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We consider pure SU(2) Yang-Mills theory on four-dimensional de Sitter space dS, and construct a smooth
and spatially homogeneous magnetic solution to the Yang-Mills equations. Slicing dS, as R x §3, via an
SU(2)-equivariant ansatz, we reduce the Yang-Mills equations to ordinary matrix differential equations and
further to Newtonian dynamics in a double-well potential. Its local maximum yields a Yang-Mills solution

whose color-magnetic field at time 7 € R is given by B, = — %I «/ (R? cosh? 7), where I, fora = 1,2, 3 are the
SU(2) generators and R is the de Sitter radius. At any moment, this spatially homogeneous configuration has

finite energy, but its action is also finite and of the value —31 j(j + 1)(2j + 1)* in a spin-j representation.

Similarly, the double-well bounce produces a family of homogeneous finite-action electric-magnetic solutions
with the same energy. There is a continuum of other solutions whose energy and action extend down to zero.
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Introduction and summary.—Yang-Mills theory with
Higgs fields governs three fundamental forces of nature.
It has a number of particlelike solutions such as vortices,
magnetic monopoles, and instantons [1-3]. In Minkowski
space R*! smooth vortex and monopole solutions can be
constructed only in the presence of Higgs fields. Magnetic
monopoles play a key role in the dual superconductor
mechanism for the confinement of quarks in QCD based on
the condensation of non-Abelian monopoles [4]. However,
there are no Higgs fields in QCD, and without them all
monopole solutions of pure Yang-Mills theory on R>! are
singular Abelian monopoles, with the U(1) gauge group
embedded into a higher-dimensional non-Abelian gauge
group, e.g., SUQ3) for the QCD case. Furthermore, a
number of theorems rule out any static, real, finite-energy
solution of pure SU(2) Yang-Mills theory on R3! [5,6].
Under some mild assumptions the nonexistence can be
extended also to time-dependent finite-energy solutions in
pure Yang-Mills theory on R>! [7,8].

The still elusive quantitative understanding of the con-
finement mechanism in Minkowski space is not the only
problem. In most inflationary models the early and late
expansion of the Universe is approximated by a dS, phase.
Therefore, it is important to understand de Sitter vacua of
supergravity and string theory [9]. Such vacua include one
or more anti-D3-branes [10] (for recent results see, e.g.,
Ref. [11]). In fact, gauge theories in dS, occur naturally in
string-theoretic constructions from stacks of branes or from
compactifications. Hence, constructing explicit solutions
and studying their physical effects in gauge theories on de
Sitter space are also important for understanding the early
Universe and its evolution.

So, on the one hand, Minkowski space does not seem to
admit physical non-Abelian field configurations. On the
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other hand, our Universe appears to be asymptotically de
Sitter (not Minkowski) at very early and very large times.
This is a strong argument for searching for finite-energy
solutions in pure Yang-Mills theory on four-dimensional de
Sitter space dS,. The construction of such solutions is the
goal of our Letter. [Note that we consider the spacetime
background as nondynamical; i.e., we ignore the back-
reaction on it. The coupled system is governed by the
Einstein-Yang-Mills equations (for numerical solutions,
see, e.g., the review of Ref. [12] and references therein).
However, in this more general setup it is practically
impossible to obtain analytic solutions.]

We will not only show that smooth non-Abelian solutions
with finite energy indeed exist in pure Yang-Mills theory on
dS,, but we will also construct them analytically in a rather
simple geometric form. On the spatial S° slices of dS,, the
gauge potential as well as the color-electric and color-
magnetic fields are constant, analogous to the Dirac monopole
on R? restricted to S? or the Yang monopole on R restricted
to S* [13]. Furthermore, their temporal variation is such that
the action functional is also finite. One may hope that such
configurations will help to get a quantitative understanding of
QCD confinement in a de Sitter background.

