Caspian J. Env. Sci. 2014, Vol. 12 No.2 pp. <mark>267~276</mark> ©Copyright by University of Guilan, Printed in I.R. Iran

[Research]

ABSTRACT

Prevention of acute ammonia toxicity in beluga, *Huso huso*, using natural zeolite

M. Farhangi^{1*}, H. Gholipour Kanani¹, M. Kashani²

1- Dept. of Fishery, Faculty of Agricultural and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Iran

2- Dept. of Statistics, Faculty of Sciences, Gonbad Kavous University, Gonbad Kavous, Iran

* Corresponding author's E-mail: s.farhangi@yahoo.com

(Received: Jul. 29. 2013, Accepted: Jan. 18. 2014)

This study was accomplished to examine the efficiency of natural zeolite in preventing acute toxicity of total ammonia to *Huso huso*. The study was performed using Water Static Method in 96 hours. Fish averaged 46 ± 5 g in weight and 22 ± 4 cm in total length were exposed to four different concentrations (15, 30, 50, 75 mgL⁻¹) of ammonia and a group was considered as control. Under stable condition, the lethal concentration of ionized ammonia was 75 mgL⁻¹ in 96 hours. In the lethal concentration of total ammonia, different amounts of 5, 10, 15 g.L⁻¹ granulated clinoptilolite zeolite were used. Results indicated significant differences between treatments and control (p<0.05). By increasing Clinoptilolite zeolite in each treatment, the survival rate of fish also increased significantly (p<0.05). In lethal concentration of ammonia, the use of 15 g.L⁻¹ zeolite could prevent the mortality rate. Histopathological findings showed that major lesions in gill filaments included hemorrhage, hyperemia, hyperplasia, epithelial cells necrosis. There were hemorrhage, hyperemia, degenerated tubules of kidney, expansion of Bowman's capsule in kidney and hepatocytes necrosis in liver.

Keywords: Ammonia, Histopathology, Lethal Concentration, Zeolilte, Huso huso

INTRODUCTION

The pollution of water and soil with metal cations has increased dramatically in the last 50 years as a consequence of the expedition of industrial activities. It can be dangerous to aquatic animals (Shemshadi *et al.*, 2012).

Ammonia is the principal nitrogenous waste product excreted by crustaceans and teleosts (Boyd & Tucker, 1998). It is one of the most toxic ions to aquatic organisms and ecosystems. all fishes are sensitive to fluctuations minor of ammonia compounds. Ammonia appears to have a direct effect on the growth of aquatic animals (Colt, 2006) and cause a decrease in growth, disease resistance (Lemarie' et al., 2004) or even kill the cultur fishes (Wang et al., 2000). However, the concentration of these elements above tolerable levels is a disturbance factor for species survival and ecosystem stability. On the other hand, the toxic effect of trace ionsare influenced by environmental factors such as salinity, pH,

water hardness and temperature (Lemus & Hung, 1999).

Thus, zeolite has been used as a natural material to remove ammonia. One of the best zeolites for ammonia removal is clinoptilolite (Bergero et al., 1994). Zeolites are alumnosilicate clay minerals that are mined from natural deposits or synthesized from other clay minerals (Silapajarn et al., 2006) that act as an ion-exchanging agents. In aquaculture practices, application of zeolite is suggested in ponds before stocking fry or during pond preparation (Briggs & Smith, 1996). Clinoptilolite has been found very effective in removing ammonia from water by means of its excellent ion exchange capacity since the seventies of last century (Wang et al., 2000). Recently, it has been used in detergents, aquaculture ponds and nuclear treatment, but it also has large potentials for other applications in liquid waste treatment (James et al., 2000). Sturgeons are the living representatives of an ancient and isolated

group of fish. they are important commercial fish and the Caspian Sea is the main habitat of the world largest population. Huso huso Linneaus, 1758 is a commercially important sturgeon spices which has become an endangered species. Probably, water quality changes in sturgeon culture is one of the main reason of mortality in larve and fingerling stage, this problem led us to conduct this study to determine lethal concentration (96 h LC₅₀) of ammonia in beluga sturgeon (H. huso), "the living representatives of an ancient and an endangered species" and to establish the proper amount of clinoptilolite zeolite for removal of ammonia compounds from water environment.

