly overlapped by L∞ ◦ σ.

4. Conclusions

This paper provides basic analysis of effects the choice of the classification loss function
has on deep neural networks training as well as their final characteristics. We believe
the obtained results will lead to a wider adoption of various losses in DL work – where
up till now log loss is unquestionable favourite.

In the theoretical section we show that, surprisingly, losses which are believed to be
applicable mostly to regression, have a valid probabilistic interpretation when applied
to deep network-based classifiers. We also provide theoretical arguments explaining
why using them might lead to slower training, which might be one of the reasons DL
practitioners have not yet exploited this path. Our experiments lead to two crucial
conclusions. First, that intuitions drawn from linear models rarely transfer to highly-
nonlinear deep networks. Second, that depending on the application of the deep model
– losses other than log loss are preferable. In particular, for purely accuracy focused
research, squared hinge loss seems to be a better choice at it converges faster as well
as provides better performance. It is also more robust to noise in the training set
labelling and slightly more robust to noise in the input space. However, if one works
with highly noised dataset (both input and output spaces) – the expectation losses
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described in detail in this paper – seem to be the best choice, both from theoretical
and empirical perspective.

At the same time this topic is far from being exhausted, with a large amount of
possible paths to follow and questions to be answered. In particular, non-classical loss
functions such as Tanimoto loss and Cauchy-Schwarz Divergence are worth further
investigation.
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