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Abstract—JavaScript is a common attack vector to probe for
known vulnerabilities to select a fitting exploit or to manipulate
the Document Object Model (DOM) of a web page in a harmful
way. The JavaScripts used in such attacks are often obfuscated
to make them hard to detect using signature-based approaches.
On the other hand, since the only legitimate reason to obfuscate
a script is to protect intellectual property, there are not many
scripts that are both benign and obfuscated. A detector that
can reliably detect obfuscated JavaScripts would therefore be a
valuable tool in fighting JavaScript based attacks. In this paper,
we compare the performance of nine different classifiers with
respect to correctly classifying obfuscated and non-obfuscated
scripts. For our experiments, we use a data set of regular,
minified, and obfuscated samples from jsDeliver and the Alexa
top 5000 websites and a set of malicious samples from MELANI.
We find that the best of these classifiers, the boosted decision tree
classifier, performs very well to correctly classify obfuscated and
non-obfuscated scripts with precision and recall rates of around
99 percent. The boosted decision tree classifier is then used to
assess how well this approach can cope with scripts obfuscated
by an obfuscator not present in our training set. The results
show that while it may work for some obfuscators, it is still
critical to have as many different obfuscators in the training set
as possible. Finally, we describe the results from experiments to
classify malicious obfuscated scripts when no such scripts are
included in the training set. Depending on the set of features
used, it is possible to detect about half of those scripts, even
though those samples do not seem to use any of the obfuscators
used in our training set.

Index Terms—Machine learning; Classification algorithms;
JavaScript; Obfuscated; Malicious

I. INTRODUCTION

JavaScript is omnipresent on the web. Almost all websites
make use of it and there are a lot of other applications,
such as Portable Document Format (PDF) forms or HyperText
Markup Language (HTML) e-mails, where JavaScript plays
an important role. This strong dependence creates attack
opportunities for individuals by using malicious JavaScripts,
which may provide them with an entry point into a victim’s
system. The main functionalities of a malicious JavaScript
are reconnaissance, exploitation, and cross-site scripting (XSS)
vulnerabilities in web applications.

The JavaScripts used in such attacks are often obfuscated to
make them hard to detect using signature-based approaches.

On the other hand, the only legitimate reason to obfuscate
a script is to protect intellectual property. Our evaluation of
the prevalence of such scripts on the Alexa top 5000 home
pages suggests that this is fairly uncommon. One reason for
this might be that a lot of JavaScript code on these pages is
code from JavaScript libraries that are available to the public
anyway. If it is indeed the case that there are not too many
scripts that are both benign and obfuscated, it should be easy
to capture these with a whitelist. A detector that can reliably
detect obfuscated JavaScript code would then be a valuable
tool in fighting malicious JavaScript based attacks. But even
if there would be a lot of obfuscated benign JavaScript code, a
detector could play an important role in that it helps to filtering
such scripts and feed them to a component that performs a
more in-depth analysis.

The most common method to address the problem of
malicious JavaScripts is having malware analysts write rules
for anti-malware or intrusion detection systems that identify
common patterns in obfuscated (or non-obfuscated) malicious
scripts. While signature-based detection is good at detecting
known malware, it often fails to detect it when obfuscation
is used to alter the features captured by the signature. Fur-
thermore, keeping up with the attackers and their obfuscation
techniques is a time consuming task. This is why a lot of re-
search effort is put into alternative solutions to identify/classify
malicious JavaScripts. See Section V for details.

In this paper, we analyze and extend our approach to
automatically detect obfuscated JavaScripts using machine
learning presented in [1]. Our paper makes the following three
contributions. First, we make use of the cloud based Microsoft
Azure Machine Learning Studio [2] to quickly create, train,
evaluate and deploy predictive models of nine different clas-
sifiers and to do an analysis of what the most descriptive
features are. The top performing one, the boosted decision
tree classifier, was not among the three classifiers tested in [1].
Second, using the boosted decision tree classifier we perform
a comprehensive analysis of how well this approach can cope
with scripts obfuscated by an obfuscator not present in our
training set. As pointed out in [1], such an analysis would be
quite desirable since malicious JavaScripts are likely to make
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use of a custom obfuscation approaches. Finally, we describe
the results from experiments to classify malicious obfuscated
scripts when no such scripts are included in the training set.

For our experiments, we use the same data set as in [1] with
two important modifications. First, we use the scripts from the
Alexa top 5000 instead of the top 500 websites and second,
we perform a rigorous preprocessing to get rid of scripts that
are identical or almost the same as other scripts in the data
set (see Section III). Not doing this could produce results that
are better than they should be if there are scripts that appear
on almost all of the pages (e.g., Google Analytics scripts).

The rest of the paper is organized as follows. Section II
briefly explains the different JavaScript classes that we dis-
tinguish in this work. In Section III, we discuss our data set,
the preprocessing steps performed, feature selection and the
machine learning methodology and tools. Section IV presents
our results, followed by a discussion of results IV. Section V
discusses related works and Section VI concludes the paper.

II. SYNTACTIC AND FUNCTIONAL VARIETIES OF
JAVASCRIPT

Client-side JavaScript for JavaScript-enabled applications
can be attributed to one of the following four classes: regular,
minified, obfuscated, and malicious. Note that only regular,
minified, and obfuscated are disjoint classes and that we
distinguish only obfuscated, non-obfuscated, and malicious
JavaScripts in the reminder of this paper.

A. Regular JavaScripts

The regular class contains the scripts as they have been
written by their developers. These scripts are typically easy to
read and understand by human beings.

B. Minified JavaScripts

Minified scripts are more compact versions of the regular
scripts. To achieve this, minifiers such as the YUI Compres-
sor [3] remove space and new line characters that only exist to
make the code easier to read for humans. Some of the minifiers
do also rename functions and variables to get rid of long
function or variable names. While this makes the scripts harder
to read and understand for a human, the program flow stays
the same. Minification main purpose is to reduce bandwidth
usage when loading JavaScripts.