MATERIALS AND METHODS

Fish

This study was carried out in the Laboratory of Department of Natural Resources of Gonbad University (Gonbad, Iran). H. Huso fry averaged 46 ± 5 g in weight and 22 \pm 4 cm in lenghth were collected from Sijaval Fish Culture Center, (Gonbad, Iran). The fish were acclimated to laboratory conditions for one week. They were kept in glass fiber tanks filled with 300 L fresh water (under constant aeration, temperature = $26 \pm 2^{\circ}$ C and pH = 8.2 ± 0.2). In the first series of experiments, 96 h LC_{50} value was determined following the static renewable bioassay method. (Sprague 1973). The experiments were done by Water Static Method during 96h in well aerated water.

Determination of LC₅₀

In the first series of experiments, 96 h LC₅₀ value was determined following the static renewable bioassay method.

The experiments were conducted in five 35lit flasks with concentrations of 0 (control), 15, 30, 50 and 75 mg.L-1 of total ammonia (prepared with NH_4Cl).

Forty five fish were placed in each treatment (15 in each repeat), with their respective duplicates, for a 96 hour exposure period. The amount of ammonium chloride in each aquarium was calculated after determining the exact volume of each aquarium. Observations were made 24, 48, 72 and 96 hours intervals. Fish were starved for 24 h prior to the experiment and throughout the bioassay study. The mortality rate recorded every 24 hours.

Zeolite efficiency test

In the second series of experiments, animals were exposed to different treatments for 4 days. The measured substantial amount of ammonia (75 mg.L⁻¹) was added to 3 treatments containing granulated zeolite (5, 10, 15 g.L⁻¹) with three replicates for each treatment. The amount of ammonia in each aquarium was measured every 12 hours.

Behavioral and Histopathological examination

The behavioral changes of the healthy fish and the fish exposed to various doses of ammonia wererecorded.25 specimens were randomly taken from gill, kidney and liver of fish exposed to lethal concentration of total ammonia and histopathological sections were prepared and stained in Hematoxilin and Eosin (H & E) according to available method (Bancroft et al. 1990).

Statistical Analysis

Comparisons of means (p < 5%) were performed using split plot design and means comparison by the Duncan's test by SPSS.16. In all cases, the significance level adopted was 5%.

RESULTS

After the 96 hours exposure, there were 0, 28.88, 48.88, 97.77 and 100% mortality at the 0, 15, 30, 50, 75 mg.L⁻¹ concentrations of ammonia respectively (Table 1). Survival rate in control group was 100%. Table 1 shows the relation between the ammonia concentration and survival rate of H. huso after 96 hours. The results obtained from 96-hour toxicity experiments revealed that there was a significant difference between treatments by increasing the ammonia concentration (p<0.05) (Fig. 1). The 96-hour LC₅₀ was 25.871 mg.L⁻¹ according to probity software (1.5) (Fig. 2). In the lethal concentration of ammonia (75 mg.L-1), different amounts of granulated zeolite (0, 5, 10 and 15 g.L⁻¹) was used. By increasing zeolite in each treatment, the survival rate of fish was also increased significantly (p<0.05) (Fig. 3). Most absorption of ammonia was recorded in the first 12 hours of the experiment (Fig. 4). After the 96 hours exposure, no mortality was observed

in lethal concentration of ammonia, once 15g.L⁻¹ zeolite was used in the trials (Table 2).

The behavioral changes in H. huso exposed to various concentrations of ammonia are as follow: In control group, there were no behavioral changes and deaths observed throughout the experiment. In experiment groups, there were vertical and downward swimming patterns and sudden movements. The motion of fish became extremely slow and they displayed behavioral anomalies such as capsizing in water and loss of balance. Finally the fish

sank down to the bottom and became motionless.

Histopathological studies in fish, exposed to lethal concentration of ammonia, showed: there was hyperplasia; edema, hyperemia, hemorrhageand expansion of secondary lamellain gills and hyperemia, hemorrhage and expansion of Bowman's capsule were showed in kidney. So, there were hemorrhage, inflammatory cells infiltration and hepatocytes necrosisin liver (Figs. 5 - 9). There was no lesion in control except some hyperplasia.

Table 1. The relation	between the ammoni	a concentration and	l the mortality	rate of H	. huso.
-----------------------	--------------------	---------------------	-----------------	-----------	---------

Concentration of	Percent of mortality Subset for alpha = 0.05					
total ammonia	Ν	1	2	3	4	
0	3	.0000				
15	3		28.8833			
30	3			48.8867		
50	3				97.7767	
75	3				1.0000E2	
Sig.		1.000	1.000	1.000	.978	

Means for groups in homogeneous subsets are displayed.

Fig 1. Fish mortality in different dosage of ammonia

Fig. 2. Linear regression based on fish mortality in different dosage of ammonia

Table 2. The relation between the zeolite amount and the survival rate of *H. Huso* in lethal concentration of ammonia.

