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Abstract 

Many shark species have global distributions and are caught incidentally in different 

types of fisheries.  Over the last two decades, shark populations have declined 

tremendously, with one of the leading causes of this decline bycatch in primarily teleost 

fisheries.  Bycatch occurs throughout the world’s fisheries, but is not well documented in 

terms of species composition and numbers of each species captured.  Information on 

shark bycatch is spread through the primary and grey literature, but has not been 

compiled in summary to date.  The goal of my capstone is to present global shark bycatch 

data and provide a comparative review to determine fishery types that affect shark 

populations and identify shark species at risk as a result of bycatch.  Longline fisheries 

caught a larger variety of shark species, and the post-release mortality was generally low.  

In contrast, trawl fisheries caught mostly the same few species, but post-release mortality 

was extremely high.  Blue sharks (Prionace glauca), silky sharks (Carcharhinus 

falciformis), and spiny dogfish (Squalus acanthias) were caught most often in trawl 

fisheries, and in large numbers that likely adds to risk of overexploitation of their 

populations.  This literature review revealed a severe lack of standardization in bycatch 

data reporting by different fishing nations, and in documents prepared by management 

agencies and scientists, including the definition of bycatch used and the way it was 

recorded.  Establishing a universal definition of bycatch and standardizing its reporting 

would vastly improve ability to assess the scale and composition of shark bycatch and its 

impacts on shark populations. Systematic and standardized accounting of shark bycatch 

would provide information helpful for collaboration among regulatory agencies.  Rather 

than simply document bycatch, a number of fishing gear alterations show promise for   

bycatch reduction and are worthy of integration into fisheries by managers.  Additional 

important steps that can improve bycatch assessment is increased observer coverage in 

fisheries, marine protected areas, and making bycatch data public.  

Keywords 

Elasmobranchs, incidental catch, post-release mortality, fishing mortality, finning, 

bycatch reduction, trophic cascade, worldwide shark catch 
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Introduction 

Sharks occur in all the world’s oceans, occupying benthic to pelagic ecosystems.  Most 

fishery exploited sharks exhibit K-selected life history characteristics such as late age at 

maturity, low fecundity, slow growth, and long gestation periods, making them highly 

vulnerable to fishing pressure (Romanov 2002; Baum et al. 2003; Walker et al. 2005; 

Barker and Schluessel 2005; Mandelman et al. 2008; Thorpe et al. 2009; Blaber et al. 

2009; Baeta et al. 2010; Benjamins et el. 2010; Lyons et al. 2013; Dapp et al. 2013; 

Passantino 2014; Hutchinson et al. 2015; Eddy et al. 2016).  In addition, many shark 

species aggregate by sex, size or reproductive stage, putting entire demographic groups at 

risk from fishing (Barker and Schluessel 2005; Gilman et al. 2016).  These typically large 

bodied sharks are often keystone species assumed to play important roles as meso- or 

apex predators in ecosystem function and long-term stability (Myers et al. 2007; Dulvy et 

al. 2008).   

With intensive removal of sharks by fisheries, two major community-level responses may 

occur:  Other high trophic level predators may take the place of sharks at the top of the 

food web, resulting in little to no trophic cascade effects (Gilman et al. 2016).  

Alternatively, if no other predators fill the gap, top down trophic cascades may occur 

(Gilman et al. 2016).  However, studying such trophic effects are difficult due to a lack of 

reliable long-term data and a lack of understanding of ecosystem dynamics (Grubbs et al. 

2016).  The difficulties of determining trophic cascades in the wild have led to 

controversial papers on the subject.  A notable case: a trophic cascade was proposed after 

a fishery-caused decline in the abundance of several species of sharks off the eastern 

central United States.  Myers at al. (2007) documented that large bodied, coastal sharks in 

this region had declined by about 90% between 1970 and 2005, while their mesopredator 

prey species had increased exponentially (known as mesopredator release).  One such 

mesopredator species that increased substantially was the cownose ray (Rhinoptera 

bonasus), which preys on bivalves, resulting in subsequent large declines in the regional 

scallop population. This decline in scallop abundance, in turn, is blamed for collapse of 

the east coast scallop fishery (Myers et al. 2007).  Furthermore, Myers et al. (2007) also 

hypothesized that the hyper-abundant cownose rays would potentially damage seagrass 
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habitats while foraging for other bivalve species in response to the shortage of scallops, 

which in turn could remove critical fish nursery areas, thus exacerbating top-down 

trophic cascades.  However, Grubbs et al. (2016) refuted this trophic cascade with several 

key points.  Cownose ray population increases do not line up with the decreases in shark 

and scallop abundances to be attributed to a trophic cascade (Grubbs et al. 2016).  

Furthermore, the cownose ray diet consists primarily of small crustaceans and 

polycheates rather than scallops and so would not be responsible for the large decline in 

east coast scallops regardless of their population increases (Grubbs et al. 2016).  

While field studies of trophic cascades can be difficult and controversial, ecosystem 

modeling is a helpful alternative.  Both types of ecosystem responses were found in 

ecosystem modeling studies utilizing reef associated sharks in the French Frigate Shoals 

(Ferretti et al. 2010).  Upon simulating a decline in medium-sized reef sharks which 

mainly function as mesopredators, there was little effect found on the ecosystem, posited 

by the authors as likely a result of other predators taking the place of the reef sharks in 

the food web.  However, when the study authors simulated a decline in apex predator 

tiger sharks there was an increase in their prey including seabirds, turtles, monk seals and 

smaller reef sharks, followed by a rapid decline in commercially important tuna and 

jacks.  This response is typical of top-down trophic cascades.  The trophic cascade caused 

by the decline in tiger sharks was attributed to the increase in monk seals and smaller reef 

sharks, which prey on jacks and tunas. 

Similar to the Frigate Shoals result, Ferretti et al. (2010) also found that ecosystem 

models that simulated a local loss of all large sharks around Floreana Island in the 

Galapagos resulted in an increase in toothed cetaceans and a decrease in commercially 

valuable reef fishes.  The decrease in reef fishes also caused an increase in small 

invertebrates in the area, demonstrating a four level trophic cascade and altering the 

dynamics of the local ecosystem (Ferretti et al. 2010). These empirical and modeling 

studies suggest that with sharks being over-exploited in large numbers globally, top-down 

trophic cascades may occur more frequently, potentially putting many ecosystems and 

fisheries at risk. 
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Relatively few fishing nations have management regimes in place for elasmobranchs, 

despite population declines over the last two decades due to heavy exploitation from 

directed fisheries and to a large extent bycatch in teleost fisheries (Beerkircher et al. 

2002; Baeta et al. 2010; Cosandey-Godin and Morgan 2011; Oliver et al. 2015).  Over 

18% of elasmobranchs are now listed as Vulnerable, Endangered, or Critically 

Endangered on the IUCN Redlist (Gilman et al. 2016).  The number of sharks caught 

incidentally is difficult to quantify due to under or lack of reporting from different 

nations, but bycatch is believed to be one of the leading causes of shark population 

declines globally (Hall et al. 2000; Cosandey-Godin and Morgan 2011; Brodziak and 

Walsh 2013; Jordan et al. 2013; Oliver et al.2015).  This paucity of records is because 

many countries only require the reporting of fish species landed, and since bycatch is 

often discarded given no commercial value it is therefore unrecorded (Field et al. 2009; 

Molina and Cooke 2012).  This lack of reliable data makes shark bycatch difficult to 

manage, presenting challenges in enacting and enforcing regulations.  Furthermore, the 

lack of data also presents significant difficulties for fisheries managers in identifying 

geographic problem areas and providing targeted solutions.  Although some countries 

have produced regional fishery assessments of shark bycatch (Anderson 2013; NOAA 

Office of Science and Technology 2014), to date, there has been no global-scale 

characterization of shark bycatch.  Given this information gap, my Capstone paper will 

aim to provide a global perspective of shark bycatch prevalence and its impacts by 

surveying the published literature on shark bycatch data across multiple commercial 

fishery types. 