C. Obfuscated JavaScripts

Obfuscation tools keep the original functionality of the code
but modify the program flow with the goal to make it hard to
understand. Many obfuscation techniques exist. For example,
encoding obfuscation encodes strings using hexadecimal char-
acter encoding or Unicode encoding to make strings harder
to read. Other obfuscation steps involve hiding code in data
to execute it later using the eval JavaScript function (code
unfolding). The following listing shows a simple example of
the latter technique:

var a = "ale";
a += "rt(";
a += "’hello’";
a += ");";
eval(a);

Listing 1. A simple example of code unfolding

Note that the obfuscated files can also be considered
minified. The obfuscators remove whitespaces and make the
scripts more compact. Scripts that are first minified and then
obfuscated look similar or are the same as when only obfus-
cation is applied. Applying obfuscation and then minification
might lead to partial de-obfuscation (e.g., decoding of encoded
strings) and is therefore unlikely to be used in practice.

D. Malicious JavaScripts

Whether or not a JavaScript is malicious is a question of its
semantics and not of its syntax. Hence, a malicious JavaScript
could be a regular, minified or obfuscated one. Previous work
sometimes conflates obfuscation with maliciousness. In this
work and in prior art (see [4]), it is explicitly stated that
neither is all obfuscated code malicious nor is all malicious
code obfuscated. However, in practice, it appears that at least
for now, most malicious scripts are indeed obfuscated, as all
of the recent malicious JavaScripts samples we collected in
the wild were obfuscated.

III. MACHINE LEARNING APPROACH TO JAVASCRIPT
CLASSIFICATION

In order to evaluate the feasibility and accuracy of dis-
tinguishing between different classes of JavaScript code, we
adopted a classic machine learning approach. We collected a
data set containing a number of JavaScripts representing each
of the classes of interest, i.e., non-obfuscated, obfuscated and
malicious. For each of the samples in the data set we extracted
a set of discriminatory features, which we list in Table III be-
low. The extracted features form fixed-length feature vectors,
which in turn are used for training and evaluation of classifiers.

A. Data Set

Our data set consists of data from three different sources:
(1) the complete list of JavaScripts available from the jsDelivr
content delivery network, (2) the Alexa Top 5000 websites
and (3) a set of malicious JavaScript samples from the Swiss
Reporting and Analysis Centre for Information Assurance
MELANI.

jsDeliver: contains a large number of JavaScript libraries and
files in both regular and minified form. We use the regular
form of the files as a basis for our evaluation.

Alexa Top 5000: To have a more comprehensible
representation of actual scripts found on websites [5],
we downloaded the JavaScripts found on the Alexa
Top 5000 home pages [6]. To extract the scripts from
these websites, we parsed them with BeautifulSoup [7]



and extracted all scripts that were either inlined
(e.g., <script>alert("foo");</script>)
or referenced via external files (e.g., <script
type="text/javascript" src="filename.js"
></script>).

MELANI: The fileset from MELANI contains only
malicious samples. Most of the malicious samples in the set
are either JS droppers used in malspam campaigns or Exploit
Kits (EK) resources for exploiting vulnerabilities in browser
plugins. All samples are at least partially obfuscated and
seem to make use of different obfuscation techniques and
tools. The composition of the malicious data set is shown in
Table I.

TABLE I. MALICIOUS DATA SET COMPOSITION

Name Description Count
CrimePack EK Landing pages and iFrame injection

code
2001

JS-Droppers Malicious samples from different
malspam campaigns

419

Angler EK Landing pages 168
RIG EK Landing pages 60
Misc Different samples from other EKs

(Nuclear Pack, Phoenix, BlackHole)
58

For our evaluation, we make the following three assump-
tions about the files from jsDelivr and the Alexa Top 5000
home pages: these files are non-malicious, non-minified and
non-obfuscated.

Assuming that there are no malicious scripts in the files
downloaded from the top 5000 home pages should be quite
safe. The same is true for the files from jsDelivr since they
are subject to manual review and approval. Nevertheless, we
checked the scripts with Windows Defender and in contrast
to the set of well-known malicious JavaScripts, Windows
Defender did not raise any alarm.

The second assumption that these scripts are not minified,
is very unlikely to hold since making use of minified scripts
has become quite popular. In order to make this assumption
hold, a preprocessing step is required to remove scripts that
are not minified from the data set. Only then we have a clean
starting point for the generation of the seven additional file
sets (see III-B for details).

The last assumption about the absence of obfuscated scripts
should hold for the jsDelivr data set since these scripts are
subject to manual review and approval. It should also be
true for the Alexa Top 5000 data set because there is little
reason that home pages contain JavaScripts that need to be
protected by obfuscating them. To check whether this is true,
we inspected a random subset of about 150 scripts and found
none that was obfuscated. Furthermore, we inspected those
scripts that are later reported to be obfuscated by our classifier
(supposedly false-positives) and found that from the 173 files
only 15 were indeed obfuscated. However, when considering
our results in relation to the presence or absence of a specific
obfuscator in the data set, we cannot be sure that the Alexa

Top 5000 data set does not contain scripts obfuscated by an
obfuscator whose characteristics (as captured by our feature
vector) are very different from the characteristics of the other
obfuscators. Note that even if this were the case, it would not
invalidate our results but confirm our findings concerning the
presence or absence of a specific obfuscator.

In summary, after the preprocessing step, which removes
minified scripts and does some additional sanitation of the
dataset (see III-B for details), our data set should have the
assumed properties and contain regular, non-obfuscated and
non-malicious JavaScript files only.

Based on this set of files, we generated seven additional
sets of files. For the first set, we processed the files with
uglifyjs [8], the most popular JavaScript minifier, to obtain
a minified version of them. Uglifyjs works by extracting an
abstract syntax tree (AST) from the JavaScript source and then
transforming it to an optimized (smaller) one. For the second
to seventh set, we used six different JavaScript ofuscators:

• javascriptobfuscator.com standard: To use this com-
mercial obfuscator [9], we wrote a C# application that
queries its web API with the default settings plus the
parameters MoveStrings, MoveMembers, ReplaceNames.
The version used was the one online on the 28th of July
2016.

