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The Rayleigh-Taylor instability of a compressible plasma in the presence of a horizontal magnetic
field is investigated, taking into account the effects of finite Larmor radius. Only transverse pertur-
bations are considered. The problem is shown to be characterized by a variational principle. Using
it, the dispersion relation is obtained for a plasma layer of finite thickness and having an exponen-
tially varying density. It is found that the finite Larmor radius effects can thoroughly stabilize
unstable configurations. For configurations which are not completely stabilized, the compressibility
stabilizes some of the disturbances which are unstable for an incompressible plasma.

The Rayleigh-Taylor instability (RTI) derives its
character from adverse density gradients. It figures
prominently in astrophysical and laboratory phenom-
ena. In most of these situations a magnetic field plays
an important part. Chandrasekhar [1] has described in
detail the various aspects of RTI in hydromagnetics
when the direction of the magnetic field is either hor-
izontal or vertical. For a general orientation of the
magnetic field, the stability criterion has been ana-
lyzed by Ariel and Aggarwala [2].

There are several astrophysical situations in which
the finite Larmor radius (FLR), which is usually
neglected, cannot be ignored. Rosenbluth et al. [3]
showed that the inclusion of the FLR effects can stabi-
lize several “weakly” unstable systems such as mirror
machines, slowly rotating plasmas, large aspect ratio
torii, etc. They used kinetic equations to cater for the
FLR effects. Roberts and Taylor [4] demonstrated that
the FLR effects can be effectively included in the fluid
equations in the form of magnetic viscosity terms.
These modified equations have been extensively used
for further investigation of stability problems with the
FLR effects. Thus Singh and Hans [5] showed that for
the RTI of two superposed plasmas all transverse per-
turbations corresponding to wave numbers beyond a
critical value are stabilized by the magnetic field due
to the inclusion of the FLR effects. For the other
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important configuration, namely a plasma with an
exponentially varying density in the vertical direction,
it has been demonstrated by Ariel and Bhatia [6] that
FLR effects can completely stabilize certain unstable
configurations. In fact, the larger the gradient, the
more the configuration is stabilized. For a rotating
stratified plasma a similar conclusion holds (Ariel and
Bhatia [7]).

Studies of the effects of FLR on other instabilities
have been undertaken during the last two decades.
One can mention thermal and thermosolutal instabil-
ity (Sharma et al. [8], Sharma and Sharma [9], Sharma
and Rani [10], Sharma and Misra [11]) and gravita-
tional instability when a conducting matter is sur-
rounded by a non-conducting matter (Ariel [12]). In
all these investigations the perturbations are chosen
transverse to the horizontal magnetic field. For longi-
tudinal perturbations the stability influence is not so
pronounced. In fact, as recently shown by Ariel
[13], for RTI the basic stability criterion remains
unaffected; only the rate at which the instability over-
takes the system is slowed down.

Since most plasmas occurring in nature are com-
pressible, a more realistic study must allow their com-
pressibility. The literature on the RTI of a compress-
ible plasma is rather scarce, no doubt because of the
complexities arising on account of the compressibility.
Srivastava [14] for the first time attempted to investi-
gate the effects of FLR on the RTI of a compressible
plasma with exponentially varying density in the ver-
tical direction. He considered both perturbations: lon-
gitudinal and transverse. During the course of his
analysis Srivastava [14] made a number of simplifica-
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tions and approximations which may not be justified
or even necessary.

In the present paper we re-examine the problem of
Srivastava [14], i.e. we investigate the stability of a
layer of compressible plasma stratified in the vertical
direction in the presence of a horizontal magnetic
field, taking into account the finiteness of the Larmor
radius. We have confined ourselves to only transverse
perturbations. Our objective is rather modest. In line
with our earlier work (Ariel and Bhatia [6]) we intend
to investigate if there are certain unstable configura-
tions that can be stabilized by the FLR effects. This
aspect, we feel, is more important than finding out if
the rate at which the configuration departs from equi-
librium is slowed down by the inclusion of the FLR
effects. It was ignored by Srivastava [14].

