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Abstract

Cooling of electronic devices below 1 mK is a challenging task, since the thermal cou-
pling with the dilution refrigerator becomes weak at low temperatures and electronic
devices are extremely susceptible to external heat leaks such as microwave radiation
and electrical noise. Despite these technological challenges, there is a completely new

world of physics which can be explored once low temperatures are achieved.

To reach such ultra-low temperatures, we implemented a parallel network of Nuclear
Refrigerators, to adapt magnetic cooling to electronic transport measurements. The
cooling scheme relies on the cooling of each individual lead by its own nuclear refrigera-
tor to transfer cooling power down to the sample. Here, we present the implementation
of a parallel network of nuclear refrigerators for the first time on a cryo-free system.
One challenge is the increased vibrations level compared to the wet cryostat, but a care-
ful damping of the vibrations is possible, thus enabling low temperature experiments.
The setup successfully cools the electronic temperature of the nuclear refrigerant down
to 150 uK and limits a residual heat leak of few nW per mole of copper, allowing to stay
below 1 mK for several days. A simple thermal model capturing the demagnetization
process, the heat leak, the coupling between electron and nuclei as well as the efficiency

of the process typically above 80 %.

To characterize the cooling capacity of our system, we cool several electronic devices
well below 10 mK. We cool a normal metal-insulator-superconducting tunnel junction
down to 7.3 mK. Further lowering temperatures might be limited by the heat release of
the socket. However, a theoretical estimate shows that such a device has the potential
to reach 1 mK, since the overheating effects turn out to be negligible. Indeed, by using
the thermal broadening of sub-gap current steps, we demonstrate the cooling of the
tunnel junction down to 4 mK. These steps are novel features which are weakly-coupled
and more robust than the conventional NIS thermometry, and we can model them as

Andreev bound states enhanced by disorder and the geometry of the junction. Addi-



tionally, other physical properties of the junction are investigated experimentally and
numerically, such as two-particle sub-gap tunneling current promoted by the disorder

and the geometry of the junction and magnetic field suppression of a minigap.

Further improvement on the cooling of the electronic device is achieved by on-chip
magnetic refrigeration. We demonstrate magnetic cooling of an array of Coulomb
Blockade Thermometers with huge copper islands. The lowest temperature reached is
2.8 mK, which is the lowest temperature measured to date in a solid state electronic
device. The reduction in temperature is roughly a factor 8 during the demagnetization
process, showing an improved efficiency of the cooling technique compared to the pre-
vious experiments. The temperature might possibly be further reduced below 1 mK, by
introducing non-inductive filters and damping more the vibrations, which would lead
to a lower precooling temperature and an improved efficiency of the on-chip magnetic

cooling.
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1. Introduction 1

1 Introduction

Modern physics revolves around quantum mechanics, which gives a mathematical de-
scription of matter, radiation and the interactions among them in the microscopic
world. Usually, the quantum mechanical phenomena are characterized by small length
scales and small energies. Therefore, at room temperature most of these phenomena
are not observable since typical energy scales are much smaller than the thermal excita-
tion at room temperature. To overcome this limitation, scientists and engineers started
to develop cooling techniques to decrease the temperature and make the exploration
of uncharted sections of quantum mechanics possible. First, cooling techniques were
obtained by liquefying gases such as Ny and O, reaching temperatures below 100 K at
the end of the 19" century. An important step forward has been made in 1908, when
the Dutch scientist and Nobel laureate Heike Kamerlingh Onnes liquified He* for the

first time and reached a temperature of 4.2 K [1].

As shown in Fig. 1.1, many techniques have been developed in the past hundred years
to reach even lower temperatures, which are several orders of magnitude lower than
the lowest natural temperature in the universe. The first technique able to cool be-
low 1K was the electronic magnetic refrigeration performed with paramagnetic salts,
e.g. Chromium Potassium Alum (CPA), Cerium Magnesium Nitrate (CMN), Ferric
Ammonium Alum (FAA). This technique is based on the adiabatic demagnetization of
the electronic magnetic moments of the ions within the salt. The lowest temperature
achievable is given by the ordering temperature of the paramagnetic salt, as low as
2mK [1] for standard paramagnetic salts, see Fig. 1.1. A mixture of He® — He? isotopes
is used in the dilution refrigeration technique to cool down to roughly 10 mK, where
specially optimized setups can reach a lowest temperature of ~2mK [2, 3] in contin-
uous operation mode. To reach temperatures below 1mK, it is necessary to use the
magnetic demagnetization of nuclear magnetic moments instead of electronic magnetic

moments, since for the nuclei the magnetic ordering temperature is determined by the
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Figure 1.1: History of refrigeration techniques developed in the past 160 years. The
graph reproduces a previous graph shown in Ref. [1], but we add the experimental
results obtained with a nuclear refrigeration network. Note that the network of nuclear
refrigerator is not an entirely new technique, but rather is adapting nuclear magnetic
demagnetization for the specific needs of cooling nanoelectronic devices.

weak dipole-dipole interaction of the nuclei and it is well below ~ 1 K [1].

Nowadays, dilution refrigerators are widely used in transport experiments to investigate
physics on low energy scales. Some new physical phenomena, however, are predicted
to manifest at energy scales below 1 mK only, such as fragile fractional quantum Hall
states [4-6], with small energy gaps on the order of few mK. These states are predicted
to exhibit non-Abelian statistics, which could be used for topological quantum com-
putation [7-10]. Furthermore, novel electron mediated nuclear spin phases [11-13] are
predicted to occur at temperatures below ~1mK, where nuclei should align ferromag-
netically with helical order, eliminating nuclear spin fluctuations, which are predicted
as main source of decoherence in semiconductor based spin qubit [14, 15]. In addition,
the coherence of semiconductor and superconducting qubits [16, 17] as well as hybrid

Majorana devices [18-20] could benefit from the lower temperatures.

Often electronic temperatures in transport experiments are roughly ~ 100 mK, despite
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the fact that they are performed in dilution refrigerators with a far lower base tempera-
tures. Since electronic devices are susceptible to external heat leaks such as microwave

radiations, heat release and electrical noise.

Tremendous efforts are necessary for cooling of electrons below 10 mK. This milestone
has been initially reached by the quantum Hall community, by utilizing He* immersion
cells. In these experiments a semiconductor device is glued onto a heat exchanger to
provide cooling through the substrate and the sample is electrically connected with
In contacts to Ag sinters with a large surface area to reduce the Kapitza resistance.
These parts are located inside an immersion cell, which is cooled down to 0.5 mK with
a PrNi; magnetic refrigerant. Despite the low temperatures of the He?® the device is
cooled down only to 4 mK [4, 21-25]. This approach relies on cooling electrons through
electron-phonon coupling and the Kapitza boundary resistance, both of become weak
at low temperatures, due to their strong temperature dependence. To overcome the

limits of this approach and reach lower temperatures a new approach is needed.

In order to pursue our goal, we need to find a cooling technique, which is able to reach
uK temperatures, and then adapt it for transport experiments. The most powerful
technique utilized to cool to the pK range is adiabatic nuclear demagnetization [1, 26,
27], which was already very well established in the low temperature physics community.
It was used in many low temperature physics experiments [28-30] to cool nuclear spins
systems in metal or superfluid He®. However, these experiments utilized a massive
piece of nuclear refrigerants, e.g. Cu, Pt, PrNi5, which are not suitable to perform
transport experiments where we need well cooled individual leads to avoid transport
of heat to the sample. Therefore, we built a parallel network of Nuclear Refrigerators
(NRs) [31-33], where each experimental lead has its own nuclear refrigerator, to cool
electronic devices through the leads. The cooling scheme is designed to take advantage
of the electronic conduction, which leads to a heat flow scaling with 772, instead of the
T% dependence of the electron-phonon coupling, which is therefore strongly suppressed

at low temperatures. The first prototype of NRs was successfully implemented in a wet



dilution refrigerator and cooling well below the dilution refrigerator temperature of 10
mK, has been demonstrated [31]. Figure 1.1 shows the progress obtained in Basel in
the implementation of the network of NRs, which is a new concept aimed to achieve

1K temperatures in nanoelectronic devices.

Once the low temperature setup is available, the next challenging task is to transfer
the cooling capacity to electronic device. It is extremely difficult to cool efficiently
electronic devices below 10 mK, since the thermal coupling to the refrigerator becomes
weak at low temperatures. Further, they are extremely susceptible to various sources of
heat leaks such as radiation, electrical noise or heat release. Therefore, it is important
to properly shield and filter the setup, thus additional effort needs to be spent to design
multiple shields, attached at different temperatures stages to progressively reduce the
black body radiation. In addition, every lead is heavily filtered, by using RC filters

and home built microwave filters [34].

In the recent years, the interest for ultra-low temperature systems has been increasing,
due to the arrival of a new cryogen-free technology, which makes it possible to perform
low temperatures experiments everywhere, independently of the He? liquifying facilities.
This gains importance because Helium is a non-renewable resource extracted mostly
from natural gas, its price has constantly been increasing in the last decades due to
the limitation on the extraction and due to the increasing demand of Helium in several
applications, e.g. medical imaging scanners and semiconductor industry [35, 36]. For
these reasons, it is further important to have a recovery system for Helium, however
even the best recovery system has losses on the order of ten percent. An economical
solution is given by the cryogen-free system, where a fixed amount of *He is used in
the closed cooling cycle of the system. Additionally, wet cryostats offer very limited
space for the experiment, and suffer from regular, periodic liquid Helium transfers
interrupting and often warming up the experiment. However, the cryogen-free systems
have an increased vibrations level compared to traditional wet systems, leading to

additional heat leaks that make the implementation of an AND setup on these systems



1. Introduction 5)

even more challenging.

The first attempts to combine AND with cryo-free refrigerator, was demonstrated in
experiments using a massive pieces of nuclear refrigerants [37-39], which are unprac-
tical to use transport experiments, since electrically isolated leads are required. As a
consequence, using a single nuclear refrigerant the thermalization of the leads should
occur through an insulator, making the cooling inefficient. Therefore, we were mo-
tivated to show that our approach of individual parallel NRs can be implemented in
cryogen-free setup to directly perform transport experiment. By ad-hoc modifications
of the NR design we demonstrate their implementation on a Bluefors cryo-free dilution
refrigerator. We prove cooling of the NRs down to 150 K, which is measured with
a magnetic field fluctuation thermometer implemented in our setup. In addition, a
simple thermal model is presented, which describes well the demagnetization and an
improved efficiency of the AND process to more than 80 % even at low magnetic fields.
The details of the setup are described in chapter 2, while more details about the model

can be found in chapter 3.

Thanks to NRs, we have the possibility, to cool electronic devices below 10 mK, there-
fore we need to find on-chip thermometers to measure such low temperatures. Jukka
Pekola and his group are pioneers and a leading group of on-chip cooling and thermom-
etry. For this reason we collaborate to improve the design and to test different on-chip
thermometers such as arrays of metallic Coulomb Blockade Thermometers (CBTs) and
a single junction normal metal-insulator-superconducting (NIS) device. Both on-chip
thermometers demonstrated cooling below the mixing chamber temperature, proving
the effectiveness of our cooling scheme. In particular for the NIS junctions, we demon-
strate operation down to ~ 7mK, however our theoretical model shows the opportunity

to cool it down to 1 mK, see chapter 4.

A more careful analysis of the NIS devices reveals new physics, which is manifested
through sharp current steps in the sub-gap region of the I-V curve. The steps show

thermal broadening down to 4 mK, which serves as primary on-chip thermometer. In



addition they show a clear dependence on the thickness of the metal layer and on the
in-plane magnetic field. Thermal cycling of the device suggests disorder within the
junction as possible origin of the steps. Numerical calculation shows that the steps can
be explained with Andreev bound states enhanced by the disorder and the geometry of
the junction. Furthermore, the simulation predicted a sub-gap conductance given by
two-particle tunneling current due to interference effects enhanced by the geometry of
the junctions and the appearance of a minigap suppressed by the magnetic field. The

sub-gap steps are the topic of the chapter 5 of this thesis work.

Despite the important technological achievements in cooling of electronic devices, it is
still challenging to reach electron temperature below 1 mK. Remarkable results have
been achieved by using CBT devices with electroplated islands, which were cooled
as low as 3.8mK in an He® immersion cell [40] and to ~5mK by on-chip magnetic
cooling [41]. Cooling through the leads is efficient for samples, which are connected to
the leads through a low resistive path. However the cooling becomes rather inefficient
for high resistance devices with more than one tunnel junction in series e.g. CBTs. For
this reason, we changed our approach going from cooling electronic devices through
the leads to direct on-chip demagnetization cooling of Cu island of the CBT array.
Metallic CBTs with huge Cu islands (with a volume of & 800 - 200 - 0.2 um?) offer a
reasonable spin reservoir together with a partial thermal isolation of the device due to
the high resistance of the array structure. We demonstrate on-chip magnetic cooling
of the CBT down to 2.8 mK, which is the lowest temperature reported so far, with
an increased cooling efficiency of the device compared to the previous experiments,
leading to a factor ~ 8 in temperature reduction. The experimental findings about the

on-chip magnetic cooling are described in chapter 6.

Here, we summarize the progress in the design and the fabrication of on-chip ther-
mometers such as NIS thermometers and CBTs, which resulted in lower temperatures
measured in the last decades in several research groups. To give an idea of the progress

in cooling of the on-chip thermometers, we plot in Fig. 1.2.(a) and (b) a selection of



1. Introduction 7

the lowest temperatures for NIS and CBT for each year. The Table. 1 shows some of
the lowest temperatures measured at this time. In the Ref. [42], corresponding to point
(1) in Fig. 1.2.(a), a saturation of the thermometer around 70 mK is observed while the
temperature of the fridge goes down to 40 mK. The saturation maybe attributed to a
poor thermalization of the electrons in the normal metal lead or at a large electrical
noise. For several years, it has been challenging to cool such devices below 10 mK,
until in the Ref. [43], see point (3) Fig. 1.2.(a), where we introduced large metallic
pads to ensure a good thermalization of the electrons. Additionally, the setup is im-
proved compared to the early work of Nahum, to reach lower temperatures. The lowest
temperature (point (4) in Fig. 1.2.(a)) is reached by using the thermal broadening of

the sub-gap steps appearing in the I-V curve of a NIS junction down to 4 mK.

Remarkable results have been obtained also in cooling of the CBT in the past 20 years,
demonstrating a reduction of the CBT temperature from 4 K measured by Pekola in the
1994 (point (5)) down to 2.8 mK presented in this thesis work, see Fig. 1.2.(b). Reaching
temperature below 10 mK has been really challenging for many years and it required
improvements in the design of the CBTs and of the experimental setups. As reported
in Ref. [34] (points (8) and (9)) the introduction of microwave filters helped to further
lower the temperature, by reducing electrical noise and high-frequency radiation. To
further decrease the temperature of the CBT it is necessary to reduce the charging
energy by enlarging the volume of the CBT island. For this reason in Ref. [40, 41],
see points (10) and (11) Fig. 1.2.(b), the volume has been increased, by electroplating
a thick metal layer, which also helps the thermalization of the electrons in the CBT
through the substrate, by increasing the strength of the electron-phonon coupling. In
the recent year the magnetic cooling of CBT give the opportunity to further lower the

temperature, see (11) and (12).
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indicate the lowest temperatures reached for NIS junctions and CBTs
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references lowest T | location

(1) M. Nahum, et al., NIST

Appl. Phys. Lett. (1993) 70 mK (USA)

(2) H. Q. Nguyen, et al., Aalto University
Phys. Rev. Appl. (2014) 30mK (Finland)

(3) A.V.Feshchenko, et al., University of Basel
Phys. Rev. Appl. (2015) 7.3mK | (Switzerland)

(4) M. Palma, et al. University of Basel
in preparation for publication (2017) | 4 mK (Switzerland)

(5) J.P.Pekola, et al., University of Jyvéiiskyla,
Phys. Rev. Lett. (1994) 42K (Finland)

(6) S. Farhangfar, et al., University of Jyvéiiskyla,
J. Low Temp. Phys. (1997) 200mK | (Finland)

(7) M. Meschke, et al., Aalto University
Int. J. Thermophys. (2011) 23mK (Finland)

(8) L. Casparis, et al., University of Basel
Rev. Sci. Instrum. (2012) 10mK (Switzerland)

(9) C.P. Scheller, et al., University of Basel
Appl. Phys. Lett. (2014) 7.5mK | (Switzerland)

(10) D.1. Bradley, et al., Lancaster University
Nat. Commaun. (2016) 3.8mK | (UK)

(11) D.1. Bradley, et al., Lancaster University
Sci. Rep. (2017) 5mK (UK)

(12) M. Palma, et al., University of Basel
in preparation for publication (2017) | 2.8 mK | (Switzerland)

Table 1: Relevant publications in cooling of NIS (1-4) and CBT (5-12) devices in past
30 years shown in Fig. 2.
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Abstract

We present a parallel network of 16 demagnetization refrigerators mounted
on a cryofree dilution refrigerator aimed to cool nanoelectronic devices to sub-
millikelvin temperatures. To measure the refrigerator temperature, the thermal
motion of electrons in a Ag wire — thermalized by a spot-weld to one of the Cu
nuclear refrigerators — is inductively picked-up by a superconducting gradiometer
and amplified by a SQUID mounted at 4 K. The noise thermometer as well as
other thermometers are used to characterize the performance of the system,
finding magnetic field independent heat-leaks of a few nW/mol, cold times of
several days below 1mK, and a lowest temperature of 150 uK of one of the
nuclear stages in a final field of 80 mT, close to the intrinsic SQUID noise of
about 100 K. A simple thermal model of the system capturing the nuclear
refrigerator, heat leaks, as well as thermal and Korringa links describes the main
features very well, including rather high refrigerator efficiencies typically above

80 %.
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2.1 Introduction

As thermal excitations represent an ubiquitous energy scale in solid state systems, ad-
vancing to lower temperatures might open up the way to the discovery of new physical
phenomena such as fragile fractional quantum Hall states [4] and electron-mediated
nuclear phase transitions, both in 2D and 1D systems [11-13]. To investigate such
phenomena, one needs to access lower temperatures beyond what a dilution refriger-
ator could achieve. Adiabatic Nuclear Demagnetization (AND) [27, 31] is a very well
established technique with the potential to open the door to the uK-regime for na-
noelectronics. In many laboratories, the sample is only weakly coupled to the coldest
spot of the refrigerator, resulting in sample temperatures significantly higher than the
base temperature of the refrigerator. In order to efficiently couple sample and refrig-
erator, a parallel network of Nuclear Refrigerators (NRs) was proposed [31, 43|, where
every lead is well thermalized through the mixing chamber (MC) and has its own NR.
Our approach relies on the Wiedemann-Franz cooling of the conduction electrons [32],

which is the main cooling mechanism in the mK-regime and below.

