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Abstract: Multiple contrast tests can be used to test arbitrary linear hypotheses by providing local and
global test decisions as well as simultaneous confidence intervals. The ANOVA-F-test on the contrary can be
used to test the global null hypothesis of no treatment effect. Thus, multiple contrast tests provide more
information than the analysis of variance (ANOVA) by offering which levels cause the significance. We
compare the exact powers of the ANOVA-F-test and multiple contrast tests to reject the global null
hypothesis. Hereby, we compute their least favorable configurations (LFCs). It turns out that both procedures
have the same LFCs under certain conditions. Exact power investigations show that their powers are equal
to detect their LFCs.
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1 Introduction

In many psychological, biological, and medical trials, more than two treatment groups are involved. In
these situations, one is interested in detecting any significant difference among the treatment means
μ1; . . . ; μa, i.e. to test the global null hypothesis H0 : μ1 ¼ � � � ¼ μa, and, particularly, in the detection of
specific significant differences, i.e. in performing multiple comparisons according to the computation of
simultaneous confidence intervals (SCI). In randomized clinical trials, the computation of SCI is conse-
quently required by regulatory authorities: “Estimates of treatment effects should be accompanied by
confidence intervals, whenever possible…” (ICH E9 Guideline 1998, chap. 5.5, p. 25 [23]). Hereby, the
family-wise error rate α should be strongly controlled.

In statistical practice, however, the usual way to detect specific significant differences among the effects
of interest, and to compute SCI, consists of three steps: (1) the global null hypothesis H0 is tested by an
appropriate procedure, e.g. analysis of variance (ANOVA), (2) if the global null hypothesis is rejected,
multiple comparisons are usually carried out to test individual hypotheses, e.g. the lth partial null hypoth-
esis Hð,Þ

0 : μi ¼ μj, and (3) in the final step, SCI for the treatment effects of interest are computed. Although
stepwise procedures using different approaches on the same data are pretty common in practice, they may
have the undesirable property that the global null hypothesis may be rejected, but none of the individual
hypotheses and vice versa. This means, the global test procedure and the multiple testing procedure may be
non-consonant to each other Gabriel 1969 [26] and Hsu [21]. Further the confidence intervals may include
the null, i.e. the value of no treatment effect, even if the corresponding individual null hypotheses have
been rejected. This means, the individual test decisions and the corresponding confidence intervals may be
incompatible [1]. It is well known that the classical Bonferroni adjustment can be used to perform multiple
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comparisons as well as for the computation of compatible SCI. This approach, however, has a low power,
particularly when the test statistics are not independent.

In recent years, multiple contrast test procedures (MCTPs) with accompanying compatible SCI for
linear contrasts were derived by Mukerjee et al. [2] and Bretz et al. [1]. The procedures are based on the
exact multivariate distribution of a vector of t-test statistics, where each test statistic corresponds to an
individual null hypothesis, e.g. Hð,Þ

0 : μi ¼ μj. It will be rejected, if the corresponding test statistic
exceeds a critical value being obtained from the distribution of the vector of t-test statistics. The global
null hypothesis will be rejected, if any individual hypothesis is rejected. Therefore, the individual and
global test decisions are consonant and coherent. These MCTPs take the correlation between the test
statistics into account and can be used for testing arbitrary contrasts, e.g. many-to-one, all-pairs, or
even average comparisons [1]. Thus, MCTPs provide an extensive tool for powerful multiple compar-
isons, for the computation of compatible SCI, and for testing the global null hypothesis. The results by
Bretz et al. [1] were extended to general linear models by Hothorn et al. [3], to heteroscedastic models
by Hasler and Hothorn [4] and Herberich et al. [5], and for ranking procedures by Konietschke and
Hothorn [6], Konietschke et al. [7], and Konietschke et al. [8]. For a comprehensive overview of existing
methods, we refer to Bretz et al. [27].

