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A Dunnett-Type Procedure for Multiple
Endpoints

Mario Hasler and Ludwig A. Hothorn

Abstract

This paper describes a method for comparisons of several treatments with a control,
simultaneously for multiple endpoints. These endpoints are assumed to be normally distributed
with different scales and variances. An approximate multivariate t-distribution is used to obtain
quantiles for test decisions, multiplicity-adjusted p-values, and simultaneous confidence intervals.
Simulation results show that this approach controls the family-wise error type I over both the
comparisons and the endpoints in an admissible range. The approach will be applied to a
randomized clinical trial comparing two new sets of extracorporeal circulations with a standard for
three primary endpoints. A related R package is available.

KEYWORDS: many-to-one comparison, multiple endpoints, multivariate t-distribution, family-
wise error
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1 Introduction

Randomized clinical trials and pre-clinical studies, designed for the compari-
son of several treatments with a placebo or a control group, often do not cover
only one single endpoint (variable) but many correlated endpoints. The scale
of these endpoints is often different. For example, in a randomized clinical
trial (Kropf, Hommel, Schmidt, Brickwedel, and Jepsen, 2000), two new ex-
tracorporeal circulation sets were compared with a standard set for the three
primary endpoints thrombocyte count, thrombocyte activity ADP and throm-
bocyte activity TRAP. Or in an immuno-toxicological inter-laboratory study
(Schulte, Althoff, Ewe, and Richter-Reichhelm, 2002), immuno-toxicity end-
points were considered for a comparison of three dose levels with a zero dose
control. The experimental goal is not only to clarify, which treatment groups
differ, but also on which endpoints. Hence, it is not a priori clear, for which
endpoints differences between the treatment groups can be expected. These
endpoints must be detected by the analysis a posteriori, so that they must be
evaluated commonly – not separately.

Multiplicity adjustment must take both the number of endpoints and
the common treatment comparisons into account. That increases the conser-
vatism of the elementary decisions additionally. Thus, the first strategy is to
reduce the number of endpoints to the smallest possible number that is neces-
sary, and that still provides the main information about the data (Neuhäuser,
2006). Second, it is useful to divide the endpoints into primary and secondary
ones. In this spirit, the guideline on biostatistics of the ICH (ICH E9 Expert
Working Group, 1999) recommends the selection of one primary endpoint.
However, in some clinical trials, a claim on several primary endpoints is in-
tended. A possible objection is that such a classification of endpoints according
to their importance can be somewhat arbitrary. Like the first, this strategy
also reduces the dimension of the problem, but the question, how to handle
multiple primary endpoints in multi-armed trials, remains. The statistical
analysis for these endpoints must control the family-wise error type I (FWE)
over all of them. On the other hand, their correlations are important. First,
the degree of conservatism of the elementary decisions is reduced by taking
the correlations into account. Second, effects may be erroneously ignored or
masked, when analyzing the endpoints separately. And third, the degree of
correlation is essential. For example, highly correlated endpoints do not give
the same amount of information about the data as uncorrelated ones.

According to the guideline of the ICH (ICH E9 Expert Working Group,
1999), “Estimates of treatment effects should be accompanied by confidence in-
tervals, whenever possible...”. Stepwise procedures - like those of Imada and
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Douke (2007) or Cohen, Sackrowitz, and Xu (2008) - generally have the draw-
back that no meaningful simultaneous confidence intervals (SCIs) are available.
Imada and Douke (2007, 2008) and Cohen et al. (2008) additionally assume
known covariances, which is hardly met in practice. Simpler procedures (Holm,
1979, Hochberg, 1988, Hommel, 1988) yield conservative and even biased test
decisions, because the information about correlations of the endpoints is not
exploited, or the correlations are assumed non-negative, respectively. Gate-
keeping procedures (Bauer, 1991, Dmitrienko, Offen, and Westfall, 2003) suffer
from similar drawbacks. The T 2 test of Hotelling (1951) takes correlations into
account, but because of a square sum test statistic it is non-directional and
hence not meaningful in many application areas. Furthermore, the test con-
clusions are merely global ones in the sense that they cannot be attributed
to single endpoints. Stabilized alternatives to the T 2 test, using linear scores
(Kropf, Hothorn, and Läuter, 1997), also suffer from that drawback. Seo and
Nishiyama (2008) consider SCIs for multiple comparisons among mean vec-
tors from the multivariate normal populations, but these intervals are also
conservative.