• javascriptobfuscator.com advanced: Since the two pa-
rameters DeepObfuscation and EncryptStrings change the
way the resulting scripts look like significantly, we added
them to the configuration from above to create another
file set.

• javascript-obfuscator: This obfuscator is advertised as
free offline alternative to [9]. We used version 0.6.1 in
its default configuration.

• jfogs: This is a javascript obfuscator [10] developped by
zswang. We used version 0.0.15 in its default configura-
tion.

• jsobfu: This is the obfuscator [11] used by the Metas-
ploit penetration testing software to obfuscate JavaScript
payloads. We used its default configuration with one
iteration.

• closure: The Closure Compiler [12] has not been devel-
oped to obfuscate JavaScripts but to make them download
and run faster. Nevertheless, it makes most JavaScripts
that contain more than a few lines of code hard to
read and understand even when JavaScript beautifiers are
applied to them. Scripts with a few lines of code are often
left unchanged. That is why the set of scripts obfuscated
with this tool is smaller than the others. We obfuscated
only scripts that are at least 1500 characters long. We
used version 20160822 with option –compilation level
SIMPLE.

The reason why we did not use the old but well-known
Dean Edwards’ Packer [13] from [1] is that it may create
parsable but semantically incorrect JavaScripts. For example,
in some cases, this obfuscator removed entire parts of the



script because it uses regular expressions instead of a parser
to identify multi-line comments correctly.

B. Preprocessing

The preprocessing of the files downloaded from jsDelivr and
the Alexa Top 5000 home pages is divided into the following
three steps:

1) Removal of duplicate and similar files
2) Removal of minified files
3) Removal of files that cannot be parsed

The preprocessing starts with a total of 42378 files down-
loaded from Alexa Top 5000 home pages and 4224 files from
the jsDelivr data set used in [1].

The removal of duplicate and similar files in the first
preprocessing step is performed using the tool ssdeep [14], a
program for computing fuzzy hashes. ssdeep can match inputs
that have homologies. It outputs a score about how similar two
files are. We remove 13234 (Alexa) and 587 (jsDelivr) files
that had a score of 90 or higher with 75 of them having a
score equal or higher to 99. Not removing such files could
produce results that are better than they should be if the same
script appears in the training and the testing set. The impact
is even worse if the same or a slightly modified script appears
not just twice but multiple times in the training and testing
data sets.

In the next step, we remove minified files downloaded from
the Alexa Top 5000 home pages using the following heuristics:

• Remove files with fewer than 5 lines
• Remove files if less than 1% of all characters are spaces.
• Remove files where more than 10% of all lines are longer

than 1000 characters).

14490, approximately half of the remaining files were minified
and therefore removed. Note that in [1], this heuristic has
also be applied to the jsDelivr files even though they should
be non-minified. A manual inspection of a random subset of
supposedly non-minified files showed that around 10% of them
were minified.

It is important to point out that by doing this, we get rid
of small scripts (fewer than 5 lines), which is likely to make
classification of such scripts difficult. This limitation could
be used to split an obfuscated script into multiple parts and
(probably) circumvent detection. As a countermeasure, one
would have to detect such behavior.

The third preprocessing step removes any of the remaining
original jsDelivr and Alexa Top 5000 scripts, where the parsing
of the script, or of one of its transformed versions (minified,
obfuscated), failed. After this step, the data set contains the
number of samples listed in Table II. Overall, there are 101974
samples. Note that since the closure compiler does not perform
well on small files (no obfuscation), we are only obfuscating
samples with more then 1500 chars. Therefore, the number
of samples reported there is significantly smaller than for the
other obfuscators.

TABLE II. DATA COLLECTIONS

Collection Properties #Samples
jsDelivr.com regular 3403
jsDelivr.com minified (uglifyjs) 3403
jsDelivr.com obfuscated (closure) 2004
jsDelivr.com obfuscated (javascript-obfuscator) 3403
jsDelivr.com obfuscated (javascriptobfuscator.com

standard)
3403

jsDelivr.com obfuscated (javascriptobfuscator.com
advanced)

3403

jsDelivr.com obfuscated (jfogs) 3403
jsDelivr.com obfuscated (jsobfu) 3403
Alexa Top 5000 unknown / potentially non-obfuscated 9519
Alexa Top 5000 minified (uglifyjs) 9512
Alexa Top 5000 obfuscated (closure) 6825
Alexa Top 5000 obfuscated (javascript-obfuscator) 9519
Alexa Top 5000 obfuscated (javascriptobfuscator.com

standard)
9516

Alexa Top 5000 obfuscated (javascriptobfuscator.com
advanced)

9516

Alexa Top 5000 obfuscated (jfogs) 9519
Alexa Top 5000 obfuscated (jsobfu) 9517
MELANI malicious and obfuscated (see Table I) 2706

C. Feature Selection

For our experiments reported in this paper, we selected a
set of 45 features derived from manual inspection, related
work [15], [16], and analysis of the histograms of candidate
features. For example, observations showed that obfuscated
scripts often make use of encodings using hexadecimal,
Base64 or Unicode characters (F17) and often remove white
spaces (F8). Furthermore, some rely on splitting a job in a lot
of functions (F14) and almost all use a lot of strings (F7) and
are lacking comments (F9).

Table III lists the discriminatory features we used for
training and evaluation of the classifiers in the reported ex-
periments. These features are complemented with 25 features
reflecting the frequency of 25 different JavaScript keywords:
break, case, catch, continue, do, else, false, finally, for, if,
instanceof, new, null, return, switch, this, throw, true, try,
typeof, var, while, toString, valueOf and undefined. The ratio-
nale behind the selection of these keywords is that if control
flow obfuscation [17] is used, the frequency of these keywords
might differ significantly.

