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Abstract. There is a strong research e�ort towards developing models that

can achieve state-of-the-art results without sacri�cing interpretability and sim-

plicity. One of such is recently proposed Recursive Random Support Vector

Machine (R2SVM) model, which is composed of stacked linear models. R2SVM

was reported to learn deep representations outperforming many strong classi-

�ers like Deep Convolutional Neural Network. In this paper we try to analyze

it both from theoretical and empirical perspective and show its important limi-

tations. Analysis of similar model Deep Representation Extreme Learning Ma-

chine (DrELM) is also included. It is concluded that models in its current form

achieves lower accuracy scores than Support Vector Machine with Radial Basis

Function kernel.

Keywords: support vector machines, random recursive support vector machine,

extreme learning machine, representation learning, stacked generalization

1. Introduction

Successes of deep architectures often comes at the cost of interpretability and �tting
complexity [1, 2]. Popular techniques used to battle this problem include random
projections, which are a basic building block of Extreme Learning Machines [3, 4],
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W1 W2

Figure 1. Visualization of R2SVM model on two moon dataset. Random projections were
manually adjusted.

where before classi�cation data is projected into a higher dimensional space using
random non-linear transformation. Such classi�ers are stacked to form a deep archi-
tecture that can achieve state of the art results [5]. In this paper we analyze Random
Recursive SVM (R2SVM) model proposed by Vinyals et al. [6], which recursively
transforms data using predictions from linear layers (see Figure 1). We will also cover
similar model called Deep Representation Extreme Learning Machine (DrELM) [7].
Both models are following �stacked generalization� introduced by Wolpert et al. [8].

R2SVM uses as linear classi�er Support Vector Machines (SVM), model proposed
by Vapnik [9], one of the most successful classi�ers of the last decade mostly thanks to
its well motivated regularization method in the linear case and its e�cient delineariza-
tion. While shallow learners, like SVM, are usually outperformed by Deep Learning
models, combining strengths of principled shallow models and Deep Learning ones is
an active �eld [10].

The most important advantages of R2SVM and DrELM include their interpretabil-
ity and scalability, while at the same time learning deep representation, as reported
by authors of the models. Indeed both linear SVM and non�linear ELM can be �tted
in O(N) time and only single �t is performed for each layer. Both models optimize
a convex objective, that has a global minimum. The original papers did not include
theoretical discussion of the obtained results and its limitations, which are the main
topic of the paper.

R2SVM and DrELM

First we introduce the model in an informal discussion. R2SVM consists of multiple
layers transforming recursively input dataset. Let's focus on the binary case, where
each layer �ts a hyperplane separating the dataset into two subspaces. The two
groups are then moved in random opposite directions proportionally to distance of
the hyperplane. The main idea behind the model is to separate those groups, which
should improve classi�cation performance at later stages. Transformed dataset with
applied non-linearity (which prevents some degeneration of the method) is passed to
the next layer.
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Formally let's consider training dataset {(xi, yi)}Ni=1, where xi ∈ Rd is a feature
vector and yi ∈ {1, 2, . . . ,K} is class label. R2SVM is a recursive model, where each
layer transforms dataset using all previous outputs. Let's denote Xi ∈ RN×d as
representation output of the ith layer (see Fig. 2), Oi ∈ RN×K is a vector of distances
from hyperplanes and Wj

i ∈ RK×d is a matrix containing random vectors as rows
that maps output of ith layer to input of jth layer. Each random vector is drawn from
standard normal distribution. Then we can write

Xi+1 = σ


X + α

i∑

j=1

OjW
j
i


 , (1)

where X is the original dataset, α controls size of applied transformation and σ is
element�wise sigmoid, see Figure 2 for diagram.

In the case of DrELM we have a slight modi�cation. Most importantly classi�er
used is Extreme Learning Machine (with linear activation function).

Authors also propose to use only the last output (Oi):

Xi+1 = σ (X + αOiWi) , (2)

where σ is a sigmoid function.

Xi

a)

b)

O1,...,i−1

M

O1 O2
... Oi

W + σ Xi+1

O1,...,i

X

X

R2Layer R2Layer ... R2Layer
Output

Feature

Figure 2. a) Each R2 layer calculates new transformation based on the output of
the previous layer. b) Model consists of repeated R2 layers.

2. Theoretical analysis

To simplify notation we will use R2M to denote both R2SVM and DrELM models,
where M denotes any classi�er, so DrELM is denoted as R2ELM. We start the dis-
cussion with analysis of R2M behavior on the well�known spiral dataset. Despite its
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simplicity model struggles to �nd correct random projections. We have exhaustively
searched possible hypothesis space of a three layered R2SVM and concluded that this
dataset cannot be separated by the given model1. For simpler two�moon dataset ap-
proximately 1% of the runs separate the classes. Interestingly replicating dimensions
(by stacking copies) of the datasets drastically improves performance, see Figure 3.

a)

b)

Figure 3. Visualization of 3 layered R2SVM. a) Best run without replicating dimensions.
b) Best run with replicated dimensions.