The many-to-one comparison according to Dunnett (1955) and related
SCIs provide test decisions, and parameter estimation, respectively, for the
comparisons of treatments versus a control. The FWE is maintained with size
α, and correlations between the comparisons are taken into account. However,
this procedure is limited to comparisons of treatments on a single endpoint
so far. A naive approach would obviously be to apply the Dunnett procedure
for all the endpoints separately and to adjust for the multiple endpoints by
methods of Holm (1979) or Hommel (1988). However, such an approach would
also not exploit the correlations of the endpoints.

This article presents an extension of the Dunnett procedure for mul-
tiple endpoints, where the correlations of the endpoints are explicitly taken
into account. In Section 2, the testing problem is formulated, an approximate
distribution for the test statistics is derived, and SCIs are presented. Section
3 shows results of simulations concerning the FWE for several numbers and
correlations of endpoints, respectively. Some further aspects of the new pro-
cedure are considered in Section 4. We give an example in Section 5 and end
with our conclusions in Section 6.

2 Testing problem and test procedure

For l = 0, . . . , q, i = 1, . . . , k and j = 1, . . . , nl, let Xlij denote the jth obser-
vation on the ith endpoint under the lth treatment, where l = 0 represents
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the control and
∑q

l=0(nl − 1) ≥ k. The vectors (Xl1j, . . . , Xlkj)
′ are mutu-

ally independent and follow k-variate normal distributions with mean vectors
µl = (µl1, . . . µlk)

′ and unknown covariance matrices Σl ∈ Rk×k. We assume
possibly different variances and covariances for the endpoints, but the same
covariance matrices for all treatments, i.e., Σ0 = · · · = Σq = Σ = (σii′)i,i′ .
Thus,

{Xlij : i = 1, . . . , k} ∼ ⊥Nk(µl,Σ) (l = 0, . . . , q, j = 1, . . . , nl).

Let X̄ l = (X̄l1, . . . , X̄lk)
′ and Σ̂l be the sample mean vector and the sample

covariance matrix of the endpoints for a fixed treatment, respectively, with

X̄li =
1

nl

nl∑
j=1

Xlij (l = 0, . . . , q).

The pooled sample covariance matrix Σ̂ = (σ̂ii′)i,i′ is given by

Σ̂ =

∑q
l=0(nl − 1)Σ̂l∑q
l=0(nl − 1)

with the estimates σ̂ii′ (1 ≤ i, i′ ≤ k) for the covariances of the endpoints. The
diagonal elements, required for the test procedure we will describe, are

σ̂ii = S2
i =

(n0 − 1)S2
0i + · · ·+ (nq − 1)S2

qi

n0 + · · ·+ nq − q − 1
(i = 1, . . . , k)

with

S2
li =

1

nl − 1

nl∑
j=1

(Xlij − X̄li)
2 (l = 0, . . . , q, i = 1, . . . , k).

From the pooled sample covariance matrix Σ̂, we then derive the estimate R̂
of the unknown common correlation matrix of the multiple endpoints R =
(ρii′)i,i′ .

The objective of this paper is the testing of the hypotheses

H
(li)
0 : ηli ≤ δi (l = 1, . . . , q, i = 1, . . . , k), (1)

where ηli = µli − µ0i are the differences to control, and δi ∈ (−∞,∞) are
endpoint-specific thresholds. In many applications, δi = 0 for all i. The
method described here is sufficiently general to allow for both comparison-
specific and endpoint-specific thresholds δli ∈ (−∞,∞). If the test direction
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is to be reversed for some endpoints, the corresponding test statistics have to
be multiplied by minus one. The testing problem (1) is a union-intersection-
test because the overall null hypothesis of interest can be expressed as an
intersection of the local null hypotheses, i.e.,

H0 =

q⋂
l=1

H
(l)
0 =

q⋂
l=1

{
k⋂
i=1

H
(li)
0

}
. (2)

This means that the overall null hypothesis H0 is rejected if and only if a
local null hypothesis H

(li)
0 is rejected for at least one treatment on at least one

endpoint.
The test of the hypotheses (1) will be based on the test statistics

Tli =
X̄li − X̄0i − δi
Si
√

1
nl

+ 1
n0

(l = 1, . . . , q, i = 1, . . . , k).

