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• The thermoregulatory theory of yawning posits that yawns function in brain cooling.
• Yawning is constrained to an optimal thermal zone of ambient temperature.
• This theory explains basic features of both spontaneous and contagious yawning.
• Applications include improved treatment of patients with thermoregulatory problems.
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The thermoregulatory theory of yawning posits that yawns function to cool the brain in part due to counter-current
heat exchangewith the deep inhalation of ambient air. Consequently, yawning should be constrained to an optimal
thermal zone or range of temperature, i.e., a thermal window, in which we should expect a lower frequency at ex-
treme temperatures. Previous research shows that yawn frequency diminishes as ambient temperatures rise and
approach body temperature, but a lower bound to the thermal window has not been demonstrated. To test this,
a total of 120 pedestrians were sampled for susceptibly to self-reported yawn contagion during distinct tempera-
ture ranges and seasons (winter: 1.4 °C, n= 60; summer: 19.4 °C, n= 60). As predicted, the proportion of pedes-
trians reporting yawningwas significantly lowerduringwinter than in summer (18.3% vs. 41.7%),with temperature
being the only significant predictor of these differences across seasons. The underlying mechanism for yawning in
humans, both spontaneous and contagious, appears to be involved in brain thermoregulation.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Yawning occurs with an average duration of 4 to 7 s, and consists of
three distinct phases: an active gaping of the jaw with inspiration, a
brief period of acme corresponding with apnea and peak muscle
contraction, and a passive closure of the jaw with shorter expiration
[1]. In humans [2], as well as a handful of other social vertebrates
[3–7], yawning can be categorized into two basic forms: spontaneous
and contagious. Both forms include similar motor action patterns, but
spontaneous yawns seem to be triggered by physiological mechanisms
of homeostasis and arousal since they reliably occur during distinct be-
havioral contexts [8,9] and follow a consistent circadian pattern [10]. In
contrast, contagious yawns are elicited simply by sensing or even

thinking about the action in others [11]. Unlike its spontaneous form,
which appears evolutionarily older by its observed presence in all clas-
ses of vertebrates [12] and early onset in uterine development [13], con-
tagious yawning appears to be a more recently derived behavior as
evidenced by its presence in relatively few highly social species [2–7]
and delayed ontogeny [14–18]. Research investigating contagious
yawning has emphasized the influence of interpersonal and
emotional-cognitive variables on its expression [4,5,19–28], but there
have been few attempts to combine theoretical frameworks when
explaining both contagious and spontaneous effects. Due to the poten-
tial multifunctionality of yawning across species [12,29], however, re-
cent reports on social primates have highlighted potentially important
differences in yawn morphology or intensity [5,30,31].

Although it is commonly believed that yawns serve a respiratory
function, experimental procedures have shown yawn frequency is inde-
pendent of brain/blood levels of O2 and CO2 [32]. A more recent theory,
which posits that the motor action of yawning functions as a brain
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cooling mechanism [33,34], has received growing empirical support
[reviewed by 35]. For example, research on both rats and humans
shows that yawning is preceded by intermittent rises in brain tempera-
ture and localized mild hyperthermia and then followed by equivalent
decreases in temperature immediately thereafter [36,37].While various
critiques have been proposed regarding the thermoregulatory theory
[38–42], no study has found evidence contrary to its main predictions
and all current arguments remain untenable [35,43].

According to the thermoregulatory theory, the cooling effects
of yawns occur through thermoregulatory mechanisms of counter-
current heat exchange, evaporative cooling and enhanced cerebral
blood flow [44]. Consequently, the effectiveness of yawning is depen-
dent on the ambient air temperature, and the expression of this behav-
ior should be constrained to an optimal thermal zone or range of
temperature, i.e., a thermal window. In particular, this theory posits
that yawns should (1) increase in frequencywith initial rises in ambient
temperature, as this stimulates thermoregulatory mechanisms to
control temperatures within a normal range, (2) decrease as ambient
temperatures draw near or exceed body temperature, since taking a
deep inhalation of air above one's body temperature would be counter-
productive, and likewise (3) diminish when temperatures fall below a
certain point, because thermoregulatory cooling responses are no longer
necessary and countercurrent heat exchange could result in deviations
below optimal thermal homeostasis. Since both spontaneous and conta-
gious yawns are indistinguishable, aside from different triggers, the pre-
dictions of the thermal window hypothesis should apply to both forms.