Concentratio		Percent of survival Subset for alpha = 0.05					
n of zeolite	Ν	1	2	3	4		
0	3	.0000					
5	3		28.8867				
10	3			68.8833			
15	3				100		
Sig.		1.000	1.000	1.000	1.000		

Means for groups in homogeneous subsets are displayed.

Fig 3. Survivalrate of the fish in different dosage of zeolite

Fig. 4. Decreasing the ammonia (NH_3) concentration during 96 h

Fig. 5. Gill histological section exposed to lethal ammonia toxicity. Arrows show hyperemia (× 400, H & E)

Fig. 6. Gill histological section exposed to lethal ammonia toxicity. Arrows show edema (×200, H & E)

Fig. 7. Kidney histological sections exposed to lethal ammonia toxicity. Arrows show degenerated tubules in kidney (× 400, H & E)

Fig. 8. Kidney histological sections exposed to lethal ammonia toxicity. Arrows show degenerated tubules of kidney and glumerol (× 400, H & E)

Fig. 9. Liver histological sections exposed to 30 mg.L⁻¹ ammonia. Arrows show inflammation and necrosis (× 400, H & E)

DISCUSSION

The toxicity of ammonia is generally assumed to be due to the concentration of the unionized ammonia molecule (NH₃) because of its ability to move across cell membranes (Colt, 2006). Within the aquatic environment, at high concentrations, it adverse effects by accruing exerts structural damage, which affects the growth, development and survival of fish (Tuurala & Soivio, 1982). A regular response was increasing in mortality rate increased concentration due to of ammonia, it appears to have a direct effect on the growth of aquatic animals and can have a serious effect on the incidence of disease, especially under less optimum conditions of temperature and dissolved oxygen (Colt 2006).

However, the lethal concentration in varieties of fish is different. It depends on species, age and environmental factors such as temperature, pH and hardness (Witeska & Jezierska, 2003; Giguere *et al.*, 2004; Wong *et al.*, 1977; Lemus & Hung, 1999).

Lloyed (1961) reported for the rainbow trout (*Oncorhynchus mykiss* Walbaum, 1792) the toxicity ratio of dissolved ammonia, zinc salt, lead and copper, as well as, phenols begin to increase markedly below 60% oxygen saturation.In sturgeon, little information exists for ammonia toxicity. In the present study, the lethal concentration of ammonia was to 50 mg.L⁻¹ in *H. huso*. Most mortality happened at earlier hours. Consequently, the percentage and number of survivors decreased with increasing concentrations of ammonia in water.

Similar behavioral pattern has been reported about other ions such as Oncorhynchus ammonia on mukiss (Farhangi & Hajimoradloo 2008), Zinc on Clarias gariepinus Burchell, 1822 (Ololade & Oginni, 2010) and zinc on Poecilia reticulata Peters, 1859 (Gul et al., 2009). All these observations were more pronounced with increasing concentrations of the toxicants. We observed significant difference in mortality rate between treatments and particularly control in higher concentrations of ammonia. Similar results have been reported by Farhangi and Hajimoradloo (2008); Gul et al., (2009) and Farhangi (2010).

Our research showed that 5 mg.L⁻¹ concentration of ammonia did not affected the fish significantly (p>0.05).

Different fish species have different sensitivity to different concentration of the sameions. For example, Salmonids (i. e. *Salmo salar* Linnaeus, 1758) are more sensitive than the other fish species, due to their high oxygen need (Abdullah & Muhammad, 2006).

In the present study, the fish exposed to ammonia were observed to be highly irritable and displayed frenzied swimming when handled; their bodies were covered with thick mucus and finally died with mouths opened. These observations were similar to those of Olaifa et al. (2004) who exposed Clarias gariepinus to copper and Farhangi (2010) who exposed Cyprinus carpio to zinc. The survival rate in beluga was increased by adding the amount of zeolites. The present experiments showed, that adding NH₄Cl salt to trials (>20 mg.L⁻¹ N-NH₄) cause slowly gill ventilation, air gulping, bending muscles, increasing opercular and buccal movement and hyper excitability in experimental fish. Similar results were also obtained by Knoph (1996) (0.34 mg.L⁻¹ N-NH₃ in smolts) and Peyghan, (1999) (150 mg.L-1 N-NH4 in common carp). Chiayvareesajja and Boyd (1993) showed that application of 2gL⁻¹ zeolite for absorbtion of 2mg.L-1 N-NH4 could remove N-NH₄ by 80-90%. Brgero (1994) revealed that in water containing 10mgL⁻¹ N-NH₄, around 80% of ammonia could be removed by adding 100gr zeolite pre 45L water, so final concentration was about 2.06 mg.L-1 N-NH4. According to Peyghan (1999), application 10 g.L⁻¹ of zeolite could prevent carp mortality at lethal concentration of total ammonia (150 mg.L-1) after 24 hours. James et al. (2000) reported, that application of 2, 4 and 8 g.L⁻¹ zeolite to Cu contaminated media, can completely remove Cu from water. In our attempt we observed, that application of 15 g.L-1 zeolite, to ammonia contaminated media, remove ammonia from water completely and it quickly reduced N-NH₄ concentration after the first hours.