The implementation of a parallel network of NRs on a cryofree system is very chal-
lenging due to the increased vibration level compared to a wet system. However,
cryogen-free platforms will become more important for low temperature experiments,
because they offer ample experimental space and operation without liquid helium, thus
reducing costs and dependence on helium infrastructures. In addition, particularly re-
ferring to AND, cryogen-free systems are suitable for longer precooling and extended
hold time compared to the traditional wet system, due to liquid He transfers increasing
the temperature of the entire system. First operative AND systems on cryogen-free
platforms have been implemented using both PrNis and Cu as nuclear refrigerant [37—
39]. In contrast to the single nuclear stage experiment, the parallel network of NRs
amends itself for nanoelectronics providing direct cooling of the electrons in each of

the wires connected to the sample.
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In this article, we present a successful implementation of a parallel network of Cu NRs
on a cryogen-free platform demonstrating cooling with high efficiency close to ideal
adiabatic behavior down to 150 uK. The temperature is measured using an inductive
Johnson noise thermometer [44-46], which operates over a broad range of temperatures
from 4K down to 150 uK. The noise thermometer is an ideal choice for low temper-
ature applications, because self-heating is reduced due to the inductive read-out and
the thermometer has the potential to reach the low pK-regime. We measure field in-
dependent heat leaks of less than 2nW /mol for magnetic fields below 1T, allowing the
NRs to stay below 1 mK for roughly 50 hours at 80 mT. We model the AND process
and obtain a dynamic heat leak independent of the magnetic field ramp rate. Thus, it
is possible to increase the efficiency of the AND process by reducing the duration of

the B-field ramping.

2.2 Nuclear Refrigerator Network on a Cryogen-Free Plat-

form

Recently, AND experiments have been successfully implemented on a cryogen-free
platform, using PrNiz and Cu as nuclear refrigerant [37-39]. With PrNis, reach-
ing ultra-low temperatures is restricted to the rather high nuclear ordering temper-
ature (7' ~0.5mK) [1, 47]. In contrast, Cu can be demagnetized down to the low
pK regime and it is very easy to work with and to machine, particularly compared
to PrNis. The high electrical conductivity of Cu makes it susceptible to eddy cur-
rent heating, which arises from both ramping of the magnetic field and vibrations in
a non-homogenous B-field. The pulse tube (PT) cold head is a powerful source of
both cooling and vibrations, making the implementation of AND an exacting task.
Adiabatic nuclear demagnetization experiments are very susceptible to heat leaks, in-
creasing temperature and accelerating the warm up of the NRs, thus reducing the
hold time. The concept of a parallel network of 16 Cu NRs presented here overcomes

these challenges and leads to a straightforward integration of the AND technique into



14

transport measurement setups.
r“_,w lTto SQUID (4 K) b
e ' f )
= /\::;\ m MC flange { 4
f

filter stage
| 1support structure

(L)CMN lwlﬂ

Ag wires

/

Ag-sinters

Al heat switches

Nb + NbTi shield

]
.,

.
*.,

.............

NRs .-

Vespel rods

cross section

S SR S SR S U S URRUR |

chip carrier ‘=

Figure 2.1: Schematic of the nuclear demagnetization stage. The measurement leads
are thermalized with Ag powder sinters (top right picture, scale bar: 5mm) in the
mixing chamber (MC, blue) and pass through C-shaped Al heat switches (green) to
the Cu plates. The gradiometer of the noise thermometer as well as the (L)CMN
thermometers are positioned in a region of cancelled magnetic field between the MC
and the NR stage. The gradiometer is double-shielded by a Nb tube and an outer NbTi
tube (red). Middle right inset: photograph of the gradiometer pick-up coil made from
insulated Nb wire with 100 um diameter. The 2x 20 turns are wound non-inductively
on a high-purity silver wire which is spot-welded to a NR. Scale bar: 2mm. Lower
inset: schematic cross section through the network of 16 parallel NRs. Each NR is
2 mol of Cu (99.99 % Cu, low-Hy content [48], RRR~500) and consists of two half-
plates, spot-welded together at the top and bottom. Each half-plate is of dimension
3.4 x 0.17 x 12 cm?.

Figure 2.1 shows a schematic of the nuclear stage. Starting from the top, the measure-
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ment leads are filtered by lossy thermocoax [49] from room temperature (RT) to the
MC flange of the dilution refrigerator. Additional filtering is achieved by home-built
Ag-epoxy filters [34] and double-stage RC filters bolted to the MC flange. Next, each of
the 16 leads is thermalized inside the Cu MC using Ag powder sinters, as shown in the
top right inset of Fig. 2.1, which are electrically insulated from the MC (ground) and
each other. To allow the passage of the leads through the MC we designed super-fluid
leak-tight feedthroughs on the bottom of the MC. The leads exit the MC as annealed
Ag-wires, then pass through the Al heat switches with fused joints [50] and finally they
are spot-welded to the Cu plate NRs. At the bottom of each NR, another annealed
Ag wire continues to the chip carrier, providing a platform for nanostructured samples
on an easily exchangeable chip carrier, see Fig. 2.1. Therefore, each lead provides a
thermally highly conductive path from the sample to the NR, electrically insulated
from all other wires and ground. The chip socket below the red dashed line in Fig. 2.1
was not mounted during the measurements in the main text, but can easily be added
without significant influence on refrigerator performance. For additional details about

the measurement setup see the supplementary materials paragraph

Magnetic fields up to 9T can be separately and independently applied to the AND
stage and the sample. The C-shaped Al pieces are used to implement the concept of
heat switches allowing to choose between excellent or very poor thermal conductivity,
while always keeping the sample electrically connected. In the superconducting state Al
is a thermal insulator while in its normal state, when the superconductivity is broken
by a small magnetic field (>10mT), it is an excellent thermal conductor. All the
thermometers used in the experiment are susceptible to magnetic fields; therefore they
are positioned together with the Al heat switches in a region of canceled magnetic field
between the MC and the NRs and are double shielded by Nb and NbTi tubes. The
three thermometers in use are a Cerium Magnesium Nitrate (CMN) thermometer, a
Lanthanum diluted CMN (LCMN) thermometer and the Johnson noise thermometer.

Each thermometer is connected to its own NR through a massive Ag wire of 25 cm
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length.

Although there are no mechanically moving parts in state-of-the-art pulse tubes, vibra-
tions caused by high-pressure gas oscillations and the compressor package are trans-
duced to the refrigerator. Despite significant progress in recent years, cryogen-free
systems tend to have drastically increased vibration levels compared to standard sys-
tems (i.e. dewars with cryo liquids). To account for these challenges, special care was
taken on damping all connections to the fridge and decoupling the PT cold head [51]
mechanically while maintaining a good thermal link. This was done with soft but
massive Cu braids linking the cold head stages to the refrigerator and spring-loading
the room temperature mount of the cold head. The PT motor was mounted remotely
and was shielded, and the connection hose to the cold head was rigidly held in place.
Altogether, this reduces the vertical displacement from ~ 6 um to below 0.3 um, as
measured with an accelerometer. The circulation pumps were isolated with a massive
concrete block fixing the pumping lines, and the entire system was mounted on a vi-
bration isolation table. Further, the presented setup was improved from a previous wet
system [31, 43| to particularly meet the demands of a cryogen-free system [51]. We
introduced a rigid support structure and an adapted geometry of the NRs. Compared
to the wet system version [32], we decreased the cross section relevant for eddy current
heating and simultaneously doubled the amount of Cu per plate. Further, the surface
area of the Ag-sinters was tripled to now 9m? per lead and the diameter of the Ag
wires is doubled, since these thermal resistances have been identified as a bottle neck

during precooling [31].

2.3 Noise Thermometry

Measuring temperatures in the K regime is a challenging task, since many thermome-
ters suffer from self-heating and are very susceptible to heat leaks, often leading to a
saturation of the thermometer. Here we use a specific type of noise thermometer, the

magnetic field fluctuation thermometer (MFFT), based on an inductive read-out [44—
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Figure 2.2: Power spectral density S,(0, Typrr) of the magnetic flux noise, in units
of the flux quantum ¢y, at various NR temperatures. The light gray solid curves are
fits using Eq. (2.2) which are converted to Typpr as described in the text using the
reference spectrum at T = 4.2K. The noise peaks become more visible at lower
temperatures where the thermal noise becomes smaller. The SQUID noise shown here
in grey is from a similar SQUID with the inputs shorted, not from the SQUID used to
measure the MFFT.

46, 52] using a SQUID amplifier!, which is designed to reduce internal and external heat
leaks. In fact, we reduce the external heat leaks onto the thermometer by mechanical
and electrical decoupling of shield and thermal noise source, see supplementary ma-
terial paragraph. In addition, thanks to the inductive read-out, the thermal noise is
detected without any bias applied, thus reducing self-heating of the thermometer. Our
improvements allow us to measure temperatures down to 150 pK, whereas the lowest
measurable temperature is roughly 100 uK given by the SQUID noise floor. Figure 2.2
shows the spectra for various temperatures. Note that for the lowest temperature (blue)

the spectrum is just above the SQUID noise spectrum (grey).

The temperature of electrons in a metal is related to their thermal (Brownian) motion,

which generates current noise given by the Johnson-Nyquist formula [53, 54]:

4kgT
n
11-stage Current Sensor C4L1W DC-SQUID, Magnicon GmbH, Hamburg, Germany.

Sy = (2.1)
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Here, S; is the power spectral density of the current noise, kg is the Boltzmann con-
stant, T' is the temperature of the electrons in the conductor and R is the resistance of
the metal. The read-out of the thermal noise is done by a gradiometer, consisting of
two counter-wound superconducting pick-up coils (detector) wrapped tightly around
a Ag wire (thermal noise source) of radius r. The working principle is the following:
thermal currents are transformed, by self-inductance, into magnetic flux fluctuations,
detected by the pick-up coil. In the low frequency range, the power spectral density of
the magnetic flux noise [52, 55| can be written as S, (0, T\rrr) = 4kpTarrroGuir® /2w,
where i is the vacuum permeability, Typpr is the electronic temperature measured
with the MFFT, G is a geometric factor [52] and o is the electrical conductivity at
low temperatures, which is assumed temperature independent in the mK range. The
electrical conductivity is defined as ¢ = orr * RRR, with RRR being the residual
resistivity ratio and ogr the room temperature conductivity. Note that S, (0, Tyrrr)
depends linearly on temperature Typpr, since o is constant at low frequency where
the skin effect is negligible. Figure 2.2 shows that all the spectra have a low-frequency

plateau.

The Skin effect forces high frequency current fluctuating to the metal surface. As a
consequence the conductivity of the Ag wire becomes frequency dependent, resulting
in a low-pass like shape of Si(f, Tyrrr). Such a frequency dependence is described by

the following equation:

Ss(0, Tairrr)
1+ (£)

where the cut-off frequency is given by f. = 4.5/(wugor?) [52]. As expected in Fig. 2.2

So(f, Tmrrr) = (2.2)

the amplitudes of the spectra decrease as 1/f at high frequencies.

In order to measure? the power spectral density, we need to acquire 10 real-time noise

2The DC-SQUID is operated in a flux-locked loop mode with XXF-1 electronics, including a second
order Bessel-type low-pass filter (f3qp = 10kHz). After a room temperature voltage preamplifier with
another low-pass filter (f3qp = 1kHz), the signal is acquired with a digital-to-analog converter.
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traces with 50s duration each, which are averaged after Fourier transformation. Noise
peaks appear mostly at frequencies corresponding to higher harmonics of the rotation
frequency of the PT motor (1.4 Hz), see light blue spectrum in Fig. 2.2. The peaks
become more evident at low temperatures due to the lower thermal noise background.
To eliminate these peaks we fit every spectrum first with a polynomial of 10** order and
eliminate any data that exceeds the polynomial by more than an empirically determined

threshold factor.

The MFFT is used as a secondary thermometer calibrated against the MC thermometer
at 4.2K. From the fit of Eq.(2) to the reference spectrum at 4.2K, we extract a
value of f. ~ 5Hz independent of temperature and corresponding to a RRR of about
2000, which matches typical RRRs determined in independent transport measurements.
Thus, we fix f. = 5Hz and extract Tyirpr as the only fit parameter from the fit to
Eq. (2.2).

To achieve optimal performance of the MFFT, we addressed and solved the following
technical issues. First, to avoid effects from homogeneous magnetic fields, the pick-up
coil is non-inductively wound around the Ag wire. Second, the gradiometer shown in
Fig. 2.1 is connected by a long section of twisted Nb wires to the SQUID, which is
anchored to the quasi-4 K-flange of the refrigerator. The twisted Nb wires are double-
shielded with a Nb and NbTi tube, both thermalized at the mixing chamber plate, cold
plate and still plate. Finally, we mounted the SQUID at 4K to avoid low-frequency

excess flux noise [56], which can arise at sub-K temperatures.

2.4 Nuclear Refrigerator Performance

The nuclear refrigerator technique is based on a single shot cycle consisting of the follow-
ing steps: magnetization in an initial field B;=9 T, precooling down to 7;=10 mK (three
days), and demagnetization down to a final field B;. Finally, low temperatures can be
explored over a period of time while the system continuously warms up due to a small

parasitic heat leak (@) absorbed by the NRs. During the AND process the nuclear
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temperature of the Cu plate is lowered from the initial temperature 7; down to the
final temperature 7y. During magnetization and precooling, the Al heat switches are
set to conduct heat excellently (normal state) to cool the NRs via the MC. While de-
magnetizing and warming up, the heat switches are superconducting to prevent heat
flowing from the MC into the NRs. In this refrigeration technique, the nuclear spin
degree of freedom has by far the largest heat capacity, absorbing the heat leaks coming
into the NRs. This can lead to non-equilibrium configurations where other degrees of
freedom (e.g. electrons, phonons) can be at different temperatures than the nuclear

spins, due to the finite thermal conductivity between them.

We need to characterize the heat leak of the system, which then defines the efficiency
¢ = (T;/Ty)/(Bi/Bs) of the AND process. An efficiency of 100 % indicates a fully
adiabatic and reversible process while £ less than 100 % signifies the presence of heat
leaks, which spoil the adiabaticity of the AND process. One distinguishes two types
of heat leaks: a static heat leak (Q) appearing already at fixed magnetic field and

attributed mainly to heat release, radiation and vibrations. Beyond that, an additional

dynamic heat leak (Qdyn) appears when sweeping the magnetic field.