Comparing MCTP and the global testing procedure ANOVA, one notices that both procedures can be
used to test the global null hypothesis H0. From a practical point of view, MCTPs demonstrate their
superiority to the ANOVA in terms of providing the information which levels cause the statistical overall
significance as well as by offering SCI. In quite restricted homoscedastic normal models, both proce-
dures are exact level α tests. Arias-Castro et al. [9] studied global and multiple testing procedures under
sparse alternatives and emphasize “Because ANOVA is such a well established method, it might surprise
the reader – but not the specialist – to learn that there are situations where the Max test, though
apparently naive, outperforms ANOVA by a wide margin” [9, p. 2534]. The evidence of a loss in power
of the MCTP to detect global alternatives, if so, has not been investigated yet [25]. Thus, exact power
comparisons remain.

It is the aim of this article to investigate the exact power of MCTP and of the ANOVA to detect
global alternatives. To give a fair comparison, we restrict our analysis to those linear contrasts which
are embedded in the ANOVA, i.e. contrasts which compare each mean μi to the overall mean �μ�. In
particular, we compute the least favorable configuration (LFC) of the alternative, i.e. the alternative
which is detected with a minimal power of both the ANOVA and the MCTP. The results indicate that the
LFCs of both procedures are identical. Exact power calculations show that their powers to detect the
LFCs are equal.

2 Statistical model and test statistics

We consider a completely randomized one-way layout

Yij , Nðμi; σ2Þ; i ¼ 1; . . . ; a; and j ¼ 1; . . . ; ni; ½1�

where the index i denotes the level of the treatment group, and j denotes the jth unit within the ith group.
Throughout this article, let N ¼Pa

i¼1 ni denote the total sample size, μ ¼ ðμ1; . . . ; μaÞ0 the vector of expecta-
tions, θ ¼ μ=σ its scaled version, and let Λ ¼ diagðn1; . . . ; naÞ denote the diagonal matrix of the sample
sizes. Furthermore, let Y� ¼ ðY1�; . . . ;Ya�Þ0 denote the vector of means, let Y �� ¼ a�1Pa

i¼1 Yi� denote the
overall mean, and let s2 ¼ ðN � aÞ�1Pa

i¼1

Pni
j¼1 ðYij � Yi�Þ2 denote the pooled sample variance.

Our aim is to test the null hypothesis H0 : μ1 ¼ . . . ¼ μa versus the alternative H1 : μi 6¼ �μ� for at least one
μi, where �μ� ¼ a�1Pa

i¼1 μi is the mean of expectations. The global null hypothesis H0 can be equivalently
written as
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H0 :

μ1 ¼ �μ�
μ2 ¼ �μ�

..

.

μa ¼ �μ�

8>>><>>>: , H0 : Cμ ¼
1� 1=a �1=a . . . �1=a
�1=a 1� 1=a . . . �1=a

..

. ..
. . .

. ..
.

�1=a �1=a . . . 1� 1=a

0BBB@
1CCCA

μ1
μ2
..
.

μa

0BBB@
1CCCA ¼ 0: ½2�

The contrast matrix C is also known as the a� a centering matrix Pa ¼ Ia � 1
a Ja, where Ia denotes the a� a

unit matrix, and Ja ¼ 1a1a0 denotes the a� a-matrix of 1’s. Throughout this article, C will be called Grand-
mean-type contrast matrix [10]. Each row vector c0i of C is one contrast and will be used later for testing
individual hypotheses HðiÞ

0 : c0iμ ¼ 0, i.e. HðiÞ
0 : μi ¼ μ� for i ¼ 1; . . . ; a. The ANOVA-F-test

FC ¼
Xa
i¼1

niðYi� � Y ��Þ2=ða� 1Þ
( )

=s2 ½3�

is the commonly used statistic for testing H0. As usually known, FC is exactly Fða� 1;N � ajλÞ-distributed,
where λ ¼ θ0 Λ� N�1ΛJaΛ½ �θ denotes the non-centrality parameter. Clearly, under H0, λ is equal to zero. It
follows from the definition of FC in eq. [3] that this global testing procedure is the scaled sum of the squared
contrasts δ̂i ¼ c0iY� ¼ Yi� � Y �� in means. Therefore, it cannot provide any information about the means
which differ significantly from the overall mean Y ��. The MCTP by using the contrasts c0i on the contrary
consists of the vector of t-test type statistics