While the present set yielded promising results in our
experiments, further investigations are required to determine
an optimal set of classification features for the problem. The
features labeled as ’new’ in Table III are a novel contribution
of the present paper. The special JavaScript elements used in
feature F15 are elements often used and renamed (to conceal
their use) in obfuscated or malicious scripts. This includes the
following functions, objects and prototypes:

• Functions: eval, unescape, String.fromCharCode,
String.charCodeAt

• Objects: window, document
• Prototypes: string, array, object



TABLE III. DISCRIMINATORY FEATURES

Feature Description Used in:
F1 total number of lines [15]
F2 avg. # of chars per line [15]
F3 # chars in script [15]
F4 % of lines >1000 chars new
F5 Shannon entropy of the file [16]
F6 avg. string length [15]
F7 share of chars belonging to a string new
F8 share of space characters [15]
F9 share of chars belonging to a comment [15]
F10 # of eval calls divided by F3 new
F11 avg. # of chars per function body new
F12 share of chars belonging to a function body new
F13 avg. # of arguments per function [15]
F14 # of function definitions divided by F3 new
F15 # of special JavaScript elements divided by F3 new
F16 # of renamed special JavaScript elements di-

vided by F3
new

F17 share of encoded characters (e.g., \u0123 or
\x61)

[15]

F18 share of backslash characters new
F19 share of pipe characters new
F20 # of array accesses using dot or bracket syntax

divided by F3
new

F21-F45 frequency of 25 common JavaScript keywords new

D. Feature Extraction

To extract the above features, we implemented a Node.js
application traversing the abstract syntax tree (AST) generated
by Esprima [18], a JavaScript parser compatible with Mozilla’s
SpiderMonkey Parser API [19].

E. Machine Learning

To train and evaluate the machine learning algorithms, we
decided to use Azure Machine Learning [2] (Azure ML)
instead of a more traditional local approach. Azure ML is a
cloud-based predictive analytics service that makes it possible
to quickly create, train, evaluate, and deploy predictive models
as analytics solutions. To design and run the experiments,
we used Azure Machine Learning Studio, which provides an
efficiently usable collaborative drag-and-drop tool.

Azure ML offers different classification algorithms [20].
Given the flexibility of the cloud-based service, we trained
and evaluated several of them:

• Averaged Perceptron (AP)
• Bayes Point Machine (BPM)
• Boosted Decision Tree (BDT)
• Decision Forrest (DF)
• Decision Jungle (DJ)
• Locally-Deep Support Vector Machine (LDSVM)
• Logistic Regression (LR)
• Neural Network (NN)
• Support Vector Machine (SVM)

For a quick introduction into these classifiers and a com-
parison of their advantages and disadvantages, the Azure ML
documentation [21] provides a concise overview. For more
details about some of these algorithms, the reader is referred
to [22].

For each experiment that we performed, the steps in the
following list were carried out. These steps guarantee a sound
machine learning approach with clear separation of testing data
and training data.

1) Normalization of the data in the case of SVM-based
classifiers using the Azure ML default normalizer (with
the other classifiers, normalization is not required).

2) Partitioning of the the data into a testing set, a training
set, and a validation set.

a) First, the testing set is constructed. The samples to
include in this set depends on the experiment (see
Section IV).

b) The remaining data is randomly partitioned into a
training set and a validation set, using a split of
60%/40%.

c) We always use stratified partitioning, which guar-
antees that the data in each set is representative for
the entire data set.

3) Training of the classifier using the training set and
optimizing it using the validation set.

4) Assessing the performance of the fully-trained classifier
using the testing set.

For each script in the testing set, classification works as
follows: The classifier computes a probability p ∈ [0, 1] that
states how likely the script is obfuscated. The probability is
then mapped to the discrete labels obfuscated if p ≥ t and
non-obfuscated if p < t, where t is the threshold. We set
the threshold always to 0.5 to make the different experiments
comparable. In practice, this threshold can be used to fine-
tune the classification: Setting it to a higher value (e.g., 0.8)
increases the probability that a script labeled as obfuscated
is truly obfuscated (true positive), but also implies a higher
rate of false negatives (obfuscated scripts falsely labeled as
non-obfuscated). Conversely, setting it to a value below 0.5
increase true negatives at the cost of more false positives.

For each experiment, we report the (p)recision, (r)ecall,
(F1)-score and (s)upport for each considered class and con-
sidered classifier. Precision is the number of true positives
divided by the number of true positives and false positives.
High precision (close to 1) means that most scripts labeled
as obfuscated are indeed obfuscated. Recall is the number
of true positives divided by the number of true positives
and false negatives. High recall (close to 1) means that
most of the obfuscated scripts are indeed labeled correctly
as obfuscated without missing many of them. The F1 score
conveys the balance between precision and recall, is computed
as 2∗ precision∗recall

precision+recall and should ideally be close to 1. Finally,
support is the total number of scripts tested for a specific label.

IV. RESULTS

In this section, we present the results of the three main
experiments we performed. First, we show the performance of
all nine different classifiers with respect to correctly classifying



obfuscated and non-obfuscated scripts. The best of these clas-
sifiers is used in the further experiments. Next, we demonstrate
how well this classifier is capable of correctly classifying
scripts that were obfuscated with an unknown obfuscator, i.e.,
an obfuscator that was not used for any of the scripts in the
training set. Finally, we describe the results from experiments
to classify malicious obfuscated scripts when no such scripts
are included in the training set.

A. Obfuscated vs. Non-Obfuscated

In the first series of experiments, we analyzed the perfor-
mance of the classifiers with respect to correctly classifying
obfuscated and non-obfuscated scripts. We used the entire data
set (see Table II) and labeled the regular and minified files as
non-obfuscated, the files processed with one of the obfuscator
tools as obfuscated, and the malicious files also as obfuscated.
30% of all scripts are used in the training set and the other
70% are used for the training and validation sets, using a split
of 60%/40%.

In the first experiment, all 45 features as described in Sec-
tion III-C were used. All nine classifiers listed in Section III-E
were trained and optimized using the training and validation
sets and evaluated using the testing set. Table IV shows the
results. The upper half shows the performance to classify non-
obfuscated script correctly while the lower half shows the same
for the obfuscated scripts. It can be seen that the best results
can be achieved using a boosted decision tree classifier. With
this classifier, only 80 of 7752 non-obfuscated scripts were
classified as obfuscated (false positive rate of 1.03%) and
only 73 of 22842 obfuscated scripts were classified as non-
obfuscated (false negative rate of 0.32%). Overall, boosted
decision tree was the only classifier that achieved F1-scores
above 99% for both classifying obfuscated and non-obfuscated
scripts.