The specific objectives of this Capstone  is to 1) provide an overview of the published 

shark bycatch data, 2) identify fishery types with  high shark bycatch and shark species 

that comprise the majority of bycatch , and 3) recommend possible solutions for bycatch 

reduction to inform shark conservation and management efforts. 

a. Bycatch Definition and Background Information 

To discuss bycatch, the term first needs to be defined.  The use of a diversity of 

definitions of bycatch is a common problem in the fisheries literature, making 

elasmobranch bycatch especially difficult to quantify. A number of sources define it as all 
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animals caught that are not the target species (Stobutzki et al 2002; Romanov 2002; 

Campana et al. 2009; Cosandey-Godin and Morgan 2011; Dapp et al. 2013; Jordan et al. 

2013; Cosandey-Godin et al. 2015; Favaro and Coté 2015; Oliver et al. 2015).   Other 

studies limit the definition of bycatch to all non-target species landed, disregarding those 

that are discarded at sea (Kotas et al. 2012).  Still others define it as any non-target 

species that is not commercially valuable, or not retained (Hall et al. 2000; Walker et al. 

2005; Campbell and Cornwell 2008; Cedrola et al. 2012).  Worse, much of the literature 

does not provide any definition of bycatch.   

It is also important to ensure that the standardized definition of bycatch is communicated 

to the fishing community.  There is currently a disconnect between what scientists and 

fishery managers regard as bycatch and what the fishers who are recording the data 

regard as bycatch (Davies et al. 2009).  Fishers are more likely to consider any species 

that has commercial value as target catch rather than as bycatch despite being caught 

incidentally.  As different species become commercially valuable, less species are 

considered as bycatch by the fisher and recorded as such, while managers and scientists 

are still considering the species as bycatch.  This lack of a standardized definition 

between all parties can make management of incidentally caught sharks and comparison 

of data across fisheries and studies difficult (Davies et al. 2009).   The ability to compare 

data collected by different countries is important because many exploited shark species 

are highly migratory and their ranges often stretch over multiple national management 

jurisdictions.  In addition, sharks have a wide-ranging post-release mortality rate of 6-

100%, depending on the species (Musick et al. 2000; Campana et al. 2009; Eddy et al. 

2016).  Therefore, only recording sharks landed does not give scientists and fisheries 

managers an accurate idea of how the non-landed component of incidentally caught 

sharks is affecting shark population dynamics.  For this paper, I use the most common 

definition of bycatch found in the literature, which is all non-target species caught, 

whether discarded or landed.   

Elasmobranch bycatch in fisheries around the world has become one of the main sources 

of population declines (Cosandey-Godin et al. 2013; Dapp et al. 2013; Favaro and Coté 

2015).  Juvenile sharks are caught in large numbers in purse seine and trawl fisheries, 
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contributing to long-term declines in populations that may not be immediately apparent 

(Stobutzki et al. 2002; Campbell and Corwell 2008; Blaber et al. 2009; Kotas et al. 2012; 

Poisson et al. 2014; Hutchinson et al. 2015; Eddy et al. 2016).  Furthermore, recent 

studies show that sharks caught today are smaller on average than those caught in past 

decades, indicating structural demographic changes in populations in response to fishing 

pressures (Baum and Myers 2004; Barker and Schluessel 2005; Dudley and 

Simpfendorfer 2006; Bustamante and Bennet 2013; Hutchinson et al. 2015; Gilman et al. 

2016).  A shift to smaller sizes could diminish a shark’s role as top predator, which would 

change the food web dynamics of the ecosystem (Dapp et al. 2013; Gilman et al. 2016).  

There is an urgent need, therefore, to reduce bycatch to avoid creation of a demographic 

size shift so large that sharks are essentially removed from their functional roles as meso- 

and apex predators in their communities. 

Fishers worldwide experience some type of shark interaction. Sharks are caught 

incidentally in a number of fisheries, with most bycatch occurring in longline, gillnet, and 

trawl gear fisheries (Stobutzki et al. 2002; Jordan et al. 2013). In addition to causing 

direct population and ecosystem impacts, incidental shark catch can also be deleterious to 

fishers.  When sharks are not retained for economic use, removing them from the fishing 

gear can be both costly and dangerous to fishers (Campbell and Cornwell 2008; Jordan et 

al. 2013; Cosandey-Godin et al. 2013; Torres-Irineo et al. 2014; Favaro and Coté 2015).  

Sharks caught incidentally increase time and effort to remove from the fishing gear, can 

destroy gear, and take up gear space or hooks that the target species could have otherwise 

taken (Campbell and Cornwell 2008; Jordan et al. 2013; Cosandey-Godin et al. 2013; 

Torres-Irineo et al. 2014; Favaro and Coté 2015).  When sharks are retained, they take up 

space on the boat and can cause fishers to take more trips (Campbell and Cornwell 2008).  

Finally, the ecological changes caused by a reduction in shark populations can also 

impact fishers by indirect means.  A decrease in shark populations can cause trophic 

cascades resulting in changes to the quality and productivity of ecosystems that support a 

multitude of other economically important species. (Barker and Schluessel 2005; Myers 

et al. 2007; Baeta et al. 2010; Dapp et al. 2013; Cosandey-Godin et al. 2013; Torres-

Irineo et al. 2014).   
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b. Longline Fisheries 

Longline fisheries present one of the highest risks to sharks (Favaro and Coté 2015).  

Longlines are used in both pelagic and coastal fisheries, with bottom longlines often used 

Figure 1 - U.S. Shark Bycatch by Fishing Gear.  The U.S. trawl 

fisheries make up nearly two-thirds of the total shark bycatch.  

The other one-third occurs in the longline fisheries, with <5% 

occurring in gillnets and dredges. (NOAA 2014) 

 

Figure 2 - U.S. Shark Bycatch Distribution based on gear type in 

the Pacific and Atlantic Oceans.  The shark bycatch is evenly 

distributed between the Atlantic and Pacific Oceans, with 52% 

occurring in the Atlantic and 48% in the Pacific.  Nearly half of 

the bycatch comes from the Atlantic Trawl fisheries, while one-

third comes from the Pacific longline fisheries. (NOAA 2014). 

Figure 3 - Average Annual Shark Bycatch in Global Longline Fisheries.  Available global shark bycatch data for longline 

fisheries are plotted above. Canada catches considerably more sharks than the other countries listed.  Indonesia, despite landing 

more sharks than any other nation, reports the least amount of shark bycatch in their longline fishery than the other nations. 

