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Abstract—We prove a new, improved upper bound on the
size of codes C ⊆ {1, 2, 3, 4}n with the property that every
four distinct codewords in C have a coordinate where they all
differ. Specifically, we show that such a code has size at most
26n/19+o(n), or equivalently has rate bounded by 6/19≤0.3158
(measured in bits). This improves the previous best upper bound
of 0.3512 due to (Arikan 1994), which in turn improved the 0.375
bound that followed from general bounds for perfect hashing due
to (Fredman and Komlós, 1984) and (Körner and Marton, 1988).
The context for this problem is two-fold: zero-error list decoding
capacity, where such codes give a way to communicate with no
error on the “4/3 channel” when list-of-3 decoding is employed,
and perfect hashing, where such codes give a perfect hash family
of size n mapping C to {1,2,3,4}.

I. INTRODUCTION

Shannon introduced the concept of zero error capacity of
a discrete noisy channel [1], also referred to as the Shannon
capacity of a graph. Such a channel can be modeled as a
bipartite graph H=(V,W,E), with V corresponding to channel
inputs, W to channel outputs, where (v,w)∈E if w can be
received at the channel output when v is transmitted on the
channel. One can associate a “confusability” graph G=(V,E′)
with such a channel, where (v1,v2)∈E′ if there is a common
output w ∈W such (v1, w), (v2, w) ∈E, so that v1, v2 can
be confused with each other. The zero error capacity of the
channel is the largest asymptotic rate at which information can
be transmitted with no error on the channel, in n independent
uses of the channel for large n. This quantity is also called
the Shannon capacity of the graph G, which is the limiting
ratio of (log2α(Gn))/n where α(Gn) is the size of the largest
independent set in the n’th power Gn of G, where two n-tuples
in V n are adjacent if in every coordinate, they are either equal
or adjacent in G. Lovász proved that the Shannon capacity of
the 5-cycle, which is the smallest non-trivial case, is log2

√
5

by introducing his influential Theta function [2].

In this work, we study the zero error capacity in the
model of list decoding, for a basic channel whose Shannon
capacity is trivially 0. The zero error list decoding capacity was
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introduced by Elias [3]. For a fixed L, the list-of-L zero error
capacity of a channel H is the largest asymptotic rate at which
one can communicate on the channel (over n independent uses
for growing n) so that the decoder can pin down the correct
message to one of at most L possibilities (in other words,
the decoder can output L codewords which must include the
transmitted one). More formally, for a channel H=(V,W,E),
a code C ⊆V n is said to achieve zero error under list-of-L
decoding if for every subset {c(1), c(2), . . . , c(L+1)} of L+ 1
codewords of C, there is a coordinate i such that the symbols
c
(1)
i , c

(2)
i , . . . , c

(L+1)
i don’t share a common neighbor in W .

Equivalently, C is an independent set in the (L+1)-uniform
hypergraph defined on V n where hyperedges correspond to
tuples whose i’th symbols have a common neighbor for every
i. (Note that the case L= 1 corresponds to Shannon’s zero
error capacity.)

The smallest non-trivial case for zero error list decoding
capacity is the 3/2 channel, where V = W = {1, 2, 3} and
(v,w)∈E iff v 6=w. Since every pair of input symbols can
be confused with each other, the Shannon capacity of this
channel is 0. However, there exists a code C⊆{1,2,3}n of
rate R bounded away from 0 (i.e., of size 2Rn) which permits
list-of-2 decoding with no error on the 3/2 channel. The best
known lower bound on R (to our knowledge) approaches
1
4 log2

9
5≈0.212 [4]. There is an easy upper bound of log2(3/2)

on the rate of such a code, which in fact holds for list-of-L
decoding for any fixed L (or even L≤2o(n)); the argument is
just to take a random output sequence w∈Wn and compute
the expected fraction of codewords that are consistent with
receiving w. As a side remark, we mention that the quantity
log2(3/2) equals the zero error capacity for list-of-2 decoding
in the presence of noiseless feedback from the receiver to
sender [3].