Experimental and observational research reports of spontaneous
yawning in non-human primates [9,45], birds [46,47], and rats [48]
have confirmed the first two predictions of this model. Additionally, it

was recently discovered that self-reported contagious yawning fre-
quency in humans varies with seasonal climate variation [49]. In partic-
ular, two independent groups of pedestrians were sampled in an arid
desert climate (Tucson, AZ, USA): the first in summer (37 °C) and the
other during ‘winter’ (22 °C). Contagious yawning frequency was
significantly lower during the hot summer climate (24% vs. 45%), with
temperature being the only significant factor contributing to this
response after controlling for other variables, such as humidity, sleep
and time spent outside.

Here we tested the lower bound of the thermal window hypothesis
by investigating the frequency of self-reported contagious yawning in a
climate with a colder winter season (Vienna, Austria). In this case the
summer condition provided temperatures equivalent to those inwinter
months of Tucson, while the winter condition included temperatures at
and slightly below freezing.

2. Methods

2.1. Participants

Participants were 120 random pedestrians recruited in and
around the city of Vienna, Austria (Lat.: 48.21; Lon.: 16.37). The ex-
periments were conducted during two distinct time frames: December
2012–March 2013 (winter; average temperature: 1.4 °C) and June
2013–October 2013 (summer; average temperature: 19.4 °C). In total,
per season we recruited 60 participants (winter: 25 males, 35 females;
summer: 23 males, 37 females). Participants were all over 18 years of

Fig. 1. (a) The proportion of participants reporting yawning, and (b) themean± s.e.m. frequency of reported yawns in the two seasonal conditions in Vienna, Austria (light gray bars), as
well as the conditions of an earlier study in Tucson, Arizona USA (dark gray bars). Average temperatures and sample sizes for each are in bold. The best-fit lines demonstrate a non-linear
relationship, with (a) probability of yawning and (b) yawn frequency dropping at extreme ambient temperatures.

Table 1
Descriptive statistics: mean and s.d. for each variable between and across conditions.
Independent t-test and Chi2 comparisons are between winter and summer conditions.

Total Winter Summer Test statistic p

Sex (m:f) 48:72 25:35 23:37 Chi2 = 0.04 0.852
Age (year) 28.6 ± 7.3 28.2 ± 7.3 29.0 ± 7.3 t = −0.57 0.567
Temp. (°C) 10.4 ± 10.1 1.4 ± 2.7 19.4 ± 5.9 t = −21.42 b0.001
Humidity (%) 54.8 ± 15.4 62.5 ± 16.0 47.0 ± 10.0 t = 6.35 b0.001
Time (min)a 63.8 ± 83.0 69.0 ± 74.6 59.8 ± 89.5 t = 0.55 0.586
Sleep (h) 7.1 ± 1.5 7.2 ± 1.5 7.1 ± 1.4 t = 0.44 0.661

a Time represents the time spent outside prior to participating.

Table 2
Best-fittingmodels (GLMMs) showing the factors influencing a)whether an individual re-
ported yawning (binomial distribution, logit link function) (n = 120) and b) how often
they yawned (n = 120). Original models included sex, season (winter or summer), age,
temperature, humidity, time spent outside and hours of sleep and all 2-way interactions
between these variables.

Variable denom. df Beta ± s.e.m. F p

a) Dependent variable is yawn (y/n)
Temperature 61 0.078 ± 0.02 13.09 0.001

b) Dependent variable is number of yawns
Temperature 116 0.113 ± 0.04 7.25 0.008
Age 116 −0.053 ± 0.03 4.09 0.045
Winter or summer 116 1.186 ± 0.84 1.98 0.162
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age and gave verbal andwritten consent to participate in this study (see
ESM). The Ethics Committee of the University of Vienna approved this
research.

2.2. Procedure

The procedure was similar to [49]: an experimenter approached pe-
destrians in public places and asked them to participate in a survey
about contagious yawning. The participants then were instructed to
carefully look through a series of 18 images of people yawning, after
which they took a small survey self-reporting on whether and how
often they had yawned during the experiment [for validity in this ap-
proach, see 50] and if not whether they had the urge to do so, how
long they had been outside before participating in the study, how long
they slept the night before, and howold theywere. The last itemwas in-
cluded to replicate a recent effect of age-related declines in contagious
yawning [51]. To further trigger contagious yawns, additional questions
were included for participants to report on their yawning behavior
outside of the study (see ESM).

While the participants were taking the survey, an experimenter
recorded the relative humidity (%) and ambient air temperature (°C)
using a digital thermometer/hygrometer (TFA®) that was placed in
the shade. Experimenters avoided directing their attention towards
the participants during the experiment, since research suggests that
people are less likely to yawn when they are being observed [52]. To
avoid potential effects of circadian rhythms, all surveys were conducted
between 13:00 h and 15:00 h [49].