T ¼ ðT1; . . . ;TaÞ0; where Ti ¼ c0iY�= s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0iΛ

�1ci
q� �

¼ ðYi� � Y ��Þ= s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0iΛ

�1ci
q� �

½4�

is the modified t-test statistic for testing HðiÞ
0 : μi ¼ �μ�. Thus, T consists of the scaled single contrasts δ̂i. We

note that the MCTP is not restricted to comparisons to the overall mean. For example, Dunnett-type many-
to-one [11] comparisons can be performed by using the contrast matrix in

H0 :

μ1 ¼ μ2
μ1 ¼ μ3

..

.

μ1 ¼ μa

8>>><>>>: , H0 : Cμ ¼
�1 1 0 . . . 0 0
�1 0 1 0 . . . 0
..
. ..

. ..
. ..

. ..
. ..

.

�1 0 0 . . . . . . 1

0BB@
1CCA

μ1
μ2
..
.

μa

0BBB@
1CCCA ¼ 0: ½5�

Tukey-type [12] all-pairs comparisons can be conducted using

H0 :

μ1 ¼ μ2
μ1 ¼ μ3

..

.

μ1 ¼ μd
μ2 ¼ μ3

..

.

μa�1 ¼ μa

8>>>>>>>>>><>>>>>>>>>>:
, H0 : Cμ ¼

�1 1 0 . . . . . . 0 0
�1 0 1 0 . . . . . . 0
..
. ..

. ..
. ..

. ..
. ..

. ..
.

�1 0 0 0 . . . . . . 1
0 �1 1 0 . . . 0 0
0 �1 0 1 0 . . . 0
..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 . . . . . . . . . . . . �1 1

0BBBBBBBBBBB@

1CCCCCCCCCCCA

μ1
μ2
..
.

..

.

μa

0BBBBB@

1CCCCCA ¼ 0: ½6�

and by replacing the contrasts c0i in eq. [4] by the row vectors of the chosen contrast matrix. For a detailed
overview of different kinds of contrasts, we refer to Bretz et al. [1]. The ANOVA-F-test, however, is restricted
to the comparisons to the overall mean as described in eq. [2]. Therefore, we will only compare the ANOVA
with the MCTP T as given in eq. [4]. As further results, we will also investigate the powers of the MCTP by
using the Dunnett-type or Tukey-type contrast matrix C as given in eq. [5] or [6], respectively. For
convenience, we will write the different contrasts in a unified way by a non-specified contrast matrix
C ¼ ðc01; . . . ; c0qÞ0 throughout this article.
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Bretz et al. [1] have shown that T follows a multivariate Tðν;R; δðθÞÞ distribution with ν ¼ N � a degrees
of freedom, correlation matrix R and non-centrality parameter vector

δðθÞ ¼ ðδðθ1Þ; . . . ; δðθaÞÞ0; ½7�

where δðθiÞ ¼ c0iμ=ðσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0iΛ

�1ci
q

Þ. Under the global null hypothesis H0 : Cμ ¼ 0, the non-centrality parameter
vector δðθÞ is equal to 0 ¼ ð0; . . . ;0Þ0. The correlation matrix R is known and only depends on the sample
sizes ni in model [1]. It can be easily computed by standardizing the covariance matrix V ¼ σ2CΛ�1C0 of CY�.
For a detailed explanation, we refer to Bretz et al. [1]. The individual null hypothesis HðiÞ

0 : μi ¼ �μ� will be
rejected at multiple α level of significance, if jTij � t1�αðν;RÞ, where t1�αðν;RÞ denotes the ð1� αÞ-equicoor-
dinate quantile from the multivariate Tðν;R;0Þ-distribution, that is

P
\a
i¼1

�t1�αðν;RÞ � Ti � t1�αðν;RÞf g
 !

