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Transient amplitude behavior analysis
of nonlinear power ultrasonic
transducers with application to
ultrasonic squeeze film levitation

Sebastian Mojrzisch and Jörg Wallaschek

Abstract
In this article, force and self-excitation driving methods for ultrasonic transducers are compared with each other in
sense of their transient amplitude behavior in the presence of nonlinearities. An equivalent circuit transducer model is
simplified to a series oscillator. The simplified model is averaged by the Van der Pol method in order to reduce the sys-
tem at hand to its amplitude dynamics. The transient amplitude behavior of both driving methods is presented in an ana-
lytical form. At high vibration amplitudes, the system’s natural frequency varies due to the nonlinear stiffness of the
piezoelectric material and the vibration amplitude is likely to break down due to the jump phenomena. Therefore, the
averaged models are extended by the nonlinear effects. From the amplitude behavior analysis of both systems, it follows
that self-excitation is the preferable driving method in sense of obtaining a high operation bandwidth and a stable
oscillation.
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Introduction

In applications that require high precision and stiffness
with the absence of stick–slip effects, noncontact bear-
ings are frequently used. Generally, air bearings are the
choice for high precision coordinate measuring
machines and other nanoscale manufacturing machines.
A drawback of air bearings is the need for pressurized
air and their low dynamics. Hence, ultrasonic squeeze
film levitation bearings offer a promising alternative.
With their ability to adjust the levitation gap, stiffness
and damping by controlling the vibration amplitude,
they form an active bearing with comparable support-
ing forces to conventional air bearings. Instead of pres-
surized air that is fed through the porous material into
the gap, ultrasonic levitation bearings generate the sup-
porting air film by squeezing the air trapped between
two surfaces. The squeeze film effect takes place when
one of the two coplanar planes vibrates with a vibration
amplitude in the range of the gap distance. In case of
ultrasonic squeeze film levitation, the vibration fre-
quency is beyond the human audible range. The high-
frequency vibration is usually generated by a piezoelec-
tric ultrasonic transducer. Several ultrasonic bearings
have been reported in the literature (Ide et al., 2005;

Oiwa and Kato, 2004; Stolarski, 2007; Wiesendanger,
2001; Zhao et al., 2012; Zhao and Mojrzisch, 2009), but
the dynamical properties were not investigated. Oiwa
and Kato (2004) presented an active ultrasonic bearing
system with a fixed excitation frequency and a
Proportional / Integral (PI)-feedback-controller for the
levitation gap control. The levitation gap was measured
and set according to a reference value by increasing or
decreasing the vibration amplitude of the ultrasonic
transducer. Oiwa did not use a resonance frequency
controller. Thus, his system was driven at small vibra-
tion amplitudes and under permanent control of a
human operator, who tuned the resonance frequency of
the ultrasonic transducer. The focus of Oiwa’s work
was directed to precise the levitation gap control.
However, due to nonlinear and thermal effects in the
piezoelectric material and additional load effects in the
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levitation gap, such a driving technique is not suited for
high bandwidth ultrasonic squeeze film levitation
bearings.

This article focuses on the transient amplitude beha-
vior of the power ultrasonic transducers with a high Q-
factor. A high Q-factor, which indicates a low damp-
ing, is needed as the system’s losses are mainly induced
by damping in the ultrasonic transducer. However, a
high Q-factor leads to a long settling time of the vibra-
tion amplitude, whereas a short settling time is desired.
These two design objectives lead to a trade-off that can-
not be solved by control strategies used in power
ultrasonics.

This article is structured as follows: After an intro-
duction to ultrasonic levitation and pointing out the
difference to other ultrasonic processes, a common
transducer model is simplified to its mechanical compo-
nents. This is valid due to the assumption of excitation
close to the resonance frequency. The obtained simpli-
fied model is reduced by averaging methods to its tran-
sient amplitude behavior. It is shown that in case of
self-excitation, the system’s transient amplitude
response always shows first-order lag type. In case of
force excitation, the transient response is of second-
order lag type and shows more complex behavior in the
presence of nonlinearities.

Ultrasonic squeeze film levitation

The ultrasonic squeeze film levitation is based on high-
frequency vibration of a piston or a plate close to a sur-
face. By repetitive compression and decompression, the
air trapped in the gap is squeezed. As a consequence,
the so-called squeeze film is generated in the gap. The
levitated object is supported by this squeeze film. A
basic ultrasonic levitation squeeze film-bearing setup is
shown in Figure 1.