The list-of-2 decoding setting for the 3/2 channel is com-
pletely equivalent to a question about perfect hash families. To
achieve zero error with a list of size 2, the code C⊆{1,2,3}n
should have the property that every triple of codewords has a
coordinate where they all differ. The existence of such a code
of cardinality N is thus equivalent to the existence of a perfect
hash family of size n that maps a universe of size N to {1,2,3}
such that every three elements of the universe are mapped in a
one-one fashion by at least one hash function. In this setting,
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we have a lower bound of log3/2N on the size of such hash
families, and it is a longstanding open problem to improve
this. The bounds of Fredman and Komlós [5] and follow-
ups (discussed further in Section II), give improvements for
hashing into sets of size 4 and higher, but do not apply for
hashing into {1, 2, 3}. It remains a major open question to
improve the bound for the 3-element alphabet.

In this work, we address the perfect hashing problem into a
range of size 4, or equivalently the zero error list-of-3 decoding
capacity for the 4/3 channel where V =W = {1,2,3,4} and
(v,w)∈E iff v 6=w. For this channel, the zero error capacity
is clearly 0 for list size 2, since any three input symbols share
a common output symbol. Let us say that C⊆{1,2,3,4}n is
a 4/3 code if for every four distinct codewords c(1), c(2),
c(3), and c(4) of C there is a coordinate i ∈ {1, 2, . . . , n}
for which {c(1)i , c

(2)
i , c

(3)
i , c

(4)
i }={1,2,3,4}. This is the exact

criterion a code needs to meet in order to achieve zero error
on the 4/3 channel with list-of-3 decoding. A simple random
coding argument [4] shows the existence of 4/3 codes of rate
approaching 1

3 log2
32
29 ≈ 0.0473 which is pretty small. The

simple “random received word” argument mentioned above
for the 3/2 channel shows an upper bound on capacity of
log2(4/3) in the case of 4/3 channel (this equals the zero
error capacity with feedback).

In case of the 4/3 channel, an upper bound on capacity
that is smaller than the simple log2(4/3) ≈ 0.415 bound
is known. The results of Fredman and Komlós on perfect
hashing, when specialized to domain size 4, imply an upper
bound of 3/8=0.375 [5]. Körner and Marton [4] improved the
Fredman-Komlós bounds using a hypergraph (as opposed to
graph) covering approach, but did not get an improvement for
alphabet size 4. Arikan improved the capacity upper bound for
the 4/3 channel to 0.3512 [6]. In this work, introducing some
new ideas, we further improve the bound to 6/19<0.3158:

Theorem 1: The size of a 4/3 code C⊆{1,2,3,4}n satisfies
|C|≤26n/19+o(n).

In Section II, we discuss the techniques used in the earlier
works [5], [6] and the novelty in our contribution, while in
Section III we give the proof.

Notation. We call Σ = {1,2,3,4} and, for general integer
n≥1, [n]={1,2,. . .,n}. If x∈Σn then xi is the i-th component
of x and, by extension, x[k] =(x1,x2, . . . ,xk). All logarithms
are to the base 2.

II. BACKGROUND

The previous upper bounds on the rate of 4/3 codes (due
to Fredman and Komlós [5] and Arikan [6]), as well as
our new upper bound, can be based on an information the-
oretic inequality regarding graph covering. This inequality
due to Hansel [7] has been rediscovered several times (see
Krichevskii [8], Katona and Szemerédi [9], Pippenger [10],
Fredman and Komlós [5], Körner and Marton [4]), and is a

special case of the subadditivity property of Körner’s graph
entropy ([11], [12]).

Lemma 2 (Hansel [7]): Let Kr be the complete graph with
vertex set [r]. Let I be a set of indices, and for i∈I , let Gi be
a bipartite graph with vertex set [r]; let τi be the fraction
of vertices in [r] that appear non-isolated in Gi. Suppose⋃

i∈IE(Gi)=E(Kr). Then,∑
i∈I

τi≥ log2 r .