Perturbation Equations

We start with general equations. Consider a plasma
layer of density g(z) confined between the planes z=0
and z=d, where the z-axis is taken in the vertical
direction. The layer is stratified in a gravitational field
9(0,0, —g) and is pervaded by a uniform magnetic
field H(H, 0, 0). It is assumed that the plasma is com-
pressible, inviscid and perfectly conducting.

The linearized perturbation equations resulting
from giving a disturbance to the configuration that
produces a velocity field u(u, v, w) are

Qa_u=_v.5r[+iVx(h><H)+yéQa (1
ot 4n

D oV ¥ )
TR

36 +u-Vp=c? 2‘5 +u-V (3)
o P P \a )
ah—Vx 4
e (ux H), “)

and
V-h=0, &)

where dg, h (h,, h,, h.) are the perturbations in ¢ and
H, respectively, ¢ is the velocity of sound in the
medium and JIT represents the perturbation in the
stress tensor IT, which because of the inclusion of the
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FLR effects takes the form (Roberts and Taylor [4])
Hxx =D,

0 oy
ow Ou
ny=nyx=_29v<a'+—a_z_)’ (6)

In (6), p denotes the isotropic pressure and v=aQ/4,
a being the ion Larmor radius and Q the ion gyro-fre-
quency. In (3) dp is the perturbation in p.

It may be remarked here that Roberts and Taylor [4]
derived the above expressions for the componentsof
IT assuming that the magnetic field is constant. Srivas-
tava [14], on the other hand, has used the same expres-
sions even for a variable magnetic field. It is true that
later in his analysis Srivastava goes to make the
assumption that the gradients of density and magnetic
field are small, in which case his results may probably
be still valid in the zeroth order approximation. How-
ever, taking the density gradient small, rules out the
possibility of examining the stabilizing role of the FLR
effects on those configurations which are most affected
by these effects (see Ariel and Bhatia [6]).

We seek the solution of the perturbation equations
in terms of normal modes in which the y and ¢t depen-
dence is given by

exp(iky + nt), (7

where k is the wave number and n the rate at which the

system departs from equilibrium. Note that we are

only considering transverse perturbations.
Equations (1)—(6) take the form

nou =2ikvDou, (8)
nov =—ikdp + ov(D*— k*)w
— vDo(ikv— Dw) — (H/4n)ikh, ©)

now =—Dédp — ov(D*— k?)v
—vDo(Dv+ikw)—gde— (H/4m)Dh,, (10)

nég =—oV-u—wDp, (11)
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nép =gow—c?oV-u, (12)
nh, =—HV-u, (13)
V-u=ikv+Dw, (14)

where D stands for d/dz.

One can eliminate various quantities from (8)—(14)
to arrive at the following pair of equations in w and
V-u
n[D(@Dw) —k?ow] + (gk*/n) Dow

+ 2ivk[D (Do Dw] — k*(Do)w —nD(oV - u)

+(gk*/n) eV - u (15)
+ivk[o(D>*—k?®)V-u—D%*V -u] =0
and
[en+ivkDg + (k*/n) (oc®+ H?*/4m)] V - u
=gonDw + (gk?/n) gw + ivko(D*—k*>)w
+2ivkDoDw. (16)

Of course, the value of V - u can be substituted from
(16) into (15) to obtain a single differential equation in
w. For the present, however, we shall prefer to deal
with the pair of equations. Also, we find it convenient
to introduce w, a measure of the frequency of oscilla-
tions of the disturbance, defined by

n=iw, 17
in which case (15) and (16) can be rewritten as
k*D
w[D(QDW)—kZQW]—g € w
+2vk[D(Do Dw) — k*(Do)w] —wD(@V -u)  (18)

gk?o
w

V-u+vk[o(D*~k*)V-u—D*V - -u]l=0,

and

k2 HZ
[gw +vkDg ——(gc2+—>:|V ‘u
w 47

k%o
w+vko(D?>*—k*)w+2vkDoDw.

