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Stability of equilibria of a two-phase Stokes-osmosis problem
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Within the framework of variational modelling we derive a two-phase moving boundary problem

that describes the motion of a semipermeable membrane separating two viscous liquids in a fixed

container. The model includes the effects of osmotic pressure and surface tension of the membrane.

For this problem we prove that the manifold of steady states is locally exponentially attractive.
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1. Introduction

This paper is devoted to a two-phase moving boundary problem describing osmotic swelling of a

closed membrane in a viscous liquid.

Let C � RN (N > 2) be a bounded connected open set with smooth boundary representing a

fixed region filled with an incompressible viscous liquid that moves according to the velocity field

u D u.t; x/. Inside the liquid there is a closed connected semipermeable membrane � .t/ � C

enclosing an open set ˝C.t/ and separating it from the outer phase ˝�.t/ WD C n N̋
C.t/. In both

phases a certain amount of a solute is dissolved. Its scalar concentration c D c.t; x/ evolves by

convection along u and diffusion through the liquid. It may be discontinuous across � .t/. Both the

diffusivities and the viscosities are assumed to be constant and positive but possibly different in˝C

and ˝�, respectively.

The membrane is permeable for the liquid but impermeable for the solute. Its deformation and

movement are governed by surface tension forces, osmotic pressure, and the fluid motion. Based on

these assumptions the following moving boundary problem can be derived using the approach of
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variational modelling, see Section 2:

��˙�u˙ C r.q˙ C c˙/ D 0 in ˝˙.t/, t > 0;

divu˙ D 0 in ˝˙.t/, t > 0;

J�.u; q C c/Kn D Hn on � .t/, t > 0;

JuK D 0 on � .t/, t > 0;

u� D 0 on @C , t > 0;

@tc˙ � �˙�c˙ C rc˙ � u˙ D 0 in ˝˙.t/, t > 0;

�˙@nc˙ C c˙.JcK CH/ D 0 on � .t/, t > 0;

@nc� D 0 on @C , t > 0;

Vn D H C JcK C u � n on � .t/, t > 0;

� .0/ D � 0;

c˙.0/ D c0
˙ in ˝˙.0/,
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(1.1)

where we used the notation u˙ WD uj˝˙
, c˙ WD cj˝˙

. The brackets J�K indicate the jump of a

quantity across � .t/, i.e.

Jw.t; �/K.x/ WD lim
y2˝C.t/;y!x

w.t; y/ � lim
y2˝�.t/;y!x

w.t; y/

for x 2 � .t/ and w W ˝C.t/[˝�.t/ ! R. Further,H D H.t; x/ denotes the .N � 1/ - fold mean

curvature of the closed compact hypersurface � .t/ D @˝C.t/ at the point x 2 � .t/, oriented in

the way that spheres have negative curvature, while Vn is the normal velocity of the family f� .t/g
w.r.t the unit normal field n D n.t/ of � .t/ pointing outward ˝C.t/. The operator @n takes the

directional derivative of a sufficiently regular function w.r.t the normal field n.t/. If no confusion

seems likely, we use the same symbol @n to denote the derivative in the direction normal to @C and

exterior to C as well. The symbol q D q.t; x/ stands for the hydrodynamic pressure and

�˙.u˙; q/ WD �˙".u˙/ � q˙ Id WD �˙.ru˙ C .ru˙/
T / � q˙ Id; q˙ WD qj˝˙

;

is the hydrodynamic stress tensor. Note that the initial velocity u.0/ is uniquely determined by c.0/

and � .0/ as we shall discuss later in some detail, cf. Section A.1.

System (1.1) is written in dimensionless form. The given positive constants �˙ and �˙ carry

information about physical parameters such as diffusivity of the solute, viscosity of the liquid in

both phases and permeability of the membrane to solvent. For later use we introduce the piecewise

constant functions

�.x; t/ WD

�

�C x 2 ˝C.t/;

�� x 2 ˝�.t/;
�.x; t/ WD

�

�C x 2 ˝C.t/;

�� x 2 ˝�.t/:

In the corresponding one-phase situation, a detailed derivation of the model within the framework of

variational modelling has been given in [9]. The two-phase problem is obtained in a parallel fashion.

Therefore we restrict ourselves here to a brief recapitulation of the chosen setup which will be given

in Section 2.

The paper [9] also contains a short-time existence result for classical solutions for the one-phase

problem. For the simpler limit problem in which the membrane moves through an immobile liquid
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the existence of classical solutions for a short time has been established in [7], and the paper [8]

deals with a stability analysis of its equilibria. For different modelling approaches (excluding fluid

motion) as well as analytic results in even more special situations such as radial symmetry we refer

to [11, 14, 17, 18, 20, 21] and the references given in [9].

In this paper we focus on the equilibria of system (1.1) and their stability properties. These

equilibria form a finite dimensional submanifold of the phase space. Our main result states that this

manifold is locally exponentially attractive, i.e the system is normally stable in the sense of [13].

While the main line of the proof is parallel to the one in [8], we have to deal with the additional

difficulty of handling the nonlocal solution operator of the two-phase Stokes system (1.1)1 - (1.1)5.

In particular, the results of [2] that are a crucial ingredient of the stability analysis in [8, 12] are no

longer directly applicable. Additionally, one has to discuss the full two-phase Stokes system with

respect to well-posedness and regularity. As these results do not seem to be readily and explicitly

available in the literature, we include a proof of them in an appendix.

The present paper is organized as follows. In Section 2 we explain briefly how our model can

be derived within the framework of variational modelling. Section 3 identifies the equilibria of

system (1.1). In Section 4 we transform the problem to a fixed reference domain, determine the

linearization of the transformed problem around an arbitrary fixed equilibrium and analyse some

spectral properties of the corresponding linear operator. In this section we also give a precise

formulation of our main result (Theorem 4.2), which is proved in Section 5. The appendix (Section

A) contains a detailed discussion of the full two-phase Stokes system (A.1) and some abstract facts

that are helpful for the spectral analysis (Lemma 5.1, Corollary 5.2, Lemma 5.3).

2. Modelling

We use the same modelling approach as in [9] and derive our model from the following building

blocks:

(i) We consider paths in a state manifold Z consisting of pairs .˝C; c/ of a simply connected

domain ˝C satisfying N̋
C � C and a nonnegative solute concentration c W NC ! R that may

be discontinuous across @˝C. The domain˝C and the container C uniquely determine˝�.