In this analysis we focus on model using only previous layer predictions, as in
R2ELM model. It simpli�es analysis and does not decrease performance as is both
conjectured by R2ELM authors and proven empirically in this paper.

Recall that transformation used in R2M for any linear M can be written as

Xi+1 = σ (X + αOiWi) = σ
(
X + α

∑
〈x,vi〉

)
+ b = σ (X + T (x)) ,

where by T (x) we denote displacement function applied to vector given by T (x) =∑K
i=1(〈x,vi〉 + bi)wi. Note that we can write it as T (x) = x

(∑K
i=1 viw

T
i

)
+ b.

Consequently

T (x) = x

(
K∑

i=1

viw
T
i

)
+ b = xA + b.

For linearly independent hyperplanes rank(A) = K. Thus this displacement operator
is a degenerated a�ne transformation. Whole layer could be interpreted as a two layer
neural network with skip connections or a single layer neural network, see Figure 4.

1 We tested all hyperplanes with a rotation step. Original paper reported the experiment using
a deeper R2SVM.
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Figure 4. Interpretation of R2SVM for binary case. a) As 2 layered neural network with
skip connections. b) As fully connected single layer neural network (x + T (x) = x(I + A)).

2.1. Classi�er importance

One of our claims is that R2M performance is characterized by the intersection of
found hyperplanes. This should be clari�ed by the following observation. Let TV,W be
a transformation de�ned by hyperplanes, V1, . . . , VK and random vectors w1, . . . ,wK .
From now simpli�ed notation is used, where Vi is i

th hyperplane and vi is its normal.

Observation 1 Let V1, . . . , VK and V ′1 , . . . , V
′
K denote hyperplanes then⋂

i Vi =
⋂

i V
′
i ⇒ ∃W ′, such that TV ′,W = TV,W ′ .

Proof. Let's simplify by skipping bias in the equation for T (which is equivalent to
adding constant dimension to x), then

TV,W =
∑

viw
T
i .

First we show that that kerT =
⋂

i Vi if random vectors W are linearly independent.
Left inclusion is obvious. Assume that x ∈ kerT and x /∈ ⋂i Vi, but that implies

∃αi :
∑K

i=1 αiwi = 0. That would mean that random vectors W are not linearly
independent. If the vectors v1, . . . ,vK are linearly independent then dim (kerTV,W ) =
N −K, because T (x) = 0⇔ ∀i∈{1,...,K} x ⊥ vi. In general we have dim (kerTV,W ) ≤
N −K. We choose basis for V {e1, . . . , eL}, L ≤ K. TV ′,W = TV,W ′ is equivalent to
the set of N × L linear equations with N ×K parameters:

TV ′,W (ei) = TV,W ′(ei), i = 1, . . . , L

which has an unique solution.

The observation suggests that multiclass classi�cation is not crucial, as one can for
instance rotate all hyperplanes or perform orthogonalization and still be able to �nd
an equivalent model. The observation does not include any results on distribution of
W and because of that only hints at this possibility that doing multiclass classi�cation
in the middle layers might not be optimal.
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2.2. Model interpretation

In this section we derive an interpretation of the model. Let x ∈ X is a data point.
Let TV,W (x) = Ax + b be a�ne displacement operator. Clearly kerT is also an
a�ne subspace, as it is intersection of K hyperplanes (a�ne subspaces). Denote by
PkerT (x) a projection onto this space, then

T ′U,W (x) = TV,W (x− PkerT (x)).

We can now easily simplify further discussion. Let us �rst �x origin inside kerT
and then subtract projection as follows: y = x− PkerTV,W

. We can now assume that
space is a vector space, in which of course kerT ′ is a linear subspace.

Denote by u1, . . . ,uK transformed vectors v1, . . . ,vK . Let B = span(U) be sub-
space spanned by u1, . . . ,uK . We can proof the following observation

Observation 2 Let U? be set of optimally separating hyperplanes in B. Then exists

W ′ such that TU,W = TU?,W ′

Proof. All vectors from U? are linear combinations of vectors from U , u?
i ∈ U? ⇔

ui =
∑L

j=1 αjuj . From this follows that
⋂

i Ui =
⋂

i U
?
i . We can �nd W ′ using

Observation 1.

Observation 2 suggests that if B subspace is well separable, then model should
perform considerably well, given thatW ′ is not degenerated. Finding easily separable
B space is unfortunately not equivalent to maximizing multiclass accuracy. One can
for instance simply add new hyperplane that is not a good classi�er, but divides
space in a useful way. If the dataset is almost linearly separable then if V consist of
hyperplanes separating classes then B space is likely to be linearly separable; however
the opposite might not hold. This suggests that the method might not be well suited
for datasets for which linear classi�ers performs poorly.

It seems also natural that both models should work well when data manifold has
smaller dimensionality than space, as it makes more likely that random projections
are separating classes. We pose the following hypotheses, that are validated in the
empirical section:

Hypothesis 1 R2M with L layers performs weakly if at any of the 1, . . . , L− 1
layers data representation leads to weak linear classi�er.

Hypothesis 2 R2M work better if dataset resides on lower dimensional manifold.