At the bottom end with respect to classification perfor-
mance, there are the averaged perceptron, logistic regression,
and support vector machine classifiers. All three of them
performed quite poorly. The explanation is that all of them are
linear models (the support vector machine classifier in Azure
ML only supports a linear kernel), which is apparently not
well suited to classify obfuscated and non-obfuscated scripts.

Next, we performed the same experiment as above but
instead of using all features, we only used the features that
are most descriptive for correct classification. One advantage
of using fewer features is that it reduces the time and memory
requirements to train a classifier, but as we will see later, it
has additional benefits when trying to classify scripts that
are obfuscated with an unknown obfuscator. To determine
the most descriptive features, we used Pearson’s correlation.
For each feature, Pearson’s correlation returns a value that
describes the strength of the correlation with the label of the
scripts.

Table V lists the 20 most descriptive features based on Pear-
son’s correlation, in descending order. The rightmost column

shows the value of the Pearson’s correlation and the column
’Feature’ references the corresponding feature in Table III if
the feature is also included in that table. The table contains
several interesting findings. First of all, by comparing Table V
with Table III, we can see that only five of the features that
were described in previous works [15], [16] are among the 20
most descriptive features while 15 of them are new features
that were introduced by us. Also, it appears that quite simple
features such as the frequencies of some JavaScript keywords
are well suited to distinguish between obfuscated and non-
obfuscated scripts, as nine of them made it into the list.

Table VI shows the performance of all nine classifiers when
using only the 20 most descriptive features listed in Table V
instead of all features. It can be seen that in general, the
performance is a little lower compared to Table IV, but the
difference is small in most cases. For instance, in the case
of the boosted decision tree classifier, the F1-scores were
reduced by 1.12% and 0.42% resulting in 97.89% and 99.25%.
This allows two conclusions: First, using only the 20 most
descriptive features instead of all 45 features does not reduce
classification performance significantly. Second, as 15 of the
features in Table V are newly introduced features and only
five of them have been used in previous works, the newly
added features provide a significant improvement to classify
the scripts.

To justify that using the 20 most descriptive features is
a reasonable choice, we analyzed the performance when
using the most descriptive 5, 10, 15,. . . , 40 features with the
boosted decision tree classifier. Figure 1 shows the F1-scores
depending on the number of used features. As expected, using
fewer features results in lower performance while using more
features increases the performance, getting closer and closer to
the performance when using all features. In addition, Figure 1
shows that using 20 features is a good compromise between
computational requirements during training and performance
of the trained classifier because on the one hand, using 20
features provides a substantial improvement compared to using
only 15 features and on the other hand, using more than 20
features only provides small further benefits.

As the number of malicious scripts in the data set is
small compared to the others, it is important to have a
more detailed look at the classification performance of these
scripts. Table VII depicts the results when evaluating only the
malicious scripts in the testing set. As all malicious scripts
are labeled obfuscated, the figure only contains results to
classify obfuscated scripts correctly. For the same reason, false
positives cannot occur, which implies a precision of 100%. To
assess the results, it is therefore best to use the recall value
and comparing this value with the ones in Table IV and VI.
Doing this, it can be seen that the recall value of malicious
scripts is about 1% lower than of the other scripts. However,
both recall values are still above 98%, which clearly shows
that classifying malicious scripts still works well despite the
relatively low fraction of malicious scripts in the data set.



TABLE IV. PERFORMANCE OF THE CLASSIFIERS TO CLASSIFY NON-OBFUSCATED
AND OBFUSCATED SCRIPTS, USING ALL FEATURES

AP BPM BDT DF DJ LDSVM LR NN SVM
Non p 80.46% 92.44% 99.06% 98.50% 97.93% 93.53% 78.31% 95.64% 81.65%
Obfuscated r 66.31% 78.03% 98.97% 98.14% 98.10% 88.40% 68.28% 90.02% 66.82%

F1 72.70% 84.63% 99.01% 98.32% 98.02% 90.89% 72.95% 92.74% 73.50%
s 7752 7752 7752 7752 7752 7752 7752 7752 7752

Obfuscated p 89.21% 92.61% 99.65% 99.37% 99.36% 96.14% 89.68% 96.68% 89.39%
r 94.54% 97.73% 99.68% 99.49% 99.30% 97.92% 93.58% 98.61% 94.90%
F1 91.80% 95.10% 99.67% 99.43% 99.33% 97.02% 91.59% 97.63% 92.07%
s 22842 22842 22842 22842 22842 22842 22842 22842 22842

TABLE V. 20 MOST PREDICTIVE DISCRIMINATORY FEATURES

Feature Description Used in Corr.
F18 share of backslash characters new 0.238
F9 share of chars belonging to a

comment
[15] 0.236

frequency of keyword if new 0.233
F15 # of special JavaScript ele-

ments divided by F3
new 0.221

F4 % of lines >1000 chars new 0.219
frequency of keyword false new 0.209

F17 share of encoded characters
(e.g., \u0123 or \x61)

[15] 0.208

F8 share of space characters [15] 0.203
frequency of keyword true new 0.194

F20 # of array accesses using dot
or bracket syntax divided by
F3

new 0.160

F12 share of chars belonging to a
function body

new 0.158

frequency of keyword return new 0.139
frequency of keyword var new 0.133

F7 share of chars belonging to a
string

new 0.119

frequency of keyword
toString

new 0.112

F5 Shannon entropy of the file [16] 0.106
F2 avg. # of chars per line [15] 0.102

frequency of keyword this new 0.084
frequency of keyword else new 0.081
frequency of keyword null new 0.081

60.00%

70.00%

80.00%

90.00%

100.00%

5 10 15 20 25 30 35 40 45	(all)

F1-scores

Classify	non-obfuscated	scripts Classify	obfuscated	scripts

Figure 1. Performance of the Boosted Decision Tree classifier to classify
non-obfuscated and obfuscated scripts, depending on the used number of

most descriptive features.