(ii) On Z we define the energy functional

E.˝C; c/ WD 

Z

C

c ln c dx C ˛j@˝Cj (2.1)

with positive constants ˛ and  , cf. [9] for a more detailed discussion of their physical

meaning. This choice includes diffusion of the solute and surface tension of the membrane

as driving mechanisms of the evolution.

(iii) The processes that dissipate energy are solvent motion, solute flux, and passage of solvent

through the membrane. Taking into account incompressibility of the solvent and mass

conservation of the solute, these processes can be represented by triples
˚

.u; f; Vn/ j divu D 0 in C , JuK D 0 on @˝C, f˙ � n D c˙Vn on @˝C

	

which we collect in the process space P.˝C;c/.

(iv) The dissipation functional is defined on P.˝C;c/ and given by

	.˝C;c/.u; f; Vn/ WD
1

2

Z

C

�1jf � cuj2

c
dxC

1

2

Z

C

�2j".u/j2 dxC
�3

2

Z

@˝C

.u �n�Vn/
2 d�;



164 F. LIPPOTH AND G. PROKERT

where �j D �˙
j in ˝˙ (j D 1; 2) and �3 are positive constants related to mobility of the

solute, viscosities of the solvent in both phases and to the membrane’s permeability to the

solvent, cf. again [9].

(v) Observe that the elements of the tangent spaces T.˝C;c/Z of the state manifold Z can

be represented by pairs .Vn; Pc/, where Vn W @˝C �! R is a normal velocity and Pc is a

concentration change. Since mass conservation of the solute is expressed by the relation

Pc C divf D 0, it seems natural to define the process map ˘.˝C;c/ W P.˝C;c/ ! T.˝C;c/Z

defined by

˘.˝C;c/.u; f; Vn/ D .Vn;�divf /:

The model (1.1) is now determined by the dynamical system on Z

Pz D ˘zw
�; z D .˝C; c/; (2.2)

where w� is the solution to the minimization problem

	z.w/C E
0.z/Œ˘zw� �! min; w 2 Pz; (2.3)

cf. [9], and by an appropriate scaling.

3. Equilibria

Observe that by construction the system (1.1) is a gradient flow w.r.t. the functional

E.˝C; c/ D

Z

C

c ln c dx C j� j

(cf. [9] Section 2 for a more detailed discussion of this fact). Hence, the functional E is a Ljapunov

function for the system (1.1). Indeed, assuming smoothness and strict positivity of concentrations,

integration by parts yields

d

dt
E
�

˝C.t/; c.t/
�

D �

Z

C

jrc.t/j2

c.t/
�

Z

� .t/

.Jc.t/K CH.t//2 �
1

2

Z

C

ˇ

ˇ"
�

u.t/
�
ˇ

ˇ

2
: (3.1)

Let .u; q; c;˝C/ be an equilibrium solution to (1.1) (i.e. .u; q; c;˝C/ is constant in time, � is

a closed connected hypersurface, and u; q; c are continuously differentiable away from � ). Since

(3.1) vanishes at equilibria, Korn’s inequality implies that u D 0. Moreover, c must be constant in

both phases and JcK D �H . Thus, also H is constant, so that � is a sphere. The first equation in

(1.1) implies then that q is constant in both phases, and from the third equation one concludes that

JqKn D 0 on � . Summarizing:

Lemma 3.1 A tupel .u; q; c;˝C/ is an equilibrium solution to (1.1) iff ˝C is a ball of some radius

R, N̋
C � C , JcK D .N � 1/=R, u D 0 and q is constant in C .

4. Linearization at an equilibrium

We fix now a single equilibrium .0; Qq; Qc;DC/ and assume w.l.o.g. that DC D B.0; 1/ and J QcK D
N � 1 DW m. We further define S WD @B.0; 1/, D� WD C n NDC and keep these notations fixed

hereafter.
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In order to solve system (1.1) we are going to consider a set of transformed equations given

overD˙ as fixed reference domains. The unknown family of surfaces f� .t/g will be described by a

signed distance function with respect to the unit sphere. The ansatz is standard and has already been

used in [8] in an identical way.

The mapping

X W S � .�1; 1/ ! R
N ; .x; s/ 7! .1C s/x;

is a smooth diffeomorphism onto its range. Fix 0 < a < 1 small enough that ND � C , where

D WD range.X jS�.a;a//. As it is convenient, we decompose the inverse of X WD X jS�.�a;a/ into

X�1 D .P;�/ W D ! S � .�a; a/, where P is the metric projection onto S , and � is the signed

distance function with respect to S , i.e. P.x/ D x=jxj, �.x/ D jxj � 1. Let Qa 2 .0; a=4/ and

Ad WD
˚

� 2 C 1.S/I k�kC.S/ < Qa
	

:

It is well-known that, given � 2 Ad, the mapping �� .x/ WD .1 C �.x//x is a diffeomorphism

mapping S onto S� WD �� ŒS�. We extend this diffeomorphism to the whole of RN : Let

� 2 C1.R; Œ0; 1�/ satisfy �jŒ�Qa;Qa� � 1, �j.�1;�3Qa� � �jŒ3Qa;1/ � 0, k�0k1 < 1= Qa. Then the

mapping

y 7!

�

X.P.y/;�.y/C �.�.y// � �
�

P.y/
�

; if y 2 D
y; if y 62 D

(4.1)

.� 2 Ad/, again denoted by �� , is an appropriate extension, the so-called Hanzawa diffeomorphism.

We have �� 2 Diff.RN ;RN /. Moreover, �� � id outside D, in particular in a sufficiently small

open neighborhood of @C . Moreover, denoting by D�;C the domain enclosed by S� and letting

D�;� WD C n ND�;C, we have that

�� jD˙
2 Diff.D˙;D�;˙/;

� 2 Ad, and @D�;C D S� , @D�;� D S� [ @C . Finally note that the surface S� is the zero level set

of the function '� defined by

'� .x/ D �.x/ � �
�

P.x/
�

;

x 2 D, � 2 Ad, i.e. S� D '�1
� Œf0g�. For later use we set

L� .x/ WD jr'� j
�

�� .x/
�

:

It can be shown that L� > 0 on S for all � 2 Ad.

Given � 2 Ad, let ��
� , ��

� denote the pull-back and push-forward operators induced by �� , i.e.