To determine the static heat leak onto a NR, we read a sensor temperature 7; as a
function of time during the warm up, see Fig. 3.1, displaying 7.'. Our sensor cannot
operate directly on the NR due to the magnetic fields present, and thus is placed at
some distance and is thermally well connected to the NR through a high-conductivity
Ag wire. Over time, the temperature is continuously increasing until it saturates at
rather high temperature ~ 50 mK, far exceeding the MC temperature Tyi¢ ~7mK.
At this point, the heat leaking from the NR through the Al heat switches into the MC
balances the static heat leak, keeping the Cu stage at a constant temperature. One
can model the warm up behavior of the NRs [1, 27] by assuming a constant static heat

leak () flowing entirely into the Cu nuclear spins:

\, B2 -1
Te,éu@):Te;—t( -f+n) | (2.3
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where T, ¢, is the electronic temperature of the Cu plate, Ty is the extrapolated
electronic temperature of the Cu plate at the beginning of the warm up, pg is the
vacuum permeability, A, is the molar nuclear Curie constant of Cu and & is the Korringa
constant [27] for Cu. The Korringa constant quantifies thermal coupling and thus the
temperature gradient between the electrons and the nuclei. As Eq. (2.3) shows, T;Clu
is an affine function of time. In the intermediate temperature regime, but away from
saturation, we fit Eq. (2.3) to the data, shown as dashed lines in Fig. 3.1(a). The
fits are in very good agreement with the data for intermediate temperatures, which

indicates that the heat leak is constant over a long period of time.

From the fit we extract @ and T,,. The black crosses in the inset of Fig. 3.1(b) show
the measured @) for ANDs at various final fields. As seen, Q is roughly 1nW /mol
and independent of By below 1T. This is striking since it indicates negligible eddy
current heating. During a warm up, the magnetic field is held constant but eddy

current heating could still arise due to vibrations in an inhomogeneous magnetic field:

Q  (dB/dt)? = [(dB/dr)(dr/dt))>.

As shown in Fig. 3.1(a), the temperature sensor shows a saturation in the low temper-
ature regime and lies below the theory curve of inverse temperature. Such an elevated
sensor temperature Ty can be caused by heat release, e.g. at the thermometer itself.
The temperature gradient between the sensor and the NR can be taken into account
using a heat flow equation, that fits the sensor temperature of the MFFT in the whole
dynamic range. The total static heat leak can be decomposed into a sensor heat leak
Qs and a remaining heat leak directly acting onto the NRs. The temperature gradient

due to the heat leak Qs can be written as :

T2(t) — T2 (1) = ;Qs. (2.4)

The difference between the square of the two temperatures comes from the integration

of the thermal conductivity of the metallic link between the sensor and the NR, which
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is linear in temperature. The coefficient kg = 72k%/3e? Ry, where e is the electron
charge, depends on the total resistance Ry, ~ 1 pf) comprised in similar parts from
the spot-welded junction between the Ag wire and the Cu plate and the resistance of
the Ag wire. Note that the low temperature resistivity is reduced by a RRR ~ 2000,
achieved by annealing the high purity Ag wire. By plugging Eq. (2.3) into Eq. (2.4), we
obtain 77! as a function of the time with Qs as an additional fit parameter. The solid
blue curves in Fig. 3.1(a) show the best fit, exhibiting excellent agreement down to the
lowest temperatures. The sensor heat leak Qs is between 5 and 20 % of @, indicating

a rather small heat leak emanating from the MFFT.

Performing a complete AND experiment to extract @ for different B-fields is very time-
consuming. In order to procure Q faster, we introduce an abbreviated precool and warm
up (PW) cycle: The Cu stage is precooled at fixed magnetic field and subsequently
warms up due to the heat leak Q, after being thermally isolated from the MC with
the heat switch. Figure 3.1(b) shows the warm-up of a PW cycle at a B-field of 0.5 T
for all the thermometers in use. For all three sensors, the inverse of the temperature
decreases linearly in time and eventually saturates at high temperature. Note that each
of the three thermometers have their own saturation temperature (high T) and warm
up time, indicating different heat leaks. By using Eq. (2.3) (dashed line in Fig. 3.1(b))
we extract a @ for the MFFT of around 1 nW/mol and find higher values of 2 nW /mol
for the CMN and 4.8 nW/mol for the LCMN. The heat leaks extracted with PWs for
different B-fields are consistent with the ones from warm ups after AND, see inset of
Fig. 3.1(b). Note that for the MFFT a minute amount of GE Varnish is used to fix the
superconducting pick-up coil to the silver wire while for the packaging of the (L)CMN,

a considerable amount of epoxy is used, which is a well-known source of heat release.

Next, we compare the electronic temperature of the Cu plates T, ¢, as extrapolated
from the warm up curves after AND (7.y) with the measured electronic temperature
Twrrr, finding excellent agreement, as seen in Fig. 2.4, blue squares. Even though the

thermometers used for the extrapolation (CMN and LCMN) become fully saturated
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Figure 2.3: Warm-up curves: (a) Inverse of 7y measured with the MFFT versus
time during the warm up at 80 mT (red squares) and 200 mT (orange squares) after
AND. The linear fits (black dashed lines) reveal extrapolated electron temperatures
T = 126/280 1K at the beginning of the warm up and heat leaks of @ = 0.9/1.16 nW /-
mol for 80 mT and 200 mT, respectively. The solid blue curves are the fits to the heat
flow model (see main text) with Qs=6% at 80mT and 18 % at 200mT of the total
static heat leak. (b) Precool and warm up (PW) measurements: 7, ! during warm
up, from MFFT, CMN and LCMN thermometers versus the time after opening the
heat switches at B=0.5T, resulting in Q =1.2/2.0/4.8 nW /mol, respectively. Inset:
static heat leak @Q to the nuclear stage per mol of Cu, measured with the MFFT at
various B-fields, extracted using Eq. (2.3) after AND (black crosses) and after PW
(green circles).
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at rather high temperatures, here around 2.5 mK, the extrapolation method — as also
relied on in our previous works [31, 32, 43] — is seen here to work rather well down to
the lowest temperatures measured. As shown in Fig. 2.4 below 400 uK, Tyippr starts
to be slightly higher than T ¢y, reaching a maximum deviation of 20 % for the lowest
temperature. At 150 pK the MFFT is mainly limited by the SQUID noise level and
hence slightly higher than the lowest extracted temperature T,,=120 uK. In the high
temperature regime, the MFFT is tested against a calibrated RuO, thermometer sitting
on the MC flange, showing excellent agreement of the temperature reading of the two

thermometers, see red squares in Fig. 2.4.

To complete the characterization of the AND system, we now turn to the efficiency of
the process. As shown in the inset of Fig. 2.4 the efficiency decreases monotonically
from almost 100 % at high final magnetic field down to 70 % for the lowest final field.
The reduction of the efficiency for lower magnetic fields is a result of the smaller heat
capacity of the Cu nuclei, which is proportional to Bf. We simulated the efficiency
of the AND process assuming Qdyn depending linearly or quadratically on B or B as
one would expect for Qdyn arising from vibration or eddy current heating, but in these
cases the simulations completely missed the experimental points. In contrast, assuming
a fixed Qdyn of 29nW /mol, independent of B or B, reproduces the data well (green
dashed curve in inset of Fig. 2.4). Thus, the simulation suggests that Qdyn is constant
in time and independent of the ramp-rate of the B-field, which gives the opportunity to
increase the efficiency by reducing the duration of the demagnetization process. This
hypothesis was successfully tested in the experiments by doubling the ramp speed of
the AND, as shown by the blue crosses in the inset, where £ increases significantly for
the faster rate — albeit the simulation predicts slightly different efficiencies than those

measured.

To estimate the dynamic heat leak, we first open the switches, then we ramp the
magnetic field from zero to a finite B-field and back to avoid any nuclear contribution

to the heat capacity. We measured the temperature of the Cu plates and by integrating
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Figure 2.4: Temperature measured by the noise thermometer Tyippr versus temper-
ature of the nuclear stage T, c,. Above 7 mK, T, ¢, is measured with a calibrated
RuOs thermometer sitting on the MC (red squares). In this temperature range the
MC and the Cu stage are well thermally coupled. For temperatures below 7mK, T ¢y
is extracted from warm ups after AND (blue squares) (see text and Fig. 3.1(a)). The
black dotted line represents Tyippr = Tt.cu. Inset: the efficiency & as function of the
final magnetic fields By. The dashed curves show simulations of the AND process,
carried out at two different ramp speeds. The markers show the efficiency extracted
from different AND runs as labeled.
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the electron heat capacity we obtain the energy stored in the system. In addition, we
estimate the heat leaking through the superconducting Al heat switches due to phonon-
dislocation scattering processes [1, 57]. This estimation yields Qgy, of 22 nW/mol
for a ramp-rate of 1T/h, which is comparable to the value used in the simulation.
However, the Qdyn estimated with this protocol is dependent on the ramp-rate, which
is in disagreement with the simulation. Our simple model needs further work to fully

understand the origin of Qdyn and its dependence on the sweep rate.

2.5 Conclusions

In summary, we have implemented a parallel network of 16 electrically separated NRs
on a cryogen-free platform. These 16 plates are part of the measurement leads and
can be straightforwardly used to cool nanostructured samples. The nuclear stage is
equipped with a magnetic field fluctuation thermometer, showing excellent agreement
with the NR temperature Tt ¢, down to 400 uK. After AND to By = 0.08 T, the lowest
temperature reading is limited to 150 uK while the extrapolated electron temperatures
is 120 uK, indicating good agreement between the model and measurements. The heat
leak measured on the NRs is around 1nW/mol and allows the AND stage to stay
below 1 mK for roughly 50 hours, see supplementary material paragraph. Higher By
allow for even longer hold times, while still supplying reasonably low temperatures. In
addition, we characterized the dynamic heat leak, which appears to be constant in time
and independent of the sweep rate of the magnetic field, making possible significantly

increased efficiency at faster magnetic field sweep rates.
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2.7 Supplementary Material

The supplementary material provides a more detailed description of the setup, addi-
tional information about the precooling and warm-up stages, a discussion of the socket,

as well as details of the gradiometer design.

2.7.1 Setup

Figure 2.5 shows a scheme of the dilution refrigerator from room temperature down
to the chip carrier. The measurement leads from the RT flange down to the MC are
made by 1.5m long lossy thermocoaxes, providing an attenuation of 100 dB for fre-
quencies above 3 GHz. Then the leads are connected to microwave filters [34], which
provide an attenuation of 100 dB above 200 MHz and thermalization for the electrons.
In addition, we have a second filter stage that consists of two-pole resistor-capacitor
filters (2x[2 k§2/680 pF]). In order to further improve the thermalization of the measure-
ment leads we use Ag-sinters, where each one of them has dimensions of [4x4x20] mm?
and a surface area of 4.5m? measured with Brunauer-Emmett-Teller (BET) surface
area analysis [58]. Doubling the number of sinters per lead compared to the previous
setup [43] allows us to reach a lower precooling temperature in less time. As dis-
cussed in the main text we further doubled the diameter of the annealed high-purity
5N (99.999%) Ag wire (@=2.54mm) coming out of the MC, to enhance the cooling.
Each Ag wire is spot-welded to a Cu plate, resulting in the parallel network of 16
nuclear refrigerators. In addition, we doubled the amount of Cu per plate by spot-
welding 2 half plates together. Each half plate has dimensions of [34x1.7x120] mm?,
corresponding to 1 mol. In order to shield the 16 NRs, we use radiation shields which
are attached to the still flange (around 650 mK) and mixing chamber flange (below

7mK). As indicated below the dashed red line in Fig.2.5, we design a sample holder
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with 15 commercial pins for transport experiments. The sample holder is made of sap-
phire, which is a low heat release material, has a hole in the center to allow an annealed
Ag wire to pass through and cool the metallic plane of the plug-in sapphire chip carrier.
Using plug-in pins is practical to exchange samples, but the plug-in mechanism might
cause strain, which is a possible source of heat release. The chip carrier is enclosed in a
Faraday cage that functions as sample shield. The sample holder and the chip carrier
were not installed at the time of the measurements reported in the main text and will

be only considered in the last paragraphs of the supplementary material.

2.7.2 High Performance System

Figure2.6(a) shows the temperature recorded with the MFFT (red squares) and
CMN (blue line) for a typical precooling at 9T. The temperature of both sensors
decreases from 38 mK down to 9.8 mK in 85 hours. However, in 30 hours we reach a
T, of 13mK, which could have been already used to perform an AND. As shown in
Fig.2.6(a) the cooling in the first 15 hours is less efficient than the theory [1] predicts,
where at later time the experimental data follows the theory (depicted as dashed line)
more closely. In order to perform electronic transport experiments, it is important
to evaluate the hold time (below 1mK). Therefore, in Fig.2.6(b) we plot again the
warm up curve for two final fields of 80 mT and 200 mT, measured with the MFFT.
We obtain hold times of 50 hours for 80 mT and 80 hours for 200 mT, owing to the low

static heat leak.

In the main text we discuss the static heat leak measured with the MFF'T for various
B-fields (inset of Fig.3(b)). In Fig.2.7, we present the same measurements for the
CMN and LCMN thermometers. The static heat leak @ is B-field independent below
1T for both sensors, as observed for the MFFT. In addition, the static heat leak
for the LCMN (Q=31nW/mol) and the CMN (Q=2.2nW/mol) thermometer is higher
compared to the MFF'T, possibly because of an increased amount of heat release of the

thermometers.
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Figure 2.5: Scheme of the dilution unit together with NRs. Compared to Ref. [3] we
doubled the number of sinters per lead, the diameter of the silver wires and the amount
of Cu per plate. Below the dashed red line, the socket design for future transport
experiments is illustrated. The abbreviations in the figure are bandwidth (BW), critical
magnetic field (B.) and the electrical ground (GND).
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Figure 2.6: (a) shows the temperature of the CMN thermometer and MFFT as
function of the time during the precooling at 9 T. The dashed line indicates the behavior
of the precooling temperature predicted from the theory [1]. (b) Typpr versus time
for warm ups at 80 mT and 200 mT. The dashed line points out the hold time below
1mK, which is important for transport experiments.
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Figure 2.7: Q at various B-fields measured with CMN and LCMN thermometers.
The static heat leaks () are extracted with PW and AND methods introduced in the
main text.
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2.7.3 Warm up

As shown in Fig. 2.8, the inverse of Ty measured with CMN and LCMN thermometers
is fitted with Eq. (2) of the main text. The extrapolated Cu electron temperature Tey
is close to the value obtained from the fit of the MFFT data in Fig. 3(a) of the main
text. In Fig.2.8(b) we show that the thermal model, presented in Eq. (3) of the main
text, reproduces well the experimental data for the CMN and the LCMN thermometer.
The CMN thermometer is still cooling in the first hours of the warm up in contrast
to the LCMN thermometer, possibly due to the higher heat capacity of the CMN [59]
compared to the LCMN. From the fit of Eq.(3), we extract a sensor heat leak @
around 10-20% of @ for both thermometers, which is an indication for a small heat
leak coming from the thermometer, such values are similar to the Qg extracted for the
MFFT. The higher heat leak of LCMN and CMN could arise from the screw press
contact resistance of about 100 uf) between the thermometers and the connection to
the NRs. For the MFFT we take into account only the resistance of the Ag-wire and
the weld-joint between Ag wire and the Cu plate, which gives a total resistance of

about 1 uf2.
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Figure 2.8: (a) inverse of T, measured with the CMN thermometer versus time
during the warm up at 80 mT and 200 mT. The warm up curves are plotted in semi-
logarithmic scale, for this reason the lines appear as curves. The fit to Eq. (2) gives
an extrapolated Cu electron temperature T, =105/268 uK and static heat leak Q
=2.6/3.1nW /mol for 80/200 mT, respectively. The solid blue line shows the heat flow
model with Qs= 9/10% of Q). (b) shows the same warm up curves for the LCMN ther-
mometer. From the fit to Eq. (2) we extract To =160/246 uK and Q=2.1/3.6 n'W /mol
for 80/200 mT, respectively. The heat flow equation reveals Qs = 11/22% of Q for
80/200 mT, respectively.
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2.7.4 Socket

So far we presented data only referring to NRs without any socket and carrier structure.
The introduction of these additional parts might affect the performance of the NRs
due to the heat load of the additional material introduced. Therefore we compared
the static heat leak measured with MFFT for two different sockets. First, we used a
Ag-epoxy socket with a geometry as discussed in the setup paragraph, but with an
additional microwave-filter incorporated in the socket. Ag-epoxy is a conductive glue,
which enhances the cooling of the chip through the substrate but, however, it is a
material with heat release due to structural relaxation of low energy excitations [1].
In Figure2.9, the heat leak for the Ag-epoxy socket (black triangles) is measured for
various B-fields. We obtain an average ) between 3 and 4 nW /mol, independent of the
B-field. By comparing this data to the inset of Fig. 3(b), where no socket was installed,
the heat release of the Ag-epoxy socket is a factor of 2 higher. In order to reduce the
heat release we replace the Ag-epoxy by sapphire, that due to the crystalline structure
is supposed to have low heat release. The measured heat leak is around 2nW /mol
and B independent below 1T. The heat leak for sapphire socket is in general lower

compared to Ag-epoxy socket but higher than with no socket.
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Figure 2.9: The static heat leak Q measured with MFFT for various magnetic fields
and for three different socket designs: no socket, Ag-epoxy socket and sapphire socket.
The dashed lines are guides for the eyes
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2.7.5 Gradiometer Design

Here, we discuss the improvements that we have done to the design of the noise ther-
mometer. In the first design the thermometer was in direct contact with the super-
conducting shields, which could introduce additional heat leaks onto the thermometer.
Therefore in the second design, we mounted the thermometer contact-less. We intro-
duced a shield holder, which thermalizes the superconducting shields to the support
structure without touching the thermometer. Figure2.10 shows the data already pre-
sented in Fig.4 of the main text for direct contact (black triangles) and contact-less
mounting (blue squares and orange circles) of the thermometer. For the design with
direct contact we observe a deviation of the measured temperature from the extrapo-
lated temperature already below 2 mK, which leads to a saturation of Typpr at 740 uK.
In contrast, for the contact-less mounting of the thermometer Typpr agrees well with
T.cu down to the lowest temperatures. Note that for the contact-less mounting of
the thermometer we used two different socket configurations: sapphire socket and no
socket. Despite their different heat leaks the temperature reading of the MFFT is the
same. As result the contact-less mounting of the noise thermometer indeed reduces the

heat leaks onto the noise source, leading to a lower temperature reading of the MFFT.
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Figure 2.10: Temperature measured by MFFT versus the temperature of the nuclear
stage Tc, with T, extracted as in Fig. 4 of the main text. We compare two different
gradiometer designs: old design with Ag-epoxy socket and improved design realized for
no socket and sapphire socket.
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3 Thermal model AND process

In this section, we explain in detail the thermal model, which was introduced in the
previous chapter. Starting from a thermodynamical approach for the nuclear magnetic
cooling and proceeding with the analysis of the thermal interaction between the dif-
ferent degrees of freedom in the nuclear refrigerant, the basic equations of the thermal
model are obtained. In the last part of this chapter, we describe the computational
implementation of the thermal model, the improved efficiency of the process predicted
by the model and the possible origin of the dynamic heat present during the demag-

netization process.