The vectors T l = (Tl1, . . . , Tlk)
′, containing the test statistics for the lth com-

parison on all endpoints, can be reshaped to

T l =
Yl1√
U1/ν

, . . . ,
Ylk√
Uk/ν

)′
(l = 1, . . . , q),

where under H
(l)
0 , the vector (Yl1, . . . , Ylk)

′ follows a k-variate normal distribu-
tion with the correlation matrix R. The U1, . . . , Uk are dependent χ2 variables
with

ν =

q∑
l=0

(nl − 1)

degrees of freedom. Note that U1, . . . , Uk are different random variables, but
they are identically distributed. For that reason, the distribution of T l under
H

(l)
0 is not among the standard distributions discussed in textbooks. Even

the definition of a multivariate t-distribution of an appropriate generality is
an open problem. A generalized t-distribution has been derived analytically
by Siddiqui (1967) only in the bivariate case, representing the situation of two
endpoints. A multivariate extension would require the joint distribution of
U1, . . . , Uk. An approximation to this distribution in the equicorrelated case is
given by Kotz, Balakrishnan, and Johnson (2000); this approximation is exact
in the bivariate case.

If assuming a known covariance matrix Σ for the data, T l is a multivari-
ate normal vector, but in the case of unknown (co-) variances, this assumption
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leads to supremely liberal test decisions. However, the distribution can be
approximated by a k-variate t-distribution with ν degrees of freedom and the
correlation matrix R, i.e.,

T l
appr.∼ tk(ν,R).

Consequently, under H0, the vector of all test statistics,

T = (T ′1, . . . ,T
′
q)
′ = (T11, . . . , Tli, . . . , Tqk)

′,

follows approximately a qk-variate t-distribution with ν degrees of freedom
and a correlation matrix, denoted by R̃, i.e.,

T
appr.∼ tqk(ν, R̃). (3)

The correlation matrix R̃ is given by

R̃ = (Rll′)l,l′ =


R11 R12 . . . R1q

R12 R22 . . . R2q
...

...
. . .

...
R1q R2q . . . Rqq

 .

The submatrices Rll′ = (ρll′,ii′)i,i′ describe the correlations between the lth
and the l′th comparison for all endpoints. Their elements are

ρll′,ii′ =


ρii′ , l = l′

ρii′
1√(

n0
nl

+1
)(

n0
nl′

+1

) , l 6= l′ (l = 1, . . . , q; i, i′ = 1, . . . , k).

(4)
For i = i′, we recover the correlations of the Dunnett procedure (Dunnett,
1955). Hence, the conventional case of a single endpoint (k = 1) is a special
case of the method described in the present paper. Furthermore, focusing on
one fixed comparison (l = l′), the structure of the correlation matrix simplifies
according to ρll′,ii′ = ρii′ and Rll = R for all l = 1, . . . , q. Note that neither
the matrix R̃ nor the matrix Rll′ has a product correlation structure, i.e., the
elements do not factorize. Also, the common correlation matrix of the multiple
endpoints R is unknown and must be estimated. We conclude that, under H0,

T
appr.∼ tqk(ν,

ˆ̃R), (5)

where ˆ̃R is the estimation of R̃.
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The decision rule for testing problem (1) is to reject H
(li)
0 for each

difference ηli with

Tli > tqk,1−α(ν, ˆ̃R),

where tqk,1−α(ν, ˆ̃R) is a lower (1 − α)-quantile of the related qk-variate t-
distribution. According to Gabriel (1969), this procedure is coherent and
consonant with respect to the family of hypotheses induced by (1) and (2).
Adjusted p-values pli for the lth comparison on the ith endpoint are given by

pli = 1−
∫ t∗li

−∞
. . .

∫ t∗li

−∞
tqk(ν,

ˆ̃R; t) dt11 . . . dtqk (l = 1, . . . , q, i = 1, . . . , k),

where tqk(ν,
ˆ̃R; t) is the related density function, and t∗li is the observed value

for test statistic Tli. For the computation of the quantiles and p-values, one
may resort to the numerical integration routines of Genz and Bretz (2002) and
Bretz, Genz, and Hothorn (2001), which are not restricted to special correla-
tion structures. They are available in the package mvtnorm (Genz, Bretz, and
port by T. Hothorn, 2008, Hothorn, Bretz, and Genz, 2001) of the statistical
software R (2009).