(19)

=gwDw—

Boundary Conditions

The boundary conditions on w are

w(0) =0, wd=0, (20)
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which imply that vertical motion is prohibited at the
boundaries.

Following Hosking and Harinoff [15], we shall
assume

V-u(0)=0, V-u(d)=0. (21)

This boundary condition is only an approximation
and we shall be requiring it only to establish the exis-
tence of the variational formulation for the problem at
hand.

A Variational Formulation

We will now show that the present problem is char-
acterized by a variational principle. For this we multi-
ply (18) by w and integrate across the vertical extent of

the fluid to obtain
d

wIQ [(Dw)? + k2w? dz +
0

K> 4
L IDszdz
W 9

a
+ 2vk'(DQ [(Dw)* + k*w?] dz

(22)
0
d
+| {wD(QV-u)—vk[Q(DZ—kZ)V-u
0
2
— D%V -ul+ 9ok V~u}dz=0,
w

in which use has been made of the boundary condition
(20) on w, for example

d d d
| D(DeDw)wdz=DowDw| — [ Do(Dw)*dz.(23)
0 0 0

The integrated part becomes zero on account of the
vanishing of w at the boundary.
The V - u term in (22) can be written as

d
I {—g wDw—vk[D?*(ew) — ok?*w — D*gw]
0

k2
+ 9o

W}V-udz, (24)
where we have again integrated a few terms by parts.
The integrated parts vanish on account of the
boundary condition (20) or (21). The above term can

be simplified to

a
—_“ {Qwa +ovk(D*—k)w
)

k2
+2ngkow—&w}v-udz. 25)
w
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Now use is made of (19) for substituting for w-terms
in (25) and inserting the result in (22). One finally
obtains

d gkz d
wjg [(Dw)*+ k*w?] dz +—w—jDQw2 dz
0 0

+2vk| Do [(DW)?+ K*w?] dz (26)
0

d k2 H2
—f [gw +ngk——<gc2+—>] (V-u?dz=0.

° w 47

Equation (26) is the required variational formula-
tion of the problem. We now show that, if the first
order variations w and 8V - ware madeinwand V - u,
respectively, which are consistent with the boundary
conditions (20) and (21), then dw is zero to the first
order or o is stationary. The implementation of the
suggested variations in (26) yields to the first order
gk’Do

2 "

d
130 {g [(Dw)*+ k2 w?] —
o)
k2 H?
[g t <Qc +4—>:| (V- u)z} dz
d ngd
+IQ[DwD5w+k2w5w]dz+7ngw6wdz
4] 0
d
+2vk [ Do [Dw Ddw + k*w 8w] dz @7
o

d k2 H2
—_f [Qw+ngk-—(ch+—>:|V-u8V-udz=
° w 4z

The variations dw and 8V - u are not independent.
In fact, they are related through (19), the relation being

k? H?
[Qw+Dg vk —— <Qc2+——>] V- u
w 47

=owDdw —vok(D*—k?) dSw—2DovkDdw

Kk? k? H?
T QSW—{I:Q+—2‘<QCZ+—>:|V'M
o o 4n

k2
wz" w} sw. (28)

The substitution of 8V - u from (28) into (27) and a
few integrations by parts, for which use is made of the
appropriate boundary conditions on w, V - u or dw
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and 3V - u, yields the following equation for dw:

15wj{g[(v u—Dw)?+k*w 2]+— (Qc +H )(v u)?

29"" w(v - —Dw)}dz
d 2
j{w[p (o Bl Koo BN (29)
0
+2vk[D(Do Dw) — k*Dow] — wD(gV - u)
gk

958y . utvk[o(D*—k?)V-u—D*V - u]} ow dz.

From (29) it is clear that a necessary and sufficient
condition for dw to vanish in the first order approxi-
mation is that w and V - u satisfy the eigen-value prob-
lem (18)—(21). Hence a variational principle for find-
ing an approximate solution is available. Note that its
existence is valid for any general density distribution.