3.1 Introduction

Adiabatic Nuclear Demagnetization (AND) is the most advanced cooling technique
available so far to reach puK temperatures. We employed for the first time this tech-
nique in transport experiments, to cool electronic devices through the leads. We de-
veloped a model to describe the demagnetization of the Cu refrigerant and the model
suggests ways to improve the process. In this Chapter, we describe the theoretical
thermodynamic background of the AND technique and the thermal coupling among
the degrees of freedom, which we need to take into account in our model. We introduce
the equations employed in the model and the finite element algorithm used to solve the
time evolution of the electron temperature and nuclei temperature. The model shows
that a time independent heat leak is responsible for the loss of adiabaticity, indicating
that we can reduce the effect of such a heat leak by reducing the duration of the pro-
cess. The theoretical prediction finds support in the experiments, which demonstrate

an increase of the efficiency from 67 % to 82 %.
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3.2 Theory of the Adiabatic Nuclear Demagnetization

To understand the AND process, it is convenient to start with a thermodynamic ap-
proach to the phenomenon, which allows us to extract the equation utilized in the
thermal model. We consider an ensemble of non-interacting nuclei, which have a nu-
clear spin I and magnetic moment /i,. An external magnetic field of magnitude B

induces Zeeman splitting of the nuclear spin states, given by

Ey; = —mg,u, B, (3.1)

where m is the the quantum number [-1,-I+1,...1-1,1], g, is the nuclear g-factor and
[4n is the nuclear magneton. In the high temperatures limit where the thermal energy
is dominating on the Zeeman splitting £, < kg7, the molar nuclear spin entropy

(Sn(B,T)), is expressed as

A\, B?

0

(3.2)

where R is the ideal gas constant, A, is the molar nuclear Curie constant and gy is the

vacuum permeability. Using the Eq. (3.2) combined with the thermodynamic relation

for the molar nuclear heat capacity C, for a constant B (C,, = T(%%)p), we obtain

the Schoktty-law for nuclear heat capacity

A\, B?

(3.3)

Once we defined S,, and C,,, we have the elements to understand the AND process,
which consists of the three steps namely magnetization, precooling and demagnetiza-
tion. During magnetization, the magnetic field B is ramped up to an initial field B;.
As shown in Eq. (3.3) and Eq. (3.2), high magnetic field (typically B=9T) and low

temperatures (10-20 mK) are required to obtain a sizable polarization, see Fig.( 3.1). In
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order to precool the Cu refrigerant down to an initial temperature T}, we need a good
thermal link with the mixing chamber. Fig 3.1 shows a reduction of the molar entropy
at fixed B=B; from point a to point b, leading to a decrease of the temperature. For
the last step B is adiabatically reduced down to By, thus the molar nuclear entropy is
conserved, S, (B;,T;) = S, (B, Tt) and the temperature goes from 7; to the final tem-

perature Tt, as indicated from b to c. The temperature during the demagnetization

R*In(4) |- 1S IR
.
o - S(B=9T.T)
© b S(B=4T,T)
_E i S(B=2T,T)
¢ \ — S(B=0.08T,T)
L} \
(DC
0.01 0.1 1 10 100

T, (mK)

Figure 3.1: Molar nuclear spin entropy at fixed magnetic fields of B;=9T (red curve)
and Bf =80 mT (blue curve) as a function of the nuclear temperature 7;,. After ramping
up the B-field up to 9 T, we wait and cool in the point a. During the precooling, we
move along the red curve from point a to b, until we reach T; ~10mK. Note that for
other magnetic fields, e.g. 4T and 2T, the molar entropy curves are shifted to the
left compared to the one at 9T, indicating lower nuclear temperatures are required to
obtain the same value of .S,, after precooling. During demagnetization, we move form
b to ¢, indicated by the black arrow, the point c is located on the entropy curve at
By =80mT with abscissa Tt ~90 uK

process follows

T
—. !
5 (3.4

Tt = By
Magnetization and precooling steps require a good thermal link between the nuclear

refrigerant and the refrigerator while for the demagnetization we need to thermally

insulate them to guarantee the adiabaticity of the process. Therefore, we use Al heat
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switches to couple and decouple the nuclear refrigerant and the refrigerator, by switch-
ing between the normal state, i.e. good thermal conductor, and the superconducting

state, i.e. thermal insulator.

In the experiments, it is difficult to obtain a complete adiabatic process due to parasitic
heat leaks (pr), which are always present in the nuclear refrigerant even when the
Al heat switches are in the superconducting state. The heat leaks might be due to
heat release, microwave radiation or electrical noise. These can increase the final

temperature compared to the ideal process.

3.3 Degrees of Freedom in a Cu Plate

The adiabatic nuclear demagnetization cools the nuclei, which thermalize among each
other within the spin-spin relaxation time 7. However, our goal is to cool the electrons
in the nuclear refrigerant, since those transfer the cooling power to the sample through
the leads. To be able to write the heat relation between electron and nuclei, it is
necessary to first consider the thermal interaction between different degrees of freedom,
e.g. nuclei, electrons and phonon lattice, which coexist in the Cu refrigerant and heat
exchange mechanism among each other. For perfect equilibrium configuration, all the
degrees of freedom have the same temperature, while for non-equilibrium configuration
the different degrees of freedom can have different temperatures with finite thermal
coupling between them. As shown in Fig. (3.2) electrons and phonons exchange heat
via electron-phonon interaction Qe,ph, in addition nuclei exchange efficiently heat with
electrons via hyperfine interaction Q.,. However, nuclei and phonons do not directly
interact, as indicated in Fig. (3.2), thus the electrons function as mediator between

phonons and nuclei as well as with the external environment Qpar.
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3.3.1 Electron-Phonon Coupling

As the first interaction between degrees of freedom, we consider the electron-phonon
coupling [1], which reads
Quyn = V(TP — T3, (3.5)

where V' is the volume of the nuclear refrigerant, 7 is the temperature of the electrons,
Ton is the temperature of the phonons, 3 the electron-phonon coupling constant, which
dependents on material and is for Cu X =2-10° Wm—3K=°. Due to the T° dependence
electron-phonon coupling is rather weak at low temperatures. The phonon heat ca-
pacity is extremely small at low temperatures compared to the electronic and nuclear
heat capacities, thus we conclude that the phonons are completely thermalized with

the electrons (T, = T}) within an extremely short relaxation time.

3.3.2 Hyperfine Interaction

The hyperfine interaction is responsible for heat transport between nuclei and electrons.
The time scale at which thermal equilibrium is reached between electrons and nuclei is
determined by the spin-lattice relaxation time (71). For a metal at low temperatures,
Ty < 71, indicating that electrons and nuclei can have two different temperatures, a
nuclear temperature 7}, and an electron temperature 7,. Assuming that 7T, is constant,

one can define the spin relaxation time as follows
d /1 1 /1 1
i) (5 5) (36)

The hyperfine interaction is determined by the overlap integral between the electron
wave function and the nuclei wave function. Only the conduction electrons are relevant
for the overlap integral and their energies are distributed in a stripe of width kgT,

around the Fermi surface. Therefore, 7 is proportional to 1/7,, leading to the Korringa
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Figure 3.2: A schematic showing the different degrees of freedom present in the Cu
refrigerant. Electrons and phonons interact through Qe_ph, while electrons and nuclei
exchange heat via Qen. A parasitic heat leak me is introduced in the system through
the electronic degree of freedom. The direct interaction between phonons and nuclei is
negligible.

law

nT, =k, (3.7)

where k is the Korringa constant, which is a material constant. The Korringa constant
gives the strength of the hyperfine interaction between electrons and nuclei. Typical
values for metals are a few K-s, e.g for Cu x = 1.2 K:-s, indicating that electrons and
nuclei are well thermally coupled even at low temperatures. Using Eq. (3.7), it is

possible to rewrite the Eq. (3.6) in the following way

T, (T~ T) . (3.8)

Usually the electrons are cold and the nuclei are hot, but during the demagnetization

the heat flow is opposite and it can be written as

Qen = _nCnTn = nCeTe s (39)
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where C, is the electrons heat capacity and n indicates the number of mole. Note that,
in presence of an external B, the molar nuclear heat capacity is much larger than the
electron heat capacity. Thus the thermal load of the electrons on the nuclei is negligible,
indicating that T, follows T,, even without an ideal adiabatic process. Therefore, we
neglect the electronic contribution of Eq. (3.9). Substituting Eq. (3.3) and Eq. (3.8)
into Eq. (3.9), we obtain

A\, B2

This describes how the electrons are cooled during the demagnetization process through
the nuclei. In presence of le leaking in our system, we can balance the cooling power

of the nuclei Qen with QWT and we obtain the following relation

Te _ | @rartitlo

- ST (3.11)

As shown in Eq. (3.10) and Eq. (3.11), a heat leak can lead to a potentially significant
temperature gradient between the electrons and nuclei. Thus, it is important to try to

minimize the heat leaks to obtain an efficient cooling of the electrons via the nuclei.



44

3.4 Simulation AND

Here, we describe the procedure used to model the demagnetization. In order to solve
numerically the differential equations utilized in the model, we consider finite small
time steps (0t) in which the B-field is changed by 6B = %525, where C;—lf is the ramp-
rate of the magnetic field. In order to take into account the reduction of the nuclear

temperature (67},) due to a ideal adiabatic demagnetization during dt, we use Eq. (3.4)

rewritten in terms of &t

0B T,dB
T, =1,— T, = —— 12
o, nB—>(5n Bdt& (3.12)

Assuming a time independent Qdyn due to the ramping of the magnetic field, which
warms up the nuclei, and a cooling power term given by 07,,. Using Eq. (3.9) and

Eq. (3.12), T,, at time t+dt is given by

Qup 5, Tult)dB

Lt +o) =T+ &) By ™ B @t

5t | (3.13)

The term Qg—ff accounts for loss of adiabaticity during the demagnetization, i.e. Qdyn:()
for an ideal adiabatic process. At time t=0, we assume that electrons and nuclei have
the same temperature 7, (0) = 7,,(0)=9.5 mK. It is reasonable to assume that 7, follows
T,,, since the Korringa link is strong for temperatures above 1 mK and the nuclear heat
capacity dominates over the electron heat capacity. Knowing 7},(0), we calculate the
next value T, (dt), using the Eq. (3.13). Next, we calculate T,(dt) using Eq. (3.11) with
QpaT:Qdyn and knowing T,,(dt), since the electrons are cooled by the nuclei through
hyperfine interaction. In this way we can iteratively calculate T,(t), T,,(t) and B(t) for
each time step. As shown in Fig 3.3, for high magnetic fields T, follows T,, perfectly,
while at low magnetic fields T, deviates from T,,. In addition, 7,, deviates from the
nuclear temperature of the ideal adiabatic process T, ggiabatic, the deviation is also due

to the presence of Qdyn. The computed temperature 7, reproduces well the measured
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electronic temperature Typpr. A small deviation is seen at low magnetic fields, however
we observe a cooling of the MFFT after reaching By, due to the absence of Qg at

static B-fields, see Fig 3.3.
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Figure 3.3: Calculated T, and T,, as a function of the magnetic field during the
demagnetization. The red squares indicate Typpr during the demagnetization, while
the black square is the temperature measured at static field By =0.08 T. The dashed
line indicates the calculated nuclear temperature for the ideal adiabatic process

The detailed ramp rate series use in the experiment is fed into the model. To
evaluate the performance of the demagnetization process, we use the efficiency
¢ = (Ti/Tt)/(B;/ Br). Using the model, we can calculate £ for each B-field, as shown in
Fig 3.4. The calculated efficiency for the standard demagnetization rates agrees well
with experimental data. As seen in Fig 3.4, changing the ramp-rates results in kinks
in the simulated efficiency (orange curve), which is due to the fact that more time
is needed to ramp the same difference in magnetic fields, despite a heat leak, which
does not change when the ramp rate is changed. Thus, the heat absorbed per unit
of magnetic field is increased for the lower ramp-rates, leading to a reduction of the
efficiency, which is in agreement with the experimental data (red squares) in Fig 3.4.

In addition, a constant Qdyn suggests the possibility to improve the efficiency, reducing
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the duration of the demagnetization process. Indeed, doubling the ramp-rates during
demagnetization increased the efficiency in the experiments, however the model shows
only qualitatively the same behavior, see light blue curve Fig 3.4. The deviation

between the data and the simulated efficiency for the fast AND process is not currently

understood.
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Figure 3.4: Efficiency as a function of the magnetic field. The orange line is the
calculated efficiency for a standard AND, while the light blue line is the calculated
efficiency obtained by doubling the ramp-rates.

Usually Qdyn is mainly due to eddy current heating, generated by sweeping of the B-
field and vibrations of the Cu refrigerant relative to the magnetic field [33]. However,
the model finds that Qdyn is constant in time and independent of B2 or B2, suggesting
that Qdyn cannot just be explained with eddy current heating. In order to reproduce
the final nuclear temperature of ~120 uK, which is extracted from the warm up curves
presented in chapter 1, we need to assume Qdyn:29 nW /mol. This value is much larger
than the usual static heat leak ~ 1 nW /mol, suggesting an additional unknown source
of heat, which is active only while sweeping the magnetic field, but not proportional
to B2 or B?> . This heat needs to be transferred into the Cu reservoir through the
electronic degree of freedom and then to the nuclei via hyperfine interaction. It is
improbable that small magnetic field fluctuations in the present setup give rise to spin-
flips processes, which would release heat into the nuclei. As a last speculation, it is

possible that some heat could leak through the Al heat switches, which may be not
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always in the superconducting states while sweeping the field.

Thus, we need to understand how the compensation of the magnetic field works in the
region where the heat switches are located. A double 9T magnet is used in the setup, it
is designed to reduce the magnetic stray field down to few mT in the region of the heat
switches using active cancellation coils. In addition to the double 9'T magnet the setup
is equipped with an heat switch magnet used to tune the heat switch in the conductive
or superconducting state. The heat switch field is also used to further compensate the

stray field of the demagnetization magnet.

Figure 3.5 shows the heat switch field as a function of the demagnetization field during
the refrigeration cycle. The experimental points are obtained by varying the demagne-
tization field and simultaneously adjusting the heat switch field. The superconducting
transition of the heat switches is monitored by measuring the temperature of the Cu
plate, which abruptly increases when the heat switches change into the superconducting
state while it immediately decreases when the heat switches become normal conduct-
ing. The compensation was calibrated during the early characterization of the setup
and might not be valid anymore, since at that time the magnetic thermometers were
not properly working. This could introduce a systematic error in the calibration mea-
surements and thus the calibration should be repeated. The estimation of the heat flow
through a fully normal conductive heat switch is an order of magnitude higher than
Qdyn needed for our simulation. Alternatively, the Al pieces (~ 1lcm in size) might

only partially be normal conducting.