¼ 1� α:

In particular, compatible ð1� αÞ-SCI for the treatment effects δi ¼ μi � �μ� are given by

CIi ¼ c0iY� � t1�αðν;RÞ � s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0iΛ

�1ci
q� �

: ½8�

The global null hypothesis H0 : Cμ ¼ 0 will be rejected, if

T0 ¼ maxfjT1j; . . . ; jTajg � t1�αðν;RÞ: ½9�

Apparently, both test statistics FC in eq. [3] and T0 in eq. [9] consist of the same contrasts δ̂i and the same
error estimate s2. The difference between the procedures is that the ANOVA-F-test uses the scaled sum of the
squares of the contrasts and the MCTP uses the maximum of the scaled single contrasts. The impact of these
two different principles on the powers of the tests will be investigated in the next section.

3 Power comparisons of the ANOVA and MCTP

It is obvious that the ANOVA-F-test FC is a squared test statistic, while T0, or better the single contrasts Ti

embedded in T0, are linear statistics. Roughly speaking, both methods are not comparable analytically.
We, therefore, consider the power of the MCTP T0 to detect the global alternative H1 : μi 6¼ �μ� for at least one
μi, i ¼ 1; . . . ; a. Due to the abundance of possible alternatives, we will compute the LFC of both ANOVA and
the MCTP, i.e. the alternatives which are detected with a minimal power. Next, the powers to detect their
LFC can be fairly compared. As pointed out in Section 2, the vector of t-test statistics T as defined in eq. [4]
follows a multivariate Tðν;R;δðθÞÞ distribution with ν ¼ N � a degrees of freedom, correlation matrix R,
and non-centrality parameter vector δðθÞ ¼ ðδðθ1Þ; . . . ; δðθaÞÞ0. Thus, the power of T0 to detect H1 at
significance level α can be defined by

βðθÞ ¼ PH1ðT0 � t1�αðν;RÞÞ
¼ 1� PH1ðmax

i¼1;...;a
jTij � t1�αðν;RÞÞ

¼ 1� PH1ð�t1�αðν;RÞ � T1 � t1�αðν;RÞ; . . . ;�t1�αðν;RÞ � Ta � t1�αðν;RÞÞ:
½10�

Note that rankðCÞ ¼ a� 1, hence, the correlation matrix R is singular and the distribution of T cannot have
a density with respect to Lebesgue measure. The exact power of the MCTP as defined in eq. [10], however,
can be computed by using the (a – 1)-variate regular multivariate t-distribution function of the ða� 1Þ-sta-
tistics eT ¼ ðT1; . . . ;Ta�1Þ0 being computed with the ða� 1Þ linear independent contrasts c01; . . . ; c

0
a�1;
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respectively, and an appropriate transformation of the integration region, i.e. the probability in eq. [10], can
be computed by

βðθÞ ¼ 1� PH1ð�t1�αðν;RÞ � T1 � t1�αðν;RÞ; . . . ;�t1�αðν;RÞ � Ta � t1�αðν;RÞÞ
¼ 1� PH1ðu1 � T1 � v1; . . . ; ua�1 � Ta�1 � va�1Þ;

where u ¼ ðu1; . . . ; ua�1Þ0 and v ¼ ðv1; . . . ; va�1Þ0 denote the new integration bounds. For the computation of
u and v, we refer to Bretz [13], Bretz et al. [1], Bretz and Genz [24] and Genz and Kwong [14].

Now, it is our purpose to consider the two conditions

b1ðθÞ ¼ max
1� i � a

θi � θ�
�� �� � b or b2ðθÞ ¼ max

1 � i; j �a
jθi � θjj � b ½11�

and to establish the configuration of the θi for which the power function βðθÞ is minimized, i.e. we compute
the LFC θ	 of θ such that

βðθ	Þ ¼ min
θ2Ra:biðθÞ�b>0

βðθÞ; i ¼ 1; 2: ½12�

Note that in unbalanced designs, the power of the LFC βðθ	Þ cannot be invariant under any permutation of
the coordinates of θ	, which follows from the definition of the multivariate t-distribution. To get a useful
result, we, therefore, restrict the computation to balanced designs. The LFCs θ	 of T for Grand-mean and
Tukey-type MCTPs are given in Theorem 1.