(Campana et al. 2009; Blaber et al. 2009; Le Manach et al. 2012; Bustamante and Bennett 2013; NOAA 2014). 
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for targeted fishing and pelagic longlines used primarily to target other migratory species 

such as tuna and swordfish.  Being non-selective gear, it is no surprise that sharks which 

occupy the same habitat as the target pelagic teleosts are incidentally caught.  In the U.S. 

fisheries alone, pelagic longlines make up one third of all shark bycatch reported (Figure 

1) (NOAA 2014).  Most of the shark bycatch in the United States longline fisheries occur 

in the Pacific Ocean (Figure 2) (NOAA 2014).  Overall, across countries that require 

shark bycatch data collection, these data are reported to management agencies by fishery 

observers or fishers directly, but are not always complete or accurate.  For example, 

bycatch is known to be significantly underreported in the Hawaiian pelagic longline 

fishery (Brodziak and Walsh 2013).  Inaccuracies in the data reported result from the fact 

that fishery observer programs are costly and therefore limited in coverage. It is notable 

that Lewison et al. (2004) reported that just between 13-37% of fisheries worldwide had 

observer coverage.  

The United States, despite having a large biomass of shark bycatch, does not lead fishing 

nations in reported longline fishery shark bycatch (Figure 3).   The combined Western 

and Central Pacific tuna longline fisheries have caught an estimated 2 million sharks each 

year since 1992 (Lawson 2011).  A key finding, however, is that most fishing nations, 

including the U.S., underreport their shark bycatch (Mandelman et al. 2008; Baum and 

Blanchard 2010; Dapp et al. 2017).   Additionally, much of the fishing worldwide is 

illegal or unreported and there are relatively few management regimes in place to protect 

sharks.  For example, Madagascar’s waters are dominated by foreign vessels fishing for 

tuna and believed to be discarding bycatch without reporting.  Of the reported shark 

bycatch in Madagascar waters, foreign vessels catch about 4300 tons of sharks per year, 

with domestic fishers reporting about 3,800 tons of sharks per year.  Together, at least 

8,000 tons of sharks are fished from Madagascar waters each year as bycatch in the 

longline fishery alone (Le Manach et al. 2012).   

The Spanish swordfish surface longline fishery in the Indian Ocean reported 4,436 tons 

of sharks caught as bycatch each year between 2004 and 2006, accounting for 41% of the 

total catch.  Blue sharks alone made up most of the shark bycatch, reaching three million 

sharks caught incidentally in 2006 (Ramos-Cartelle et al. 2008). 
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Indonesia lands the largest amount of elasmobranchs worldwide at over 100,000 tons, of 

which 11% (11,000 t) is reported as bycatch.  About 15% of this bycatch occurs in the 

Indonesian pelagic tuna fisheries.  A rough estimate of 1,670 tons of sharks are caught as 

bycatch in the Indonesian longline fisheries each year.  With little to no management 

strategies in place for sharks, as well as having one of the largest elasmobranch targeted 

fisheries, Indonesia is one of the largest contributors to overfishing of shark populations 

(Blaber et al. 2009).   

Canada is another fishing nation with a large amount of shark bycatch.  The combined 

US and Canadian pelagic longline swordfish fishery in the northwest Atlantic caught 

71,000-93,000 tons of blue sharks (Prionace glauca) per year between 2000 and 2006.  

About one third of this is attributed to Canadian efforts, with Canadian longline fisheries 

in the North Atlantic catching an estimated 24,000 tons of blue shark bycatch per year.  

The shark catches in this fishery made up over 30% of the total catch by weight.  The 

mortality rate during those years ranged from 30-44% a year, resulting in 7,200-10,560 

tons of dead blue sharks (Campana et al. 2009; Cosandey-Godin et al. 2013).  Between 

1990 and 1999, an estimated 250 tons of sharks were caught annually as bycatch in the 

Canadian Atlantic, demonstrating that shark bycatch has increased exponentially in 

Canada (Campana et al. 2005).  Chinese longline observers have reported only 27 tons of 

sharks caught as bycatch in ICCAT waters in 2007 (Dai et al. 2009).  While this is a 

small number, it is only a small portion of Chinese shark bycatch.  China does not report 

shark landings to FAO (Food and Agriculture Organization) and does not monitor or 

manage sharks, leaving the true shark bycatch unknown (Lam and Mitcheson 2011). 

There are a number of smaller longline fisheries around the world that also contribute to 

the overall global shark bycatch.  For example, the New Zealand tuna longline fishery 

was estimated to catch 2,700 tons of sharks as bycatch between 1996-1998 (Francis et al. 

2001).  New Zealand catches many blue sharks in their tuna longline fishery, making up 

30-50% of the total catch (Francis et al. 2001; Campana et al. 2009; Campana et al. 

2009).  Chile has experienced a large biomass of shark bycatch ranging from 237 

tons/year to 4,082 tons/year for some species (Bustamante and Bennett 2013).   
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For those fisheries that report shark bycatch as number of individuals, the bycatch tends 

to be less than those fisheries that report shark bycatch by weight, but is still substantial.  

The tuna and swordfish longline fisheries off the coast of South Africa reported 39,000-

43,000 sharks killed each year between 1995 and 2005 (Petersen et al. 2009).  The 

Taiwanese tuna longline fishery catch 7,800 sharks each year as bycatch, making up over 

4% of the total catch (Huang and Liu 2010).  The Venezuelan tuna and swordfish 

longline fishery observed 1,895 sharks caught as bycatch between 1994 and 2000 

(Arocha et al. 2002).  The southern Portugal longline fishery caught over 1,300 sharks as 

bycatch between 2003 and 2004 (Coelho and Erzini 2008).  Costa Rica recorded 3,600 

sharks caught as bycatch between 1999 and 2010, many of which were juveniles.  This 

large portion of bycaught shark juveniles in the Costa Rican fisheries indicates fishing 

was occurring in potential nursery areas.  While less than 4,000 sharks caught in a ten-

year period is a relatively small number, catching juveniles before they have had a chance 

to breed could significantly reduce later populations (Dapp et al. 2013).  As K-selected 

species, shark populations are quick to decline but slow to recover, making shark 

nurseries a priority for protection (Gilman et al. 2016).   

Finally, although the number of sharks incidentally captured are not accurately or fully 

reported by most nations, there are many other countries with bycatch in their longline 

fishery.  Sharks comprised over 70% of the total catch landed in the Spanish Atlantic 

longline fishery targeting pelagic teleosts (Cosandey-Godin and Morgan 2011).  Sharks 

also comprised 16% of the South African longline fishery in 2005, and 25% of the Fiji 

tuna longline fishery in 1999 (Cosandey-Godin and Morgan 2011).  The Japanese tuna 

longline fisheries catch a large amount of elasmobranch bycatch, of which 59% is 

composed of blue sharks alone (Campana et al. 2009).  India reportedly caught 131 tons 

of sharks in 1997, most of which was bycatch (Barker and Schluessel 2005).  The huge 

amount of bycatch in Hawaiian pelagic fisheries had a notable impact. Between 1999 and 

2010, the Hawaiian pelagic longline fishery showed a 90% decrease in the catch-per-unit 

effort numbers of oceanic whitetip sharks (Carcharhinus longimanus), resulting in this 

species officially declared in 2012 as overfished in the Pacific (Brodziak and Walsh 

2013).   



14 
 

Despite the large amounts of bycatch in the various longline fisheries, the mortality rates 

for sharks in this fishery type, although highly variable by species (Beerkircher et al. 

2002; Gallagher et al. 2014), are overall among the lowest of the different fishery types 

due to lower stress levels experienced by the sharks (Brooks et al. 2012; Hyatt et al. 