In case of large dimensions of the vibrating member
and the surface compared to the gap distance, the lat-
eral boundaries can be neglected and the air in the gap
can be treated as trapped. For such a system, Chu and
Apfel (1982) gave a formulation to calculate the radia-
tion pressure that was used (Hashimoto et al., 1996;
Ueha et al., 2000) to calculate the levitation force of
ultrasonic squeeze film levitation bearings. Chu and
Apfel presented an expression for Rayleigh radiation
pressure in ideal gas on a perfectly reflecting target

hpi= hpT � p0i=
1+ g

2
hEi 1+sinc(2kx)½ � ð1Þ

hEi = a2
0

4
� r0v2

sin2 (kx)
; k =

v

c
: ð2Þ

The definition of each symbol is as follows: hpi is
the time-averaged radiation pressure, pT is the pressure
acting on target, p0 is the ambient pressure, hEi is the
time-averaged energy density, g is the specific heat ratio
of the medium, r0 is the density of the medium, k is the
wave number, v is the angular frequency of the wave, c
is the speed of sound, a0 is the vibration amplitude, and
x is the distance between the two surfaces (gap).
Assuming that the gap is in the dimensions of several
micrometers x� 1 the argument kx is small and the
sinc-function can be assumed as equal to one.
Furthermore, for small arguments of the sin-function,
the expression is linearized. Thus, equation (1) can be
rewritten in the following form

hpi= 1+ g

4
r0c2 a2

0

x2
: ð3Þ

The validity of equation (3) has been experimentally
proven for piston and flexural vibrators (Hashimoto et
al., 1996; Ueha et al., 2000). In equation (3), the pres-
sure depends on the quotient of the vibration amplitude
and the gap distance. Here, the vibration amplitude
means the positive peak value of the high-frequency
harmonic vibration. Therefore, in the following only
the vibration amplitude should be investigated neglect-
ing the high-frequency vibration signal.

In order to realize a position feedback control, a lin-
ear relation between the vibration amplitude and the
levitation force acting on the levitated object has to be
found. Therefore, equation (3) is linearized around an
operating point. It should be noted that in the region
of resonance, there is a fixed ratio between the current
flowing into the transducer and its vibration amplitude:
ia =a v0 a0, where ia is the current amplitude and a is
the proportional factor (see Figure 4)

f (x, i)=
∂hpi � A
∂x0

����
OP

� x+ ∂hpi � A
∂i0

����
OP

� ia = kx x+ ki ia:

ð4Þ

Since the vibration amplitude is proportional to the
current amplitude, it is sufficient to measure the current
and to derive the vibration amplitude.

Figure 2 shows the linearized open-loop model of
the levitation system. The equivalent mass of the levi-
tated object is represented by km. The constants ki and
kx are derived from equation (3) by equation (4). These
two constants depend on the levitation surface A and
the operating point. The damping constant kd is
obtained from Hagen–Poiseuille law (Griffin et al.,
1966) for a given geometry or has to be determined

Figure 1. Schematic illustration of ultrasonic squeeze film
levitation.
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experimentally. Figure 3 shows the overall control
loop. The control of the bearing parameters is per-
formed by state-feedback control. Its design is a
straightforward procedure and is not been considered
here in detail. The main interest concerns the resonance
and amplitude control block, which is intended for tun-
ing the right vibration frequency and setting up the
vibration amplitude according to the reference current
ir. As ir is slowly changing with time compared to the
ultrasonic frequency signal, the reference current is
modulated onto the ultrasonic frequency signal. The
resulting vibration amplitude of the ultrasonic transdu-
cer a0 is also slowly changing with time. Thus, the
high-frequency ultrasonic signal is averaged in order to
investigate the two driving methods and their transient
response.

In contrast to the system studied in this article, a
short settling time of vibration amplitude is not of great
importance for most of the ultrasonic processes,
because the systems are damped by the process, and
the vibration amplitude is not aimed to be changed rap-
idly. In contrast to this, an active ultrasonic squeeze
film levitation bearing is aimed to allow fast change of
the bearing stiffness, damping, and levitation gap. In
Figure 2, the bearing’s input is given by the vibration
amplitude or current amplitude. For the system at

hand, changing the input is the only way to influence
the output. Therefore, a high vibration amplitude
bandwidth and a stable oscillation are desirable.