In conclusion we show that a simple numerical model can explain qualitatively the data
and it predicts that a faster process improves the efficiency of the process to above 80 %,
however the origin of the Qgy, is not currently understood but it might be due to heat

leaking through the switches.
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Figure 3.5: The heat switch magnet as a function of the demagnetization magnet
during the refrigeration cycle. The different parts of the refrigeration path are indicated
by numbers.
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Abstract

We present a simple on-chip electronic thermometer with the potential
to operate down to 1mK. It is based on transport through a single normal-
metal-superconductor tunnel junction with rapidly widening leads. The current
through the junction is determined by the temperature of the normal electrode
that is efficiently thermalized to the phonon bath, and it is virtually insensitive
to the temperature of the superconductor, even when the latter is relatively
far from equilibrium. We demonstrate here the operation of the device down

to 7mK and present a systematic thermal analysis.

* These authors contributed equally to this work.
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4.1 Introduction

On-chip electronic thermometry is an important part of modern research and com-
mercial applications of nanotechnology, and it has been studied already for several
decades; see Ref. [60] and references therein. Many of these thermometers are based
on tunnel junctions or quantum dots [61-63]. Temperature sensors based on nor-
mal (N) and superconducting (S) metal tunnel junctions are used in a wide range of
experiments [42, 64, 65] and applications [66, 67]. An example of such a device is a
primary Coulomb blockade thermometer (CBT) that is based on normal-metal tunnel
junctions with an insulator “I” as a tunnel barrier (NIN) [32, 68|, where the electronic
temperature can be obtained by measuring the smearing of the single-electron block-
ade. One more example is an SNS thermometer [69], whose critical current I, depends
strongly on the temperature. Primary electronic thermometry has also been success-
fully demonstrated down to 10 mK using the shot noise of a tunnel junction (SNT) [70—
72]. Nowadays, a standard dilution refrigerator reaches a temperature of [5..10] mK,
with a record of 1.75 mK [2, 3]. Nevertheless, a thermometer that has a modest struc-
ture and a simple but accurate temperature reading at sub-10 mK temperatures and
does not require a complicated experimental setup is still missing. For this purpose, we
present an NIS junction that is widely used both as a refrigerating element and a probe
of the local electronic temperature in different experiments and applications [42, 64—
67, 73-75]. The possibility to use the NIS junction at sub-10 mK temperatures makes
this thermometer suited for cryogenic applications at low temperatures. For instance,
quantum information is a highly focused and rapidly developing field in modern physics.
For many realizations, such as superconducting and quantum dot qubits, one needs to
define a set of quantum states at low temperature that are well separated and well
controlled and insensitive to noise and decoherence effects [76]. Several experimental
realizations of two-level systems [12, 77, 78] suggest that decreasing temperature fur-
ther will increase the coherence times as well as improve charge sensitivity. We think

that our thermometer will be interesting for a community who is willing to discover
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new physics as well as improve already existing devices that require low temperatures
for their proper functioning. The NIS thermometer is easy to operate compared to
SNT [70, 71], and its thermalization is quite straightforward compared to CBT [32]
due to the single junction configuration and can be combined on-chip with other solid-
state devices. A measurement of the NIS current-voltage (I-V') characteristic yields a

primary temperature reading.

In this paper, we study both experimentally and theoretically an on-chip electronic
thermometer based on a single NIS tunnel junction at sub-10mK temperatures. We
demonstrate the operation of the NIS thermometer down to 7.3 mK. In addition, we
develop a thermal model that explains our measurement data and shows that self-

heating effects remain negligible for temperatures down to 1 mK.

4.2 Theoretical Background

Transport through an NIS junction has strong bias and temperature dependence. Near
zero bias voltage, the current is suppressed due to the superconducting gap A [79].
When biased at voltage V', the current depends on temperature due to the broadening
of the Fermi distribution fy(F) = [exp(E/kgTx) + 1]7! in the normal metal with

temperature T and Boltzmann constant kg. The current can be expressed as [79]

1 oo
- 2Ry /_OO dEns(E) [fn (E—eV) — fn (E+eV)], (4.1)

where Rr is the tunneling resistance of the junction and E is the energy relative to the

chemical potential.

In the superconductor, the Bardeen-Cooper-Schrieffer (BCS) density of states is
smeared and typically described by the Dynes parameter 7, which can be ex-
pressed as ng(E) = ‘%e(u/ M)’ (see supplemental material in Ref. [80]), where
u= FE/A(Ts) +iv and Ty is the temperature of the superconductor. Possible origins

of v include broadening of the quasiparticle energy levels due to finite lifetime [81],
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Figure 4.1: In panel (a), we show the relative deviation of the present thermometer
reading using method B with a numerically calculated I-V, Eq. (4.1). Sets of curves
present the values of ¢ for three v parameters: 1077, 2.2 - 107° (the actual value in
the experiment), and 10™* shown as red, blue and green curves from left to right.
For each v, temperatures 1, 3, and 7mK are shown as dash-dotted, dashed, and solid
lines, respectively. All curves are calculated using the parameters of the measured
device with A = 200peV and Ry = 7.7kQ. The main panel (b) shows the measured
I-V characteristic (blue dots) together with the full fit (solid red line) enlarged in the
superconducting gap region. Inset: Measured and calculated -V curve on a wider
voltage scale at approximately 10 mK.

Andreev current [82, 83|, as well as photon-assisted tunneling caused by high-frequency
noise and black-body radiation [80]. The typical experimental range of 7 for Al-based?
tunnel junctions is 107 to 107° for a single NIS junction [80, 88], getting as low as

10~7 in SINIS single-electron transistors with multistage shielding [89)].

One can determine Ty from a measured -V curve using Eq. (4.1). As we show below,
the self-heating of both N and S electrodes has a small effect on the I-V characteristic;
thus, for now, we neglect these effects. Therefore, we assume temperatures to be small,
kgTns < €V,A(Ts), and the superconducting gap to be constant and equal to its

zero-temperature value A. In this case for eV < A, one can approximate Eq. (4.1) by

~ T ox —(A—¢€V) 014
f=her ( kTN ) ! RryJ1— (eV/A)? -

3Tunnel junctions based on Nb, NbN or NbTiN have higher v values, usually up to 1072 [84-87]
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where Iy = 2rAkpTy/2e Ry [64, 82]. Here the second term stands for the corrections
to the I-V characteristic due to smearing. It leads to the saturation of the exponential
increase of the current at low bias values. In the regime of moderate bias voltages, one

can neglect this term and invert Eq. (4.2) into

A kgT
V="

In(I/1). (4.3)

This equation provides a way to obtain the electronic temperature T by only funda-
mental constants and by the slope of the measured I-V characteristic on a semiloga-

rithmic scale as

e dV

Ty (V) = kpd(In1)

. (4.4)

Equation (4.4) allows us to use the NIS junction as a primary thermometer, however,
with some limitations. One can include the effects of v into Eq. (4.4) by subtracting
the last term in Eq. (4.2) from the current I and obtain a better accuracy. We do not
take this approach here, since the main advantage of Eq. (4.4) is its simplicity as a

primary thermometer without any fitting parameters.

Next, we will compare the two methods used to extract the electronic temperature from
the measured -V curves. In method A, we employ Eq. (4.1) and perform a nonlinear
least-squares fit of a full I-V curve with T as the only free parameter. The value
of Ty obtained in this manner, named 7T, is not sensitive to 7. Method B is based on
the local slope of the I-V see Eq. (4.4). The smearing parameter  has an influence
on the slope of the I-V characteristic and, thus, induces errors in the temperature
determination. The temperature T¥ is extracted as the slope of measured V vs In [
over a fixed I range for all temperatures where Eq. (4.4) is valid. In the experiment,
it is usually difficult to determine the environment parameters precisely, but one can
determine 7 from the ratio of Ry and the measured zero-bias resistance of the junction.

The I-V which takes the v parameter into account, see Eq. (4.2), gives indistinguishable
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results from the ones obtained by method A.

We evaluate the influence of the v parameter on the relative deviations of the present
thermometer based on method B numerically, as shown in Fig. 4.1(a). This deviation ¢
is defined as the relative error t = (T% /T ) —1. We show the values of ¢ vs In(eRpI/A)
for two extreme cases v = 1077, 10~* and for v = 2.2- 1075 extracted from the present
experiment at temperatures of 1, 3 and 7mK. The lowest bath temperature is 3mK,
and 7mK is the saturation of the electronic temperature in the current experiment. The
larger the values of 7 and the lower the temperature, the higher the relative deviations.
In addition, the range of the slope used to extract 7% shrinks with increasing « and
with decreasing temperature, see e.g. red curves in Fig. 4.1(a). Thus, reducing the
leakage will significantly improve the accuracy of the device, especially towards lower
temperatures. Possible avenues for suppressing « include improved shielding [89, 90]
and encapsulating the device between ground planes intended to reduce the influence
of the electromagnetic environment [80]. Finally, higher tunneling resistance of the
junction decreases Andreev current [91]. We note that one can also use dV/d(Ing) as
a primary thermometer, where g = dI/dV is the differential conductance — typically
a more precise measurement since it is done with a lock-in technique. Compared to
Eq. (4.4), this method has the minimal deviation ¢ reduced by at least a factor of 3.5 for
Ty > 1mK (6 for Ty > 10 mK), though exhibiting qualitatively similar dependencies

on v and Ty.

4.3 Experimental Realization and Measurement Techniques

Next, we describe the realization of the NIS thermometer that is shown together with

a schematic of the experimental setup in the scanning-electron micrograph in Fig. 4.2.

The device is made by electron-beam lithography using the two-angle shadow evapora-
tion technique [92]. The ground plane under the junction is made out of 50 nm of Au.
To electrically isolate the ground plane from the junction, we cover the Au layer with

100 nm of AlO, using atomic layer deposition. Next, we deposit a layer of dg = 40 nm
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Figure 4.2: A scanning-electron micrograph of the NIS device together with a
schematic of the experimental setup. In the main panel, the S and N leads of the
junction visible, and underneath the pads, the ground plane of a square shape is in-
dicated by a dashed line. The enlarged inset shows the actual tunnel junction where
the S and N leads are indicated by blue and brown color, respectively.

of Al that is thermally oxidized in situ. The last layer is formed immediately after the
oxidation process by deposition of dy = 150nm of Cu, thus creating an NIS tunnel
junction with an area A = (380 x 400) nm?. The geometry of the junction is chosen
such that the leads immediately open up at an angle of 90° and create large pads with
areas of Ay = Ag = 1.25mm? providing good thermalization. The S lead is covered
by a thick normal-metal shadow as shown in brown in the inset of Fig. 4.2, where N

and S layers are interfaced by the same insulating layer of AlO as the junction.

The experiment is performed in a dilution refrigerator (base temperature 9 mK) where
each of the sample wires is cooled by its own, separate Cu nuclear refrigerator (NR) [31],
here providing bath temperatures Ti.i, down to 3mK. Nuclear refrigerator tempera-
tures after demagnetization are highly reproducible and obtained from the precooling
temperatures and previously determined efficiencies [32]. Temperatures above ~ 9mK
are measured with a cerium magnesium nitrate thermometer which is calibrated against
a standard superconducting fixed-point device. Since the sample is sensitive to the
stray magnetic field of that applied on the nuclear refrigerators, this field is compen-
sated down to below 1G using a separate solenoid. The -V curves (see Fig. 4.2 for
the electrical circuit) are measured using a home-built current preamplifier with input

offset-voltage stabilization [93] to minimize distortions in the I-V curves.

Filtering, radiation shielding and thermalization are crucial for obtaining a low v and
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low device temperatures. Each sample wire goes through 1.6 m of thermocoax, followed
by a silver epoxy microwave filter [34], a 30 kHz low-pass filter and a sintered silver
heat exchanger in the mixing chamber before passing the Al heat switch and entering
the Cu nuclear stage. The setup is described in detail in Ref. [32] and has been further

improved here (see 4.7 Appendix for more details).

4.4 Results and Discussion

In Fig. 4.1(b), the measured -V characteristic in the superconducting gap region is
shown by blue dots. The solid red line corresponds to the full fit based on method A. In

the inset, we present the /-V characteristic at a larger voltage scale used to extract Rp.

In Fig. 4.3(a), the measured I-V’s of the NIS junction are shown in logarithmic scale
by blue dots at various Tham = [100..3] mK from left to right. The full fits are shown
as dashed red lines. The tunneling resistance Ry = 7.7k{) and the Dynes parame-
ter v = 2.2 - 107° used in all these fits are determined based on the I-V’s shown in
Fig. 4.1(b) at high and low voltages, respectively. For the lowest temperatures, Ty from
the nonlinear fit depends strongly on the superconducting gap?, making it difficult to
determine the gap with high enough accuracy®. However, Eq. (4.1) gives a possibility
to perform a nonlinear least-squares fit and Eq. (4.3) gives a linear fit, where the pa-
rameters A and Ty are responsible for the offset and the slope, respectively. Therefore,
at high temperatures (~ 100 mK in the present experiment), one can narrow down the
uncertainty in A such that Ty becomes essentially an independent parameter for the
fits. Thus, the gap extracted from the high-temperature data using Eq. (4.1) remains
fixed, A = 200 4+ 0.5peV, for all temperatures below 100 mK. In addition, we show
as solid black lines an exponential /-V' dependence corresponding to method B with a
fitting range between 5 and 400 pA. The enlarged inset shows the I-V curves at tem-

peratures of 10 and 7mK. The -V characteristics presented in Fig. 4.3(a) agree well

4A reduction of the superconducting gap by 0.1 % changes Ty by 10 % at the lowest temperature.
SWith the given experimental uncertainties, we can determine the gap with a precision of 0.25 %
(£0.5pev).
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Figure 4.3: Panel (a) shows measured [-V’s (blue dots) when Ty, is lowered from left
to right together with fits as solid black and dashed red lines (see text). Inset: Close-up
of two I-V’s for temperatures of 10 and 7mK. The electronic temperature extracted
from both the full fit (red squares) of the I-V’s and their slopes (black triangles) are
shown in (b).
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with the theoretical expressions in Eqgs. (4.1) and (4.2) (the latter form is not shown).
In Fig. 4.3(b), we show the electronic temperatures obtained using method A (red
squares) and method B (black triangles) vs Tyan. Method A (B) shows a relative error
in the electronic temperature up to 6 % (11 %). The error in method B is larger, as we

neglect the influence of the v parameter.

The lowest temperature obtained from the full fit is T4 = 7.3mK with statistical
uncertainty of 5% at Ti. = 3mK. The NIS temperature decreases slowly over time,
arriving at 7.3 mK several weeks after the cool down from room temperature. This
suggests that internal relaxation causing a time-dependent heat leak, e.g. in the silver
epoxy sample holder, is limiting the minimum temperature. Future improvements
will employ low-heat-release materials better suited for ultralow temperatures such as
sapphire or pure annealed metals, e.g., for the socket and chip carrier, minimizing

organic noncrystalline substances such as epoxies.

4.5 Thermal Model

The total power dissipated in the device is equal to IV = Qg + Q¥s, where QN and
Qigns are the heat powers to the normal metal and to the superconductor, respectively.

The heat released to the superconductor is given by

Qfis = oy | Bsns (B) i (B = V) — fs () dE. (4.5

where F¢ = F is the quasiparticle energy. To evaluate Q%S, one has to substitute Fg by
En = (eV — E) in Eq. (4.5). Almost all of the heat is delivered to the superconductor

in the measured (subgap) bias range, thus, Q3;s ~ IV and Qg < Q%s.

So far, we neglect all self-heating effects both in the normal metal and in the su-
perconductor. To justify the no-self-heating assumption, we check numerically and
analytically these self-heating effects. We sketch the analytical arguments in section

4.7 Appendix. Here we state the main results obtained from the thermal model.
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Self-heating of the superconductor can take place due to the exponential suppression of
thermal conductivity and the weak electron-phonon (e-ph) coupling, especially at low
temperatures. We find that the superconductor temperature Ts stays below 250 mK in
the subgap bias range |V| < A/e and does not influence the thermometer reading. In
this bias range and at Ty, = 3mK, we estimate based on the numerical calculations
the temperature of the superconductor Ts = 145 mK and the power injected to the
superconductor is IV =~ 90fW. At the same time, we evaluate the relative change
of the slope to be small [¢| < 5-107% at I < 1nA. In conclusion, the temperatures
obtained from both methods A and B are affected by less than 0.5 % by self-heating of
the superconductor®. In addition, the normal metal might get self-heated due to weak
electron-phonon coupling and backflow of heat from the superconductor [94]. The
influence of the self-heating of the normal metal down to 1 mK temperature affects the
temperature obtained from both methods A and B by less than 0.5 % as well, as in the

case of self-heating of the superconductor.