Theorem 1. Suppose that n1 ¼ � � � ¼ na, let b � 0 and let C denote the Grand-mean-type or Tukey-type
contrast matrix C as given in eqs. [2] or [6], respectively. Further let

1. θ	 ¼ ð0; . . . ;0; ba=ða� 1ÞÞ0, so that b1ðθ	Þ ¼ b. Then, if

b1ðθÞ � b ) βðθÞ � βðθ	Þ:

2. Let θ	 ¼ ð�b=2;0 . . . ;0; b=2Þ0, so that b2ðθ	Þ ¼ b. Then, if

b2ðθÞ � b ) βðθÞ � βðθ	Þ:

It follows from Theorem 1 that, under the restrictions b1ðθÞ � b or b2ðθÞ � b, the LFCs
θ	 ¼ ð0; . . . ;0; ba=ða� 1ÞÞ0 or θ	 ¼ ð�b=2; . . . ;0; b=2Þ0, respectively, will be detected with minimal power.
In particular, Hayter and Liu [15, 16] compute the LFCs of the ANOVA-F-test under both restrictions b1ðθÞ
and b2ðθÞ, respectively. It turns out that both the ANOVA and the MCTP have the same LFCs. The
comparisons of the powers to detect their LFCs will be investigated in Section 3.1.

3.1 Numerical comparisons

The computations of the exact powers of both procedures to detect their LFCs under the restrictions b1ðθÞ
and b2ðθÞ, respectively, are of particular interest. In Figure 1, the exact power curves (type-I error level
α ¼ 5%) of both procedures for a ¼ 3; 4; 5 levels with sample sizes ni;5; 10; 15; 20 are displayed (restriction
b1ðθÞ upper row; restriction b2ðθÞ lower row).

It can be readily seen from Figure 1 that the powers of the ANOVA and the MCTP to detect their LFCs
appear to be equal. Under the restriction b1ðθÞ, the MCTP has a slightly higher power than the ANOVA.
Hence, by offering more informations in terms of local test decisions and SCI, MCTPs are preferably applied
for statistical inferences.
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Next, we compute the minimal required sample size to detect the LFCs for a given difference b ¼ 0:9,
different power levels 1� βðθ	Þ, and different type-I error levels α ¼ 0:01;0:05;0:1 [20] and [22]. The results
under the restriction b1ðθÞ for the ANOVA, Grand-mean-type, and Tukey-type MCTP, respectively, are given
in Table 1.

Table 1 shows that slightly smaller sample sizes are required to detect the LFC using the Grand-mean-
type MCTP than with the ANOVA, particularly for increasing numbers of factor levels and decreasing α
under the restriction b1ðθÞ. For the Tukey-type MCTP, no homogeneous behavior can be detected. In Table 2,
the minimal required sample sizes for the LFC detection under the restriction b2ðθÞ are displayed. The
minimal sample size to detect the LFC using the ANOVA is slightly smaller than using the Grand-mean-type
MCTP. The smallest sample size is revealed with the Tukey-type MCTP.

3.2 Power investigations for selected alternatives

The LFCs provide only two possible candidates among an infinite number of alternatives. In this section, we
investigate the powers of the two procedures to detect different kinds of alternatives, namely

● alternative 1: θ ¼ ðb;0; . . . ;0; bÞ0
● alternative 2: θ ¼ ðb;0; . . . ;0; 2 � bÞ0
● alternative 3: θ ¼ ð�b;0; . . . ;0; 2 � bÞ0

with varying sample sizes n 2 f5; 10; 15; 20g, numbers of factor levels a 2 f3; 4; 5g, and varying values of
b;0 � b � 2. The results are displayed in Figure 2. It can be readily seen from Figure 2 that the powers of
both procedure particularly depends on the chosen kind of alternative. The ANOVA seems to be more
powerful in terms of trend patterns (alternative 1 and alternative 2), while being slightly less powerful for
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ANOVA
MCTP