Modeling of the piezoelectric transducer

In high-power ultrasonic applications, the transducer is
driven close to its resonance to make use of the ampli-
tude magnification factor. For linear systems, the mag-
nification factor is equal to the quality factor
Q=(2z)�1 (z is the damping ratio), which is typically
higher than 1000 for Langevin transducers radiating in
air. From the energetic point of view, the Q-factor
should be as high as possible to reduce losses in the
transducer, but a high Q-factor also results in a long
settling time. Thus, weakly damped transducers show
low-amplitude dynamics. This is undesirable as the levi-
tation force is dependent on the vibration amplitude,
what means, that the levitation force cannot change
faster than the vibration amplitude is changing.

As already mentioned, the scope of this article is
directed to the transient vibration amplitude behavior
of ultrasonic transducers. Thus, the equivalent model
shown in Figure 4 is simplified to get rid of compo-
nents out of scope. For the given system in Figure 4,
the admittance transfer function is defined as follows,
with the mass m, stiffness cm, damper dm, and the par-
allel capacitance CP

Y (jv)=
I(jv)

U (jv)
= Yel(jv)+ Ymech(jv) ð5Þ

Y (jv)= jv CP +
jv a2

m

�v2 + dm
m

jv+ cm
m

: ð6Þ

The load compliance CL is absent in equation (6)
when the gap distance is kept constant. A constant gap
distance is a natural assumption in position control of a
reference gap value. In transient case, for example, dur-
ing the start up process of the bearing, the load compli-
ance CL is considered as a part of cm. The damping that
results from an air operation of the transducer is added
to the transducer’s damping. Thus, the electrical path
across CL is short-circuited and the mechanical part
forms a series oscillator. The admittance for low and
high frequencies is governed by the first right-hand term
in equation (6); the second right-hand term becomes
only relevant when v approaches resonance of the
series oscillator. As only the region close to resonance is
of interest, Yel will be dropped. It adds linearly with the
frequency increasing component, which has no influ-
ence on the systems behavior for small frequency
changes around the resonance in high Q-factor systems.
Furthermore, equation (6) is divided by jv. This results
in a transfer function between charge and voltage, in
which CP can be subtracted from the real part. The
resulting system is a series oscillator that describes the

Figure 4. Equivalent model of an ultrasonic transducer.

Figure 2. Linearized system model of the ultrasonic levitation
bearing.

Figure 3. Overall control system.
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transducers behavior close to its mechanical resonance.
In the ‘‘Transient response of vibration amplitude’’ sec-
tion, the transient response for an ultrasonic transducer
is calculated. The presented step responses of self- and
force-excited systems are calculated using the equivalent
model parameters listed in Table 1.

Transient response of vibration amplitude

With the simplifications made above, the transient
response can be calculated for the self- and force-
excited ultrasonic transducers. The two excitation
methods are shown in Figure 5. In the upper part, a
self-excitation configuration is presented; this is also
called autoresonant or self-resonant (Babitsky et al.,
2004; Babitsky and Sokolov, 2007). A band-pass filter
can be added into the positive-feedback loop in order
to select the desired resonance frequency or to add a
phase shift to the feedback. As an initial condition is
needed to start oscillation, the circuit needs an impulse
(disturbance) in the beginning. After this, the dissipated
energy in the transducer is delivered by the amplifier
and its amplification factor is set by n. Due to the posi-
tive feedback of the current that is proportional to the
vibration velocity, current and voltage are in phase and
the system is in resonance. To obtain stable limit cycle
oscillation, the feedback is limited to one by a sgn-
function block. This prevents oscillation to become
infinite due to the positive feedback. The lower part of
Figure 5 shows the force excitation. In this schematic
illustration, the frequency tuning circuit is not shown.

But as excitation close to resonance is desired, the exci-
tation frequency has to be tuned, for example, by a
phase-locked loop (PLL) (see Ramos-Fernandez et al.,
1985). This is typically performed by a phase compari-
son of the current and the voltage signals. For both
configurations, the amplitude is modulated by setting
the amplification factor n according to the reference
signal ir.

Since mechanical displacement is proportional to
electrical charge, charge is used to formulate the differ-
ential equations for the considered excitation methods.
The equations of motion for the systems shown in
Figure 5 are as follows

€q+ 2zv0 _q+v2
0q= n sgn( _q) ð7Þ

€q+ 2zv0 _q+v2
0q= n cosvt: ð8Þ

The difference between both systems is the kind of
excitation on the right-hand side of equations (7) and
(8). Because the slowly changing amplitude of q is of
interest, the equations are averaged. For averaging of
equation (7), the method of slowly changing amplitude
presented in Magnus and Popp (1997) is used as this is
applicable to free and self-excited vibration. This
method is a simplified version of the Van der Pol
method (1927) that is used to average equation (8).