��
� f D f ı �� , ��

� g D g ı ��1
� . If the functions b; � are time dependent, i.e. b D b.t; x/,

� D �.t; x/, we define Œ��
� b�.t; x/ WD Œ��

�.t/
b.t; �/�.x/, analogue for �

�
� .

Using this notation, for � W J � Œ0;1/ ! Ad \C 2.S/ and sufficiently smooth w˙ 2 RD˙ we

introduce the transformed operators

n.�/ WD ��
� nŒS��I

H.�/ WD ��
� HŒS��I

A˙.�/w˙ WD ��
�

�

�.��
�w˙/

�

I

B˙.�/w˙ WD ��
�

�

r.��
�w˙/jS�

�

� n.�/I

K˙.�/w˙ WD ��
�

�

r.��
�w˙/

�

:
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Letting �˙ WD c˙ ı ��, �˙;0 WD c˙;0 ı ��0
, instead of (1.1), we study the following problem on

D˙ as fixed reference domains:

@t�˙ � �˙A.�/�˙ C K˙.�/�˙ � s˙.�/CR˙.�; �/ D 0 in D˙,

�˙B.�/�˙ C �˙.J�K CH.�// D 0 on @DC,

@n�� D 0 on @C ,

@t� � L.�/ŒH.�/C J�K C s.�/ � n� D 0 on @DC,

�˙.0/ D �˙;0 in D˙,

�.0/ D �0;

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(4.2)

where s.�/ WD ��
� u,

��˙�u˙ C rq˙ D 0 in D�;˙, t > 0;

divu˙ D 0 in D�;˙, t > 0;

J�.u; q/Kn D Hn on S�, t > 0;

JuK D 0 on S�, t > 0;

u� D 0 on @C , t > 0;

9

>

>

>

>

=

>

>

>

>

;

(4.3)

and s˙.�/ WD s.�/jD˙
. The terms R˙ arise from the transformation of the time derivative .�˙/t

and are determined by

R˙.w˙; �/.y/ D r0
�

L�

�

H.�/C JwK C s.�/ � n.�/
�

; B�.�/w˙

�

.y/; y 2 D˙;

where w˙ 2 C 1.D˙/, � 2 Ad and

r0.h; k/.y/ WD

�

�
�

�.y/
�

� h
�

P.y/
�

� k.y/; if y 2 D
0; if y 2 NC nD;

(4.4)

B�.�/w˙.y/ D ��
� r.��

�w˙/.y/ � .nS ı P/.y/; y 2 D˙

(nS being the exterior unit normal field of S ). The explicit calculation of R˙ is straightforward, cf.

again [3].

Linearization of (4.2) around the equilibrium .�˙; �/ D . Qc˙; 0/ yields the following system for

the shifted variable � � Qc, denoted again by �:

@t�˙ � �˙��˙ D F˙.�˙; �/ in D˙,

�˙@n�˙ C Qc˙

�

J�K C .�S Cm/�
�

D G˙.�˙; �/ on S ,

@n�� D 0 on @C ,

@t� �
�

.�S Cm/�C J�K C s0.0/� � n
�

D QH.�˙; �/ on S ,

�˙.0/ D �˙;0 in D˙,

�.0/ D �0;

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(4.5)

with suitable nonlinear remainders F;G;H that act smoothly between the function spaces we are

going to use, cf. Lemma 4:2 in [7] and Corollary A.2 in the present paper. By construction, they

satisfy

F˙.0/ D G˙.0/ D QH.0/ D 0; F 0
˙.0/ D G0

˙.0/ D QH 0.0/ D 0:
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By �S we denote the Laplace–Beltrami operator of the unit sphere. After some algebra, letting

˛˙ WD �˙= Qc˙, Q� WD �S Cm and

G1.�˙; �/ D GC.�˙; �/= QcCI

G2.�˙; �/ D GC.�˙; �/= QcC �G�.�˙; �/= Qc�I

G3.�˙; �/ D QH.�˙; �/CG1.�˙; �/;

we get

@t�˙ � �˙��˙ D F˙.�˙; �/ in D˙,

˛C@n�C C J�K C Q�� D G1.�˙; �/ on S ,

J˛@n�K D G2.�˙; �/ on S ,

@n�� D 0 on @C ,

@t� C ˛C@n�C � s0.0/� � n D G3.�˙; �/ on S ,

�˙.0/ D �˙;0 in D˙,

�.0/ D �0:

9
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>

>
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>

=

>

>

>

>

>

>

>

>

;

(4.6)

We close this section by defining the abstract setting for our analysis and giving a precise statement

of our main result. Let p > N C 2. For s > 0 and a Banach space Y , M 2 fD˙; S; Œ0; T �; Œ0;1/g
(T > 0) we denote byW s

p .M; Y / theLp-based Sobolev space of order s. In particular, if s … N, this

fractional-order Sobolev space coincides with the Besov space Bs
pp.M; Y / (cf. [16]). For the sake

of brevity we write W s
p .M/ WD W s

p .M;R/ and introduce the notations W s
p .D˙/ WD W s

p .DC/ �
W s

p .D�/, .�˙; �/ WD .�C; ��; �/. Let

E1 WD
˚

.�˙; �/ 2 W 2
p .D˙/ �W 3�1=p

p .S/I @n�� D 0 on @C
	

I

E WD
˚

.�˙; �/ 2 W 2�2=p
p .D˙/ �W 3�3=p

p .S/I @n�� D 0 on @C
	

I

E0 WD Lp.D˙/ �W 1�1=p
p .S/

and for an interval J � Œ0;1/

E.J / WD Lp.J;E1/ \
�

W 1
p

�

J;Lp.D˙/
�

�W .3�1=p/=2
p

�

J;Lp.S/
�

�

:

We further define spaces of exponentially decaying functions

E.ı/ WD
˚

.�˙; �/ 2 E.RC/I eıt .�˙; �/ 2 E.RC/
	

(ı > 0), equipped with the norm k.�˙; �/kE.ı/ WD keıt .�˙; �/kE.RC/. and recall the standard

embedding result

E.J / ,! C.J;E/: (4.7)

We formally introduce the operators OL, OK and B by their action as follows:

OL.�˙; �/ WD .�˙��˙;�˛C@n�C/; OK.�˙; �/ WD
�

0; 0; s0.0/�jS � n
�

;