2.3. Analysis

We compared variables across season using independent t-tests,
Mann–Whitney U tests (non-normally distributed scale data), or
Chi-square tests with Yates correction (binomial data). To assess
the influence of several variables on reported yawning in parallel,
we ran General LinearMixedModels (GLMMs). If our response variable
was binomial (yawn: yes/no) we ran GLMMs with a binomial distribu-
tion and logit link function. The sex of the participant was entered as a
fixed factor and age, temperature, humidity, time spent outside and
hours of sleep as fixed covariates. In addition, we included all 2-way
interactions of these variables. To achieve the best models we used a
backward stepwise approach, and our model choices were based on
comparisons of the corrected Akaike Information Criteria (cAIC). For
reasons of clarity, here we present only the best fittingmodels. All anal-
yses were performed in IBM SPSS Statistics v.20 for Mac OS, with α set
to 0.05. All reported p-values are 2-tailed.

3. Results

Of the 120 participants, 36 (30.0%) reported yawning during the
experiment. As predicted, there was a significant difference in self-
reported yawn contagion between the two seasons, with only 11 out
of 60 (18.3%) participants in winter reporting yawning, and 25 out
of 60 (41.7%) participants in summer reporting yawning (Chi2 = 6.71,
p = 0.010) (Fig. 1a). Further analyses showed that participants
also reported more total yawns during the summer (Mann–Whitney
U = 2203, n = 120, p = 0.009) (Fig. 1b).

As several variables differed between the two seasons (Table 1), we
ranGLMMs to assesswhich variables best predicted self-reported yawn-
ing. The best fitting model revealed that temperature was the only
significant predictor, with an increased likelihood to report a yawn at
higher temperatures (Table 2a); i.e., none of the other variables (sex,
season, age, humidity, time spent outside and hours of sleep the night
before) had a significant effect on the likelihood of reporting a yawn,
and were therefore excluded from the best fitting model (Table 2a).

Similarly, we found that temperature was a significant predictor of
reported yawn frequency (Table 2b), with a greater number of yawns

being reported at higher temperatures. Consistent with previous re-
search [51], age also had a significantly negative effect on reported
yawn frequency. Season was also included in the best fitting model,
albeit as a non-significant effect. None of the other variables had a
significant effect on the reported yawn frequency and were therefore
excluded from the best fitting model (Table 2b).

4. Discussion

Overall, these results show that significantly fewer pedestrians re-
ported contagious yawning during the cold winter (−4 to 7 °C), and
that, similar to effects observed in an arid desert climate [49], tempera-
turewas the only significant predictor of this responsewhen controlling
for other variables. As predicted by the thermal window hypothesis, re-
ports of yawningwere constrained to an optimal thermal zone or range
of ambient temperature (Fig. 1). Importantly, changes in daylight across
the seasons cannot account for these results. First, a particular time
frame was chosen for both studies (between 1 and 3 pm) whereby
contagious yawning frequencies remain unchanged [53]. Second, the
proportion of people that reported yawning in the summer in Vienna,
Austria (current study) was comparable to that of the winter in Tucson,
Arizona, USA [49], whereas there is a large difference in daylight
hours between these samples (summer in Vienna: ±16 h vs. winter
in Tucson: ±10 h). Lastly, an inverse seasonal pattern emerged be-
tween the two study locations; i.e., whereas in Tucson there was a
high frequency of reported yawning in winter, and a low frequency of
reported yawning in summer, in Vienna there was a high frequency of
reported yawning in summer, and a low frequency of reported yawning
in winter. Thus, it cannot be generalized that people yawn more or less
in winter vs. summer, nor with greater or fewer hours of daylight. In-
stead, the ambient air temperature accompanying the season appears
to determine reported yawn frequency.

This report adds to accumulating research suggesting that the
underlying mechanism for yawning, both spontaneous and contagious,
is involved in brain thermoregulation. The thermoregulatory theory
provides clear predictions for both the primitive and derived features
of this behavior. That is, the thermoregulatory benefits resulting from
yawning provide the mechanism by which arousal or state change can
be achieved [8,10], while the spreading of this behavior, i.e., yawn con-
tagion, would therefore coordinate arousal in a group and enhance
overall group vigilance [33]. In addition to enhancing the basic under-
standing of why we yawn, applications from this research include im-
proved treatment and diagnosis of patients with thermoregulatory
problems [34,37,54,55].
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