Users are interested not only in testing but also in estimating the dif-
ferences ηli (l = 1, . . . , q, i = 1, . . . , k). SCIs are a method to handle both
tasks. The lower limits of the approximate (1−α)100% SCIs for (η11, . . . , ηqk)

′

are hence given by

η̂lowerli = X̄li − X̄0i − tqk,1−α(ν, ˆ̃R)Si

√
1

nl
+

1

n0

(l = 1, . . . , q; i, i′ = 1, . . . , k).

Hence, statistical problem (1) can also be decided as follows: For a specified

level α, we reject H
(li)
0 for each difference of means ηli with

η̂lowerli > δi.

Note that these intervals do not have the same widths. This is because the
intervals depend on the sample variances S2

i , which are different for the end-
points.

3 Simulations concerning the FWE

To derive the exact distribution of T would be a challenging problem and we
have chosen in this paper to use a simple approximation based on the familiar
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multivariate t-distribution. This difficulty stems from the fact that the end-
points have different variances and that their correlations are unknown and
must be estimated (approximations (3) and (5)). Therefore, a validation was
done by simulations. Three and five treatments, respectively, have been com-
pared in a simulation study. The first treatment is regarded as the (negative)
control. The study had different numbers of endpoints with related expected
values, i.e., µl = (10, 100) for 2 endpoints, µl = (0.1, 1, 10, 100) for 4 end-
points, and µl = (0.05, 0.1, 0.5, 1, 5, 10, 50, 100) for 8 endpoints, respectively
for all treatments l = 0, . . . , q. In principle, such settings can only prove the
control of the FWE in the weak sense. However, conclusions about the strong
control are also allowed, since the test procedure is a union-intersection-test,
and the same critical value is used for all comparisons. The endpoints have
equicorrelations ρmin, 0, 0.5, 1.1 The standard deviations are 0.25µl for all
treatments. The sample size is 20 for each endpoint of each treatment. The
FWE has been simulated at a nominal level of α = 0.05. The simulation re-
sults have been obtained from 10000 simulation runs each and with the starting
seed 10000 using a program code in the statistical software R (2009), package
mvtnorm (Genz et al., 2008, Hothorn et al., 2001) and SimComp (Hasler, 2009).

Tables 1 and 2 show the simulated α-level for q = 2 and q = 4 non-
control treatments, respectively. In addition to the new procedure, using an
approximate multivariate t-distribution, two further versions have been simu-
lated. The first line for a fixed number of endpoints represents the new method
(mvt) based on the approximation by a multivariate t-distribution. The second
line represents the same procedure but assuming known covariances (mvnorm).
This assumption is hardly met in practice, of course, and it leads to a liberal
behavior (ranges from 0.050 to 0.067), because a multivariate normal distri-
bution is applied instead. The third line (Bonf) is according to a complete
(univariate) Bonferroni adjustment, which is known to produce conservative
test decisions (ranges from 0.006 to 0.048). It becomes more conservative for
increasing correlations and an increasing number of endpoints. In general, the
new procedure (mvt) maintains the α-level. The very slight variation around
the nominal α = 0.05 (ranges from 0.046 to 0.055) is always bounded by the
two previous methods. (The only exception in Table 1 for k = 2 endpoints
with correlation one is obviously attributed to numerical reasons only.)

On the other hand, according to Xu, Nuamah, Liu, Lim, and Sampson
(2009) and Liu, Hsu, and Ruberg (2007), applying multivariate t-distributions
in the context of multiple endpoints and using the method of Genz and Bretz
(2002) may lead to slightly liberal test decisions. We could not support that

1The minimal equicorrelation depends on the dimension k by ρmin = −1/(k − 1).
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Table 1: FWE of one-sided Dunnett tests for q = 2 non-control treatments,
several numbers of endpoints, several equicorrelations and adjustment meth-
ods; α = 0.05.

Correlations
Endpoints Method

ρmin 0 0.5 1
mvt 0.051 0.049 0.052 0.055

k = 2 mvnorm 0.058 0.059 0.057 0.054
Bonf 0.046 0.045 0.044 0.024
mvt 0.051 0.053 0.050 0.052

k = 4 mvnorm 0.060 0.059 0.058 0.054
Bonf 0.047 0.048 0.038 0.011
mvt 0.046 0.046 0.051 0.050

k = 8 mvnorm 0.065 0.067 0.059 0.050
Bonf 0.044 0.042 0.037 0.007

conclusion in general. The authors are right in the case of (very) small sample
sizes. Hence, in this situation the procedure is unreliable and cannot be rec-
ommended without caution. This problem is at least bounded by the demand
on the degree of freedom to be greater or equal to the number of endpoints,
ν =

∑q
l=0(nl − 1) ≥ k. Also, we believe that this risk is acceptable compared

to the advantages of the method.