B.�˙; �/ WD
�

˛C@n�C C J�K C Q��; J˛@n�K
�

;
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where u D u.�/ D s0.0/� (and a suitable p) solve

�˙�u˙ � rp˙ D 0 in D˙,

divu˙ D 0 in D˙,

J�.u; p/Kn D Q�� n on S ,

JuK D 0 on S ,

u� D 0 on @C :

(4.8)

Then, with F WD .F˙; G3/, G WD .G1; G2/, (4.6) can be written as an abstract evolution problem

@t� � . OLC OK/.�/ D F.�/; B� D G.�/; �.0/ D �0 WD .�˙;0; �0/; � WD .�˙; �/: (4.9)

Solutions to (4.9) are paths in the manifold

M WD f� 2 EI B� D G.�/g:

They are supposed to possess the following regularity:

DEFINITION 4.1 A global strong solution of the evolution problem (4.9) is a solution� D .�˙; �/ W
Œ0;1/ ! E such that

�jŒ0;T � 2 E
�

Œ0; T �
�

8 T > 0:

Observe that the set of equilibria of (4.9) is

E WD
˚

" 2 MI �. OLC OK;B/."/ D .F;G/."/
	

;

and that these equilibria correspond to the steady states of system (1.1). It is of crucial importance

for our analysis that E is a submanifold of M of dimensionN C2, cf. Lemma 2.1 in [8], Proposition

6.4 in [4]. Now we are prepared to state the main theorem of this paper:

Theorem 4.2 There exist ; ı > 0 such that, given �0 2 BE .0; / \ M, problem (4.9) admits a

unique global strong solution � D � C e, where .�; e/ 2 E.ı/ � E. Moreover, �0 7! .�; e/ 2
C 1.BE .0; /\ M;E.ı/ � E/.

5. Spectral analysis and proof of the main result

In this section we study properties of the operator LCK W D.L/ � E0 ! E0, where L� WD OL�,

K� WD OK� and

D.L/ WD
˚

.�˙; �/ 2 E1I

˛C@n�C C J�K C Q�� D 0 on S ,

J˛@n�K D 0 on S ,

@n�� D 0 on @C .
	

We will identify operators and vector spaces with their complexifications without further

mentioning.

Lemma 5.1

(i) The spectrum of L C K consists purely of isolated eigenvalues having eigenspaces of finite

dimension.

(ii) The value � D 0 is an eigenvalue of LCK with dim N.LCK/ D N C 2.
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(iii) All other eigenvalues of LCK are real and negative.

Proof. (i) The operator L generates a strongly continuous analytic semigroup on E0 (Theorem

2.2 in [2]). As the operator � 7! s0.0/�jS �n is of order 1,K is a relatively compact perturbation

which implies that LCK also generates a strongly continuous analytic semigroup on E0 and

in particular has a nonempty resolvent set. Since D.L/ is compactly embedded in E0, the

statement follows by [5], Theorem III. 6.29.

(ii) We introduce the bilinear form h�; �i by

˝

.wC; w�; �/; .uC; u�; �/
˛

WD Qc�

Z

DC

wCuC dx C QcC

Z

D�

w�u� dx � QcC Qc�

Z

S

� Q�� dS:

Letting u.�/ WD s0.0/� we observe that

�
˝

.LCK/.wC; w�; �/; . NwC; Nw�; N�/
˛

D �Qc��C

Z

˝C

�wC NwC dx � QcC��

Z

˝�

�w� Nw� dx C QcC Qc�˛C

Z

S

@nwC

�

˛C@n NwC C J NwK
�

dS C

Z

S

u.�/ � n Q� N� dS

D Qc��CkrwCk2
L2.˝C/

C QcC��krw�k2
L2.˝�/

C �C˛C Qc�k@nwCk2
L2.S/

C 1
2
.

Z

DC

ˇ

ˇ"
�

u.�/
�
ˇ

ˇ

2
dx C

Z

D�

ˇ

ˇ"
�

u.�/
�
ˇ

ˇ

2
dx/ > 0 (5.1)

for all .wC; w�; �/ 2 D.L/. Suppose .L C K/.wC; w�; �/ D 0 for .wC; w�; �/ 2 D.L/.

Then (5.1) implies that w˙ are constant onD˙ (thus JwK is constant on S ) and that u.�/ D 0

in C . From elementary properties of �S and the results from Sections A.1.1, A.1.3 we hence

get that

N.LCK/ D span
˚

.m; 0;�1/; .0;m; 1/; .0; 0; x1/; : : : ; .0; 0; xN /
	

DW f"1; : : : ; "N C2g:
(5.2)

(iii) The computation (5.1) shows that �h.L C K/.wC; w�; �/; . NwC; Nw�; N�/i > 0 for all

.wC; w�; �/ 2 D.L/. Using the fact that
R

S
u.�/ � n D 0, we can show in completely the

same fashion as in the proof of Lemma 3:1 iii) in [8] that h.wC; w�; �/; . NwC; Nw�; N�/i > 0

for all eigenvectors .wC; w�; �/ of L C K with equality only if .wC; w�; �/ 2 N.L C K/.

Hence, the assertion follows from Lemma A.4 and (i).

Corollary 5.2 We have

sup Re
�

�.LCK/ n f0g
�

< 0:

Lemma 5.3 The zero eigenvalue of LCK is semisimple, i.e. X D N.LCK/˚ R.LCK/.

Proof. As L C K has nonempty resolvent set and D.L/ is compactly embedded in E0, L C K

(considered as a bounded operator from D.L/ to E0) is Fredholm and has index zero. Hence, by

Corollary A.6, it suffices to show that N.L C K/ \ R.L C K/ D f0g. We introduce the linear

mapping

˚.fC; f�; �/ WD

 

QcC

Z

S

� dS C

Z

DC

fC dx; Qc�

Z

S

� dS �

Z

D�

f� dx

!
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and verify assumptions (i), (ii) and (iii) of Lemma A.3 with

�

.wC; w�; �/j.vC; v�; �/
�

D
˝

.wC; w�; �/; . NvC; Nv�; N�/
˛

and V D C
2. Observe that by (5.1) (and the considerations below (5.1)) we have that

h.LCK/.wC; w�; �/; . NwC; Nw�; N�/i D 0 iff . NwC; Nw�; N�/ 2 N.LCK/

The divergence theorem and the fact that
R

S u.�/ � ndS D 0 imply that ˚ vanishes on R.LCK/.