4.6 Conclusions

In conclusion, we have demonstrated experimentally the operation of an electronic
thermometer based on a single NIS tunnel junction. The thermometer agrees well with
the refrigerator thermometer down to about 10 mK and reaches a lowest temperature
of 7.3mK at Tyun = 3mK, currently limited by a time-dependent heat leak to the
sample stage. We have discussed several possible improvements of the present device
and experimental setup. Finally, we have shown that self-heating in the normal metal
and in the superconductor on the full I-V or its slope is negligible, paving the way for

NIS thermometry down to 1 mK if the experimental challenges can be overcome.

6The temperature of the superconductor will affect Ty through the dependence of the I-V curve
on the magnitude of the gap. The geometry of the device can influence the number of quasiparticles
and, consequently, the effective temperature of the superconductor.
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4.7 Appendix

Experimental Techniques

The setup described in Ref. [32] was improved as follows. First, a ceramic chip carrier
was replaced by silver epoxy parts which remain metallic to the lowest temperatures,
allowing more efficient cooling. Further, the sample — previously mounted openly
inside the cold-plate radiation shield together with the nuclear stage — is enclosed in
an additional silver shield, sealed with silver paint against the silver epoxy socket, and
thermalized to one of the Cu refrigerators, see Fig. 4.4. Finally, each wire is fed into
the sample shield through an additional silver epoxy microwave filter. While previously
saturating at 10 mK or above [32], metallic CBTs have given temperatures around 7 mK

after the improvements [13, 34], comparable to the NIS temperatures presented here.

Estimates of the Subgap Conductance

The Dynes parameter « can be attributed to the higher-order processes such as Andreev

tunneling events. Assuming ballistic transport and an effective area of the conduction
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Figure 4.4: Scheme of a dilution unit together with a nuclear stage. Radiation
shields (not shown) are attached to the still and cold plate (~ 50mK). The RC filters
are 1.6kQ/2.2nF and 2.4kQ/470pF. The 21 NR plates are (32 x 2.5 x 90) mm?
each, amounting to 64 g Cu per plate. The NRs cool as low as 0.2mK. In the present
experiment, the lowest Tha, used is 3 mK. Compared to Ref. [32], the improved setup
depicted here features a Ag epoxy socket, a Ag epoxy chip carrier, and a second filtering
stage with radiation-tight feedthroughs into an additional sample radiation shield. The
abbreviations BW, B. and GND presented in the schematic stand for bandwidth,
critical magnetic field and electrical ground, respectively.
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channel A, = 30nm? [95, 96|, a simple estimate of subgap Andreev conductance reads
oar = Rx/(8NRy) = 8.5-107° in units of R;', where Ry is the resistance quantum,
N is the effective number of conduction channels, N = A/A.,, where A is the area
of the junction. Alternatively, the estimate based on diffusively enhanced Andreev
conductance yields 7.5-107° of corresponding dimensionless conductance. These values
are of the same order of magnitude as in our experiment (y = 2.2 -107°) and fall in

the range of earlier experiments [83].

Theoretical Estimates for the Relative Deviations of the Present Thermome-

ter

The theoretical deviations of dV/d(InI) at v = 2.2 - 10~° numerically calculated from
I-V, Eq. (4.1), are rather large, particularly at low temperatures (~ 30 % at 1 mK; see
solid blue curve in Figs. 4.1(a) and 4.5). Measuring differential conductance g = dI/dV
rather than current I significantly reduces the predicted deviations t, = Ty? /Ty —1,
where T5"“9 = [dV/d(In g)le/kp. The minimum of these deviations gets broader
and potentially reduces measurement noise since it is a lock-in measurement — overall
strengthening method B. In Fig. 4.5, we show two sets of curves for ¢, (thick purple
curves) and ¢ (thin blue curves) from left to right for comparison. Sets are calculated
based on the experimental parameters for v = 2.2 - 1075, A = 200peV, and Ry =
7.7kQ. Each set corresponds to the temperatures 1, 3, and 7mK and is shown as
dash-dotted, dashed and solid lines, respectively. Here, the t set is identical to the set

with v = 2.2- 1075 that is shown in Fig. 4.1(a).

Self-Heating of the Superconductor

We study the heat transport in the present geometry (see Fig. 4.2) by a diffusion

equation assuming a thermal quasiparticle energy distribution [97, 98]

-V (K,SVTs) = Ugs, (46)
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Figure 4.5: The theoretical deviations ¢ and ¢, of the thermometer reading using
method B based on I(V) and ¢(V), respectively. These deviations are shown for
temperatures 1, 3, and 7mK as dash-dotted, dashed and solid lines, respectively. Pa-

rameters used are v = 2.2-107° A = 200peV, and Ry = 7.7kQ as in the actual
experiment.

where we set a boundary condition near the junction — niyerksV7s| junct = Qﬁls /A,
where Njuner is the inner normal to the junction. The thermal conductivity in the

superconductor is

6 ( A —A
Rg = —& (k’BTS> exp </{JBTS> LOTSUAI y (47)

where Ly is the Lorenz number, and o4 = 3-107 (Qm)~! is the electrical conductivity
of the Al film in the normal state [98]. We take into account the Ts dependence of the
gap at low temperatures, A(Ts)/A ~ 1 — \/mexp (—A/kpTs). The absorbed
heat is given by ug = cjf_ph + Gurap. Here, the first term is the electron-phonon power
Ge—ph,s ~ Sa(Te — T7) exp(—A/kpTs) [99], where Xy = 3 - 10* WK°m™® is the
material-dependent electron-phonon coupling constant. The phonon temperature 7}, is
assumed to be equal to Ti.n. Because of weak electron-phonon coupling, nearly all the
heat is released through the (unbiased) normal-metal shadow (see Fig. 4.6) that acts

as a trap for quasiparticles, Gap-
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Junction

Figure 4.6: Thermal diagram of the NIS thermometer. This schematic does not
reflect the real thicknesses of the materials. In this thermal model we assume the
normal metal shadow that acts as the trap to be at Ti.n.

Here, the conductance of the trap per unit area is the same as for the tunnel junction
or = 1/(RpA). Therefore, the heat removed per volume by this trap guap can be
calculated using Eq. (4.5) at V' =0, Ty = Thasn and substituting Ry by dg/op. Thus,
we derive the temperature of the superconductor Ts from Eq. (4.6) in 2D in polar
coordinates using radial approximation for the sample geometry, which can then be

written as [98]

27T]€BTS <—A(T5)

— S
A(Ts) exp kpTs )ZO‘QNIS‘ (4.8)

Here, we assume Q¥ ~ IV, and o = ﬁeQG/[dSaAl\/M] is a coefficient
that depends on T and the dimensionless parameter G = In(\/rg)/0 ~ [2..3] is loga-
rithmically dependent on the sample geometry [98]. Here, A is the relaxation length of
the order of ~ [10..100] pm, and 7y = 2A4/(7dy) ~ 500 nm is the radius of the contact in
the present device. After substitution of all the parameters, we find that the supercon-
ductor temperature Ts does not influence the thermometer reading, as Ty < 250 mK
in the subgap bias range |V| < A/e. We estimate Ts to be ~ 145mK in this bias
range at Ty = 3mK corresponding to the power injected to the superconductor as
IV ~ 90fW, and the quasiparticle density [98] as n, = 0.3pm™>. In addition, we
evaluate the relative change of the slope to be small |¢t| < 5-107% at I < 1nA. In

conclusion, the temperatures obtained from both methods A and B are affected by less
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than 0.5 % by self-heating of the superconductor.

Self-Heating of the Normal Metal

For self-heating of the normal metal, one can solve the diffusion equation (4.6), taking
into account the same boundary condition as above with all S indices replaced by N,
where Ky = Looc, Ty is the thermal conductivity of the normal metal, and the electri-
cal conductivity of Cu is assumed to be o¢, = 5-107 (Qm)~! [100]. The heat absorbed in
the normal metal is uy = ¢v oh T ¢Y. .. The heat conduction through the gold bonding
wires ¢Y.  is taken into account only at the point where it is attached to the normal-
metal pad, whereas the electron-phonon interaction ¢, is effective in the full volume
of the normal metal. The volumetric electron-phonon power is ¢, = S (Tx — 172,
where Yo, = 2 - 10°WK®m™2 is the electron-phonon coupling constant of copper.
Here, we consider the effect of the heat removed by the bonding wires on temperature
only in the normal metal, thus, ¢ . = Looau(Th — 1) /2Lwiredn. The length of
the gold bonding wire is Ly ~ 5mm and o4, = 1.8 - 10° (Qm)~! is the electrical
conductivity of gold measured at low temperatures. The thermal relaxation length in

the normal metal [60] is

. p/2—1 -1 UCULO
= () [ )

We substitute p = 5 and Ty, = 10mK and obtain [y = 17.5mm. Since all the
dimensions of the present device are smaller than 1.5 mm, there is only a weak temper-
ature gradient over the normal-metal electrode due to its good heat conduction, and
the weak electron-phonon coupling at low temperatures. By solving the heat-balance
equation QN = QN oh T QN . and assuming no external heat leaks, one can calculate
Ty. Here, the heat released through electron-phonon coupling is Qév_ oh = Qng¥ oh

where Qy = Andy is the volume of the N electrode. The heat released through

Nyire = 2 bonding wires is Q{Xire = qvj\\;[irerireAwiredNa where its cross-sectional area
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2 with a radius ryie = 16pm. The temperatures obtained from

wire

is Agire = @r
both methods A and B are affected by less than 0.5% by self-heating of the nor-
mal metal down to a temperature of 1 mK. In addition, we can evaluate at low tem-
peratures (i.e. Ty < Ts < A/kp) the maximum cooling at optimum bias voltage

V;)pt ~ (A — 066l€BTN)/€ [60],

A2
€2RT

(4.10)

: keTw\*?  [27ksT A
QN (Vopt) =~ —0.59( = N) 4o EEBS exp< >+’y

A A  kpTs

to be 90 pW at Ty = 1 mK.
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Abstract

We present the investigation of current steps appearing in the sub-gap re-
gion of the I-V characteristic of a NIS junction. The steps are manifestation of
Andreev bound states enhanced by the disorder and geometry of the junction.
Some of the steps show thermal broadening from 100 mK down to 4 mK, serv-
ing as primary thermometry. Numerical calculation captures the steps and the
sub-gap conductance, which dependences on the disorder and on the geometry.

Magnetic field characterization shows a minigap, which decreases in magnetic

field.

This chapter is prepared for publication.
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5.1 Introduction

Superconducting tunnel junctions are the building blocks for Josephson junctions and
superconducting qubits [16], as well as many other applications, ranging from thermom-
etry [42, 43] to on-chip refrigeration [60]. Defects in the junction are one of sources
of decoherence in superconducting qubits [101-105]. Traditional tunnel barriers are
obtained by thermal oxidation of the Al layer giving an amorphous AlO,, however by
growing single-crystal AlyOg, it is possible to reduce two level systems present in the
barrier [106]. An additional source of decoherence in superconducting qubits is due to
quasiparticle poisoning [107], which could be reduced by using metallic quasiparticle
traps [108], gap engineering [109, 110] or vortex states [111]. Low temperatures are
important to be utilized in quantum computing, since the quasiparticle population is

strongly suppressed at low temperatures.

A practical way to examine the quality of a superconducting tunnel junction is to
investigate the quasiparticle leakage current in the sub-gap region, which can be phe-
nomenologically taken into account by adding a finite broadening v to the BCS density
of states (DOS) [81]. v, also known as Dynes parameter, is defined as the ratio of the
normal state resistance Ry to the sub-gap resistance Rg and may serve as figure of
merit for the quality of superconducting tunnel junctions. Various origins for the
Dynes parameter have been identified, including high frequency noise and background
radiation that lead to photon assisted tunneling [80], as well as coherent Andreev pro-

cesses [82, 83].

In this Letter, we study normal metal-insulator-superconductor (NIS) tunnel junctions
at low temperature [34] and in a high-frequency shielded setup [34]. we observe narrow
current steps in the sub-gap region of the I-V characteristics, that are identified with lo-
calized bound states. The sub-gap steps exhibit thermal broadening down to 4mK and
may serve as precise primary on-chip thermometers. The steps show distinct evolution

with in-plane magnetic field, scaling with the normal metal thickness. Furthermore,
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their position in energy (bias voltage) is susceptible to thermal cycling, suggesting dis-
order and geometry as possible origin. We develop a model, which assumes impurities
and disorder as origin of the steps. The model qualitatively agrees with the data and
it reproduces a linear leakage current associated with the impurity landscape and the
geometry of the junction. Such a finding could add some additional insight on the ori-
gin of the Dynes parameter for tunnel junctions measured in well shielded and filtered
setup [31, 32, 43]. Furthermore, the model predicts the occurrence of a minigap related

to the geometry of the junction that closes with the applied field.

5.2 NIS Device and Setup

The devices consist of two rectangular 40 nm thick Aluminum slabs with triangular tip
pointing towards each other; see Fig.1(a). After in-situ thermal oxidation, the sample
is overgrown with a 20nm, 50nm, or 150nm thick Cu layer of the same geometry
but under different tilt angles (shadow mask evaporation [43, 92]). This leads to the
formation of a central resistive tunnel junction of area 380x400 nm?, and two outer low
resistance tunnel junctions of macroscopic size (1.25mm?). Roughly half of the samples
studied here are additionally equipped with a 50 nm thick gold ground-plane to shunt
high frequency noise, which is separated by a 100nm AlO, barrier [80] from the rest

of the device, see Fig.1(b).

The experiments are performed in two different dilution refrigerators with a base tem-
peratures of about 9mK and 5 mK, respectively. One of these dilution refrigerators is
equipped with a parallel network of nuclear refrigerators (NRs), which employs mag-
netic cooling to reach roughly 7T¢, ~1mK in the Cu nuclear refrigerant. The cooling
scheme relies on the standard adiabatic nuclear demagnetization technique, which was
adapted for direct cooling of nanostructures [31, 32]. The performance of the Cu NRs
was extensively studied in previous works [31, 32], allowing us to precisely estimate the

electronic temperature of the NRs after each demagnetization for a given final B-field.
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Figure 5.1: (a) Scanning electron micrograph of a co-fabricated NIS junction together
with a schematic of the experimental setup. The inset shows a zoom-in of the junction.
(b) A cross section of the NIS junction. (c) Zooms of the I-V curves in the sub-gap
region for various temperatures. The black line indicates the double Fermi function fits
used to extract Tiep. To reduce the error on T, the fit is performed on 10 consecutive
I-V curves taken at the same temperature and we use the mean value as < Ty, >)
and its standard deviation as error bar. The I-V characteristic for large current range
is shown in the lower inset of Fig.1.(c). (d) Tiep and Tyope as a function of T¢, . The
upper inset shows the region of the I-V curve where the semi-logarithmic fit is applied.
The lower inset shows Ty, and Tyepe as a function of perpendicular magnetic fields.
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5.3 Temperature and Thickness Dependence

In order to observe the sub-gap current steps we need to zoom-in the typical I-V
characteristic, see inset of Fig. 5.1.(c), into the sub-gap region. We observe steps of
roughly hundreds of fA, which are anti-symmetric in voltage bias. To characterize the
steps, we first analyze their temperature dependence. We observe that the broadening
of the steps increases together with the temperature, see Fig. 5.1.(c). Note that for
higher temperatures, it becomes more difficult to identify the steps, since they become

broadened and the sub-gap region shrinks for high temperatures.

To quantitatively analyze the data we fit a double Fermi function on top of a linear slope
to account for v and we find that the position and the amplitude of the steps as well as 7,
i.e. the sub-gap leakage current, remain constant for different temperatures. Thus, we
fixed these parameters and leave the broadening (6V') as the only fit parameter. Since
the junction resistance in the sub-gap region is much larger than any series resistance
from the leads, all the voltage drops across the junction. Therefore, we convert oV
directly to temperature edV = kpTgep, where e is the elementary charge and kp the
Boltzmann constant. Indeed, we find that Ty, agrees well with T¢, in the temperature
range between 9mK and 100 mK, see red squares in Fig. 5.1.(d). Since no calibration

is needed the steps can serve as a primary thermometer.

To verify the correct temperature reading of Ty, we compare it to another primary
on-chip thermometer available on the same device. Close to the superconducting gap
the current rises exponentially with inverse temperature 1/T, I ~ exp(eV/kgT) [43,
79], allowing us to extract the electronic temperature (Tyope) [43] from a linear fit
to log(I), see upper inset of Fig. 5.1.(d). Indeed, Tyope agrees well with Ty, in the
temperatures range between 9 mK and 100 mK. After demagnetizing the Cu refrigerant
cools down to T, ~1mK, Tyepe saturates at 7.5 mK while T, reaches 4.0£0.7mK,
see supplementary material. This temperature is significantly lower compared to the

previous NIS thermometers [42, 43| and it is close to the lowest temperature so far
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measured in a solid state device [40].