Let us recall how graph covering enters the discussion on 4/3
codes. Fix a 4/3 code C⊆Σn. Let x and x′ be two codewords
in C. Let Kx,x′

be the complete graph with vertex set C \
{x,x′}. For m∈ [n], let Gx,x′

m be the graph with vertex set
C \{x,x′} and edge set

E(Gx,x′

m )={(y,y′) :{xm,x′m,ym,y′m}=Σ} .

It follows immediately from the definition of a 4/3 code that⋃
m∈[n]G

x,x′

m =Kx,x′
; if we denote the fraction of non-isolated

vertices in Gx,x′

m by τm(x,x′), then Hansel’s lemma implies
that ∑

m∈[n]

τm(x,x′)≥ log(|C|−2). (1)

To obtain a good upper bound on the rate of C, one would
like to show that the left hand side of the above inequality is
small. There are two ways in which τm(x,x′) might be small
for a choice of x and x′: (1) if xm =x′m, then τm(x,x′)=0,
so it is advantageous to pick x and x′ that agree on a lot of
coordinates; (2) if xm 6=x′m, then any codeword in C \{x,x′}
that agrees with either x or x′ in the m-th position will appear
isolated in Gx,x′

m , so it is advantageous to pick x and x′ that
take the most popular values in the m-th coordinate.

Fredman and Komlós [5] and Arikan [6] exploit (1) in
different ways, by devising different strategies for choosing
x and x′. We review their approaches below, and pinpoint
how our new analysis departs from theirs.

a) The Fredman-Komlós bound:: The approach of Fred-
man and Komlós [5] amounts to picking x and x′ at random
(without replacement) from C. It can be shown that for
each m, E[τm(x,x′)] is at most 3

8 (1 + o(1)). It then follows
immediately from (1) that

|C|≤2
3
8 (1+o(1))n.

In this approach, the two ways in which τm(x,x′) can be made
small are addressed simultaneously by the random choice of
x and x′. By reducing the problem to hypergraph covering
instead of graph covering, Körner and Marton [4] improve
upon the Fredman-Komlós bound for perfect hashing for
certain values of parameters; however, their method yields no
improvement for 4/3 codes.



b) The Arikan bound:: Arikan’s approach [6], on the
other hand, places greater emphasis on ensuring that x and x′

agree on many coordinates. Indeed, standard bounds in coding
theory let us conclude that codes with non-trivial rate must
have codewords that agree in significantly more coordinates
than randomly chosen codewords. Arikan combines this in-
sight with an ad hoc balancing argument that lets one bound
τm(x,x′) non-trivially even when xm 6=x′m. To obtain the best
bound, one must balance parameters using the best results in
the literature on rate versus distance (e.g., the Plotkin bound)
for codes over {1,2,3,4}. Arikan [6] while using the Plotkin
bound to derive the bound of 0.3512 for 4/3 codes , observes
that it should be possible to derive better bounds using stronger
trade-offs between rate and distance that are now available. In
fact, combining Arikan’s approach with one of the JPL (linear
programming) bounds from Aaltonen [13], we can confirm
using a computer supported calculation that a bound 0.3276
can be derived; perhaps, more complicated calculations can
yield somewhat better bounds.

c) Our contribution:: We combine insights from the
above approaches, but look deeper into how two codewords
with small distance are obtained. In particular, we examine
the standard argument that leads to the Plotkin bound more
closely. This involves fixing a rich subcode of codewords
with a common prefix and picking two distinct codewords
(say, x and x′) at random from this subcode. On the other
hand, instead of concluding that this process on average
yields codewords that agree on many coordinates, we directly
estimate the expected contribution to the left hand side of (1),
that is E[τm(x, x′)]. It is crucial for our proof that we do
not focus on one subcode but average over all of them. We
need a technical balance condition on symbol frequencies in
each codeword position in our formal justification that certain
functions we encounter are concave. A simple calculation,
similar to what Arikan also needed, can be used to justify
this balance assumption. Our calculations do not require any
non-trivial computation and are completely self-contained.