The Case of Exponentially Varying Density

In the present section we consider the case of a
plasma layer confined between planes z=0 and z=d,
in which in the undisturbed state the density is given
by

e =g ", (30

Qo being the density at the lower boundary.
One can substitute for V - u from (19) into (26) to
obtain the equivalent variational formulation

d d
? | o [(Dw)+ k*w?] dz + gk? | Dow? dz
0 0

d
+2vko | Do[(Dw)? + k*w?] dz (31)
0

i j- [ew?Dw+gvkw(D*—k*)w+2Dovkw Dw—gk?*ow]? dz=0
ow*+ Dovkw — k*(oc*+ H?/4m) 4
which is more useful as it contains only the variable w.
Now, in order to obtain an approximate solution,
any trial function can be chosen for w which satisfies
the boundary conditions of the problem. Our choice is
the same value of w which is the exact solution for the
case of the incompressible plasma. It is given by (Ariel
and Bhatia [6])

w=Wexp{—3Bz}sinlz, 32)
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where

I=mns/d, (33)

s being an integer.

In principle, the value of w can be substituted from
(32)into (31) in order to obtain the required dispersion
relation between k and w. In practice, the evaluation
of the last integral is not easy. In keeping with the
spirit of an approximate solution it seems reasonable
to approximate the integral also and evaluate it by
using some integration rules.

Now the use of any integration rule results in (Isaac-
son and Keller [15])

b N
1()=] fx)dx =3 /(x), (34)
where N is a finite integer, x; € [a, b] and «; are the
corresponding weights for the nodes Xx;.

If the value of w is substituted from (32) into (31)
and the discretization is performed using the general
integration rule (34), this will yield a dispersion rela-
tion which is a polynomial of degree 2 N + 2 in @ with
real coefficients. For a polynomial with real coeffi-
cients, since the complex roots occur in pairs, we can
conclude that for stability a necessary and sufficient
condition is that  is real. For if w is complex, corre-
sponding to the root with the negative imaginary part,
the real part of n given by (17) will be positive. This
implies instability of the system — in fact, overstability
because of the oscillatory nature of the motion.

It is evident that a too large value of N would give
rise to a rather unwieldy dispersion relation. Ideally,
one would like to choose N=1. This can be accom-
plished by invoking the mean value theorem of inte-
gral calculus. Thus, taking w to be real for stability,
the last term in (31) can be written as

e [wzd‘*' (Do*/e*)vkw—k*(c** + H*/4mo*)] "
. jg [@?>Dw+vkw(D*—k*)w
(V]

+2(Do/o)vkw Dw—gk*w)* dz, (35)

where a starred quantity denotes the value of that
quantity at some interior point in the domain (0, d).
Under the Boussinesq approximation, these quanti-
ties can be taken to correspond to the lower
boundary, but that will restrict us to smaller density
gradients which, as remarked earlier, would not allow
us to see the effects of FLR in the proper perspective.

The values of ¢ and w are now substituted from (30)
and (32), respectively, in (31), and the integrals are

evaluated after use is made of (35). As a result the
following dispersion relation is obtained:

9Bk
o= 2vpko— i 0
P +vpkal + Gk +1 07 frvko@+ R+ 3PP _ o
P+ 0 vBRo—R (e V)
where

HZ
pe |/ 2 37
4mo* e

is a characteristic Alfven velocity in the medium.

It is easy to see that for an incompressible plasma
(c* - 0), (36) reduces to the corresponding dispersion
relation obtained by Ariel and Bhatia [6]. In the ab-
sence of FLR effects (v=0), (36) is essentially the same
as that obtained by Talwar [16] for the RTI of an
compressible fluid in the presence of a horizontal mag-
netic field for transverse perturbations. It is also worth
noting that, even though we are considering trans-
verse perturbations, unlike the case of incompressible
plasma, the magnetic field has still a direct influence
on the dispersion relation because of the presence of
the term involving V*.

Equation (36) can be expanded and written as a
biquadratic in w as under
w*+2vpkw?