4 Extensions

The procedure presented above can be generalized to other cases of which we
now give a short overview.

The many-to-one comparison according to Dunnett (1955) is a special
case of multiple contrast tests, which allow the evaluation of a broad class of
linear testing problems. The procedure presented can also be generalized to
other multiple contrast tests such as the all-pair comparison of Tukey (1953),
the trend test of Williams (1971) and Bretz (2006), or user-defined contrast
tests.

Multiple contrast tests and related SCIs can be formulated not only for
differences but also for ratios of means. That allows testing for relative thresh-
olds, which are often easier to interpret. The test for ratios of means includes
the commonly used approach for differences by the special case of relative
thresholds equal to one (Dilba, Bretz, Guiard, and Hothorn, 2004). Moreover,
related SCIs are comparable for the different endpoints on the percentage scale,
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Table 2: FWE of one-sided Dunnett tests for q = 4 non-control treatments,
several numbers of endpoints, several equicorrelations and adjustment meth-
ods; α = 0.05.

Correlations
Endpoints Method

ρmin 0 0.5 1
mvt 0.053 0.051 0.049 0.049

k = 2 mvnorm 0.056 0.057 0.059 0.050
Bonf 0.046 0.043 0.038 0.021
mvt 0.052 0.052 0.051 0.048

k = 4 mvnorm 0.059 0.053 0.055 0.054
Bonf 0.045 0.045 0.038 0.011
mvt 0.050 0.052 0.051 0.050

k = 8 mvnorm 0.060 0.064 0.061 0.053
Bonf 0.044 0.045 0.036 0.006

which is particularly helpful for differently scaled endpoints. SCIs for ratios
of means are based on a generalization of the Theorem of Fieller (1954). In
contrast to intervals for differences of means, the correlation matrix R̃ here
depends on the unknown ratios. Dilba et al. (2004) use a plug-in approach
here, which is shown to have a very good performance (in the case of one end-
point). Second, the ratio intervals only exist, if the denominator – representing
the mean of the control group, for example – is significantly greater than zero
(Buonaccorsi and Iyer, 1984). One can hence conclude that the intervals for
differences may be harder to interpret, but they are more reliable in a certain
manner. Anyway, the procedure presented is also extendable to the case of
ratios of means, not only for differences.

A restrictive assumption of our procedure is the equality of the variances
and covariances of the endpoints for different treatments, Σ0 = · · · = Σq = Σ.
Dose finding studies, for example, can have the problem of heteroscedas-
ticity because the variance depends on the dose effects. Multiple contrast
tests, and hence the Dunnett procedure, are also available for heteroscedas-
tic data. Hasler and Hothorn (2008) apply different approximate multivariate
t-distributions with different degrees of freedom according to Satterthwaite
(1946) instead of a joint one. This principle can be adapted to the case
of multiple endpoints. Consequently, qk different approximate qk-variate t-
distributions have to be used, instead of one approximate joint one, to obtain
quantiles or adjusted p-values.

9
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Table 3: Summary statistics for the coagulation parameters of the data set
used in Kropf et al. (2000).

Thromb. count ADP TRAP
Mean of group S 0.872 0.808 0.725
Mean of group H 0.916 0.892 0.796
Mean of group B 0.994 1.020 0.831
Pooled std. dev. 0.251 0.201 0.342

approach, for the situation of heterogeneous variances or correlations, and for
the SCIs. Related results may be requested from the first author.

5 Example

We refer to the data set used in Kropf et al. (2000) (see Table 3). The aim
of this randomized clinical trial was to compare three sets of extracorporeal
circulation in heart-lung machines, which vary in their surface configuration.
The first new version (treatment H) implies a heparine covering of all parts
with blood contact, which is rather expensive. The second one (treatment
B) uses a more economical biocompatible surface configuration. The trial
should show that the new versions H (l = 1) and B (l = 2) are superior to the
standard S (l = 0). Twelve (S and H each) and eleven (B) male adult patients,
scheduled for elective coronary bypass grafting, have been considered in a
double-blind study. The analysis is based on a set of laboratory parameters
restricted to the blood coagulation system, characterized by three primary
endpoints thrombocyte count, thrombocyte activity ADP and thrombocyte
activity TRAP (each as quotient from post- and pre-surgery values). Higher
values indicate a better treatment effect.