Description of de Sitter space dS,.—Topologically, de
Sitter space is R x S3, and it can be embedded into five-
dimensional Minkowski space R*! by the help of

Sy'y — () =R*, wherei,j=1,...4. (2.1)
One can parametrize dS; with global coordinates (z,8%),

a =1, 2, 3, by setting (see, e.g., Ref. [14])

y' = Rw'coshz, y°>=Rsinht with z€R (2.2)
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1

o' = cos b, ®* = sin 0, cos 6,,

3

@’ = sin 0, sin 6, cos 05,

4

w* = sin @, sin O, sin 65, (2.3)

where 0 < 6, 8, < 7 and 0 < 053 < 2x. Then, from the flat
metric on R*! one obtains the induced metric on dS,,

ds* = R*(—dz* + cosh®z5,,ee?)

:—m~+mmm2dm with 7=Re, (2.4)
where dQ3 is the metric on the unit sphere $* =~ SU(2) and
{e“} is an orthonormal basis of left-invariant 1-forms on 3

satisfying

de® + el e’ A e =0. (2.5)

We rewrite the metric (2.4) in conformal coordinates
(t, %) by the time reparametrization [14]

dr

t = arctan(sinh 7) = 2 arctan <tanh ) =

(2.6)

=cosht = ——,
cos t

in which 7€ (-0, ) corresponds to 1€ (—(7/2),
(7/2)). The metric (2.4) in these coordinates reads

2

ds* = R (=df? + 5 pe%e”) = ds

2.7
cos?t cos? (2.7)

cyl?

dscyl = —df* + 5 ee”

(2.8)
is the standard metric on the Lorentzian cylinder R x S°.
Hence, four-dimensional de Sitter space is conformally
equivalent to the finite cylinder 7 x S* with the metric
(2.8), where 7 is the interval ( — (z/2),(x/2)) parame-
trized by t.

Reduction of Yang-Mills to matrix equations and to
double-well dynamics.—Since the Yang-Mills equations
are conformally invariant, their solutions on de Sitter space
can be obtained by solving the equations on Z x S with the
cylindrical metric (2.8). Therefore, we will consider rank-N
vector bundles over this cylinder Z x S with the de Sitter
metric (2.7) or cylindrical metric (2.8). Our gauge poten-
tials A and the gauge fields 7 = d A + A A A take values
in the Lie algebra su(N). The conformal boundary of dS,
consists of the two three-spheres at ¢t = +(z/2) or, equiv-
alently, at 7 = +00. On manifolds M with a nonempty
boundary OM, the group of gauge transformations is

naturally restricted to the identity when reaching oM
(see, e.g., Ref. [15]). This corresponds to a framing of
the gauge bundle over the boundary. For our case, this
means allowing only gauge-group elements g(y) obeying
g(OM) =1d on OM = S;’zin =8
In order to obtain explicit solutions we use the
SU(2)-equivariant ansatz (cf. Refs. [16—18])

(3.1)

for the su(N)-valued gauge potential A in the temporal
gauge Ay =.A, =0 = A,. Here, X,(t) are three su(N)-
valued matrices depending only on t € 7, and e“ are basis
1-forms on $° satisfying Eq. (2.5). The corresponding
gauge field reads

1
F = Fp.e® A e +—.7:bceb A e

=X,e" A et —I—Z( 2e8 X, + [Xp. Xc))eb nec, (3.2)

where X, := dX,/dt and ¢°:=dr. It is not difficult to
show (see, e.g., Ref. [18]) that the Yang-Mills equations
on Z x S? after substituting Eqs. (3.1) and (3.2) reduce to
the ordinary matrix differential equations
Xu = _4Xu + 38ahC[Xh7XC] - [Xb’ [XmXb]]' (33)
To be more concrete, we let the gauge potential and
fields take values in an su(2) subalgebra of su(N). In
other words, we pick three SU(2) generators /,, in a spin-j
representation embedded into su(N) obeying

Iy, 1) =2¢l1, and tr(I,1})

where C(j) = %j(j%— 1(2j+1)

= _4C(])5ah ’