In the persent study, applying zeolite has directl relation to the removal of ammonia compounds. In aquaculture practices, application of zeolite is suggested in ponds before stocking fry or during pond preparation (Briggs & Smith, 1996).When the concentration of ammonium ions permissible exceeds the limit in aquaculture ponds, it becomes toxic to fish life (Sampath et al. 1991; James et al. 1993) hence it is advisable to reduce the concentration below the permissible limit by application of zeolite. So, the most efficient removal rate of ammonia by zeolite was achieved when granulated applied zeolite was at 15 g.L-1 concentration. However during the trial fish showed many severe reactions like disquiet and spasm. Tests revealed that reduced zeolite quickly N-NH₄ concentration after the first hours. The obtained results revealed that fish mortality is due to degenerated tubules and glumroles of kidney, necroisis of hepatocytes. In aquaculture practices, application of zeolite is suggested in ponds before stocking fry or during pond preparation (Briggs & Smith, 1996).

ACKNOWLEDGMENTS

The authors sincerely thank the GonbadKavous University for providing financial support of this work also of special MR. Salamroodi on behalf of his assistance in this research.

REFERENCES

- Abdullah, S. & Muhammad, J (2006) Studies on acute toxicity of metals to the fish, *Catla catla*. *Pakistan Journal of Biology Sciences*, 9: 1807-1811.
- Bancroft, J.D., Stevens, A. & David, R.T. (1990) Theory and practice of histological techniques. 3rd ed. Churchill Livingstone.
- Bergero, D., Boccignone, M. & Palmegiano,
 G.B (1994) Ammonia removal capacity
 of European natural zeolite tuffs:
 Application to aquaculture waste
 water. Aquaculture and Fisheries, 25: 81-86.
- Colt, J (2006) Water quality requirements for reuse systems. *Aquacultural Engineering*, 34: 143-156.
- Farhangi, M (2010) In vitro, Determination of LC₅₀ 96h of ZnSO₄ on common carp (Cyprinus carpio). 2nd International congress on aquatic animal health management and disease, 26-27 October, Tehran-Iran.

- Farhangi, M. & Hajimoradloo, A.M (2008) The study of clinical signs of acute toxicity by ammonia on rainbow trout (*Oncorhynchus mykiss*). The first national conference on the Caspian Sea fisheries resources. 9-10 November, Gorgan, Iran.
- Frias-Espericueta, M.G (1999) Acute toxicity of ammonia to juvenile shrimp penaeus vannamei Boon. *Bulletin of Environmental Contamination and Toxicology*, 62: 646-652.
- Giguere, A., Campbell, P.G.C., Hare, L., McDonald, D.G. & Rasmussen, J.B (2004) Influence of lake chemistry and fish age on cadmium, copper, zinc concenterations in various organs of indigenous yellow perch (*Perca flavescens*). *Canadian Fisheries and Aquaculture Sciense*, 61: 1702-1716.
- Gul, A., Yilmaz, M. & Isilak, Z. (2009) Acute toxicity of zinc sulphate (ZnSO₄.H₂O) to Guppies (*Poecilia reticulate*). Journal of Science, 22 : 59-65.
- James, R., Sampath, K. & Selvanami, P. (2000) Effect of ion-exchanging agent, zeolite on removal of copper in water and improvement of growth in *Oreochromis mossambicus. Asian Fisheries Science*, 13: 317-325.
- Lemarie', G., Dosdat, A., Coves, D., Dutto, G., Gasset, E. & Ruyet, J.P.G (2004) Effect of chronic ammonia exposure on growth of European seabass (*Dicentrarchus labrax*) juveniles. *Aquaculture*, 229: 479-491.
- Lemus, M.J. & Hung, K.S.C (1999) Effect of temperature on copper toxicity, Accumulation and purification in tropical fish juveniles *Peteniakraussii* (Pisces: Cichlidae). *Caribbean Journal of Science*, 35 : 64-69.
- Lloyed, R (1996) Effect of dissolved oxygen concentration on the toxicity of several poisons to rainbow trout (Salmo gairdneri Richardson). Journal of Experimental Biology, 38:447-455.
- Olaifa, F.E., Olaifa,A.K. & Onwude, T. E (2004) Lethal and sub lethal effects of copper to African catfish (*Clarias gariepinus*). *African Journal of Biomedical Research*, **7**: 65 -70.
- Ololade, A. & Oginni, I (2010) Toxic stress and hematological effects of African catfish, *Clarias gariepinus*, fingerlings.