Assume that z WD .wC; w�; �/ 2 N.LCK/\ N.˚/, .wC; w�; �/ D
PN C2

j D1 j̨ "j (cf. 5.2). Then,

as
R

S
xj dS D 0 (using ˛˙ D �˙= Qc˙), ˚z D 0 means that

Z

S

.˛2 � ˛1/ dS D �

Z

DC

˛1m

QcC

dS

and
Z

S

.˛2 � ˛1/ dS D C

Z

D�

˛2m

Qc�

dS:

This is equivalent to A.˛1; ˛2/ D 0, where

A D

�

�mjDCj= QcC C jS j �jS j
CjS j mjD�j= Qc� � jS j

�

:

We calculate, using jS j D N jDCj, J QcK D m D N � 1

det.A/ D
�mjS jjD�j

N Qc�

C
mjS jjD�j

Qc�

C
mjS jjDCj

QcC

C
mjDCjjD�j

QcC

> 0;

i.e. ˛1 D ˛2 D 0. Hence, z 2 O.

We turn to the proof of Theorem 4.2. Lemmas 5.1 – 5.3 allow to follow the same strategy as

in [8], Section 4. In fact, the arguments given there can literally be repeated here if one only replaces

the operators OL, L by the operators OLC OK , LCK , respectively. However, the proof of [8], Lemma

4.3 has to be modified because Theorem 2.2 in [2] does not apply to the nonlocal operator LCK .

Nevertheless, the analogous result holds true:

Lemma 5.4 Let ! > 0. Then

�

!�. OLC OK/;B
�

2 Lis

�

E;W �2=p
p .D˙/�

�

W 1�3=p
p .S/

�3
�

\Lis

�

E1; Lp.D˙/�
�

W 1�1=p
p .S/

�3
�

:

In accordance with our general notation, we denote by W
�2=p

p .D˙/ WD B
�2=p
pp .D˙/ a Besov

space of negative differentiability order, see [16].

Proof. From Lemma 4.3 in [8] we know that

.!� OL;B/ 2 Lis

�

E;W �2=p
p .D˙/�

�

W 1�3=p
p .S/

�3
�

\Lis

�

E1; Lp.D˙/�
�

W 1�1=p
p .S/

�3
�

: (5.3)

In particular, .! � OL;B/ is Fredholm and has index 0. Since OK is a compact perturbation, the same

is true for the operator .! � . OL C OK/;B/. Therefore it suffices to show that .! � . OL C OK/;B/ is

injective.



STABILITY OF EQUILIBRIA OF A TWO-PHASE STOKES-OSMOSIS PROBLEM 171

We first consider this operator as an element of L.E1; Lp.D˙/ � ŒW
1�1=p

p .S/�3/. Then,

injectivity is a direct consequence of Lemma 5.1.

To prove the remaining part, assume

�

! � . OLC OK/;B
�

� D 0; � D .�˙; �/ 2 E;

or equivalently

.! � OL;B/� D
�

0; 0; s0.0/�
ˇ

ˇ

S
� n; 0; 0

�

: (5.4)

Recall that s0.0/� is defined by the BVP (4.8). Applying Theorem A.1 to this problem and using

� 2 W
3�3=p

p .S/, p > 2, we find that the right side of (5.4) is in Lp.D˙/ � ŒW
1�1=p

p .S/�3, so (5.3)

yields � 2 E1. The result follows again by Lemma 5.1.

6. Conclusion

Our analysis crucially relies on the fact that the problem under consideration belongs to the class of

parabolic evolutions, in the general sense that the semigroup of operators (on appropriate function

spaces) arising as solution of the linearized evolution problem is analytic. Corresponding maximal

regularity results allow the treatment of the nonlinearities introduced by the transformation to a

fixed domain. As typical for the techniques used here, they provide smooth solutions but are (in

absence of further structural information) restricted to “perturbative” results, producing either short-

time solutions (as in [9] for the present problem) or long-time solutions near equilibria or periodic

solutions.

The present paper shows that these techniques are strong and versatile enough to treat relatively

complex models in which coupled evolutions in two phases and on their interface as well as

additional elliptic systems occur. On a technical level, this is reflected in the fact that we use products

of spaces of functions with different domains of definitions and a solution operator for the Stokes

equations. In a sense, using this solution operator allows to treat the present problem as a perturbed

version of the problem without flow, with the perturbation being “of lower order.”

The convergence result may be viewed as an application of a suitably generalized principle

of linearized stability to a nonlinear parabolic problem, which is also well established by now.

Discussing the spectrum of the linearization at an equilibrium provides additional structural

information to conclude that a solution starting close to the manifold of equilibria is actually global

and converges to this manifold at an exponential rate.

In this respect, it remains an open and interesting question whether, and how, structural

properties like parabolicity and stability of equilibria can be concluded already from properties

of the initial ingredients of the variational model, and not only from the resulting moving boundary

problem.

A. Appendix

A.1 Two-phase Stokes equations

Let C � RN be the set defined in the introduction. In this section we denote by ˝C a bounded

simply connected open set with boundary @˝C of class C1 such that N̋
C � C and define ˝� WD

C n N̋
C. Moreover, n denotes the outward unit normal field of @˝C. If no confusion seems likely,
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the symbol @n stands for both the directional derivative w.r.t. n and w.r.t. the outer unit normal field

of @C . We are interested in the two-phase Stokes system

��˙�u˙ C rp˙ D f˙ in ˝˙,

�divu˙ D g˙ in ˝˙,

J�.u; p/Kn D h on @˝C,

JuK D l on @˝C,

u� D 0 on @C

(A.1)

and consider first the question of unique solvability of the simplified problem

��˙�u˙ C rp˙ D f˙ in ˝˙,

�divu˙ D g˙ in ˝˙,

J�.u; p/Kn D h on @˝C,

JuK D 0 on @˝C,

u� D 0 on @C :

(A.2)

A.1.1 Weak solutions. Let H WD H 1
0 .C;R

N / D fw 2 W 1
2 .C;R

N /I w D 0 on @C g,

Q WD L2.C /,

a WD H �H ! R; .u; '/ 7!