To conclude this first series of experiments, we summarize
the most relevant findings:

• Using our data set, classification between obfuscated and
non-obfuscated scripts works well. The best classifier,
boosted decision tree, yields F1-scores above 99% when
using all 45 features.

• Using only the 20 most descriptive features, classification
performance gets lower. However, the boosted decision
tree classifier still achieves F1-scores close to and above
98% with the benefit of reduced time and memory
requirements to train the classifier.

• Compared to the features used in previous works, the
newly added features provide a significant improvement
to classify the scripts.

• Even though the number of malicious scripts in the data
set is relatively small, classifying them delivers only
slightly lower performance as with the other scripts.

In the remainder of the paper, we will focus on the boosted
decision tree classifier, as this has demonstrated to be the best
classifier to classify obfuscated and non-obfuscated scripts.

B. Detecting Unknown Obfuscators

In the experiments performed above, all three sets (training
set, validation set, and testing set) included scripts obfuscated
with all different obfuscators that are used in our data set.
This implies that the trained classifier ’knows’ about all
obfuscators and as a result, the evaluation using the testing set
exhibited good classification performance. In reality, however,
new obfuscators will be developed and used and ideally, the
classifier should also perform well in classifying scripts that
are obfuscated with such a new obfuscator.

To evaluate the performance to classify obfuscated scripts
that were obfuscated using an unknown obfuscator, we first
excluded the malicious scripts from the data set, which guar-
antees we are using a well-defined set of obfuscators. Then, we
took the scripts that are obfuscated with a specific obfuscator
(say obfuscator Obfunknown) and put them into a testing set 1.
From the remaining scripts, we put 30% into a testing set 2
and the rest was split into a training set and a validation
set, using a split of 60%/40%. Note that this means that the
scripts obfuscated with obfuscator Obfunknown are only present
in testing set 1 and not included in any of the other sets.
Training and validation sets were then used to train a boosted
decision tree classifier and the trained classifier was evaluated



TABLE VI. PERFORMANCE OF THE CLASSIFIERS TO CLASSIFY NON-OBFUSCATED AND
OBFUSCATED SCRIPTS, USING THE 20 MOST DESCRIPTIVE FEATURES

AP BPM BDT DF DJ LDSVM LR NN SVM
Non p 80.78% 74.43% 98.36% 97.35% 96.93% 94.51% 77.19% 95.65% 82.35%
Obfuscated r 65.16% 63.97% 97.42% 95.18% 94.34% 85.13% 66.38% 89.33% 64.04%

F1 72.13% 68.80% 97.89% 96.25% 95.61% 89.58% 71.38% 92.38% 72.05%
s 7752 7752 7752 7752 7752 7752 7752 7752 7752

Obfuscated p 88.90% 88.33% 99.13% 98.37% 98.10% 95.12% 89.11% 96.46% 88.65%
r 94.74% 92.54% 99.45% 99.12% 98.98% 98.32% 93.34% 98.62% 95.34%
F1 91.73% 90.39% 99.25% 98.75% 98.54% 96.69% 91.18% 97.53% 91.87%
s 22842 22842 22842 22842 22842 22842 22842 22842 22842

TABLE VII. PERFORMANCE OF THE BDT CLASSIFIER TO CORRECTLY
CLASSIFY MALICIOUS SCRIPTS AS OBFUSCATED

BDT BDT
(all features) (20 features)

Obfuscated p 100.00% 100.00%
r 98.40% 98.52%
F1 99.19% 99.25%
s 811 811

using both testing sets. Classifying the scripts in testing set 2
should work well as it includes only obfuscators that are also
included in the training set. Classifying the scripts in testing
set 1 shows the performance of the classifier to classify scripts
that were obfuscated with the unknown obfuscator Obfunknown.

Table VIII shows the results. Each column contains the
results when one specific obfuscator was excluded from the
training and validation sets. The lower part with the results of
evaluating training set 2 shows that classifying non-obfuscated
scripts and scripts that were obfuscated with known obfus-
cators performs similar as in Table IV, which corresponds
to the expected result. More interesting is the evaluation of
training set 1 in the upper part of Table VIII, which shows the
performance to detect scripts obfuscated with the excluded
obfuscator. Just like in Table VII, false positives cannot occur,
so the precision is always 100% and we use the recall value
to assess the performance. The results vary greatly depending
on the excluded obfuscator. Scripts obfuscated with closure
or jfogs can hardly be detected (recall <1%) while those
obfuscated with javascript-obfuscator and javascriptobfusca-
tor.com advanced can be detected quite well (recall 76.93%
and 99.80%). Scripts obfuscated with javascriptobfuscator.com
standard and jsobfu are also hard to detect with recall values
of 18.22% and 39.88%.

These results imply that some obfuscators are more similar
than others. For example, scripts obfuscated with javascrip-
tobfuscator.com advanced result in code that – with respect
to the discriminatory features – is similar to the output of
one or more of the other obfuscators. On the other hand,
scripts obfuscated with jfogs must be very different from
all other obfuscated scripts, as nearly none of them could
be correctly classified as obfuscated. The results also imply
that one should include many different obfuscators into the
training and validation sets so the classifier can learn many
different kinds of obfuscation techniques, which increases the
probability that scripts obfuscated with unknown obfuscators
can be detected.

In Table IX, the results of the same analysis while using
only the 20 most descriptive features instead of all features
is shown. Comparing the recall values of training set 1 in
Tables VIII and IX, one can see that the performance is better
when using only 20 features. While basically nothing changed
for javascriptobfuscator.com advanced (it already had a very
high recall value) and jfogs, the recall values for closure and
javascriptobfuscator.com standard could be improved by about
2.5 %, for jsobfu by about 6% and for javascript-obfuscator
by more than 16%.

Determining the exact reason of this increased performance
requires more detailed analysis, but in general, using fewer
features increases the fitting error of a trained classifier and
at least with the obfuscators we used in the data set, this is
beneficial for the recall value. Of course, this comes at a price:
Reducing the number of features reduces the F1-scores when
classifying scripts that are either non-obfuscated or obfuscated
with a known obfuscator, as can be seen by comparing the
evaluation results of training set 2 in Tables VIII and IX. This
is not surprising and confirms what we already observed in
Section IV-A.