In the method of slowly changing amplitude, the
amplitude is considered as a function of time

q= b(t) cosvt ð9Þ

_q= � b v sinvt ð10Þ

€q= � 2 _b v sinvt � b v2 cosvt: ð11Þ

As b(t) is slowly changing with time, its derivates are
small and can be neglected in the derivates of q. The
sgn-function is approximated by its first harmonic of
Fourier series

nsgn( _q)’� 4n

p
sinvt: ð12Þ

After substituting equations (9) to (12) into equation
(7), the sinvt and the cosvt terms are equated sepa-
rately to zero. The equation containing sinvt terms
describes the amplitude behavior. Since the positive
current feedback can be phase shifted by an additional
filter, the more general case is approximated by

nsgn( _q)’� 4n

p
sin (vt +j): ð13Þ

Using equation (13) and equating terms containing
sinvt to zero give for small values of j

_b+ zv0 b=
2n

pv
cosj: ð14Þ

Figure 5. (a) Self-excitation driving method and (b) force
excitation driving method.

Table 1. Identified parameters for the used ultrasonic
transducer.

Dimension Value Unit

m 0:227 kg
cm 3:663109 N/m
dm 20.29 O
a 2.38 N/V
Qm 1420
f0 20209 Hz
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This is a differential equation of first order with the
solution for b

b= c1 � cosj 1� e�zv0t
� �

c1 =
2n

zv0 pv
: ð15Þ

Since n is arbitrary, c1 can be set equal to one. For
zero phase lag in the feedback loop, also cosj becomes
equal to 1, and equation (15) simplifies to

q̂= b= 1� e�zv0t: ð16Þ

It is remarkable that the self-excited configuration
always shows first-order lag amplitude behavior. That
means even if the positive feedback is phase shifted, the
transient response is of first-order lag type. This is of
great importance for the control of the vibration ampli-
tude and the whole ultrasonic levitation process,
because the proportional gain of the amplitude control-
ler can be set to high values without risk of amplitude
oscillations. Thus, the amplitude settling time can be
reduced, and this results in an improved dynamic char-
acteristic, respectively.

As a numerical example, the settling time till 90%
for the ultrasonic transducer given in Table 1 with
Qm = 1420 is 50 ms. The transient amplitude behavior
from equation (16) is shown in Figure 6 for different
Q-factors. In this figure, the system’s input is scaled up
for lower Q-factors in order to get the same steady-
state amplitude. For a higher value of Q, the settling
time of the amplitude increases proportionally to the
Q-factor.

The above calculation is made for the excitation case
that means positive impedance at the output of the
amplifier. Furthermore, it is also possible to actively
damp the transducer vibration by inverting the sgn-
function in the feedback, which results in a negative
impedance output of the amplifier. This leads to a
phase shift of 180� between voltage and current, and
thus, the current is flowing back from the transducer to

the amplifier. This is relevant since the vibration ampli-
tude decreases with the same rate as it increases. Note
that in the force-excited configuration, an inversion of
the excitation signal leads to an unstable behavior
because of phase detection problems and beats that
occur due to wrongly tuned excitation frequency.

The terms containing cosvt describe the change in
vibration frequency. For the linear case without phase
shift shown above, the vibration frequency is equal to
v0. By introducing phase shift to the positive feedback,
the vibration frequency changes according to

v2 =v0
2 +

4n

p b
sinj: ð17Þ

The piezoelectric material is known to exhibit a non-
linear behavior. This mainly appears as generation of
second and third harmonics (Aurelle et al., 1996). In
order to show the influence of nonlinearities, the stiff-
ness cm is assumed to be nonlinear and to have a restor-
ing force to displacement characteristic of Duffing type,
thus a cubic term multiplied by the factor b is added. A
cubic restoring force generates the third harmonic

f (q)=v2
0 (q+b q3) ð18Þ

q3’
3

4
b2(b cosvt): ð19Þ

As a consequence, a term is added to the cosvt

terms, which is approximated by its first harmonic com-
ponent, as shown in equation (19). Therefore, equation
(17) is extended by a parabolic vibration frequency
dependence on the vibration amplitude. This is well
known for Duffing oscillators, but it should be noted
that the nonlinearity basically influences the vibration
frequency and not the transient amplitude behavior

v2 =v2
0 1+

3

4
bb2

� �
+

4n

pb
sinj: ð20Þ

In the force-excited systems, the Duffing characteris-
tics can lead to the jump phenomena. For the self-
excited systems, the jump phenomenon does not take
place as the relation between phase and amplitude is
unique for the considered system (Sokolov and
Babitsky, 2001).