Power comparisons, a = 3, Restriction b1 Power comparisons, a = 4, Restriction b1 Power comparisons, a = 5, Restriction b1

Power comparisons, a = 3, Restriction b2 Power comparisons, a = 4, Restriction b2 Power comparisons, a = 5, Restriction b2
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Figure 1 Power comparisons (type-I error level α ¼ 5%) of the ANOVA and MCTP using the Grand-mean-type contrasts in eq. [2]:
Restriction b1 upper row; Restriction b2 lower row.
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umbrella alternatives (alternative 3). Finally, we investigate the powers of the procedures to reject a point
alternative of the form

● alternative 4: θ ¼ ð0;0; . . . ;0; 1:35Þ0
● alternative 5: θ ¼ ð1:15;0; . . . ;0; 1:15Þ0

with varying numbers of groups a 2 f3; . . . ; 50g and sample size n ¼ 10. The results are displayed in
Figure 3. It follows from Figure 3 that the powers of the ANOVA to reject the two chosen alternatives are
monotonically decreasing in a, while the powers of the MCTP are nearly constant in a.

Table 2 Minimal sample sizes of the ANOVA FC in eq. [3], MCTP T with Grand-mean contrasts C in eq. [2], and Tukey-type MCTP

in eq. [6] for given b ¼ 0:9, and restriction b2ðqÞ ¼ max
1 � i; j � a

θi � θj
�� ��.

a ¼ 3 a ¼ 4 a ¼ 5

α 1� β T(2) FC T(6) T(2) FC T(6) T(2) FC T(6)

0.01 0.60 26.52 26.00 25.51 30.04 29.00 28.13 32.62 32.00 30.08
0.70 31.21 31.00 29.94 35.20 34.00 32.88 38.00 37.00 35.01
0.80 37.20 36.00 35.59 41.77 40.00 38.78 44.89 43.00 41.2
0.90 46.35 45.00 44.25 51.60 49.00 47.88 55.34 53.00 50.65
0.95 54.70 53.00 52.11 60.60 58.00 56.08 64.64 62.00 59.13

0.05 0.60 16.67 17.00 16.41 19.29 19.00 18.60 21.26 21.00 20.29
0.70 20.44 20.94 20.07 23.49 23.00 22.59 25.78 25.00 24.51
0.80 25.34 25.00 24.81 28.91 28.00 27.72 31.54 31.00 29.89
0.90 33.01 33.00 32.23 37.28 36.00 35.65 40.42 39.00 38.19
0.95 40.10 40.00 39.06 44.97 44.00 42.89 48.51 47.00 45.75

0.10 0.60 12.45 13.00 12.34 14.59 15.00 14.23 16.26 16.00 15.67
0.70 15.75 16.00 15.62 18.33 18.00 17.81 20.29 20.00 19.52
0.80 20.12 20.00 19.89 23.22 23.00 22.49 25.53 25.00 24.49
0.90 27.03 27.00 26.65 30.84 30.00 29.80 33.63 33.00 32.2
0.95 33.50 33.00 32.95 37.88 37.00 36.57 41.11 40.00 39.28

Table 1 Minimal sample sizes of the ANOVA FC in eq. [3], Grand-mean-type MCTP T with C in eq. [2], and Tukey-type MCTP in eq.
[6] for given b ¼ 0:9, and restriction b1ðθÞ ¼ max

1 � i � a
θi �θ�
�� ��

a ¼ 3 a ¼ 4 a ¼ 5

α 1� β T(2) FC T(6) T(2) FC T(6) T(2) FC T(6)

0.01 0.60 9.59 10.00 10.00 10.97 12.00 11.94 11.88 14.00 13.29
0.70 11.02 11.86 11.54 12.68 14.00 13.81 13.75 16.00 15.40
0.80 12.92 13.17 13.54 14.80 16.00 16.24 16.11 18.00 18.07
0.90 15.78 16.00 16.60 18.15 20.00 19.89 19.71 22.00 22.17
0.95 18.39 19.00 19.35 21.16 23.00 23.24 22.96 26.00 25.83