2012).  Immediate mortality (haulback mortality) is considered mortality that occurs 

before the sharks have been brought on deck for processing (Dapp et al. 2017).  Post-

release mortality is the mortality that occurs once the shark has been released.  Both types 

of mortality are relatively low for many sharks caught as bycatch in longline fisheries.  

When sharks are caught and their movements restricted, their bodies switch to anaerobic 

metabolism causing a build-up of lactate and H+, resulting in high levels of stress and 

ultimately death (Hyatt et al. 2012; Dapp et al. 2013).  Most of the time, when sharks are 

caught on longlines, they are still able to swim for a while and do not switch to anaerobic 

metabolism immediately. This results in a smaller build-up of lactate and H+ (Brooks et 

al. 2012; Hyatt et al. 2012; Dapp et al. 2013).  Thus, longlines generally have a lower 

immediate and post-release mortality than gillnets and trawls that restrict the mobility of 

sharks when caught (Brooks et al. 2012; Hyatt et al. 2012).   

In the U.S. pelagic longline fisheries, immediate mortality rates for blue sharks were 15-

19% and only 3% for tiger sharks (Galeocerdo cuvier) (Dapp et al. 2017).  Post-release 

mortality rates in this fishery range from 12% for blue sharks to 35% in shortfin mako 

sharks (Isurus oxyrinchus) (Campana et al. 2009; Hyatt et al. 2012).  For the U.S. bottom 

longline fishery, immediate mortality rates for tiger sharks and sandbar sharks 

(Carcharhinus plumbeus) were relatively low at 8.5% and 36.1% respectively (Morgane 

and Burgess 2007).  However, immediate mortality rates for dusky (Carcharhinus 

obscurus), blacktip Carcharhinus limbatus) scalloped hammerhead (Sphyrna lewini), and 

great hammerhead sharks (Sphyrna mokarran) were all above 80% in this fishery 

(Morgan and Burgess 2007).  In New Zealand, the post-release mortality was between 6-

14% for all sharks caught (Campana et al. 2009; Campana et al. 2009).  The Japanese 

pelagic longline fishery had low mortality rates, between 6-8% (Campana et al. 2009).  

The Hawaiian longline fishery reported a mortality rate of about 8.5% (Campana et al. 

2009).  However, there are areas of the Atlantic where the longline fisheries mortality 

rates are as high as 80% for specific shark species (Hyatt et al. 2012). 



15 
 

c. Gillnet Fisheries 

Gillnets come in many shapes and sizes, can be used in coastal or pelagic environments, 

and can drift or stay in a fixed location.  In the United States, bycatch in gillnets is 

relatively small compared to the other fishery types (Figure 1) (NOAA 2014).  However, 

it did account for over 3.5 million pounds of shark bycatch in the U.S. in 2010 (NOAA 

2014).  While gillnets reportedly have less annual bycatch than most fishery types, the 

high mortality rates in this gear type make it dangerous to sharks (Oliver et al. 2015).   

Indonesia also caught over three million sharks as bycatch in their gillnet fisheries, 

making up about 15% of their reported total bycatch (Blaber et al. 2009).  The Japanese 

squid fishery, using drifting gillnets, caught nearly 201,000 sharks as bycatch between 

1990 and 1991 (McKinnell and Seki 1998).  Canadian gillnet fisheries reported 100,000 

sharks caught per year, which was equivalent to over six tons of sharks per year over the 

ten-year period 1995-2005 (Benjamins et al. 2010).  The European tuna drift net fishery 

caught an average 70,768 blue sharks as bycatch each year between 1993 and 2000 

(Rogan and Mackey 2007).  In the Brazil monkfish gillnet fishery, Perez and Wahrlich 

(2005) reported bycatch making up nearly 60% of the total catch, with sharks making up 

a large portion.  Shester and Micheli (2011) reported elasmobranchs made up about 25% 

of the bycatch in gillnets off the coast of Mexico.   

What makes gillnets particularly dangerous is the high mortality rates for sharks, which 

range from 70% to 93% for some species (Jordan et al. 2013; Cosandey-Godin et al. 

2015).  When sharks are caught in gillnets, they are unable to swim or move, causing 

them to switch to anaerobic metabolism quickly (Brooks et al. 2012; Hyatt et al. 2012; 

Dapp et al. 2013).  The stress and buildup of lactate most likely kills them before they 

make it on the boat resulting in high immediate mortality rates (Brooks et al. 2012; Hyatt 

et al. 2012; Dapp et al. 2013). 

d. Trawl Fisheries 

Another fishery type that causes high stress in sharks is trawl gear (Brooks et al. 2012; 

Hyatt et al. 2012; Dapp et al. 2013).  Trawls are not species-specific and tend to have 

high bycatch to target catch ratios (Brewer et al. 1998).  In the United States, trawl 
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fisheries caught more sharks as bycatch than any of the other fisheries combined (Figure 

1), with reported shark bycatch over 13 million pounds (6,500 tons) in 2010 (NOAA 

2014).  Between 1995 and 2005, the Gulf of Mexico shrimp trawl fishery alone caught an 

average of 592,370 individual sharks as bycatch per year (Raborn et al. 2012).  Despite 

trawls leading the shark bycatch in the United States, Georgia’s shrimp trawl fishery is a 

model for how trawl fisheries should be.  Between 1995 and 1998, only 217 sharks were 

caught as bycatch in the shrimp trawl fishery (Belcher and Jennings 2011).  Although 

there is concern that most of the 217 sharks were juveniles, such small numbers of 

bycatch are encouraging indications of an efficient target fishery (Belcher and Jennings 

2011). 

Similar to the United States, Indonesia’s shark bycatch comes primarily from trawl 

fishing with about 3,100 tons of shark bycatch per year (Blaber et al. 2009).  In Greek 

waters, 1,200 tons of elasmobranchs are landed each year, most of which is caught as 

bycatch in the bottom trawl fishery (Damalas and Vassilopoulou 2011); shark bycatch 

was reported to make up 14% of the total catch in the trawl fishery.  In a more recent 

study on Greek fisheries, Oliver et al. (2015) reported that elasmobranch bycatch made 

up 14.5% of the total catch in the trawl fishery.  While relatively lower, the Argentinian 

shrimp trawl fishery in the South Atlantic was reported to have an estimated 61 tons of 

sharks as bycatch (Cedrola et al. 2012).  The International Council for the Exploration of 

the Sea (ICES) reported shark bycatch in the Italian trawl fisheries at 30,225 individuals 

for the year of 2013 (ICES 2015).  The Adriatic Sea pair trawl fishery is estimated to 

have an annual shark bycatch of 9,531 sharks (Fortuna et al. 2010).  The southern 

Portugal trawl fishery caught less than 800 sharks between 2003 and 2004, most of which 

were juveniles (Coelho and Erzini 2008). 

South African trawl fisheries are a large contributor to global shark bycatch. In 1997, the 

South African demersal trawl fishery off the south coast reported 500 tons of spiny 

dogfish (Squalus acanthias) caught as bycatch, accounting for up to 50% of the total 

catch landed that year.  For the same year, the west coast South African fishery reported 

between 759-1,347 tons of sharks bycatch, all of which was discarded.  This only 

accounted for up to 19% of the total catch landed.  Due to scattered observer data and 
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most of the sharks being discarded at sea, the true amount of shark bycatch in the South 

African demersal trawl fishery may be higher (Walmsley 2004).  The South African 

inshore trawl fishery had an annual shark bycatch of 588.8 tons accounting for only 3% 

of the total bycatch.  Most of the sharks were discarded, making up 11% of the total 

discards in this fishery (Attwood et al. 2011). 