Z

C

�
�

".u/ W ".'/
�

;

� D �˙ in ˝˙, and

b WD Q �H ! R; .q; '/ 7! �

Z

C

qdiv':

A weak solution of the system A.2 (.f; g/ W C ! RN C1, h W @˝C ! RN ) is a pair

.u; Œq�/ 2 H �Q= �c (f �c g W, f D g C const) that satisfies

a.u; '/C b.q; '/ D

Z

@˝C

h' C

Z

C

f ' C

Z

C

rg' for all ' 2 H
�

q 2 Œq�
�

as well as

b. ; u/ D g for all  2 Q:

Due to Korn’s inequality, the bilinear form a is coercive onH . Moreover, the bilinear form b induces

a linear operator

B W H ! Q0; Bu. / WD b. ; u/:

If Q is identified with its dual by means of the Riesz isomorphism, the range of B is

the set fr 2 L2.C /I
R

C
r D 0g. Since this is a closed subset of L2.C /, classical results

(cf. [1], Section II.1) imply that there is a unique weak solution of (A.2) for every

.f; g; h/ 2 L2.C;RN / �H 1.C;R/ � L2.@˝C;R
N /, provided

R

C
g D 0.

A.1.2 The Lopatinskii–Shapiro condition. We want to show that the two-phase Stokes system

(A.1) satisfies the Lopatinskii–Shapiro condition. W.l.o.g. we restrict ourselves to the halfspace

situation, i.e., the case ˝˙ WD RN �1 � R˙.
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By reflecting u� in system (A.1) to the upper half space, the operator on the left hand side of

system (A.1) can be expressed by the .2N C 2/ � .2N C 2/ and the .2N / � .2N C 2/ matrices of

operators

A.@1; : : : ; @N / WD

 ��C� r 0 0

rT 0 0 0

0 0 ���� Qr

0 0 QrT 0

!

; B.@1; : : : ; @N / WD
�

BC �eN �B� eN

I 0 �I 0

�

both acting on vectors .uC; pC; u�; p�/
T , where u˙ WD .u1

˙; : : : ; u
N
˙ /. Here, we used the N �N -

matrices of operators

� WD

0

@

� 0
:::

0 �

1

A ; B˙ WD �˙

0

B

@

˙@N 0 @1

:::
:::

0 ˙@N @N �1

˙2@N

1

C

A

and the notation Qr WD .@1; : : : ; @N �1;�@N /
T , eN WD .0; : : : ; 0; 1/ 2 RN . The operatorA represents

a Douglis-Nirenberg elliptic system (cf. [19]) with DN-numbers

s1 D : : : D sN D sN C2 D : : : D s2N C1 D t1 D : : : D tN D tN C2 D : : : D t2N C1 D 1;

sN C1 D s2N C2 D tN C1 D t2N C2 D 0

and it coincides with its principal part (note that
P

sj C tj D 4N D ord.A/). The characteristic

polynomial is �N �1
C �N �1

� .j�j2 C �2/2N , where � D .�1; : : : ; �N �1/ 2 RN �1 and � 2 R.

We have to determine a 2N -dimensional space M
0 of exponentially decaying solutions to the

initial value problem A.i�1; : : : ; i�N �1; @t /.uC; pC; u�; p�/ D 0, i.e. (letting v˙ WD uN
˙ )

8

<

:

�˙.j�j
2 � @2

t /u
j
˙; D �i�jp˙ j D 1; : : : ; N � 1;

�˙.j�j
2 � @2

t /v˙; D �@p˙
PN �1

j D1 �ju
j
˙ D ˙i@v˙:

(A.3)

This system can be solved to the result

8

<

:

u
j
˙ D ˛

j
˙e

�j�jt j D 1; : : : ; N � 1; ˛
j
˙ 2 R;

v˙ D ˙i
j�j
.˛˙j�/e�j�jt ; ˛˙ WD .˛1

˙; : : : ; ˛
N �1
˙ /

p˙ D 0

(A.4)

and
8

ˆ

<

ˆ

:

Quj
˙ D ˇ˙i.

�j

j�j2
�

t�j

j�j
/e�j�jt ; j D 1; : : : ; N � 1;

Qv˙ D ˙ˇ˙te
�j�jt ;

Qp˙ D 2ˇ˙�˙e
�j�jt ; ˇ˙ 2 R:

(A.5)

To verify the Lopatinskii–Shapiro condition we have to check that the problem

B.i�1; : : : ; i�N �1; @t /.uC; pC; u�; p�/jtD0 D 0; .uC; pC; u�; p�/ 2 M
0; (A.6)

possesses no nontrivial solutions. Assuming (A.6) and writing simply

.u1
˙; : : : ; u

N �1
˙ ; v˙/ instead of .u1

˙; : : : ; u
N �1
˙ ; v˙/C . Qu1

˙; : : : ; QuN �1
˙ ; Qv˙/,
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we first use
�

.u1
C; : : : ; u

N �1
C ; vC/ � .u1

�; : : : ; u
N �1
� ; v�/

�

.0/ D 0:

This implies that

˛
j
C � ˛j

� C
i�j

j�j2
.ˇC � ˇ�/ D 0; j D 1; : : : ; N � 1; .˛Cj�/ D �.˛�j�/: (A.7)

Multiplication by � yields

.˛˙j�/ D
�i

2
.ˇC � ˇ�/: (A.8)

Further, (A.6) implies

2

6

6

4

�C

2

6

6

4

0

B

B

@

@t u1
C

:::
@t uN �1

C

@t vC

1

C

C

A

C

0

B

@

i�1vC

:::
i�N �1vC

@t vC

1

C

A

3

7

7

5

� ��

2

6

4

0

B

@

�@t u1
�

:::
�@t uN �1

�

�@t v�

1

C

A
C

0

@

i�1v�

:::
i�N �1v�

�@t v�

1

A

3

7

5
�

0

@

0

:::
0

pC�p�

1

A

3

7

7

5

.0/

D 0; (A.9)

so we find that

�C

h�

�˛Cj�j

�i.˛Cj�/

�

C
�

��.˛Cj�/=j�j

�i.˛Cj�/

�

C
�

�2iˇC�=j�j

ˇC

�

C
�

0
ˇC

�i

� ��

h�

˛�j�j
�i.˛�j�/

�

C
�

�.˛�j�/=j�j
�i.˛�j�/

�

C
�

2iˇ��=j�j
ˇ�

�

C
�

0
ˇ�

�

i

�
h

�C

�

0
2ˇC

�

� ��

�

0
2ˇ�

�

i

D 0: (A.10)

By multiplying the first row in (A.10) by � and using (A.8) this gives the linear system

M Ě WD
�

�CC�� �CC��

�CC�� �.�CC��/

� �

ˇC

ˇ�

�

D 0; (A.11)

which possesses only the trivial solution ˇC D ˇ� D 0 since det.M/ D �2.�CC��/
2 < 0. Hence,

by (A.7), (A.8) ˛C D ˛� and .˛Cj�/ D .˛�j�/ D 0. Using this, the first row in (A.10) reduces to

.�C C ��/i j�j˛C D 0

and hence also ˛C D ˛� D 0. Therefore, the Lopatinskii–Shapiro condition is satisfied.