The second system in Figure 5, described by equa-
tion (8), is averaged by the Van der Pol method, which
uses the following expressions to calculate the ampli-
tude behavior

q= b1 sinvt + b2 cosvt ð21Þ

_q= b1v cosvt � b2v sinvt ð22Þ

€q=(2 _b1v�b2v2) cosvt� (2 _b2v+b1v2) sinvt: ð23Þ

Here, the higher derivates of b1 and b2 have also
been neglected. Equations (21) to (23) are substituted

Figure 6. Amplitude step response in a self-excited system for
different values of Q-factor.
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into equation (8) and equated separately for terms con-
taining sinvt and cosvt to zero. This results in the fol-
lowing system

_b1
_b2

� �
=
�zv0 � v2

0
�v2

2v
v2

0
�v2

2v
�zv0

" #
b1

b2

� �
+

n

2v

1

0

� �
u:

ð24Þ

When v is close to the resonance frequency, the fol-
lowing simplification can be made

v2
0 � v2

2v
’v0 � v: ð25Þ

The averaged amplitude is calculated as the absolute
value of b1 and b2. Besides this, the phase c between
the excitation and displacement is calculated as shown
below

q̂=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 + b2
2

q
ð26Þ

c= arctan
b1

b2

: ð27Þ

The step responses for the system in equation (24)
are plotted for different Q-factors and excitation fre-
quencies in Figure 7. For an excitation frequency equal
to the system’s resonance frequency, the system shows
the same transient behavior as the self-excited system in
Figure 6. When the excitation frequency is not equal to
the resonance frequency, the step response changes.
Due to mistuned excitation frequency, beats that occur
decay with the time constant of the system (see equation
(16)). This leads to amplitude overshot before reaching
the steady state. In Figure 7(a) to (d), this behavior is
more critical for a high Q-factor system because the
amplitude overshot and the beat frequency are higher
for the same deviation from the resonance frequency.

By introducing a nonlinear restoring force behavior,
the dynamics matrix becomes time variant and depen-
dent on the vibration amplitude. This leads to equation
(28) with an amplitude-dependent natural frequency hb

as follows

Figure 7. Amplitude step response in a force-excited system for different values of the Q-factor.

750 Journal of Intelligent Material Systems and Structures 24(6)



_b1
_b2

� �
=
�zv0 � h2

b
�v2

2v
h2

b
�v2

2v
�zv0

" #
b1

b2

� �
+

n

2v

1

0

� �
u

ð28Þ

q3’
3

4
(b2

1 + b2
2)(b1 sinvt + b2 cosvt) ð29Þ

h2
b =v2

0 1+
3

4
b b2

1 + b2
2

� �� �
: ð30Þ

The nonlinearity causes a reduction of natural vibra-
tion frequency with increasing vibration amplitude.
Figure 8(a) depicts the change in natural vibration fre-
quency for different excitation voltages for an excita-
tion in the resonance frequency v0. Due to beats that
occur between the excitation and natural frequencies,
the amplitude shows oscillation before reaching the
steady state. Since the natural frequency depends on
the vibration amplitude, it also shows oscillation during
transients. The responses in Figure 8(b) show similar
behavior to the responses in Figure 7, whereas in the
presence of nonlinearities, even excitation in resonance
shows amplitude oscillation for high vibration ampli-
tudes. Besides this, the jump phenomena are likely to
happen as during every amplitude change the system’s
natural frequency also changes. When the jump phe-
nomena take place, the vibration amplitude breaks
down. For small vibration amplitudes, the nonlinear
system shows close to linear behavior since b � q̂2 is
small.

The behavior described above is critical in sense of a
high-amplitude controller gain as the closed-loop sys-
tem can get unstable. Since the amplitude controller
acts on amplitude, equations (24) and (28) can be used
in control loop design of PLL systems to calculate the
stability margins for a control parameter set.