— {(oz2+k2)(c*2+ V*Z) 4 v2 [(oz2+k2)2— ﬂz kZ]} wz

—2vkw (@24 k?) [B(c** + V*?) +¢]

—gk*[B(c**+V*?) +4g]=0, (38)
where

?=P+1p2. (39)

It will be found convenient in the ensuing analysis
to measure the quantities k and  in units of « cm ™!
and (g B)*/? sec™ 1. This allows (38) to be expressed in
the non-dimensional form

o*+2 [/6kw3
— {0 +Kk)+G [a(1 +k?? — k*]} ?
-2 ]/ak(l +k%)(Q+a)w—k*(Q+a) =0, (40)
where
_v:a’p

G=
g

2

) (41)

(42)

/8
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and
_ a?(c*2 4+ V*?)
9B

are dimensionless numbers. G is a measure of the mag-
netic viscosity, a determines the density gradient and
Q is a number characterizing the joint effect of com-
pressibility and the magnetic field in terms of the
buoyancy forces.

(43)

Analysis of the Dispersion Relation

Equation (40), being a biquadratic, admits four
roots which are either all real or at least one pair
complex. For stability, we require all the four roots to

be real. Now the biquadratic
ax*+bx3+cx®?+dx+e=0 (44)

has all its roots real or two roots real and the remain-
ing roots a pair of complex conjugates according to

A=P-2112 20, @5)
where

I =ae—4bd + 3c?,

J=ace+2bcd —ad*—eb®>— 3. (46)

A substitution is made of the coefficients of various
terms in (40) into (46) to calculate I and J. These
values, in turn, are inserted in (45) to calculate 4. The
change in the sign of 4 separates the stable and un-
stable configurations. Evidently 4 is a function of k. It
also involves the parameters G, a, and Q.

For a given set of parameters G, a, and Q, k < 0 (at
k=0, 4 is zero). For small values of k, it can be verified
that

4=-{0Q+GaPQ@+a)(1-G)K, k—-0. (47)

Thus, if G > 1, 4 is positive for small values of k. In
fact, when G > 1 it is found that 4 is positive for all
values of k irrespective of the values of Q and a. Hence
the configuration characterized by G >1 is com-
pletely stabilized by the finite Larmor radius effect,
and this result does not depend on the compressibility
of the plasma. This conclusion is identical to the one
derived by Ariel and Bhatia [6] for incompressible
plasmas.

In order to see the effects of compressibility on the
onset of instability let us, therefore, restrict ourselves

849
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Fig. 1. Illustrating the variation of k_, the critical wave num-
ber, with G, the dimensionless measure of the FLR effects, for
a=1 and various values of Q, a measure of the joint effects
of compressibility and magnetic field in terms of buoyancy
forces.

to the case G <1. Now, for small values of k, 4 is
negative, implying overstability. For large values of k,
the behavior of 4 is

A=LG'aQQ+a)k'®, k—-ow. 48)

Since 4 > 0, the configuration is stabilized for large
values of k. From the foregoing it appears that there
exists a critical value of k, say k., where the configura-
tion goes through the transition from being overstable
to stable. This was confirmed numerically by comput-
ing the value of 4 as a function of k for G <1 and
various values of Q and a.

In Fig. 1, k_ is plotted against the G for a=1 and
various values of Q. The region k > k. is stabilized by
the FLR effects, and the region k < k. remains over-
stable. As the value of Q is decreased, one may note
from the figure, the value of k. also decreases. Thus the
compressibility of the plasma stabilizes certain modes
which are otherwise unstable.
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Conclusions

We have examined the effects of compressibility on
the RTI, taking into account the finiteness of the Lar-
mor radius. It is shown that when the dimensionless
parameter G, defined by (41), is greater than unity, the
configuration is thoroughly stabilized by FLR effects,
regardless of the compressibility of the medium. When
G is smaller than unity, overstability takes place for
values of k, the wave number of disturbance, smaller
than a critical value k.. This critical value decreases as
the compressibility of the medium is increased, imply-
ing that for a compressible plasma certain modes are
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