Spotted dogfish (Scyliorhinus canicula) and blackmouth catsharks (Galeus melastomus) 

account for about 35% of the total catch landed in the western Mediterranean trawl 

fishery (Carbonell et al. 2003).  However, there are many sharks that are discarded before 

landing, making the true number of shark bycatch unknown (Carbonell et al. 2003).  

Shark bycatch made up 40% of the total catch in coastal trawl fisheries in Kuwait (Oliver 

et al. 2015). 

Unfortunately, survival rates of the sharks caught in trawl fisheries are not well studied.  

Data on survival could only be found for the northern Australian prawn fishery.  About 

two thirds of all elasmobranchs caught in this trawl fishery died (Stobutzki et al. 2002; 

Barker and Schluessel 2005).  Still, it can be assumed that both immediate and post-

release mortalities in trawls must be similar to gillnets because both gear types result in 

sharks experiencing high amounts of stress and a lack of mobility (Brooks et al. 2012; 

Hyatt et al. 2012; Dapp et al. 2013). 

e. Purse Seine Fisheries 

Purse seine fisheries catch a small percentage of sharks as bycatch, but are worth 

mentioning because they still made up an estimated 1.44-1.77 million tons worldwide in 

2000 (Poisson et al. 2014).  In the United States, purse seine shark bycatch for the year 

2010 was reported to be 2,853 pounds (NOAA 2014).  Sharks made up less than 1% of 

the West Indian tuna purse seine fisheries, although this was only including sharks that 

were retained and not those discarded, which is most likely a high value (Romanov 

2002).  The Western and Central Pacific tuna purse seine fisheries caught an average 

53,875 sharks per year between 1995 and 2010 (Lawson 2011).  The Eastern Pacific tuna 

purse seine fishery reported an average 24,244 sharks as bycatch each year between 1993 

and 2004 (Román-Verdesoto and Orozco-Zöllen 2005).  The French tuna purse seine 

fishery in the Indian Ocean observed over 1,300 silky sharks caught incidentally between 
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2005 and 2008 (Amandé et al. 2008).  Nearly all of the silky sharks caught were juveniles 

that were discarded (Amandé et al. 2008).  The French tuna purse seine fishery in the 

Indian Ocean only make up a small portion of the bycatch problem in the Indian Ocean 

however.  Filmalter et al. (2013) estimates an average between 480,000-960,000 silky 

sharks are caught per year as bycatch in Indian Ocean purse seine fisheries.  These 

estimates only looked at fish aggregation devices (FADs) in the Indian Ocean and did not 

include other types of purse seine set-ups (Filmalter et al. 2013).  The European tuna 

purse seine fishery in the Atlantic Ocean catches far less than those in the Pacific with 

only 341 sharks caught as bycatch between 2003 and 2007 (Amandé et al 2010). 

Despite these comparatively (to other gear) low bycatch numbers, the mortality rates of 

the sharks in this fishery is high (Eddy et al. 2016).  Once caught, the sharks that reached 

the vessel have an average mortality ranging from 52% to over 80% (Hutchinson et al. 

2015; Eddy et al. 2016).  Vulnerable species such as the scalloped hammerhead have a 

100% post-release mortality and so even a small amount of bycatch can be dangerous for 

their populations (Eddy et al. 2016).  

Data Gaps 

The actual amount of shark bycatch in fisheries is difficult to determine due to a lack of 

reporting or underreporting at both the fisher and national levels, even in regulated 

fisheries. Compounding the bycatch proper assessment issue is the still extensive 

unregulated fisheries that occur in many parts of the world (Stobutzki et al. 2002; Baeta 

et al. 2010; Brodziak and Walsh 2013; Dapp et al. 2013; Jordan et al. 2013; Worm et al. 

2013; Torres-Irineo et al. 2014; Oliver et al. 2015; Gilman et al. 2016).  Many countries 

compile only the numbers reported as landed, which can be misleading as many fishers 

discard sharks as waste catch while out at sea, and those numbers are not recorded 

(Romanov 2002; Baeta et al. 2010; Kotas et al. 2012).  Fishery observer programs help 

address this problem to some extent by recording catch discard numbers, but their 

coverage of fisheries is minimal relative to the scale of global fisheries.  Furthermore, 

observers on vessels are often unable to record every species caught incidentally when 

fishers are sorting through their catch quickly (Baum and Myers 2004; Baum and 

Blanchard 2010; Torres-Irineo et al. 2014; Oliver et al. 2015; Gilman et al. 2016; Dapp et 
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al. 2017).  No nation except the United Kingdom and Italy reported sharks in their annual 

bycatch report (ICES 2015).  This lack of reporting by most nations was at both the 

observer and national level (ICES 2015).  In addition, for those countries that do report 

shark bycatch, they rely on self-reporting by the fishers, which leaves openings for under- 

or mis-reporting for economic gain. Furthermore,  the lack of species-specific 

identification of the shark bycatch by fishers (Stobutzki et al. 2002; Field et al. 2009; Le 

Manach et al. 2012; Dapp et al. 2017) results in many country reports lumping all sharks 

into one generic category “sharks” (Blaber et al. 2009; Murua et al. 2013; NOAA 2014). 

This lack of species-specific data makes it difficult to determine the population 

abundance of specific species in the fishery and detect overfishing, further limiting the 

ability to manage sharks properly (Blaber et al. 2009; Dapp et al. 2017).  

A number of fishing nations do not require or collect shark bycatch data, or they may 

collect it for internal use but do not make the information public, hindering scientists 

from combining the data from different nations for an overall analysis of bycatch biomass 

(Oliver et al. 2015; Dapp et al. 2017).  It is important to have bycatch information across 

fishing regions to determine the best course of action fisheries managers need to take 

(Kotas et al. 2012; Jordan et al. 2013; Oliver et al. 2015).  To add to the difficulty of 

obtaining a robust assessment of bycatch volume, fishing is often done illegally and is 

therefore not reported (Barker and Schluessel 2005; Le Manach et al. 2012).  This could 

include foreign boats fishing in EEZs and then landing their catch elsewhere, making the 

bycatch impossible to quantify (Barker and Schluessel 2005; Le Manach et al. 2012; 

Worm et al; 2013). 

Unfortunately, there is still a lot about shark biology that we do not know, making the 

true damage of bycatch on population sustainability difficult to determine (Jordan et al. 

2013; Oliver et al. 2015; Gilman et al. 2016).  The biology, life history, growth rates, age 

at maturity, stock structure, and distribution of most fishery shark bycatch species remain 

poorly known (Barker and Schluessel 2005; Blaber et al. 2009; Benjamins et al. 2010; 

Gilman et al. 2016).  Recently, several shark species have been listed as Endangered by 

the IUCN, and we can only assume more will be added to the list if this bycatch problem 

continues without effective management to prevent overfishing. 
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Sharks Most at Risk 

Given differences in their physiology, shark species respond differently to being 

captured.  Hammerhead sharks (Sphyrnidae), for example, are highly sensitive to capture 

stress compared to many other sharks, resulting in high mortality rates (71-100%) (Kotas 

et al. 2012; Jordan et al. 2013; Eddy et al. 2016).  Hammerhead sharks reach maturity as 

late as 15 years old and have relatively low reproductive rates despite having up to 31 

pups per liter (Hall and Roman 2013).  Given large population declines, two of the most 

commonly captured hammerhead species in global fisheries, scalloped (Sphyrna lewini) 

and great hammerhead (Sphyrna mokarran) sharks have recently been upgraded to the 

Endangered category on the IUCN Redlist.  Given demand for their fins, these species are 

now also listed on CITES Appendix II resulting in highly regulated international trade.  