Furthermore, Tyope is extremely susceptible to perpendicular magnetic fields (B ), even
on the scale of 1 G. Therefore, the temperature reading is correct only around B, =0.
As soon as the magnetic field is increased, the thermometer spuriously reads higher
temperatures, see lower inset of Fig. 5.1.(d). In contrast, Ty, remains constant while
sweeping the perpendicular magnetic field, showing that Ty, is more robust against

B;.

In order to shed more light on the origin of the steps, we study their behavior upon
thermal cycling. For each cycle the samples are cooled from room temperature down
to base temperature of the cryostat. We observe a random movement of the energy
positions for various cycles. Fig. 5.2.(a) shows the I-V curves of the device NIS_2
for four different cycles, which are indicated by shades of grey. This particular device
features three separated discrete steps, two of them are stationary upon thermal cycling,

while the lowest energy one changes significantly, see inset of Fig 5.2.(a).

Next, we characterize the steps as a function of the thickness of the Copper layer (dc,)
in order to gain more insight about their origin. We measured several devices with Cu
thickness of 20nm, 50nm and 150nm. For all junctions investigated here, the steps
are observed as shown in the I-V curves of Fig. 5.2.(b-d), appearing at random bias
voltages. We note that the amplitude varies over one order of magnitude from few
hundreds of fA up to pA regime, indicating no correlation between the amplitude of
the steps at finite bias and dg,. Fig. 5.2.(b) shows two I-V curves for d¢, =20nm,
in addition to small steps close to the gap edge, there is a very pronounced zero bias
step (ZBS). Such kind of step is weakly present in the devices with dg, =50nm, see
Fig. 5.2.(c), in contrast this is completely absent for the devices with 150 nm of Cu
layer, see Fig. 5.2.(d). The amplitude of the ZBS as a function of dc, is shown in the

lower panel of Fig. 5.2.(e).

Furthermore, we notice that v shows a thickness dependence, v decreases as dg, is

increased, see upper inset of Fig. 5.2.(e). Additionally, we observe that v stays un-



5. Sub-gap bound-states in normal metal-insulator-superconductor junctions 73

i NIS_3 | i — NIS_5
-4_/ — NIS_4 | -4 / NIS_6

I | | -I/. | L | L | P |

gl 8
200 -100 0 100 200  -200 -100 O 100 200
(
T

4 vV (pv) V (pV)
d T T T e Foo T T -
(@ 150 nm €) F o 18 ~
- 2r - © IR %—4 >
< —_ “ov. o
3 0 T < 3 T 0 ~
~ —NIS_8 | Z2F % .

i — NIS_9 w1 ]

U N R qr:n\D] (0] =2 |+ ------ F----- +

-200 -100 O 100 200 0 20 50 100 150

v (HV) dCu (nm)

Figure 5.2: (a) I-V curves of the NIS 2 for various thermal cycles. (b-d) I-V curves
for two different devices at Cu thickness of 20nm, 50 nm and 150 nm, respectively.(e)
the upper graph shows the Dynes parameter as a function of d¢, and the lower graph
shows the amplitude of the ZBS as a function of Cu thickness. Note that for both
graphs the points at 50nm and 150 nm are horizontally offset by 5nm to avoid the
overlap of the markers.
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changed for devices with or without back-plane, see NIS 5 and NIS_6 in Fig. 5.2.(c)
respectively, indicating that high-frequency radiation can be excludes as origin of v in

our setups.

5.4 In-plane Magnetic Field

In the last experimental section of this letter, we investigate the magnetic field de-
pendence of both, zero bias and finite bias steps (FBSs). The in-plane magnetic field
dependence of the steps is presented in Fig. 5.3.(a-d), which show the color-plots of
the logarithm of the absolute value of the differential conductance G as a function
of the voltage bias and B for devices with different thicknesses. The measurements
are performed in a cryostat equipped with a two-axis vector magnet with one compo-
nent in the plane of the junction (B)) and the second component perpendicular to the
plane of the junction (B, ). The B, is used to dynamically compensate out of plane

components, which arise due to sample misalignment.

We first analyze ZBS and then we turn our attention to the FBSs. Fig. 5.3.(a) shows
that the ZBS gradually disappears as the B moves away from zero, it completely dies
out for B >130mT while the superconducting gap closes at roughly Bj=500mT.
The amplitude and the width of the ZBS are shown in Fig. 5.3(f), which clearly shows
that the amplitude decreases while the width grows as B moves away from zero. The
ZBS shows the same behavior also in the devices with dc, = 50nm, but in this case

the ZBS is suppressed already at 60 mT, see Fig. 5.3(b-c).

Overall the FBSs show a parabolic dependence as a function of Bj. Beside to this
dependence we observe Zeeman splitting given by 2g.upB), where g, =2 is the electron
g-factor and pp is the Bohr magneton, see Fig. 5.3.(b-d). However, for the device with
dcy =20nm the FBS shows a linear dependence as a function of B, indicating the
presence of only Zeeman splitting without parabolic dependence, see Fig 5.3.(a). To
quantitatively analyze the parabolic trajectories of the FBS, we plot the curvature of

each trajectory as a function of the thickness and we observe that the curvature seems
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to decrease together with thickness, see Fig. 5.3.(e).

log(|G|)
-10.5 -10.0 -9.5

V (V)

04 -02 00 02 04 .04 -02 00 02 04

By, (T) B, (T)
e T f T T T
0(2)0.9— . ()20_ e Ampl a Width
— oo fit 510 =
e T 16f ™M 1 =
€ o6} N P A N
~ 8 La J. ‘Q s -8 g
2 N 128 4 w —
o &
® 03r 1 E A ~ =
% < 08 ,‘o A““A“ ‘A A‘A \.\?: 6 D
0.0 + | L] L 1 !
020 50 100 150 -0.1 0.0 01
Cu thickness (nm) By (T)

Figure 5.3: (a-d) The logarithm of the absolute of the differential conductance as a
function of the in plane magnetic field and voltage bias for various thicknesses of Cu.
The full colour lines in (a-d) indicate the parabolic trajectories describe by the steps
in By, they are shifted from the dashed lines by the Zeeman energy. (e) the thickness
dependence of the curvature of the steps in-plane magnetic field. The amplitude and
the width of ZBS as a function of in-plane field are shown in (f). The black dashed
line is a Gaussian fit of the Amplzgg as a function of B
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5.5 Discussion and Model

Some of these steps are weakly coupled to the leads and exhibits a temperature de-
pendence down to 4 mK, although others saturated at higher temperatures. The ZBS
exhibits a temperature dependence, however the temperature extracted by fitting to
ZBS a Fermi function is systematically higher than T, up to 150 mK. The deviation
between the two temperatures is reduced for higher T, and they agree for tempera-
tures above 150 mK. In addition, the ZBSs are independent form the thermal cycling
while the position of FBS randomly change for each thermal cycle, giving evidences
that the impurities might be the origin of the steps. It seems clear that the FBS are
due to impurities located in the superconductor, insulator or in the normal metal close

to the junction.

We exclude impurities hosted in the superconductor, since they need to pin vortices
to show features in transport experiments. Vortices appear only when an orthogonal
external magnetic field is applied to the superconductor, however the steps are always
present regardless which B, is applied as long as the gap is not closed, see supple-
mentary chapter for the measurements in B, . Thus, we reject the vortices as possible

origin for our sub-gap steps.

We perform extensive numerical calculations to simulate the device behavior 7. The
model assumes a uniform distribution of disorder and a geometry that aims to model
the section of the junction. Carriers can be Andreev reflected at the NS interface, that
is a rare process due the low transparency of the barrier of the junction in use, see
upper inset of Fig. 5.4. In addition, the carriers can be normal reflected at the sample

edges or at the barrier.

The interplay between disorder and the geometry produces many unresolvable small
steps in the I-V curve, that result in a linear slope in the sub gap region. For a linear ge-

ometry the conductance decreases upon increasing the disorder strength. Numerically,

"P. San-Jose, www.icmm.csic.es/sanjose/MathQ/MathQ.html
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Figure 5.4: (a) Simulation of the I-V curve. The upper inset shows Energy diagram
of the NIS junction. Showing Andreev reflections (light blue arrows) at NIS interface
and normal reflections (black arrow) at the edge of the normal metal. The lower inset
shows simulated I-V curve for different disorder strengths

we observe that the background conductance increases with disorder in the tunnel-
ing regime, see lower inset of Fig. 5.4. This is understood as two-particle tunneling
enhanced by interference effects taking place on a scale on order of the superconduct-
ing coherence length scales, that are strongly amplified by the geometry of the junc-
tion [112]. The resulting background conductance has a different origin with respect
to a Dynes broadening, in that the latter is due to a finite DOS in the superconductor,

that allows single particle tunneling through it.

Reducing the thickness of the normal metal layer a carrier has higher probability to be
Andreev reflected, since the carriers hit the NIS interface more frequently compared
to the thicker layer. The coherent interference of all the possible carriers paths, where
carriers bounce many times without losing phase coherence, gives rise to geometric
resonances. Energetically speaking, the geometric resonances produce a discrete energy
spectrum, allowing quasi bound states below the gap that give rise to sharp peaks in the

differential conductance of the junction, which result in FBS in the I-V characteristic,
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in agreement with the data, see Fig. 5.4. In a small clean system we observe that,
beside relatively sharp peaks at finite energy, a broad peak occurs at zero energy.
Disorder amplifies the heights of the peaks and reduces the width of the ZBP. The
coherent interference between the carriers backscattered toward the NIS interface in
the diffusive regime gives rise to reflectionless tunneling [113-115]. It is predicted that
ZBS is progressively reduced until it disappears for fields higher than the critical field
B, = ®y/(W - L), where ®q is the flux quantum, W and L the dimensions of the
junction [116, 117]. The estimated values of B, for different thicknesses of Cu agree

well with the values obtained in the experimental data.

As shown in Fig. 3 the FBSs show a parabolic trajectory in Bj, which could be
explained in the framework of our model as a bending of the trajectories of the electron
due to the Lorentz force. To verify such a hypothesis we need to compare d¢, with the
cyclotron radius 7. = muvy/(e - B|)), where the m is the bare electron mass and vy is
the Fermi velocity. For Cu we estimate r. ~18 um, thus r. > d., indicating that the

orbital effect should be negligible.

The orbital magnetic field is introduced in the simulation by Peierls substitution for a
given disorder realization. The energy position of the peaks evolves in a complicated
way, whereby the peak positions oscillate and cross, giving rise to a intricate evolution
that is qualitatively similar to the 50 nm thick junctions NIS_ 5 for magnetic fields two
orders of magnitude larger than the experimental ones. The discrepancy in the field
scale could be attributed to quantum effects in the disorder metal in the quasi ballistic

regime [118].

Additionally, the simulation shows that the conductance versus energy and magnetic
field shows regions of different background conductance, that strongly resemble the
"evil eye" of NIS_4. We interpret the evil eye as a minigap [119-123] that opens in the
junction area and closes with the field. The value of the minigap in a linear diffusive
junction is on order of the Thouless energy. For the geometry under consideration the

minigap at B =0 is the gap itself and it closes linearly with the field. For the thicker
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junctions, 50 and 150 nm, that bright diamond can be interpreted as a minigap itself,
whereas for the 20nm junction we observe two minigaps that close with a different

slope with the applied B).

5.6 Conclusion

In conclusion, we observe current steps in the sub-gap region of the I-V character-
istic, given by Andreev bound states enhanced by the disorder and the geometry of
the junction. The FBSs show thermal broadening down to 4 mK, serving as primary
thermometer. Furthermore, we observe a ZBS that is explained by the reflectionless
tunneling theory and its B) dependence agrees well with theory. The numerical simu-
lation capture the FBSs, the ZBS and the sub-gap conductance, which is interpreted as
two-particle tunneling current given by interference effects amplified by disorder and
the geometry of the junction. Additionally, we find evidence for minigap feature due

to the geometry of the junction, which is suppressed by the magnetic field.

5.7 Supplementary material

5.7.1 Current Steps in Differential Conductance

In this section, we focus on the differential conductance G of the experimental traces,
obtained by numerical differentiation of the measured I-V curves. The derivative of a
step is a symmetric peak centered in voltage bias around the position (inflection point)
of the step, see Fig. 5.5.(a-c). From now on, we refer in the text to peaks instead of
current steps, since the supplementary material is presented in terms of differential

conductance G.

Symmetric peaks are observed e.g. in Josephson junctions [79, 124], i.e.
superconductor-insulator-superconductor junction, when microwave radiation is
applied to the junction. Those are named Shapiro steps [125, 126] and are a direct

consequence of the AC Josephson effect. We can exclude Shapiro steps as possible
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origin for the current steps, since they appear periodically at voltages V,, = hf/2e

while the peaks presented in this work are randomly distributed in voltage bias.
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Figure 5.5: (a-c) I-V curves and the differential conductance G for NIS 4,NIS 6
and NIS_ 8. The steps observed in the I-V characteristic are transformed in symmetric
peaks in the differential conductance.

5.7.2 Numerical Simulation

In the experiment we have three different junctions, characterized mainly by the thick-
ness of the Cu layer. The geometry of the devices consists on a normal lead placed
in proximity with a superconducting lead, in a way that on area of 400 nm the two
leads overlap. The overlapping region constitutes the NIS junction. Although the
experimental device is three-dimensional, we simulate the system by focusing on the
two-dimensional section, as shown in Fig. 5.6. The system is composed by a central
region that mimics the actual geometry of the NIS junction. Attached to the central
there are a normal lead on the left side and a superconducting lead on the right side.
Part of the central device is superconducting (red spots), to better model the NIS ge-
ometry. In every site of the central region there is an impurity, that is schematically

represented by a white spot in Fig. 5.6.

The system is modeled by a tight-binding square lattice and impurities are inserted
as a local on-site random energy shift of strength comprises between —U and U. The

simulations are performed with a Mathematica Package developed by Pablo San-Jose &

8P. San-Jose, http://www.icmm.csic.es/sanjose/MathQ/MathQ.html.
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Figure 5.6: Devices simulated: The system is composed by a square lattice, on the left
side we have the normal lead, that is represented by shaded spots that fade away from
the device. Analogously, on the right side we have the superconducting lead, that is
represented by red spots. The central region comprises also part of the superconducting
lead. Impurities are modelled as a local shift of energy and are represented by some
indicative white spot, whose size mimics the impurity strength.

We start the analysis by first addressing the conductance of the device as a function
of the strength of the disorder U. We simulate a device with thickness W = 100 sites,
L = 200 sites and with leads of thickness of 100 sites. Fixing a hopping parameter
to =1 eV, a Fermi energy on order of Er = 2.25 ¢V, and assuming bare electron mass,
the lattice parameter is on order of the Angstrom, so that we simulate a relatively thin
device dg, =10nm. We assume that the superconducting part in the central region
(red in Fig. 5.6) is connected to the normal region by a hopping ¢; = 0.015 ¢, so to

simulate a resistive barrier, and we choose the superconducting gap to be A = 0.005 t.

In order to obtain a sample independent characterization of the device, we average
over many disorder configurations, keeping fixed the strength of the disorder. This
is a standard procedure that not only provides device-independent information of the
system behavior, but it also better models a single device characterized by a disorder

that changes on a scale of the device size.

In Fig. 5.7.(a) we plot the conductance of the device, each curve corresponding to a
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different impurity potential strength U/ty = 0, 0.3, 0.6, 0.9, 1.2. We see that upon
increasing the strength U the conductance starts to show a background finite value,
that can be seen as composed of many resonances at all energies. The associated I-V
characteristics is shown in Fig. 5.7.(b). We see that it acquires a finite slope due to the
disorder induced background conductance. This behavior is contrary to the expectation
of a NS junction with an ordinary linear geometry. In that case, upon increasing the
disorder the conductance decreases. Such behavior is due to coherent two-particle
tunneling, which dominates in the tunneling limit considered and it is strongly affected
by geometrically enhanced interference effects taking place on a length scale of roughly
the coherence length. It is worth to point out that it is completely different from a

finite DOS in the superconductor modeled by a Dynes parameter.

Beside the background finite value, every curve presents a zero bias conductance peak,
that is due to reflectionless tunneling [114, 115]. At small energy Andreev reflection is
perfect for a transparent barrier and the phase ¢ determines full current through the
junction, regardless of the disorder configuration. Upon reducing the transparency of
the barrier the conductance is depressed at finite energy and survives at zero energy
in the form of a peak. The width of the peak does not depend on the strength of the
disorder, but the height of the peak increases with disorder. The particular geometry
enhances the Andreev reflections due to the back wall of junction, that reflects particles
and let them collide many time onto the superconductor, where they are occasionally
Andreev reflected. Regardless of the low rate of Andreev reflection at each collision
due to the low transparency of the barrier, coherent sum over many path makes the

Andreev reflection at zero bias particularly efficient.