To conclude this second series of experiments, we summa-
rize the most relevant findings:

• It is possible to detect scripts obfuscated with an unknown
obfuscator. Depending on the unknown obfuscator and
the obfuscators in the training and validation sets, the
recall value can range from close to 0% (closure and jfogs
in our case) to more than 99% (javascriptobfuscator.com
advanced in our case).

• One should include many different obfuscators into the
training and validation sets so the classifier can learn
many different kinds of obfuscation techniques, which
increases the probability that scripts obfuscated with
unknown obfuscators can be detected.

• Using only the 20 most descriptive instead of all features
can increase the classification performance of scripts that
are obfuscated with unknown obfuscators – at least with
the obfuscators we used in our data set. On the downside,
this has a slightly negative effect on classifying non-
obfuscated scripts and scripts obfuscated with known
obfuscators.

C. Detecting Malicious Scripts

With the results in Table VII, we demonstrated that correctly
classifying malicious scripts as obfuscated if malicious scripts



TABLE VIII. PERFORMANCE OF THE BDT CLASSIFIER TO DETECT SCRIPTS OBFUSCATED
WITH AN UNKNOWN OBFUSCATOR, USING ALL FEATURES.

javascript- javascript-
javascript- obfuscator. obfuscator.

closure obfuscator com advanced com standard jfogs jsobfu
Obfuscated p 100.00% 100.00% 100.00% 100.00% 100.00 100.00
(training set 1) r 0.05% 76.93% 99.80% 18.22% 0.24% 39.88%

F1 0.09% 86.96% 99.90% 30.83% 0.48% 57.02%
s 8829 12922 12919 12919 12922 12920

Non p 99.53% 99.38% 99.34% 99.73% 99.55% 99.29%
Obfuscated r 99.15% 99.03% 99.02% 99.45% 99.26% 98.99%
(training set 2) F1 99.34% 99.21% 99.18% 99.59% 99.41% 99.14%

s 7752 7752 7752 7752 7752 7752
Obfuscated p 99.66% 99.59% 99.58% 99.76% 99.69% 99.57%
(training set 2) r 99.81% 99.74% 99.72% 99.88% 99.81% 99.70%

F1 99.74% 99.66% 99.65% 99.82% 99.75% 99.63%
s 19382 18154 18155 18155 18154 18155

TABLE IX. PERFORMANCE OF THE BDT CLASSIFIER TO DETECT SCRIPTS OBFUSCATED
WITH AN UNKNOWN OBFUSCATOR, USING THE 20 MOST DESCRIPTIVE FEATURES

javascript- javascript-
javascript- obfuscator. obfuscator.

closure obfuscator com advanced com standard jfogs jsobfu
Obfuscated p 100.00% 100.00% 100.00% 100.00% 100.00 100.00
(training set 1) r 2.59% 93.48% 99.65% 20.76% 0.22% 45.89%

F1 5.06% 96.63% 99.83% 34.38% 0.43% 62.91%
s 8829 12922 12919 12919 12922 12920

Non p 98.92% 98.21% 98.11% 98.81% 99.31% 98.89%
Obfuscated r 98.09% 96.72% 97.30% 97.47% 98.93% 97.90%
(training set 2) F1 98.50% 97.46% 97.71% 98.14% 99.12% 98.39%

s 7752 7752 7752 7752 7752 7752
Obfuscated p 99.24% 98.61% 98.85% 98.93% 99.54% 99.11%
(training set 2) r 99.57% 99.25% 99.20% 99.50% 99.71% 99.53%

F1 99.41% 98.93% 99.03% 99.21% 99.63% 99.32%
s 19382 18154 18155 18155 18154 18155

using the same obfuscators are also included in the training set
works well. In the final experiments, we analyzed how well
this works if no malicious scripts are used in the training set.
Basically, these experiments are similar to the ones done in
Section IV-B as the malicious scripts use different obfuscators
than the ones we used to create our own obfuscated scripts in
the data set.

The setting is similar to the previous experiments, but
this time, testing set 1 contains all malicious (and therefore
also obfuscated) scripts from the data set. Table X illustrates
the results. Just like above, the evaluation of training set 2
shows that classifying non-obfuscated scripts and scripts that
were obfuscated with known obfuscators performs well. With
respect to classifying the malicious scripts as obfuscated,
the recall value is low (16.52%) when all features are used
(left column). This indicates that the obfuscation techniques
used for the malicious samples are not represented well by
the obfuscators in the training set. However, using only the
20 most descriptive features (right column) increases the
performance substantially: The recall value raises by more than
31% to 47.71%. This confirms the finding of Section IV-B that
reducing the number of features can increase the performance
to detect scripts that are obfuscated with an unknown obfus-
cator.

To conclude this third and final series of experiments, we
summarize the most relevant findings:

TABLE X. PERFORMANCE OF THE BDT CLASSIFIER TO DETECT
MALICIOUS SCRIPTS, USING ALL FEATURES OR THE 20 MOST

DESCRIPTIVE FEATURES.

BDT BDT
(all features) (20 features)

Obfuscated p 100.00% 100.00%
(training set 1) r 16.52% 47.71%

F1 28.35% 64.60%
s 2706 2706

Non p 99.38% 98.58%
Obfuscated r 99.05% 97.67%
(training set 2) F1 99.21% 98.12%

s 7752 7752
Obfuscated p 99.66% 99.18%
(training set 2) r 98.78% 99.51%

F1 99.72% 99.34%
s 22031 22031

• It is possible to detect malicious obfuscated scripts that
are obfuscated with an unknown obfuscator. Using all
features and based on our data set, the recall value is
low, though.

• Using only the 20 most descriptive substantially improves
the recall value in our case. This confirms that reducing
the number of features can increase the performance
to detect scripts that are obfuscated with an unknown
obfuscator.

• Ideally and for best possible recall value of malicious
scripts, different malicious scripts should be included



into the training and validation sets as demonstrated in
Table VII.