Blue sharks (Prionace glauca) are considered a hardier and high fecundity species that 

can withstand higher fishing pressure than other species; however, given their extensive 

distribution they can make up to 90% of shark bycatch in a single fishery (Cosandey-

Godin et al. 2013; Oliver et al. 2015).  In the United States longline fisheries, almost 

3,000 tons of blue sharks were reported as bycatch in 2010, more than any other shark 

species (Figure 4) 

(NOAA 2014).  

Between 2000 

and 2006, Canada 

reported 45,000-

66,000 tons of 

blue sharks 

caught per year 

(Campana et al. 

2009).  Chile 

reported 950 tons 

of blue sharks 

landed in 2009 (Bustamante and Bennett 2013).  Blue sharks comprise 50-90% of all 

shark bycatch in the Atlantic, West Pacific, and Mediterranean Sea (Oliver et al. 2015).  

Figure 4 - Shark Bycatch in U.S. Longline Fisheries.  Looking at the U.S. longline fisheries, 

there are four species of sharks that are caught more often than any other.  The Blue Shark 

makes up about 80% of the bycatch of these four species (NOAA 2014) 
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Blue sharks are caught in such large numbers that many of them are discarded at sea and 

go unreported (Bustamante and Bennett 2013; Brodziak and Walsh 2013).  While blue 

sharks are listed as Near Threatened on the IUCN Redlist, their population status is 

unknown.  With an unknown population and such large numbers being fished out every 

year, their sustainability is questionable.  Notably, Clarke et al. (2006) reported that the 

number of blue sharks traded globally for their fins was near or has potentially exceeded 

maximum sustainable yield for this species.  

Silky sharks (Carcharhinus falciformis) are caught primarily in purse seines, but can also 

be found in large numbers in the Indian and East Pacific pelagic longline fisheries 

(Torres-Irineo et al. 2014; Oliver et al. 2015; Hutchinson et al. 2015).  Reports estimate 

that 400 tons of silky sharks were killed each year between 1993-2009 in the eastern 

Pacific purse seine fisheries (Hall and Roman 2013).  It is difficult to determine the 

impact longline fisheries have on these sharks as they have been consistently 

misidentified by both fishers and scientific observers in the fishery (Dapp et al. 2017).  In 

addition to comprising the majority of purse seine shark bycatch, silky sharks tend to be 

caught as juveniles (Lawson 2011; Hutchinson et al. 2015; Oliver et al. 2015; Eddy et al. 

2016).  They have a high mortality rate between 52-84% in this fishing gear (Hutchinson 

et al. 2015; Eddy et al. 2016).  They reach maturity between 4-10 years old for males and 

7-12 years for females, with between 2-16 pups per liter (Hall and Roman 2013).  

Figure 5 - Sharks Caught by Fishery Type.  Looking at the top five sharks caught by weight in the U.S. fisheries, the Spiny 

Dogfish is the most exploited with over 16 million pounds or 8000 tons reported as bycatch in 2010 over all fisheries.  The 

trawl and gillnet fisheries seem to be exclusive to Spiny Dogfish, while longline fisheries catch less sharks, but more species  

(NOAA 2014). 
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Removal of this demographic group before they have had a chance to breed puts their 

later generations at risk.  As a result of their high bycatch, silky sharks are listed as Near 

Threatened on the IUCN Redlist, and may quickly make their way to Threatened status if 

fishing pressures continue.  

Bottom trawls are not species specific in their targets and tend to catch a variety of 

benthic shark species, reporting them simply as unidentified sharks (Cedrola et al. 2012).  

This is problematic because angel sharks are vulnerable to capture by trawls (Perez and 

Wahrlich 2005).  Angel sharks are critically endangered and are highly susceptible to 

overfishing with little chance of recovery (Perez and Wahrlich 2005).  Identifying the 

shark catch to species is important if the proper management measures are to be taken to 

protect these species.  Spiny dogfish make up most of the identified shark species in mid-

water trawl fisheries bycatch (Cedrola et al. 2012; Oliver et al. 2015).  They comprise the 

largest amount of bycatch in the United States fisheries, primarily in the trawl fisheries 

(Figure 5) (NOAA 2014).  Spiny Dogfish live up to 70 years and do not mature until after 

25 years (Simpfendorfer and Kyne 2009).  They reproduce small litter sizes every three 

years, giving spiny dogfish an estimated 42-year population doubling time 

(Simpfendorfer and Kyne 2009).  This population doubling time is one of the longest of 

most sharks (Simpfendorfer and Kyne 2009).  Spiny Dogfish are listed as Vulnerable 

(IUCN) with a declining population so it is important to find ways to manage the trawl 

bycatch.  

Current Options for Bycatch Reduction 

Reduction of shark bycatch is a problem that needs to be urgently solved.  Scientists are 

working to reduce bycatch in a number of ways, including gear modification, alternate 

fishing practices, area closures, and incentive programs.  Gear modifications are the most 

popular attempts among both scientists and fishers, the latter often advocating for these 

alterations (Campbell and Cornwell 2008).  Inventing plausible gear changes are 

promising because they create a new market for jobs and get fishers involved (Campbell 

and Cornwell 2008). 

For longlines, a number of gear modifications have proved effective.  While studies have 

disagreed on whether circle hooks reduce or increase bycatch of sharks, all agree that 
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circle hooks increase shark survival rate upon release (Yokota et al. 2006; Kerstetter and 

Graves 2006; Kerstetter et al. 2006; Kaplan et al. 2007; Campana et al. 2009; Campana et 

al. 2009; Cosandey-Godin and Morgan 2011; Jordan et al. 2013; Amorim et al. 2014; 

Favaro and Coté 2015, Gilman et al. 2016).  Using mono- and multi-filament lines and 

gangions instead of wire leaders allow sharks to bite through them to escape (Branstetter 

and Musick 1993; Stone and Dixon 2001; Jordan et al. 2013; Favaro and Coté 2015). 

Nylon leaders proved effective at reducing shark bycatch compared to wire leaders (Ward 

et al. 2008; Campana et al. 2009; Favaro and Coté 2015).  Favaro and Coté (2015) found 

that monofilament and nylon leaders reduced shark bycatch by 58%.  The addition of 

chemical and/or electromagnetic shark repellents to the gear has also been suggested, 

although the numerous studies done have yet to demonstrate significant success using 

these gear modifications (Cosandey-Godin and Morgan 2011; Cosandey-Godin et al. 

2013; Favaro and Coté 2015). 

Most trawls use bycatch reduction devices (BRDs), which were originally designed to 

reduce the bycatch of sea turtles but are now more widely used for a number of non-

target species (Jordan et al. 2013).  BRDs are effective in allowing large sharks to escape 

the trawl net, but do not prevent smaller sharks, including juveniles, from being caught 

(Brewer et a. 1998; Stobutzki et al. 2002; Watson et al. 2005; Blaber et al. 2009; Favaro 

and Coté 2015).  In fact, trawls catch more juvenile sharks than any other fishery type, 

which may be attributed to the use of a type of BRD called turtle excluder devices 

(TEDs) (Kotas et al. 2012).  However, using smaller spacing between the bars on the 

TEDs may aid in reducing juvenile and small shark bycatch (Fennessy and Isaksen 2007; 

Belcher and Jennings 2011).  Adding lights to excluder devices on the trawls have 

reduced spiny dogfish bycatch, and may be useful where this species is caught in large 

numbers (Jordan et al. 2013).   