Conclusion

The active ultrasonic squeeze film levitation bearings
offer a promising solution for a new kind of actively con-
trolled noncontact bearing systems. As the force gener-
ated in the levitation gap is dependent on vibration
amplitude, its control is of special interest. It turns out
that the self-excitation is the preferable driving method
in sense of resonance and amplitude control. It does not
show the jump phenomena, and its settling behavior is of
first-order lag type. This makes it possible to set the P-
gain in the amplitude feedback controller to high values
and reduces the slow settling time for the low-damped
ultrasonic transducers. Furthermore, it is possible to
actively damp the ultrasonic transducer by inverting the
sgn-function in the feedback loop of the self-excitation.
Force excitation shows amplitude oscillation when the
excitation frequency is not equal to the system’s natural
frequency. Since in the presence of nonlinearities, the
natural frequency is influenced by beats in the vibration
amplitude, the simultaneous control of the vibration
amplitude and the vibration frequency is challenging. As
a consequence, it can be concluded that the self-excited
driving of ultrasonic transducers is the preferable method
to make ultrasonic levitation bearings robust and fast.

Funding

This research received no specific grant from any funding
agency in the public, commercial, or not-for-profit sectors.

References

Aurelle N, Guyomar D, Richard C, et al. (1996) Nonlinear beha-

vior of an ultrasonic transducer. Ultrasonics 34(5): 187–191.
Babitsky V and Sokolov I (2007) Autoresonant hemostat con-

cept for engineering application of nonlinear vibration

modes. Nonlinear Dynamics 50: 447–460.

Figure 8. Amplitude step responses for a nonlinear ultrasonic transducer, Qm = 1420, v=v0, b= � 13108m�2.

Mojrzisch and Wallaschek 751



Babitsky V, Kalashnikov A and Molodtsov F (2004) Autore-

sonant control of ultrasonically assisted cutting. Mechatro-

nics 14: 91–114.
Chu B and Apfel R (1982) Acoustic radiation pressure pro-

duced by a beam of sound. Journal of the Acoustical Soci-

ety of America 72(6): 1673–1687.
Griffin W, Richardson H and Yamanami S (1966) A study of

fluid squeeze-film damping. Journal of Basic Engineering

88: 451–456.
Hashimoto Y, Koike Y and Ueha S (1996) Near-field acoustic

levitation of planar specimens using flexural vibration. Jour-

nal of the Acoustical Society of America 100(4): 2057–2061.
Ide T, Friend J, Nakamura K, et al. (2005) A low-profile

design for the noncontact ultrasonically levitated stage.

Japanese Journal of Applied Physics 44(2005): 4662–4665.
Magnus K and Popp K (1997) Schwingungen. Stuttgart:

Teubner.
Oiwa T and Kato M (2004) Squeeze air bearing based on

ultrasonic oscillation: motion error compensation using

amplitude modulation. Review of Scientific Instruments

75(11): 4615–4621.

Ramos-Fernandez A, Montoya-Vitini F and Gallego-Juarez J

(1985) Automatic system for dynamic control of resonance

in high power and high Q ultrasonic transducers. Ultraso-

nics 23(4): 151–156.

Sokolov I and Babitsky V (2001) Phase control of self-
sustained vibration. Journal of Sound and Vibration 248(4):
725–744.

Stolarski T (2007) Performance of self-lifting linear air con-
tact. Journal of Mechanical Engineering Science 1(221):
1103–1115.

Ueha S, Hashimoto Y and Koike Y (2000) Non-contact
transportation using near-field acoustic levitation. Ultraso-

nics 38(8): 26–32.
Van der Pol B (1927) Forced oscillations in a circuit with

non-linear resistance. Philosophical Magazine Series 7(3):
65–80.

Wiesendanger M (2001) Squeeze film air bearings using

piezoelectric bending elements. PhD Thesis, Ecole Poly-
technique Federale de Lausanne, Lausane. DOI:
10.5075/epfl-thesis-2336.

Zhao S andMojrzisch S (2009) Development of an active squeeze

film journal bearing using high power ultrasonic transducers.
In:Conference on smart materials, adaptive structures and intel-
ligent systems (SMASIS2009), pp. 195–202: SMASIS2009–
SMASIS1244. September 21–23, ASME. Avaliable at: http://
dx.doi.org/10.1115/SMASIS2009-1244

Zhao S, Mojrzisch S and Wallaschek J (2012) An ultrasonic
levitation journal bearing able to control spindle center
position.Mechanical Systems and Signal Processing. Avail-
able at: http://dx.doi.org/10.1016/j.ymssp.2012.05.006

752 Journal of Intelligent Material Systems and Structures 24(6)