The pooled estimated correlations for the three endpoints are given by

R̂ =

 1.000 0.874 0.468
0.874 1.000 0.382
0.468 0.382 1.000



Moreover, the simulations presented in Section 3 are just an extract.
We have also done simulations for many other situations like for the ratio

The differences of interest are

ηli = µli − µ0i (l = 1, 2, i = 1, 2, 3),
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Table 4: Lower limits of the approximate 95% SCIs (and point estimates) per
comparison and coagulation parameter of the data set used in Kropf et al.
(2000).

Comparison Thromb. count ADP TRAP
H − S −0.199 (0.044) −0.111 (0.084) −0.260 (0.071)
B − S −0.127 (0.122) 0.013 (0.212) −0.234 (0.105)

Table 4 shows the lower limits for the related approximate 95% SCIs for the
differences to the control. The values in parentheses are the estimated dif-
ferences. Treatment B shows values significantly greater than those of the
standard S for endpoint ADP. If accepting non-inferiority thresholds of −0.200
(Thromb.count), −0.112 (ADP), and −0.261 (TRAP), then the two new treat-
ments H and B are non-inferior for all endpoints.

The package SimComp (Hasler, 2009) of the statistical software R (2009)
was used to evaluate the example data. The relevant cutout of the original
data set, which was already used in Kropf et al. (2000), can be loaded from
this package, too. For simplicity, additional endpoints have been omitted,
and the names of the endpoints have been simplified. Both the statistical
software R (2009) and the package SimComp (Hasler, 2009) are available at
http://www.r-project.org. The input for the example is

SimCiDiff(data=coagulation,

grp="Group",

resp=c("Thromb.count","ADP","TRAP"),

type="Dunnett",

base=3,

alternative="greater",

covar.equal=TRUE).

and the hypotheses to be tested are given by

H
(li)
0 : ηli ≤ 0 (l = 1, 2, i = 1, 2, 3).
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6 Conclusions

The Dunnett procedure and related SCIs had been restricted to comparisons
on a single endpoint so far. This methodology was extended to the case of
multiple endpoints by means of an approximate multivariate t-distribution. In
this manner, correlations among both the comparisons and the endpoints can
be taken into account. Test decisions – adjusted p-values as well as SCIs –
are available for all comparisons and all endpoints. This is clearly the major
advantage of this procedure. The intervals and tests may be one- or two-sided.
Moreover, extensions are available for the consideration of other multiple con-
trast tests, for ratios of means, and for heterogeneous covariance matrices,
respectively.

The procedure presented maintains the FWE in the strong sense in
a passable range. This was shown by simulations. Possible slight variations
around the nominal FWE α are necessarily bounded by the versions mvnorm
and Bonf considered in Section 3. Furthermore, they are bounded by the
demand on the degree of freedom to be greater or equal to the number of
endpoints (ν =

∑q
l=0(nl − 1) ≥ k). Thus, the procedure is not defined for too

small sample sizes.
Power simulations and comparisons with other methods, which are fre-

quently presented in the literature, are not provided. Especially Gatekeeping
procedures may be expected to have a higher power. However, against the
background of the functionality of the new method, a power comparison with
existing methods is not really feasible or fair. Nevertheless, power is an impor-
tant aspect. An approach for a global power estimation, based on a non-central
multivariate t-distribution, is given in Hasler (2010) as well as a power com-
parison (for q = 1 non-control group) with a t-test-based bootstrap approach
of Pollard, Ge, Taylor, and Dudoit (2007), available in R (2009).

The package SimComp (Hasler, 2009) of the statistical software R (2009)
provides calculations concerning simultaneous tests and confidence intervals
for both difference- and ratio-based contrasts of normal means for data with
possibly more than one primary endpoint. The covariance matrices - contain-
ing the covariances between the endpoints - may be assumed to be equal or
possibly unequal for the different groups. This package was used to analyze
the example presented in Section 5.

For the related p-values use the command SimTestDiff(), and for ratio-based
testing and intervals SimTestRat() and SimCiRat(), respectively.
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