There are different types of BRDs being developed to reduce small shark bycatch without 

affecting the target catch.  One promising BRD is a spiny dogfish reduction device that 

showed significant results (Chosid et al. 2012).  The BRD was a grate that allowed the 

target catch to pass through while keeping the spiny dogfish out.  There were drawbacks 

such as the grate becoming blocked if the tows lasted too long, but this type of BRD is 
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worth further study and modification (Chosid et al. 2012).  Other than the bycatch 

reduction devices, there is some evidence that adding LED lights to the nets and small 

jets to bottom trawls may reduce shark bycatch (Jordan et al. 2013).  The jets would alert 

benthic sharks to the incoming trawls and allow them time to escape (Jordan et al. 2013).  

Finally, “tickler” chains are a common attachment to trawls that are used to stir up fish 

from the bottom as the trawl passes by (Kynoch et al. 2015).  Banning the use of this 

chain reduces shark bycatch significantly (Kynoch et al. 2015). 

Gillnets have limited possibilities for gear alterations.  Recent studies have found 

promising results in creating more tension in the net (Thorpe and Frierson 2009; 

Cosandey-Godin and Morgan 2011; Jordan et al. 2013).  This is accomplished by having 

more weights and buoys on each end of the nets (Thorpe and Frierson 2009).  Studies 

show that this reduced the number of sharks wound up in the net, which can cause the 

sharks stress and ultimately death (Thorpe and Frierson 2009; Hyatt et al. 2012).  Net 

mesh size is important when considering shark bycatch (Trent et al. 1997; Walker et al. 

2005; Jordan et al. 2013).  Studies show smaller mesh sizes result in higher catches of 

sharks, therefore limitations on the minimum size of gillnet mesh can help reduce shark 

bycatch (Trent et al. 1997; Walker et al. 2005; Cosandey-Godin and Morgan 2011; 

Jordan et al. 2013). 

Although purse seines catch a comparatively small amount of sharks as bycatch, the high 

mortality rates make reducing the catch a priority.  The use of fish aggregating devices 

(FADs) as is commonly done in purse-seine fisheries increase shark bycatch significantly 

(Torres-Irineo et al. 2014; Hutchinson et al. 2015).  While outlawing these FAD devices 

is improbable, there are ways to modify them to reduce bycatch (Jordan et al. 2013).  For 

example, European fleets use non-entangling FADs to reduce shark bycatch (Poisson et 

al. 2014).  To reduce mortality of sharks caught in the seine nets, conducting quick 

release of sharks from the net increases post-release survival significantly (Cosandey-

Godin and Morgan 2011; Poisson et al. 2014; Hutchinson et al. 2015; Tolotti et al. 2015).  

It is suggested that fishers quickly sort through the catch before putting the catch in the 

hold, shortening the time between capture and release of the sharks (Poisson et al. 2014). 
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There are a number of ways to reduce the bycatch of sharks without modifying fishing 

gear, although the effectiveness of these options varies.  For longlines, reduced soak 

times and changing bait from squid to mackerel have proven effective at reducing shark 

bycatch and post-release mortality (Ward et al. 2004; Campana et al. 2009; Campana et 

al. 2009; Cosandey-Godin and Morgan 2011; Dapp et al. 2013; Jordan et al. 2013; 

Amorim et al. 2014). Fishers could also adjust the location of the lines depending on the 

type of sharks they are catching; lifting the line off the floor to avoid benthic sharks, or 

sinking it closer to the floor to avoid pelagic sharks (Jordan et al. 2013; Favaro and Coté 

2015; Tolotti et al. 2015).  The U.S. swordfish longline fishery sets lines relatively 

shallow and catches primarily blue sharks as bycatch while the U.S. tuna longline fishery 

sets lines deeper and catches more tiger sharks (Dapp et al. 2017).  Communication 

between fishers can help warn others of “hotspots” where sharks are gathered to help 

reduce interactions (Barker and Schluessel 2005; Mandelman et al. 2008; Gilman et al. 

2008; Cosandey-Godin et al. 2015). 

In addition to these fishing gear and fishing method changes, educating the fishers is an 

important component of reducing bycatch. The FAO found that less than 15% of 

chondricthyans were identified to species in 1998, demonstrating an ignorance of shark 

species by fishers (Barker and Schluessel 2005; Baeta et al. 2010).  Educating fishers to 

identify shark species, as well as to recognize shark “hotspots” can be useful in gathering 

fisheries data such as more accurate bycatch records, species specific data, and potential 

ecologically important areas to sharks such as nursery areas (Stobutzki et al. 2002; Barker 

and Schluessel 2005; Campbell and Cornwell 2008; Blaber et al. 2009; Benjamins et al. 

2010; Cosandey-Godin et al. 2015).  Requiring classes with every fishing license and/or 

creating shark identification pamphlets for use onboard may be helpful ways to improve 

shark fisheries records and track bycatch to aid in downstream bycatch reduction efforts 

(Campbell and Cornwell 2008; Dapp et al. 2017). 

All the options for bycatch reduction thus far have been at the fisher level, however, there 

are also changes to be made at the management level such as enforcing quotas, trade 

restrictions, and area closures (Barker and Schluessel 2005; Mandelman et al. 2008; 

Campbell and Cornwell 2008; Blaber et al. 2009; Benjamins et al. 2010; Cosandey-Godin 
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and Morgan 2011; Bustamante and Bennett 2013; Tolotti et al. 2015).  Creating bycatch 

quotas with fines for those who catch more than the set quota and incentives for those 

who manage to stay under the quota may encourage fishers to avoid shark interactions as 

often as possible (Hall et al. 2000; Barker and Schluessel 2005; Campbell and Cornwell 

2008; Blaber et al. 2009; Benjamins et al. 2010).  Some nations have a required fin-to-

carcass ratio for fishers, which reduces finning practices.  Since shark carcasses take up 

more room than shark fins, the regulation entices fishers to avoid shark interactions and 

release sharks alive rather than have to take up additional room on the ship by keeping 

shark carcasses.  This fin-to-carcass ratio regulation has proved effective at reducing 

bycatch for many shark species, especially larger sharks.  Tiger shark bycatch was 

reduced more so by this regulation than the use of circle hooks in U.S. pelagic longline 

fisheries (Dapp et al. 2017). In the US, recent regulations now require all landed fins to 

be attached to the sharks, further incentivizing swordfish and tuna fishers to avoid sharks 

as bycatch as much as possible. Trade restrictions on shark fins or shark meat can make it 

difficult for fishers to make money off the shark bycatch, which will also encourage them 

to avoid shark catches (Blaber et al. 2009; Worm et al. 2013; Passantino 2014; Tolotti et 

al. 2015).  Occasionally, trade restrictions are not enough to deter fishers, and a market 

closure may be necessary (Hall et al. 2000; Kirby and Ward 2014).  This was done in the 

1990s in response to dolphin bycatch and proved successful in creating change to avoid 

all bycatch including sharks (Hall et al. 2000; Kirby and Ward 2014).   The key to its 

success was public support: thus, public awareness and education is important as part of 

the overall effort to entice shark bycatch reduction. 