3. Empirical analysis

Tested models were Random Recursive Support Vector Machine (R2SVM), Deep
Representation Extreme Learning Machine (R2ELM), Support Vector Machine with
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Radial Basis Kernel (SVM+RBF), Extreme Learning Machine with Sigmoid Kernel
(ELM+SIG) and Linear Support Vector Machine (SVM).

Additionally we added randomized version of R2SVM called Fixed Prediction
R2SVM (R21+SVM), where middle layers are using constant prediction equal to one,
i.e. Oi = 12. By adding this model we evaluate if R2SVM is not just using additional
space besides dataset manifold to increase separability. Interesting results reported
in theoretical section inspired us to add modi�cations of R21+SVM and R2SVM, in
which models use tripled version of the dataset (R2

∗1+SVM, R2
∗SVM).

3.1. Evaluation

We conducted our experiments on datasets taken from UCI repository [11] and LIB-
SVM dataset repository [12]. Summary of the datasets is presented in Table 1. To
make sure we make a fair comparison we tested extensive grid of parameters for
R2SVM and R2ELM. The grid tested all combinations (640) of the following param-
eters:

1. recurrent : If set to true model is reusing all the previous predictions as in
R2SVM model.

2. scale: If set to true model is performing scaling in every layer.

3. �t : If set to true model performs approximate regularization parameter C �tting
in each layer.

4. α: Controls size of applied transformation. 8 values ranging from 0.1 to 2.0.

5. depth: Depth of the model. 10 values from 1 to 10.

Code used for experimentation is accessible online3. Experiments were conducted
in Python using scikit-learn and LIBSVM package [12, 13]. All of the experiments were
done using 5-fold strati�ed cross validation. Every experiment for R2SVM models
(R2SVM, R2

∗SVM, . . . ) is repeated three times (with di�erent seed) and average
accuracy of the best performing set of hyperparameters is reported.

3.2. Results

Results are reported in Table 2. We would like to focus on several outcomes. Ex-
periments clearly con�rm that R2M is weaker or comparable to SVM+RBF model
in classi�cation accuracy. This does not contradict results reported by authors of
the model, as their work did not include extensive testing. Additionally, datasets

2 Similar results were obtained by several other random versions of R2SVM, for instance using
random hyperplanes.

3 https://github.com/gmum/r2-learner
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Table 1. Experiments datasets summary. N � number of examples, d � number of dimen-
sions, K � number of classes, M � manifold dimension estimation using PCA.

name N d K M

australian 690 14 2 1
bank 1372 4 2 3
breast cancer 683 10 2 1
crashes 540 20 2 1
diabetes 768 8 2 2
fourclass 862 2 2 2
german 1000 24 2 3
glass 214 9 6 6
heart 270 13 2 3
indian 583 10 2 3
ionosphere 351 34 2 24
iris 150 4 3 2

name N d K M

liver 345 6 2 3
pendigits 10992 16 10 9
satimage 10870 36 6 6
segment 2310 19 7 7
sonar 208 60 2 28
splice 1000 60 2 55
svmguide2 391 20 3 15
svmguide4 612 10 6 1
vehicle 846 18 4 6
vowel 990 10 11 8
wine 178 4 3 2

tested in this work are characterized by rather low dimensionality and high number
of classes, which di�ers from set tested in the original papers. It is also consistent
with our theoretical understanding of the model.

Both hypotheses are con�rmed by the empirical results. Hypothesis 1 speci�cally
stated that R2M performance is correlated with some measure of weakness of linear
classi�er. It is clearly visible for highly linearly non�separable datasets, e.g. glass or
vowel. We did a heuristic hypothesis test by measuring correlation of accSV M+RBF

acc
R2SV M

and
accSV M−accSV M+RBF

accSV M+RBF
, where acc is the best accuracy on given dataset. We obtained

approximately 0.9 Spearman's correlation coe�cient, which supports the hypothesis.
Second hypothesis can be validated similarly, we calculate correlation between

accR2SVM and di�erence between dataset dimensionality and manifold estimation.
We report Spearman's correlation coe�cient equal to 0.7, which also con�rms corre-
lation, however weaker.

Additional result is the fact that tripling dataset dimensionality by replicating
data improves accuracy. It is equivalent to increasing hidden layer sizes in neural
network interpretation of R2M model. In that case R2

∗1+SVM model, which is not
�tting linear models in the middle layers, is performing comparatively to R2SVM.
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4. Summary

In this paper we analyzed rigorously R2SVM and R2ELM models both from theoreti-
cal and empirical point of view. Basing on our theoretical observations we have proven
empirically two hypotheses, stating that R2SVM and R2ELM perform weakly if any
of the layer data representation leads to weak linear classi�er and that R2SVM and
R2ELM rely on dataset residing on a much lower dimensional manifold. In summary
it suggests that R2SVM and R2ELM might not be always learning useful representa-
tions, which is further con�rmed by weak results in comparison with Support Vector
Machine with RBF kernel. Future research should focus on making sure R2SVM is
more broadly applicable.
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