We anticipate, though this is by no means an easy extension,
that further improvements to the bounds may be possible by
combining our approach with ideas underlying the Elias bound
in coding theory. (The Elias bound works by intersecting the
code with Hamming balls rather than subsets with a common
prefix used in the Plotkin bound.) We also hope that our ideas
will renew interest into the many challenges in this area,
including the most significant challenge of obtaining better
upper bounds on the rate of 3/2 codes.

III. RATE UPPER BOUND FOR 4/3 CODES

Let us recap the definition of the central object of interest.

Definition 3: A code C ⊆Σn is said to be a 4/3 code if
for every subset of four distinct codewords x,y,z,w∈C, there
exists a coordinate i∈{1,2,. . .,n} such that {xi,yi,zi,wi}=Σ.

In this section, we will prove our main theorem, restated
below.

Theorem 4: Let C ⊆ Σn be a 4/3 code. Then |C| ≤
26n/19+o(n).

We prove the above theorem in three steps. First, will prove
the theorem under an assumption that no coordinate is very
skewed in terms of the distribution of codeword symbols in
that coordinate (Section III-A). For this we utilize a technical
concavity result which we state and prove in Section III-C.
A simple argument reduces the general case to the situation
where there is no skewed coordinate (Section III-B).

A. The balanced case

For a code C⊆Σn and m∈[n]:={1,2,. . .,n}, let fm∈R4 be
the frequency vector that records for each letter of the alphabet,
the fraction of codewords in C that contain that letter in the
m-th coordinate; that is, for a∈Σ,

fm[a] :=
1

|C|
|{x∈C :xm =a}|. (2)

(Note we suppress the dependence on C in the notation fm
for notational simplicity.)

Lemma 5: Let C ⊆Σn be a 4/3 code (for some n≥ 4).
Suppose for all m∈ [n] and a∈Σ, we have fm[a]≥ 1

6 . Then,
|C|≤26n/19+o(n).

Proof: Let M :=|C|=2R0n, `=dR0n/2− logn−1e, and
S=[n]\ [`]. For each prefix w∈Σ`, consider the subcode

Cw :={z∈C :z[`] =w};

let Mw := |Cw|. Then, C =
⋃

w Cw and M =
∑

wMw. We
partition the set of prefixes into two sets:

Heavy={w :Mw≥n}; Light={w :Mw<n}.

Let C+ =
⋃

w∈HeavyCw, and C−=C \C+. We have,

|C−|≤
∑

w∈Light

Mw≤
∑

w∈Light

n

≤4`n≤4R0n/2− 1
2 logn = |C|/n,

and therefore, for a random z uniformly distributed over C,

Pr[z∈C+]≥1− 1

n
.

Let x and x′ be two random codewords in C+ generated as
follows. First pick x uniformly at random from C+; let w=
x[`]. Next, pick x′ uniformly from Cw \ {x} (which is non-
empty). With this (random) choice of x and x′ consider the
bipartite graph Gx,x′

m with vertex set C \{x,x′} and edge set
{(y, y′) : {xm, x′m, ym, y′m}= Σ}. Since C is a 4/3 code, we
have ⋃

m∈S
Gx,x′

m =Kx,x′
,

and the situation is ripe for using Hansel’s lemma. The fraction
of non-isolated vertices in Gx,x′

m is precisely

τm(x,x′) :=

(
|C|
|C|−2

)
(1− fm[xm]− fm[x′m])1{xm 6=x′m},

(3)



where 1{x[m] 6=x′[m]} is the indicator random variable for
the event x[m] 6=x′[m]. By (1) we have

log2(M−2)≤
∑
m∈S

τm(x,x′).

Taking expectations over the choices of (x,x′), we obtain

log2(M−2)≤
∑
m∈S

E[τm(x,x′)]. (4)

We will estimate each term of the sum separately.