0.05 0.60 6.25 7.00 6.33 7.35 8.00 7.75 8.15 9.00 8.72
0.70 7.42 8.00 7.62 8.77 10.00 9.25 9.73 11.00 10.45
0.80 9.00 9.06 9.23 10.64 12.00 11.25 11.77 13.00 12.68
0.90 11.45 12.00 11.76 13.51 15.00 14.35 14.92 17.00 16.14
0.95 13.71 14.00 14.13 16.16 17.00 17.21 17.80 20.00 19.31

0.10 0.60 4.74 5.00 4.80 5.73 6.00 5.90 6.41 7.00 6.71
0.70 5.81 6.00 5.91 7.00 8.00 7.25 7.86 9.00 8.25
0.80 7.23 8.00 7.33 8.69 9.00 9.03 9.74 11.00 10.27
0.90 9.45 10.00 9.64 11.35 12.00 11.84 12.66 14.00 13.41
0.95 11.55 12.00 11.76 13.80 15.00 14.46 15.37 17.00 16.33
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Figure 2 Power comparisons (type-I error level α ¼ 5%) of the ANOVA and MCTP using the Grand-mean-type contrasts in eq. [2]
to detect alternative 1 (upper row), alternative 2 (middle row), and alternative 3 (lower row).
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Figure 3 Power comparisons (type-I error level α ¼ 5%) of the ANOVA and MCTP using the Grand-mean-type contrasts in eq. [2]
to detect alternative 4: θ ¼ ð0;0; . . . ;0; 1:35Þ0 and alternative 5: θ ¼ ð1:15;0; . . . ;0; 1:15Þ0, each with n ¼ 10, respectively.
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4 Discussion

ANOVA procedures are commonly applied in statistical practice, when more than two samples are compared.
They can only be used, however, to test the global null hypothesis, which is not often the main question of the
practitioners. Specific informations for the local group levels in terms of multiple contrasts, adjusted p-values,
and SCI are of particular practical importance. Bretz et al. [1] proposed exact MCTP and SCI which allow for
arbitrary user-defined contrasts, e.g. Tukey-type [12], Dunnett-type [11], or even changepoint comparisons.
Adjustedp-values andSCI for pre-defined or user-defined contrasts can be easily estimated using theRpackage
multcomp [17] and mvtnorm [18]. These procedures provide local informations as well as SCI as required by
international regulatory authorities. Thus, from a practical point of view, they are preferably applied for
making statistical inferences. Since also both the MCTPs and the ANOVA-type procedures can be used to test
the same overall null hypothesis, the remaining question is “Howmuch is the price in terms of a loss in power”
which needs to be paid for the additional informations offered by the MCTP. For the set of all possible kinds of
alternatives, the ANOVA is a uniformlymost powerful unbiased and invariant test procedure. In this article, we
compared the exact power of both the MCTP and the ANOVA and we computed their LFCs to reject the global
null hypothesis under two different restrictions. It turned out that both kinds of procedures have the same LFCs
under the restrictions b1ðθÞ and b2ðθÞ, respectively. Exact power calculations additionally showed that the
power curves of both tests are equal. This gives a reason to claim that MCTPs are not inferior to the ANOVA.
Obviously, as the LFCs are a small subset of two alternative configurations among an infinite number of
possible candidates, the question “Are MCTPs superior to the ANOVA?” cannot be answered. The ANOVA is
sensitive to many shapes – even for convex and concave mean profiles – whereas the MCTPs are mostly
sensitive to the pre-specified kind of alternative. The ANOVA, however, cannot provide the information which
factor levels cause the statistical difference. Moreover, MCTPs also provide directional decisions, whereas the
quadratic form of the F-test provides only two-sided decisions.

We restricted our analysis to one-way normal designs with homoscedastic variances. The investigation
of higher-way layouts, e.g. two-way ANOVA models, analysis of covariance models, etc., will be part of
future research.