Journal of Environmental Chemistry and Ecotoxicology, 2 : 14-19.

- Peyghan, R. (1999) Study of experiential of acute toxicity by ammonia in common carp (*Cyprinus carpio*) based on histopathological changes and serum enzymes and possibility of prevent it by zeolite. Dissertation of Aquatic Animal Health Management and Diseases. Tehran University. 104p.
- Shemshadi, R., Arvand, M., Efendiev, A.A. & Zeynalov, N.A. (2012) Application of synthetic polymers as adsorbents for the removal of cadmium from aqueous solutions: Batch experimental studies.*Caspian Journal of Environmental Sciences*, 10: 1-8.
- Silapajarn, O., Silapajarn, K. & Boyd, C. (2006) Evaluation of Zeolite Products Used for Aquaculture in Thailand. *Word Aquaculture Society*, 37: 136-138.
- Sprague, J. B (1969) Measurement of pollution toxicity to fish: I bioassay

method for acute toxicity. *Water Research*, 3:793-821.

- Tuurala, H. & Soivio, A (1982) Structural and circulatory changes in the secondary lamellae of *Salmo gairdneri* gills to dehydioabietic acid and zinc. *Aquatic Toxicology*. 2: 21-29.
- Witeska, M. & Jezierska, B (2003) The effect of environmental factors on metal toxicity to fish. *Fresenius Environmental Bulletin*, 12: 824- 829.
- Wang, Y. & Walsh, P.J. (2000) High ammonia tolerance in fishes of the family Batrachoididae (Toadfish and Midshipmen). *Aquatic Toxicology*. 50: 205-219.
- Wong, M.H., Luk, K.C. & Choi, K.Y (1977)The effects of zinc and copper salts on *Cyprinus carpio* and *Ctenopharyngodon idellus. Acta Anatomica Journal*, 99: 450-454.

م. فرهنگی^{1*}، ح. قلی پور کنانی¹،م. کاشانی²

1- گروه شیلات، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبدکاووس، گنبد کاووس 2- گروه آمار، دانشکده علوم پایه ، دانشگاه گنبدکاووس، گنبد کاووس

(تاريخ دريافت:3/5/2 - تاريخ پذيرش: 28/10/28)

چکیدہ

آزمایش ها به منظور بررسی کارآیی زئولیت طبیعی در جلوگیری از مسمومیت حاد با آمونیاک در فیل ماهی صورت گرفت. این آزمایش ها با استفاده از روش آب ساکن در مدت 96 اجرا شد. ماهیانی با وزن نسبی (5 ±46گرم) و طول کل (4±22سانتی متر) در معرض غلظتهای مختلف (55،50،50،50میلی گرم در لیتر) از آمونیاک قرار گرفتند. یک گروه بعنوان شاهد درنظر گرفته شد. تحت شرایط ثابت، غلظت کشده آمونیاک کل درمدت 96ساعت معادل 75 میلی گرم در لیتر بدست آمد. در غظت کشنده آمونیاک کل، از مقادیر مختلف زئولیت کلینوپتیولیت (5،10،5 گرم درلیتر) استفاده شد. نتایج حاصل از آزمایش اختلاف معنی داری را در بین گروهها نشان داد(50.00). با افزایش مقادیر زئولیت کلینوپتیلولیت نرخ بقا ماهیان بطور معنی داری افزایش یافت (50.00). استفاده از 15 گرم درلیتر زئولیت کلینوپتیلولیت نرخ بقا ماهیان بطور معنی جلوگیری کند. نتایج حاصل از آسیب شناسی نشان داد بیشترین ضایعات شامل خونریزی، پرخونی، هیپرپلازیا، نکروز سلولهای پوششی، تخریب مجاری کلیوی،اتساع کپسول بومن و نکروز سلولهای کبد بود. در گروه شاهد هیچگونه ضایعه ای مشاهده نشد.

* مولف مسئول