Claim 1: For each m∈S, we have

E[τm(x,x′)]≤
(

3

8

)
(1+o(1)) . (5)

Let us first assume this claim and complete the proof of the
lemma. We have from (4) and the above claim that

log2(M−2)

1+o(1)
≤(n−`)

(
3

8

)
≤
(
n− R0n

2
+log(2n)

)(
3

8

)
≤n

(
1− R0

2

)(
3

8

)
+log(2n)

Recalling that M= |C|=2R0n, the above implies that

R0≤
3

8

(
1− R0

2

)
+o(1) ,

This yields R0≤ 6
19 +o(1), as desired.

We still need to establish Claim 1.

a) Proof of Claim 1: For m∈S, let fm|w be the frequency
vector of the m-th coordinate in the subcode Cw. Note that
EW [fm|W ]=fm if W is the random prefix W=z[`] induced by
a z taken uniformly at random from C. Fix m. Now, for each
w∈Heavy, taking expectations over x,x′ in (3), we obtain,

E[τm(x,x′) |x∈Cw]≤
|C|
|C|−2

· n

n−1

∑
(a,b):a 6=b

fm|w(a)fm|w(b)(1− fm(a)− fm(b)),

where the adjustment by the n
n−1 factor arises because x,x′

are sampled without replacement from Cw, and |Cw|≥n for
w∈Heavy.

For probability vectors f,g∈R4, let

φ(f,g) :=
∑

(i,j):i6=j

f [i]f [j](1−g[i]−g[j]). (6)

We thus have, for w∈Heavy,

E[τm(x,x′) |x∈Cw]≤
(
|C|
|C|−2

)(
n

n−1

)
φ(fm|w, fm). (7)

Let W be the random variable equal to z[`]∈Σ` for a random
z uniformly distributed over C and chosen independently of
x (note that unlike x, which is picked from C+, z is picked

from the full code C). Taking expectations over W in (7), and
conditioning on W ∈Heavy, we have

EW,x,x′ [τm(x,x′) |x∈CW ∧ W ∈Heavy]≤(
|C|
|C|−2

)(
n

n−1

)
EW [φ(fm|W , fm) |W ∈Heavy] . (8)

Now note that the left hand side of (8) is simply
Ex,x′ [τm(x,x′)], so we have

E[τm(x,x′)]

≤
(
|C|
|C|−2

)(
n

n−1

)
EW [φ(fm|W , fm) |W ∈Heavy] .

(9)

Now, using (9)

EW [φ(fm|W , fm)]

≥Pr[W ∈Heavy] ·EW [φ(fm|W , fm) |W ∈Heavy]

≥Pr[z∈C+] ·
(
|C|−2

|C|

)(
n−1

n

)
E[τm(x,x′)] .

As Pr[z∈C+]≥1−1/n, we have

E[τm(x,x′)]≤
(
|C|
|C|−2

)(
n

n−1

)2

EW [φ(fm|W , fm)]

≤ 3

8
(1+o(1)) ,

where the last inequality follows from Lemma 7, which we
state and prove in Section III-C. In our application, we set
fw← fm|w and f← fm; note EW [fm|W ] = fm. This completes
the proof of our claim and the lemma.

Remark 1: There is a technical reason for choosing x,x′

to be uniformly distributed over C+ while W to be over
all prefixes (i.e., Heavy ∪ Light), instead of just removing
C− and only consider the subcode C+. Indeed, removing
C− would introduce a modification of the frequencies fm
and hence the assumption that fm[a] ≥ 1/6 , ∀a would not
hold anymore for the subcode. On the other hand, assuming
balanced frequencies with some safety margin on C, say
fm[a]≥ 1/6 + 1/n on C (as to ensure fm[a]≥ 1/6 on C+)
only moves the technicality to how we deal with the balancing
assumption in Section III-B.

Remark 2: We point out that, despite the same coefficient
3/8 which appears, Claim 1 is not equivalent to the bound
devised by Fredman and Komlós because our x and x′ are
constrained to have common prefix x[`] =x′[`], while they are
picked without replacement from the whole code C in their
approach.

B. Wrapping it up in general

We now remove the restriction that the codeword symbol
frequencies are balanced1.

1A similar argument appears in [6, Lemma 4].