(3.4)

is the second-order Dynkin index of the representation.
Explicit solutions to the matrix equations (3.3) can then be
found with the natural choice

1

S+ y(@)),.,

X, =

(3.5)

where (¢) is a real function. The Yang-Mills equations
finally boil down to

(3.6)

This is Newton’s equation for a particle in a double-well
potential, whose solutions are well known.
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The simplest ones are constant at the critical points
of V, ie.,

w(t) = +1(minima, V = 0) and

1
w(t)=0 <local maximum, V = 5) (3.7)
A prominent nontrivial solution is the bounce
2
w(t) = V2sech(V2(t — 1y)) = V2 (3.8)

cosh (V2(r —15))

which makes an excursion from (y =0,V =1) at 1=
—oo to (y =2,V =1)at =t and back at f = c0. An
antibounce is given by —wy/(¢). In addition, there is a
continuum of periodic solutions oscillating either about
w = £1 or exploring both wells, which are given by
Jacobi elliptic functions. Usually, the moduli parameter
to is trivial because of time translation invariance in
Eq. (3.6). However, since for de Sitter space according
to Eq. (2.6) we consider the solutions w/(?) only in the
interval Z = ( — (n/2), (z/2)) without imposing boun-
dary conditions, the value of 7y € R makes a difference.
It allows us to pick a segment of length # anywhere on
the profile of the bounce, not necessarily including its
minimum. Finally, we remark that the Newtonian energy
conservation produces the relation

1. 1
51//2 =Vo=V(y) ="V, —5(1 -y, (3.9)

where V|, is the value of V at the turning points.

Magnetic and electric-magnetic Yang-Mills configurations
on dS,.—Let us look at the gauge potential and field and
compute its energy and action in terms of y. Inserting
Eq. (3.5) into Eq. (3.2), we obtain

1
A= 5(1 +w)e*l, and

1 1
F = (51/./60 A el _Z<1 - Wz)glaaceb A ec>1a7 (41)

which yields the color-electric and color-magnetic field
components (in the cylinder metric)

1
Ea:f()azililla and
1 1
B, = _8abc-7:bc =-35

. J0=v)L @42)

The electric and magnetic energy densities then become

1
Pe = _ZtrEuEa =>C(j* and

AW B~ W

1
pn= =7 UBB, =3 CH)1 =y, (43)

respectively. The energy of our Yang-Mills configuration
(in the cylinder metric) computes to

E, =/ e' ne* Ao+ pum)
S3

:Zcuwmw%@2+0—w55

= 372C(j)Vo, (4.4)
where we have employed the energy relation (3.9) in the
last step. Remarkably, E, is constant and only given by
the “double-well energy" V. It is important to note,
however, that E, is conjugate to the time variable ¢, and
so the energy conjugate to de Sitter time 7 (2.4) is
obtained as

oty ldt, 1 .
*di" Rdr ' Rcosht
32°C(j)Vo
= . 4.5
Rcoshzt (45)

We see that this energy decays exponentially for early
and late times.

In a similar fashion one can evaluate the action func-
tional on the configuration (4.2). Its value is independent of
the metric chosen in the computation. For the cylinder
metric (2.8), for example, we get

S = g/ 60 A\ 61 A 62 AN e3tr(—2.7:0u.7:0u + fabfuh)
IxS?

— /IdtVOI(S3)(Pe_pm)

= 2xc() / j dr(i? — (1 —y?)?)

= 3wC()Vo - 62Cl) [ j (),

(4.6)

which takes a finite value for any solution () to
Eq. (3.6).

For alternatively computing the action directly with the
de Sitter metric (2.4), we introduce on orthonormal basis
on dS,,

eY := Rdrx, ¢ := R coshre?, (4.7)

and expand
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- A
A=At and F = Fy,e® A el +§.7:bce” A &€

(4.8)
so that
A, = RcoshtA,, Fpe = R2cosh?cF,,,
Fou = 0,A, = R2cosh?z0: A, (4.9)

With these ingredients, we find that
1 P -~ - U
S = —/ e nel Aer A (=2FpFoa + FarFap)
ds,

- / drvol(s3)Pe—Pm (4.10)
R

cosht ’

which agrees with Eq. (4.6) by virtue of Eq. (2.6) (note that
f dz/ cosht also produces the factor of ).