Appendix

Proof of Theorem 1

The proof follows the same ideas as the proof of Theorems 1 and 2 in Hayter and Liu [15]. By conditioning on
the value of the random variable s2, it is apparent that for any θ; θ	 2 R

a,

WcðθÞ � Wcðθ	Þ "c 2 R 2) βðθ	Þ � βðθÞ;

where the function WcðθÞ for θ 2 Ra and c 2 R is defined as

WcðθÞ ¼ PðjXi � X�j � c; i ¼ 1; . . . ; aÞ:

Here, Xi; i ¼ 1; . . . ; a denote independent normal random variables with variances 1=n and means θi,
respectively. Note that WcðθÞ is the multivariate Nðθ;RÞ distribution function, which can be computed by
using the corresponding ða� 1Þ-variate regular multivariate normal distribution. Now, for any c 2 R , we
have the following four properties for the function WcðθÞ:

1. WcðθÞ ¼ Wcð�θÞ.
2. Wcðθþ λ1Þ ¼ WcðθÞ, λ 2 R .
3. WcðπðθÞÞ ¼ WcðθÞ, where the operator π permutes coordinates.
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4. WcðπðθÞÞ is log-concave [19], i.e. for 0 � γ � 1, and for all θ; θ	 2 Ra,

Wcðγθþ ð1� γÞθ	Þ � W γ
cðθÞW1�γ

c ðθ	Þ:

The log-concavity of WcðθÞ implies by induction that for any m 2 N

5. Wcð
Pm

i¼1 γiθðiÞÞ � Wcðθð1ÞÞ, where γi � 0,
Pm

i¼1 γi ¼ 1 and Wcðθð1ÞÞ ¼ � � � ¼ WcðθðmÞÞ:
6. Properties 1 and 5 imply that WcðρθÞ � WcðθÞ for all jρj � 1.

Proof of Theorem 1.1

Suppose that b1ðθÞ ¼ θi � θ� ¼ eb � b. Let θðiÞ; i ¼ 1; . . . ; ða� 1Þ! denote the vectors obtained by permuting

θ1; . . . ; θa�1 and leaving θa in place. Let θa ¼ 1
a�1

Pa�1
i¼1 θi and note that θa � θa ¼ a

a�1 ðθa � θÞ ¼ a
a�1
eb. Now,

by properties 1–6, it follows that for any c 2 R ,

WcðθÞ �
3:; 5:

Wc
1

ða�1Þ!
Pða�1Þ!

i¼1
θðiÞ

 !
¼ Wcðθa; . . . ; θa; θaÞ¼2: Wcð0; . . . ;0; θa � θaÞ

¼ Wc 0; . . . ;0; a
a�1
eb� 	

�6: Wcðθ	Þ. □

Proof of Theorem 1.2

Suppose that b2ðθÞ ¼ θa � θ1 ¼ eb � b. Let θðiÞ; i ¼ 1; . . . ; ða� 2Þ! denote the vectors obtained by permuting
θ2; . . . ; θa�1 and leaving θ1 and θa in place. Let θ1a ¼ 1

ða�2Þ
Pa�1

i¼2 θi. Then, by properties 1–6, it follows that for
any c 2 R ,

WcðθÞ �
3; 5

Wc
1

ða�2Þ!
Pða�2Þ!

i¼1
θðiÞ

 !
¼ Wcðθ1; θ1a; . . . ; θ1a; θaÞ

¼1;3W1=2
c ðθ1; θ1a; . . . ; θ1a; θaÞ �W1=2

c ð�θa;�θ1a; . . . ;�θ1a;�θ1Þ

�4 Wc
1
2 θ1; θ1a; . . . ; θ1a; θa

 �þ 1

2 �θa;�θ1a; . . . ;�θ1a;�θ1

 �
 �

¼ Wc � 1
2
eb;0; . . . ;0; 12eb� 	

�6 Wcðθ	Þ. □

The proof for Tukey-type comparisons is very similar and is, therefore, omitted, see Hayter and Liu [15].
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