Theorem 6: For all large enough n, if C⊆Σn is a 4/3 code,
then |C|≤26n/19+o(n)

Proof: Fix a code C. We will use Lemma 5. For that, we
must first ensure that the frequency vector for each coordinate
is not too skewed. We ask if there is a coordinate m∈ [n]
and a∈Σ such that fm[a]< 1

6 . If there is such a coordinate
m, we create a new code by deleting all codewords x∈C
for which xm = a, and shortening the remaining codewords
to the indices in [n]\{m}. By repeating this process, starting
with C0=C, we obtain codes C0,C1,. . ., where Ci⊆Σn−i and
|Ci|≥(5/6)|Ci−1|. Suppose the process stops after completing
t steps at which point Ct is obtained. (If the process stops
without completing the first step, then t=0.) Then,

|C0|≤
(

6

5

)t

|Ct| (10)

≤
(

6

5

)t

4n−t

=22n−t(2−log2(6/5))≤22n−1.736t .

If t≥ 0.99n, then this gives |C0| ≤ 20.281n≤ 26n/19 and our
claim holds. On the other hand, if t<0.99n, then we may apply
Lemma 5 to Ct and conclude that |Ct| ≤ 2(6/19)(n−t)+o(n).
Then, using (10), we obtain

|C0|≤
(

6

5

)t

2(6/19)(n−t)+o(n)

≤2(6/19)n−[(6/19)−log2(6/5)]t+o(n). (11)

The right hand side is at most 2(6/19)n+o(n) because the
coefficient of t is negative (since log2(6/5)<6/19).

C. Concavity of φ function

Recall the definition of φ(f,g) given in (6) for probability
vectors f, g ∈R4. We now establish the following concavity
result that was used in the proof of Claim 1 above.

Lemma 7: Let W be a random variable taking values in a
set W . For each w∈W , let fw ∈R4 be a probability vector.
Suppose f :=EW [fw] is such that mina f[a]≥ 1

6 . Then,

EW [φ(fW , f)]≤φ(f, f)≤ 3

8
. (12)

Proof: Let f=〈A,B,C,D〉 (which we treat as a vector).
Let ∆w := fw − f = 〈αw, βw, γw, δw〉. Then ∆w satisfies the
following two conditions.

Ew[∆w]=Ew[fw− f]

=Ew[fw]− f=0;

1 ·∆w =0, (13)

where 0=(0,0,0,0) and 1=(1,1,1,1). Let

M :=(mij : i, j∈Σ)=


0 C+D B+D B+C

C+D 0 A+D A+C
B+D A+D 0 A+B
B+C A+C A+B 0

 .

Note that the off-diagonal entries mij =1− f[i]− f[j]. Then,

φ(fw, f)= fwM ftw
=(f+∆w)M(f+∆w)t

=φ(f, f)+∆wM ft + f M∆t
w +∆wM∆t

w

Since Ew[∆w]=0, when we take expectations over w, the two
middle terms drop out. Thus,

EW [φ(fW , f)]=φ(f, f)+EW [∆WM∆t
W ].

To justify our claim we show that the second term ∆wM∆t
w

is never positive. Let J be the 4×4 all 1’s matrix, and F be
the diagonal matrix with Fii = f[i]. Then,

M=J−FJ−JF −(I−2F ).

By (13), ∆wJ∆t
w, ∆wFJ∆t

w, ∆wJF∆t
w =0; thus,

∆wM∆t
w =−∆w(I−2F )∆t

w

=−
[
(1−2A)α2

w +(1−2B)β2
w

+(1−2C)γ2w +(1−2D)δ2w
]
.

Since, no component of f = 〈A,B,C,D〉 exceeds 1
2 (because

all coordinates of f are at least 1
6 ), the right hand side is never

positive. This establishes the first inequality in (12).

To establish the second inequality, we check that φ(f, f)
takes its maximum value when f = 〈 14 ,

1
4 ,

1
4 ,

1
4 〉, that is, the

maximum is 3
8 . (Indeed, if some two components of f are not

equal, replacing them both by their average will not reduce
φ(f, f).)
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