Explicit examples.—Finally, we analytically display
the Yang-Mills configurations for the explicit solutions
(3.7) and (3.8). The solutions y(¢) = 1 correspond to the
vacuum F = 0, which is not interesting. In contrast,
w(t) =0 provides the nontrivial smooth configuration
[we remark that that e“I, = g~'dg, where g(6):S5° —
SU(2) is a smooth map of degree (winding number) 1]

1 1
=—el, =——¢“ 5.1
A 2¢ % T 2Rcoshe’ @ (5-12)
F 1 a b A eCl 1 a b NS
=——¢te el,=———>5——5¢l e el
4" be “ 4R%cosh?z b€ ¢
(5.1b)
hence (in the de Sitter metric),
E,=0 and B,= o (5.2)
“ ¢ 2R2%cosh?z’ '

This is a purely magnetic Yang-Mills field uniform on $* that
varies with time 7 and decays exponentially for 7 — 4o0.
According to Eq. (4.5) with V; = 1/2, the de Sitter energy of
this configuration is finite,

37*C(j)
;= 53
" 2Rcoshrt (5:3)
and the action is as well,
3
S = —EH3C(j), (5.4)

gleaned from Eq. (4.6). One may restore the gauge coupling in
the denominator of Eq. (5.4).

From the bounce (3.8) we obtain a whole family of
nonsingular Yang-Mills configurations,

_ cost V2 ~a
A= 2R [1 * cosh (v2(t - to))} Lo (5.52)
~cos’t [ sinh (V2(t—19)) oy -,
F=- 4R? [ cosh?(v/2(t — 15)) e
2 > =C
+ (1 - o (VA (1 = to)))ebceb ne‘ll,  (5.5Db)

depending on fy € R, where = #(zr) via Eq. (2.6) is
understood. Clearly, this family carries electric as well
as magnetic fields. Since the bounce also has V; = 1/2, the
energy of this family coincides with that of the above
purely magnetic configuration, given by Eq. (5.3). Its
action, however, is different: from Eq. (4.6) we find

c(j)

3 7/2  sinh?(v/2(f —t
> :—7[3—|—12ﬂ2/ 4 S0 (V2(1 = o))
J 2 —xj2 cosh*(v2(t — 1))

3 3 p4
=73+ 82 [tanh3 (— + 6)
2 V2

+ tanh® <% - 5)] ,

where 6 = \/§t0 € R. Its numerical value varies between
5.52 (for 6 = 0) and —46.51 (for 6 — +0).

In fact, for any choice of turning point and time, V, =
V(yo) and wy = w (1), there is a unique solution y(z) that
gives rise to a smooth and S3-homogeneous Yang-Mills
solution F with both color-electric and color-magnetic
fields present. All their energies and actions remain finite.
As a final example, consider small oscillations about the
vacuum y = 1 in the harmonic approximation,

(5.6)

w(t)=1+A cos(2(t—1y)) = Vo = —%4— 242 (5.7)

Neglecting terms of order A3, it is easily calculated that in
this case, independent of ),

3
Pe = Pm = _C<])A2 = Et = 6772C(])A2

1 and S =0.

(5.8)

In summary, we have described a class of classical pure
Yang-Mills configurations (without Higgs fields) on de
Sitter space dS, that are spatially homogeneous and decay
for early and late times. Their energies and actions are all
finite. Therefore, the described gauge configurations can be
important in a semiclassical analysis of the path integral
for quantum Yang-Mills theory on dS,. These Yang-Mills
solutions may help in understanding the dual supercon-
ducting mechanism of confinement on de Sitter space.
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