V. RELATED WORK

In [23] Xu et al. study the effectivenes of traditional
anti-virus/signature based approaches to detect malicious
JavaScript code. They find that for their sample set, the
average detection rate of 20 different anti-virus solutions is
86.4 percent. They also find that making use of additional
data- and encoding-based obfuscation, the detection ratio can
be lowered by around 40 and 100 percent respectively.

Likarish et al. [15] take an approach similar to ours. They
apply machine learning algorithms to detect obfuscated mali-
cious JavaScript samples. The authors use a set of 15 features
like the number of strings in the script or the percentage of
white-space that are largely independent from the language
and JavaScript semantics. The results from their comparison
of four machine learning classifiers (naive bays, ADTree, SVM
and RIPPER) are very promising: the precision and recall of
the SVM classifier is 92% and 74.2%. But since their study
originates from 2009, it is unclear how recent trends like the
minification of JavaScripts (see II-B) would impact on their
results.

Wang et al. [24] propose another machine learning based
solution to separate malicious and benign JavaScript. They
compare the performance of ADTree, NaiveBayes and SVM
machine learning classifiers using a set of 27 features. Some of
them are similar to those of Likarish et al. [15]. Their results
suggest a significant improvement over the work of Likarish
et al.

Study from Kaplan et al. [4] addresses the problem of
detecting obfuscated scripts using a Bayesian classifier. They
refute the assumption made by previous publications that
obfuscated scripts are mostly malicious and advertise their so-
lution as filter for projects where users can submit applications
to a software repository such as a browser extension gallery for
browsers like Google Chrome or Firefox. Similarly, ZOZZLE,
a malicious JavaScript detection solution from Curtsinger
et al. [25] also uses a Bayesian classifier with hierarchical
features but, instead of just performing pure static detection, it
has a run-time component to address JavaScript obfuscation.
The component passes the unfolded JavaScript to the static
classifier just before being executed.

Other solutions toward dynamic analysis, like Wepawet [26]
(now discontinued), use JavaScript instrumentation to extract
features and apply anomaly detection techniques on them.
JSDetox [27] on the other side is a tool that uses both static
and dynamic analysis capabilities in order to help analysts
understand and characterize malicious JavaScript.

AdSafe [28] uses a completely different approach, it defines
a simpler subset of JavaScript, which is powerful enough
to perform valuable interactions, while at the same time
preventing malicious or accident damage. This allows to put
safe guest code (e.g., third party advertising or widgets) on a
web-page defeating the common malvertising scenario.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we analyzed how well a machine learning
approach is suited to distinguish between obfuscated and non-
obfuscated JavaScripts. To perform the analysis, we used a
data set with more than 100000 scripts consisting of non-
obfuscated (regular and minified) scripts, obfuscated scripts
that are generated with several different obfuscators, and mali-
cious scripts that are all obfuscated. This large data set and the
broad spectrum of obfuscators strengthen the general validity
of our results. To train and evaluate the different classifiers,
we used 45 discriminatory features from the samples.

The results in Section IV-A show that if the training set
contains a representative set of all samples (i.e., it contains
obfuscated samples of all obfuscators), very good classification
performance can be achieved. Of the nine classifiers we
compared, the boosted decision tree classifier provided the
best performance, with F1-scores above 99% when using all
45 features. When using only the 20 most descriptive features,
classification performance gets lower, but it is still possible to
achieve F1-scores close to and above 98%, while having the
benefit of reduced time and memory requirements to train the
classifier. As these 20 most descriptive features have only a
small overlap with the features used in previous works but
still provide nearly as good classification performance as with
45 features, it can be concluded that the newly added features
provide a significant improvement to classify the scripts.

We also evaluated the performance to classify obfuscated
scripts that were obfuscated using an unknown obfuscator,
i.e., one that is not used by the samples in the training set.
The results in Section IV-B demonstrate that it is possible to
detect such scripts, but the classification performance heavily
depends on both the unknown obfuscator and the obfuscators
in the training set and the recall value ranges from close to
0% to more than 99%. We also observed that using only
the 20 most descriptive instead of all features increases the
classification performance of scripts that are obfuscated with
unknown obfuscators. While determining the exact reason of
this increased performance requires more detailed analysis, the
most plausible reason is that using fewer features increases
the fitting error of a trained classifier, which is beneficial
for the recall value of samples obfuscated with an unknown
obfuscator. However, for best performance, it is important to
include many different obfuscators into the training set so the
classifier can learn many different kinds of obfuscation tech-
niques, which increases the probability that scripts obfuscated
with unknown obfuscators can be correctly classified. The best
performing classifier trained with the full data set and using
all of the 45 features can be tested under the following URL:
http://jsclassify.azurewebsites.net.

Finally, we analyzed the classification performance of ma-
licious obfuscated scripts if no malicious scripts are used in
the training set. The results in Section IV-C show that it was
possible to correctly classify such scripts with recall values
of about 16% when all features are used and 47% when



the 20 most descriptive features are used. This undermines
two findings from above: Using fewer features increases the
performance to detect scripts that use an unknown obfuscator
and for best classification results, one should include many
different malicious obfuscated scripts in the training set.

Besides showing that machine learning is a well-suited
approach for classification of obfuscated and non-obfuscated
JavaScripts, our work also created new questions that require
more analysis. One of these questions is whether detection of
JavaScripts that use unknown obfuscators can be improved by
using additional or different features. This requires analyzing
the obfuscated scripts that could only be classified poorly if
the obfuscator was not used in the training set in more detail
to understand their differences compared to scripts that are
obfuscated with other obfuscators. In addition, while being
able to distinguish between non-obfuscated and obfuscated
scripts is already very helpful towards detecting malicious
scripts because obfuscated scripts are likely candidates to be
malicious, we envision to eventually being able to distinguish
between malicious and benign scripts, independent of whether
they are obfuscated or not. The main obstacle here is currently
the data set: We have a good data set of non-obfuscated and
obfuscated scripts, but the number of malicious samples is still
relatively small. Getting more malicious samples is therefore
the key to start a more detailed analysis about classifying
malicious and benign scripts.
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