For overfished or endangered shark species, area closures to fishing may be necessary to 

reduce bycatch.  To do so, scientists need to determine which areas are ecologically 

important to sharks such as nurseries.  The area must also be a viable option for closure, 

where the regulations can be enforced and provide suitable protection for the sharks.  The 

area must be large enough to provide adequate protection while not taking too much 

fishing grounds away from the fishers.  Closing areas to fishing are complicated and 

difficult to obtain approval for, but may be necessary for ecologically important areas for 

endangered species (Hall et al. 2000; Stobutzki et al. 2002; Barker and Schluessel 2005; 
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Campbell and Cornwell 2008; Mandelman et al. 2008; Blaber et al. 2009; Cosandey-

Godin and Morgan 2011; Dapp et al. 2013; Worm et al. 2013; Tolotti et al. 2015).  

All of the options listed above are a good start for reducing bycatch, but will not 

eliminate shark bycatch.  Biologists need to continue to gain information on both shark 

biology and shark population statistics to close the gaps in data to help fisheries managers 

determine the best course of action for reducing shark bycatch (Hall et al. 2000; 

Carbonell et al. 2003; Baum et al. 2003; Barker and Schluessel 2005; Dulvy et al. 2008; 

Blaber et al. 2009; Benjamins et al. 2010; Gilman 2011; Molina and Cooke 2012; Kirby 

and Ward 2014; Tolotti et al. 2015).  Additional scientific observer coverage is vital to 

gain bycatch data by species (Cosandey-Godin and Morgan 2011; Dapp et al. 2013; 

Kirby and Ward 2014). Unfortunately, observer coverage across fisheries varies but is 

generally minimal.  In the United States Monterey Bay gillnet fishery, observer coverage 

was between 25% and 35%, while the Hawaiian longline fishery observer coverage was 

only at 6.5% (NOAA 2000; Lawson 2011).  Between 1992 and 2009, observer coverage 

for the Japanese tuna longline fishery in Australian waters was only 5.1% and the New 

Zealand longline fishery had 3.6% coverage (Lawson 2011).  Pacific Ocean tuna purse 

seine fisheries tend to have higher coverage, reaching percentages as high as 11.05% 

between 1995 and 2010 (Lawson 2011).  South African fisheries observer coverage 

varies between fisheries.  The observer coverage for the South African demersal trawl 

fishery is nearly nonexistent at between 0.49%-0.62% (Walmsley 2004).  However, the 

tuna and swordfish longline fisheries off the southern coast of Africa have higher 

observer coverage at 9.8% between 1998 and 2005 (Petersen et al. 2009).  The South 

African inshore trawl fishery observer program covered 2.9-4.4% between 2003 and 

2006 (Attwood et al. 2011).  The Adriatic Sea pair trawl fishery observer coverage ranges 

between 0.9% and 6.3% (Fortuna et al. 2010).  It is suggested that observer coverage be 

at least 5-10% of fishing effort to estimate bycatch across the fishery with accuracy 

(Walmsley 2004). 

Reducing interactions with sharks in teleost targeted fisheries has economic incentives to 

many fishers, as incidental catch of sharks is often economically deleterious to the fishers 

in terms of effort needed to remove the sharks and gear damage (Hall et al. 2000; 
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Campbell and Cornwell 2008; Jordan et al. 2013; Cosandey-Godin et al. 2013; Torres-

Irineo et al. 2014; Favaro and Coté 2015).   There are also other economic incentives for 

decreasing shark bycatch including reduced drag, uninterrupted fishing access, eco-

friendly marketing, and a decreased number of trips (Campbell and Cornwell 2008).   

Conclusions 

Bycatch is widely recognized as one of the largest contributors to shark population 

declines worldwide, and there is considerable need for more target efficient fishing 

methods to drastically reduce this bycatch.  With sharks having key functional roles in 

ocean ecosystems, their large-scale removal can alter food webs via top down trophic 

cascades, causing concomitant declines in commercially important species.  These 

trophic cascades could also occur if sharks continue to decline in average size due to 

fishing pressures.  Smaller sized sharks are unlikely to function as apex predators, 

causing food web disruptions similar to if they were removed completely.  In addition to 

ecological impacts, shark bycatch can cause economic problems for fishers through 

destroyed gear, extra time and effort, and less vessel storage space for target species. 

While a lot of research is being done to try to find ways to reduce shark bycatch, the 

current gear modifications recommended have yet to be globally applied in fisheries. As a 

result they have not yet demonstrated significant reductions in bycatch levels overall to 

reduce concerns about shark population declines.  Recent studies also suggest 

improvements in bycatch reduction efforts need to be made not only at the fishing level 

but also at the management level.  Standardization of bycatch nomenclature, education 

requirements for fishers, expanded observer programs, area closures, and ecosystem-

based management regimes are just a few of these management-level suggestions that 

could help with shark bycatch reduction.   

The following are some important steps that need to be taken to reduce shark bycatch and 

improve future research on bycatch assessment and monitoring: 

1. The word “bycatch” must be universally defined for nations to compare shark 

capture numbers more easily.  Since mortality rates of many shark species tend to 

be high once they are caught, I suggest standardizing the term bycatch to 
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encompass all non-target shark species caught, both discarded and retained.  By 

incorporating sharks that are discarded in the definition of bycatch, we can 

account for mortality and better predict impacts on shark populations.  A 

universal definition of the term may also encourage collaboration between 

national management regimes. 

2. Immediately instituting management regimes in areas where shark bycatch is high 

is necessary.  For example, most United States longline fisheries require circle 

hooks be used over J-hooks.  Although there is currently no study that 

demonstrates significant results in effectiveness of circle hooks in reducing shark 

bycatch, circle hooks reduce post-release mortality for sharks over J-hooks.  

Circle hooks more frequently hook sharks in the mouth rather than the gut, which 

causes less harm to the sharks and increases their survival rate upon release.  

Requiring circle hooks in fisheries may not reduce shark bycatch, but it will 

reduce their mortality and have a smaller impact on the local shark populations.   

3. Shark bycatch data needs to be made public by all fishing nations, both to gain 

public support for shark conservation and to aid scientists and managers in 

improving stock assessments.  Currently, not many nations release fisheries data, 

making it difficult for scientists and fisheries managers to determine how many 

sharks are being caught worldwide.  Fish stocks are often assessed using fisheries 

data, thus if nations released shark catch and bycatch data, managers and 

scientists would be able to better assess global shark stocks. 

4. Expanding coverage of national scientific observer programs is vital.  For those 

nations that have scientific observers in place, priority needs to be placed on 

identifying and recording sharks by species.  Most European nations do not 

include sharks in their bycatch reports, and many of the fisheries in the United 

States do not identify sharks to species (NOAA 2014; ICES 2015).  Increasing 

scientific observer coverage is also important to ensure the fisheries spatial scales 

of effort are well represented.  For nations without scientific observers in place, a 

program should be created. 

5. Closing ecologically important areas to fishing can help overfished populations 

recover. 
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6. Continuing to research and develop improved methods for bycatch reduction, as 

well as learning as much as possible about sharks and their biology can help 

scientists make the best suggestions to fisheries managers.   

Overall, my review of the shark bycatch literature strongly indicates that increased 

investment by the fishing industry and management agencies in shark bycatch reduction 

methods will be critical to reverse the drastic declines in shark populations occurring 

worldwide.   
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