A.1.3 Regularity. We are now interested in strong/classical solutions of the system (A.1) under

the necessary solvability demand

Z

˝C

gC C

Z

˝�

g� D �

Z

@˝C

l � n: (A.12)

Let

��C;��.uC; pC; u�; p�/ WD
�

�C�uC � rpC; ���u� � rp�;�divuC;�divu�; J�.u; p/Kn; JuK
�

: (A.13)
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From Theorem 9:32 in [19] and Section A.1.2 we know that the operators ��C;�� , considered as

bounded operator between appropriate function spaces (see Theorem A.1 below), are Fredholm

for all positive �C; ��. In order to calculate their index, we first consider the case that

�C D �� DW � > 0 and determine the range of ��;� (for the sake of brevity we refrain from stating

regularities as they can be easily added by means of classical elliptic theory and the results from [6],

Section 3:3, 3:5): let lC; l� satisfy

� lC � l� D l on @˝C;

�
R

˝˙
g˙ D �

R

@˝C
l˙ � n.

Taking into account (A.12), one possible choice is lC WD lC l�j@˝C
, where l� WD rL andL solves

��L D g� in ˝�,

@nL D
R

˝�
g�

j@˝Cj
on @˝C,

@nL D 0 on @C .

(A.14)

Further, let w˙ WD rW˙, whereW˙ solve

��WC D gC in ˝C,

@nWC D lC � n on @˝C,
(A.15)

��W� D g� in ˝�,

@nW� D l� � n on @˝C,

@nW� D 0 on @C .

(A.16)

Note that �divw˙ D g˙ in˝˙. We extend f� and�w� to RN n N̋
C in such a way that they vanish

outside some open ball containing NC and consider the problems

���vC C rqC D fC C ��wC in ˝C,

div vC D 0 in ˝C,

vC D lC �wC on @˝C,

(A.17)

���v� C rq� D f� C ��w� in RN n N̋
C,

div v� D 0 in RN n N̋
C,

v� D l� �w� on @˝C.

(A.18)

It follows from Section 3.5 in [6] that the problems (A.17) and (A.18) possess classical solutions

(since w˙ � n D l˙ � n on @˝˙). Moreover,
R

@C
v� � n@C D 0. Next we are interested in the system

���uC C rpC D 0 in ˝C,

���u� C rp� D 0 in RN n N̋
C,

divuC D 0 in ˝C,

divu� D 0 in RN n N̋
C,

J�.u; p/Kn D h � J�.w C v; q/Kn on @˝C,

JuK D 0 on @˝C,

(A.19)

where v;w W ˝C [˝� ! R
N , q W ˝C [˝� ! R are defined in the obvious way. The single layer

potential with density  and w.r.t. the constant viscosity � > 0 is given by

V.x;  / WD 1
2�!N

R

�
. 1

.n�2/jx�yjN �2 C .x�y/.x�y/T

jx�yjN
/ .y/ d�.y/I

Q.x; / WD 1
!N

R

� .
.x�y/

jx�yjN
/ .y/ d�.y/:

(A.20)



176 F. LIPPOTH AND G. PROKERT

As it can be seen from the results in [6] Ch. 3, the restrictions .u˙; p˙/ of
�

V
�

�; h� J�.w C v; q/Kn
�

;Q
�

�; h� J�.w C v; q/Kn
�

�

to ˝C and RN n N̋
C, respectively, solve (A.19) in a classical sense, provided h � J�.w C v; q/Kn

is continuous. (Observe that precise regularity properties of .u˙; p˙/ can be obtained from the fact

that the mapping  7! V.�;  /j@˝C
is a pseudodifferential operator of order �1 as well as from

regularity theory for the Stokes-Dirichlet problem, cf. Section 3.3, 3.5 in [6].)

Since uC is divergence free, it follows that
R

@˝C
uC � n D 0, and JuK D 0 on @˝C implies

R

@˝C
u� � n D 0. Hence, since also u� is divergence free, it follows that

R

@C
u� � n@C D 0. Thus,

R

@C .u� C v�/ � n@C D 0.

Let .˚; P / a (smooth across @˝C) solution of the following Dirichlet problem for the Stokes

equations (which exists since
R

@C
.u� C v�/ � n@C D 0, cf. [6, Ch. 3]):

���˚ C rP D 0 in C ,

div˚ D 0 in C ,

˚ D �.u� C v� C w�/ on @C .

(A.21)

Summarizing, the pair

.w˙ C v˙ C u˙ C˚; q˙ C p˙ C P/

is easily seen to solve (A.1) (with �C D �� D �) in a classical sense. Therefore, the necessary

solvability demand (A.12) is also sufficient. Hence, the range of ��;� is of codimension 1. Since

we know from Section A.1.1 that the kernel of ��;� is one dimensional, this operator has index

0. Consequently (� > 0 was arbitrary), by homotopic stability of the index, all members of the

family f��C;.1�t/�CCt��
I t 2 Œ0; 1�g have index 0, in particular this holds for ��C;�� . Since this

operator has a one dimensional kernel as well, the following Theorem A.1 can be deduced from the

general theory of elliptic boundary value problems (cf. [16, Ch. 4], [19, Theorem 9.32]). In order to

economize notation we introduce the quotient spaces QF WD F = �c , where F 2 fW ˛
p ; C

˛; c˛g and

�c is the equivalence relation introduced in Section A.1.1. Here, C ˛ stands for the usual Hölder

space and c˛ denotes the little Hölder space, that is the closure of the smooth functions in C ˛.

Theorem A.1 Let .r; ˇ; p; k/ 2 .0; 1�� .0; 1/� Œ1;1/� .N[ f0g/ satisfy k C r > 1=p, r ¤ 1=p

and let C 2 fc; C g. Suppose that .f˙; g˙; h; l/ of class

(i) W WD ŒW kCr�1
p .˝˙/�

N �W kCr
p .˝˙/ � ŒW kCr�1=p

p .@˝C/�
N � ŒW kCrC1�1=p

p .@˝C/�
N

or

(ii) C WD ŒCkCˇ . N̋
˙/�

N � C
kC1Cˇ . N̋

˙/ � ŒCkC1Cˇ .@˝C/�
N � ŒCkC2Cˇ .@˝C/�

N

satisfies
R

˝C
gC C

R

˝�
g� D �

R

@˝C
l � n. In both cases problem (A.1) possesses a solution

.u˙; p˙/ which is unique up to an additive constant for p˙. This constant is the same in both

phases. In case i) .u˙; p˙/ belongs to the class ŒW kCrC1
p .˝˙/�

N �W kCr
p .˝˙/ and satisfies the

a priori estimate




�

u˙; Œp˙�
�



ŒW
kCrC1

p .˝˙/�N � QW
kCr

p .˝˙/
6 



.f˙; g˙; h; l/




W
(A.22)

with a positive constant  independent of .f˙; g˙; h; l/. In case ii) .u˙; p˙/ belongs to the class

ŒCkC2Cˇ . N̋
˙/�

N � C
kC1Cˇ . N̋

˙/ and satisfies the estimate






�

u˙; Œp˙�
�







ŒCkC2Cˇ. N̋
˙/�N � QCkC1Cˇ. N̋

˙/
6 



.f˙; g˙; h; l/




C
(A.23)
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with a positive constant  independent of .f˙; g˙; h; l/. The symbol Œp˙� stands for the class

fp˙ C �I � 2 Rg.

For a given domain N̋
C � C with smooth boundary we denote by �˝˙

the operator defined in

(A.13). Using this notation (and those defined in Section 4), we are able to work out that the solution

operator s.�/ of the problem (4.3) depends smoothly on �.

Corollary A.2 There is a neighbourhood U of 0 in W
3�3=p

p .S/ such that s.�/ is well defined for

all � 2 U \ Ad and s 2 C1.U \ Ad; ŒW
2�2=p

p .D˙/�
N /. Moreover, if ı > 0 is given, then there is

a neighbourhood V of 0 in E.ı/ such that Qs given by

Qs
�

.�˙; �/
�

.t/ WD
�

0; 0; s
�

�.t/
�
ˇ

ˇ

S
� nS

�

is well defined for all .�˙; �/ 2 V and Qs 2 C1.V;Lp.R
C; E0//.

Proof. Let �.�/ WD ��
��.˝�/˙

�
�
� . Carrying out the transformation of the differential operators

involved in (4.3) (cf. the proofs of Theorem 3:1 in [9], Lemma 4:2 in [7]) we obtain

s.�/ D P�.�/�1
�

0; 0;H.�/n.�/; 0
�

;

where P.uC; pC; u�; p�/ WD u and�, H and n depend all smoothly on �. Since�.0/ is precisely

the operator considered in Theorem A.1 (with ˝˙ WD D˙), the first assertion is obtained by

standard perturbation arguments for isomorphisms.

Observe that due to the embedding (4.7) we may assume that �ŒRC� � Ad \ W
3�3=p

p .S/

provided k.�˙; �/kE.ı/ is small enough. Hence the second assertion is a consequence of mapping

and smoothness properties of concerning Nemytskij operators, cf. [15].

A.2 A few functional analytic tools

Lemma A.3 Let H;V be complex vector spaces and A W D.A/ � H ! H be a linear operator.

Let .�j�/ be a sesquilinear form on D.A/ �D.A/, ˚ 2 L.H; V / and

O WD
˚

z 2 D.A/I .zjh/ D 0 for all h 2 D.A/
	

:

Assume that

(i) .Auju/ D 0 iff u 2 N.A/;

(ii) R.A/ � N.˚/;

(iii) N.˚/ \ N.A/ � O;

Then R.A/ \ N.A/ D f0g.

Proof. Let z 2 R.A/ \ N.A/, z D Ay for some y 2 D.A/. Then ( because of ii), iii) ) z 2 O and

0 D .zjy/ D .Ayjy/;

and hence, because of i), y 2 N.A/ i.e. z D Ay D 0.

Lemma A.4 LetH be a complex vector space, A W D.A/ � H ! H and let .�j�/ be a sesquilinear

form on D.A/ �D.A/. Assume additionally that

(i) .Auju/ 2 Œ0;1/ for all u 2 D.A/;
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(ii) .uju/ 2 Œ0;1/ for all eigenvectors u of A;

(iii) if .uju/ D 0 for some eigenvector u of A, then u 2 N.A/.

Then all eigenvalues of A are nonnegative.

Proof. Let � ¤ 0 be a (possibly complex) eigenvalue of A. Then, if u 2 D.A/ is a corresponding

eigenvector, we have by ii) and iii) that .uju/ > 0. The assertion follows from �.uju/ D .�uju/ D
.Auju/ > 0.

Lemma A.5 LetX be a Banach space,N;R linear subspaces with the properties thatN\R D f0g,

dim.N / D codim.R/ D M < 1 and that R is closed. Then the quotient map Q W X ! X=R,

y 7! y CR induces a topological isomorphism from N ontoX=R and it vanishes on R. Moreover,

X D N ˚R algebraically and topologically.

Proof. It is straightforward to check that QjN is a topological isomorphism onto the finite

dimensional Banach space X=R and that Q vanishes on R. Moreover, P WD .QjN /
�1 ı Q is a

continuous projection of X onto N , hence

X D N ˚ N.P /; dim
�

X=N.P /
�

D M:

SinceR � N.P / and dim.X=R/ D M , we find dim.N.P /=R/ D dim.X=R/�dim.X=N.P // D 0

and thus N.P / D R.

Since the range of a Fredholm operator is always closed, we get the following

Corollary A.6 If X; Y are Banach spaces such that Y � X , and if F 2 L.Y;X/ is a Fredholm

operator of index 0 that satisfies R.F /\ N.F / D f0g, thenX D N.F /˚ R.F / algebraically and

topologically. Moreover, P WD .QjN.F //
�1 ıQ is a continuous projection of X onto N.F /.
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