Finally, we notice that well defined conductance peaks at finite energies appear upon
increasing the disorder strength. Remarkably, the peaks survive disorder average.
This is a very important result, stating that the origin of these resonances is related to
the geometry of the system and it is strongly enhanced by disorder. Although every

disorder realization presents a randomly distributed series of resonance, the averaged
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Figure 5.7: (a) Conductance as a function of the voltage bias and (b) I-V charac-
teristics of a 10 nm thick NIS junction with the geometry of Fig. 5.6 for several values
of the disorder strength U/ty = 0.0,0.3,0.6,0.9,1.2. and the conductance has been
averaged over 100 configuration for each voltage V. The device has W = 100, L = 200,
to=1¢€V, t; =0.015 tg, A = 0.005 t,.

conductance makes manifest the underlying geometric origin of the resonances.

In the regime we are considering the bare coherence length of the superconductor is
on the order of 200 lattice sites, that is on order of the linear sizes of the system, and
interference effects in the two-particle coherent tunneling can be strongly enhanced by
the geometry. The occurrence of a peak is consistent with a quasi-ballistic picture,
in which the mean free path ¢, is at on order of the length W. The latter can be
estimated for a linear geometry by the Drude weight [114] Gy = (2¢%/h)m Ny . /2L and
for about N = 50 number of propagating modes, taking as the linear size the geometric
mean L = v/LW and calculating the average zero-energy conductance in the normal
case with t; = tg and U = 1.2 ty we find £, s ~ 5 — 10 lattice sites, that is an order of
magnitude smaller than W. In a linear geometry such a ratio between the mean-free
path and W would imply a diffusive/quasi-ballistic regime. We then conclude that the
geometry of the system enhances coherence effect and that the correct regime is quasi

ballistic.

The back wall of the junction reflects particles towards the interface with the super-
conductor and a quasi bound state occurs, in which a particle bounces many times
between the corners of the normal region and the superconductor, experiencing both

normal and Andreev reflection. Weak disorder randomizes the momentum at every
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scattering event, so that it connects bound states that form in the junction to the
scattering channels. For the strong disorder case the mechanism at the basis of finite
energy peaks is similar to the reflectionless tunneling characterizing the zero bias peak.
When normal reflection dominates, due to the low transparencies of the barrier, res-
onances occur also at finite energy thanks to the peculiar geometry. The energy of
the resonance is inversely proportional to the path length of the bound state, that in
turn is upper bounded by the width WW. However, disorder randomizes the motion and

resonances can occur at any energy in the gap.

5.7.3 Magnetic Field Dependence

We now study the magnetic field dependence of the resonances. We assign a given
disorder configuration with strength U = 0.9 ¢, and we do not average over disorder.
We assume to = 1 eV, up = —2.25 eV, t; = 0.015 tp, and A = 0.005 t,. We fix
the sample size to W = 200 sites and L = 400 sites. In order to amplify the effect
of the magnetic field we assume a lattice parameter ¢ ~ 5 A and a large g-factor
g*/g = mgy/m* ~ 27.6. Although these number do not provide a good description of a
metal, they allow us to study the putative effect of a magnetic field and to check the
results with the experiment. The magnetic field is applied in the plane of the junction,

that is orthogonal to the lattice in the simulation.

The resuts of the simulations are shown in Fig. 5.8.(a), where we show the conductance
versus the applied field B and the energy ¢, together with the log(G) in ig. 5.8.(b) and
the log(G) after a cutoff for G > 0.07 is applied in ig. 5.8.(c). The resulting Zeeman
splitting for 0.5T is on the order of 0.0008eV, so that Figs. 5.8 are almost entirely
dominated by orbital effect. Two features clearly appear: i) the resonances move
with the magnetic field and their trajectories depart from the Zeeman induced linear
splitting, ii) the background conductance changes as a function of the B-field and

produces three different regions.
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Figure 5.8: (a) Color plot of the conductance as a function of the magnetic field B
(abscissa) and the energy e (ordinata). (b) Color plot of log G, and (c) color plot of
log G with a cutoff for values G > 0.07. Parameters of the simulations are t; = 1 eV,
p=—2.25ty, A = 0.005 to, t, = 0.015 to, g*/g = 27.6, a ~ 5 A.

5.7.4 Resonances versus B-field

The resonances clearly acquire a dependence from the orbital magnetic field. The
evolution is quite complicated but a common feature can be seen: the peaks position
oscillates with the magnetic field. This pattern is visible for every resonance and the
evolution is the result of several crossings of the different resonances. The oscillation
and crossing may result in a diverging or a converging resonance as a function of the
applied field. For small B the resonances show a very tiny dependence on the applied
field, as it is visible in Fig. 5.8 ¢). In order to further understand the dependence on
the magnetic field we simulate a much smaller device with a slightly different geometry
(see Fig. 5.9.(c)). We see that the finite-bias peak for the case U = 0.8 t; bend towards
zero energy (Fig. 5.9.(b)). The values of the magnetic field are very high, whereby

27® /Py = ea?B/h is the Peierls phase associated to the orbital magnetic field.

In Fig. 5.9.(d-e) we also plot the scattering states of two given transport channel in
the cases U = 0 and U = 0.8 ¢y, both for the ZBP and the FBP. The clean case shows
how bound states develop in the junction region, confirming the geometric origin of the
resonances. In the disordered case we see that the motion becomes highly irregular,
but the comparison between the ZBP and the FBP confirms the common origin of the

effect.
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Figure 5.9: Study of the conductance for a slightly different geometry: W = 20 and
L = 40 lattice sites. a) Conductance for two different values of U/ty = 0,0.8. b) Color
plot of the conductance as a function of the magnetic field B (abscissa) and the energy
¢ (ordinata) for the case U = 0.8 ty. ¢) Device geometry. d) Scattering states of the
ZBP for the U = 0 and U = 0.8 t, for two significant scattering channels. e) Scattering
states of the FBP for a given scattering channel. The device is characterized by the
following parameters: tg =1 eV, u = —2.25 ty, A = 0.1 to, t; = 0.01 ¢y, g* = 0.

5.7.5 Background Conductance and Minigap

The background conductance as a function of the energy and the magnetic field shows
two regions of different background value: very bright, bright, and slightly dark in
Figs. 5.8. The first region is approximately comprised in the region |¢|/A < 1—¢|B|/Bj,
with B} ~ 0.07 T, and the second region approximately comprised in the region |e|/A <
1—¢€|B|/Bj, with By ~ 0.5 T. We interpret these two regions as two different minigap
at finite field. Theoretical models predicts that the minigap in large junctions is on

order of the Thouless energy and that the orbital magnetic field closes the minigap in a
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dirty junction [112, 119-123, 127-129]. Here we observe a gap on order of A at B =0

and two different values that detach from e = A and close with different slope with B.

To our knowledge such a behavior has been never observed, nor theoretically predicted.
Our numerical results show that the background conductance in a highly disordered NIS
junction can develop regions in the plane (e, B) characterized by different background
DOS that close with the applied orbital B field with a law that approximately previous
theoretical predictions for a minigap in a diffusive junction [119, 120]. We ascribe these

features to the geometry under consideration.

5.7.6 Photon Absorption

Photon absorption processes in NIS junctions produce peaks in conductance. To ex-
clude this process as possible origin of the sub-gap feature, we perform RF measure-
ments. The RF setup comprises of a coaxial cable, connected to a free-standing few-
turn coil surrounding the samples. The RF measurements are performed on NIS_ 8,
since the device has no ground plane, which would shunt filter the RF signal. The
photon absorption produces copies of the gap peaks (single particle DOS for the su-
perconductor), which we show in Fig. 5.10 by shifting copies (black and blue traces) of
the original data (red curve) in order to overlay the absorption peak of the copy with
the gap peak of the original data. The photon absorption peak, produced by the RF
signal of frequency f, is shifted by a voltage V,, = hf/e compared to the gap peak, see
Fig. 5.11.(b).

Next, we compare the shape of the observed sub-gap features with the photon absorp-
tion peaks. The sub-gap peaks are symmetric around their bias positions, in contrast
to the photon absorption peaks are asymmetric and being characterized by two dif-
ferent slopes around the maximum of the peak, see Fig. 5.11.(d). The different shape
of the peak compared to the photon absorption peak indicates that they are due to
different processes. To further investigate the origin of the sub-gap peaks, we probe

their position as a function of applied RF power normalized to 1 mW P[dbm| and at
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Figure 5.10: Logarithm of the absolute value of G as a function of the voltage bias
for P=-36dBm and f'=19.8 GHz. The blue and the black traces are shifted copies
of the original data (red trace).

frequency f. As shown in Fig. 5.11.(a). the position of the peaks (indicated by the
red arrows) stays constant regardless of f and P, confirming that the sub-gap peaks
are not due to photon absorption and they are independent from the RF radiation.

Fig. 5.11.(e). shows multiphoton absorption for two different frequencies f and f’.
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Figure 5.11: (a) Logarithm of the absolute value of G as a function of P and voltage
bias for two different frequencies f and f’. Black arrows indicate the different multi-
photon absorption processes. (b) A cut of the color plot shown in (a) for P=-36 dBm
and f'=19.8 GHz, where one photon is absorbed and it creates a replica of the gap
peak shifted by V,, = hf’/e. The peaks are narrow features, thus we highlighted them
by averaging many cuts at different powers without losing the main features. (c¢) The
averaged cut at P =-60dBm, where the peaks are clearly visible without photon ab-
sorption features. (d) Comparison between the cuts shown in (b) and (c), to point out
the different shapes between sub-gap peaks and photon absorption peaks. (e) Loga-
rithm of the absolute value of G, showing multiphoton absorption for the two different

frequencies.
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5.7.7 Perpendicular B-field

The main text shows the dependence of the ZBP and FBPs as a function of the B,
while here we present their dependence on the perpendicular magnetic field B,. As
shown in Fig. 5.12.(a-d), the zero bias peak is weakly reduced with increasing B .
This is in agreement with the measurements in B and the theory of the reflectionless
tunneling, confirming that phase coherence interferences, responsible for the ZBP, are
destroyed when an external field is applied. Figure 5.3 shows that the ZBP is already
suppressed for B) higher than the critical field B, ~ 130mT, which is smaller than
the B needed to close the gap. In contrast, the ZBP is visible until the gap of the
superconductor is completely closed at B ~ 10mT, see Fig. 5.12.(a-d), because the

junction area, affected by B is larger than the cross section to which B is orthogonal.

Panels (c¢) and (d) in Fig. 5.12 show that the FBPs move to higher energies with
increasing B, in contrast to the case of B). Additionally, the FBPs have a stronger
dependence on B, showing changes of energies already at a few mT compared to the
100mT needed in B to observe changes of the energies. The different dependence of

the FBPs for different field orientations is not yet understood.

The color plots in Fig. 5.12 show a faint zone (bright color) where the sub-gap con-
ductance G, is on the order of the normal state conductance and a well defined zone
(dark color) where G is suddenly reduced by several orders of magnitude. These zones
appear at different magnetic fields, which depend on the sweep directions. This de-
pendence of the zones suggest entrance of vortices in the junction area, leading to a
local suppression of the superconductivity in the faint region. In contrast when the
vortices move out of the junction, the superconductivity is recovered, resulting in a
reduction of G,. This scenario is possible since it has been observed that a thin film of
Al behaves as type 11 superconductor [79, 130, 131], allowing the presence of vortices in
the superconducting layer. Additionally, Fig. 5.12 (a-d) show horizontal spikes, where
G locally jumps at different values of B . The spikes might be due to the movement of

vortices through the junction. The ZBP and the FBPs appear regardless of the spikes
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and even at B, =0, indicating that vortices can be excluded as origin of the peaks.

In the main text we show that the temperature Ty, is not indicating anymore the
right temperature reading once B, is different from zero. To clarify this concept, we
show in Figure 5.12.(e,f) the evolution of the gap as a function of B, for a specific
sweep direction and at base temperature of the fridge. The superconducting gap seem
to be qualitative very different when approaching the gap at zero magnetic field region
(I) and moving away from the zero magnetic field region (II). The gap edges evolve
from a soft gap to a hard gap when B, is reduced to zero, see Fig. 5.12.(f). Further
reducing B, the inflection points of the gap edge move towards the middle of the gap.
We conclude that the gap edges are strongly modified by B, and they are not anymore

only a function of the temperature and voltage bias.
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Figure 5.12: (a-d) Logarithm of the absolute value of the differential conductance is
shown as a function of B, and voltage bias. Black arrows indicate the sweep direction
of B;. The grey dashed lines in (d) indicate two regions I and II of the analysis. (e)
Vertical cuts of region II, showing the evolution of the gap . (f) Vertical cuts for the
region I.

5.7.8 Demagnetization
We present measurements of the step temperature Ty, after performing a demagneti-

zation process, which cools the Cu plate temperature T, down to ~ 1 mK. As shown in

Fig. 5.13, Tep decreases from roughly 7mK down to 4 mK in the first few hours after
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the demagnetization process. The values of Ty, are scattered around a mean value of
4mK with a standard deviation of 0.7 mK. The spread of the temperature values and
the lowest temperature might be limited by the voltage noise, which needs to be less

than 4001V to resolve a temperature broadening of 4 mK, by using eVi,pise = kTstep-
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Figure 5.13: Ty, as a function of the time after performing an adiabatic nuclear
demagnetization. The black dashed line indicates the mean value of Ty, in the time
interval between 4 and 8 hours
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Abstract

Cooling nanoelectronic devices below 10 mK is a great challenge since thermal
conductivities become very small, thus creating a pronounced sensitivity to heat
leaks. Here, we overcome these difficulties by using adiabatic demagnetization
of both the electronic leads and the large metallic islands of a Coulomb blockade
thermometer. This reduces the external heat leak through the leads and also
provides on-chip refrigeration, together cooling the thermometer down to 2.8 =
0.1mK. We present a thermal model which gives a good qualitative account
and suggests that the main limitation is heating due to pulse tube vibrations.
With better decoupling, temperatures below 1 mK should be within reach, thus

opening the door for uK nanoelectronics.

* These authors contributed equally to this work.

This chapter is submitted to Appl. Phys. Lett. arziv:1708.09491.
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6.1 Introduction

Reaching ultralow temperatures in electronic transport experiments can be key to
novel quantum states of matter such as helical nuclear spin phases [11-13], full nuclear
spin polarization[132], quantum Hall ferromagnets [132] or fragile fractional quantum
Hall states [5, 6]. In addition, the coherence of semiconductor and superconducting
qubits [15-17] as well as hybrid Majorana devices [18-20, 133] could benefit from lower
temperatures. With this motivation in mind, we built a parallel network of nuclear
refrigerators [31] to adapt the very well established technique of Adiabatic Nuclear
Demagnetization (AND) [1, 26, 27] for electronic transport experiments. In this ap-
proach, the concept is to cool a nanoelectronic device directly through the electronic
leads, which remain effective thermal conductors also below 1 mK. Each wire is cooled
by its own, separate nuclear refrigerator in form of a large Cu plate. However, despite
recent progress [33, 37, 40, 41, 43, 63, 134, 135], it remains very challenging to cool
nanostructures even below 10 mK. Due to reduced thermal coupling, these samples are
extremely susceptible to heat leaks such as vibrations[33], microwave radiation[49, 89],

heat release[1] and electronic noise[63].

Metallic Coulomb blockade thermometers (CBTs) have been established as precise and
reliable electronic thermometers [32, 136, 137], operating down to 10 mK and slightly
below [34, 40, 41, 43]. These typically consist of linear arrays of Al/AlO,/Al tunnel
junctions with metallic islands in-between, consisting mainly of copper, see Fig.6.1.
The array divides the electronic noise per island by the number of junctions in se-
ries. This makes them less susceptible to electronic noise, but thermal conduction
via Wiedemann-Franz cooling is not very effective through a series of resistive tunnel
junctions. For this reason, the islands were enlarged into giant cooling fins [137] pro-
viding a huge volume for effective electron-phonon coupling and cooling through the
substrate. At low temperatures, however, this eventually fails due to the very strong

T5 temperature dependence of the electron phonon coupling.
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For a single tunnel junction[42, 43], on the other hand, two low-resistance reservoirs
adjacent to the junction can be cooled efficiently by electronic leads making contact to
nuclear refrigerators. Thus, in a noisy environment, on-chip nuclear demagnetization
of the large fins offers itself as an elegant solution for a CBT array, providing local, in-
situ cooling without having to go through potentially ineffective tunnel barriers or an
insulating substrate. The large volume of the metallic islands now is taken advantage
of as the spin reservoir of an AND refrigerator. At sufficiently low temperature, the
electron-phonon coupling becomes so weak that the islands decouple thermally from the
substrate, thus giving a low heat leak, as desired for efficient cooling. Previously, AND
was applied to AIMn based single electron transistors [138] and CBTs with electroplated
islands [40, 41], in both cases reducing the electronic temperature by roughly a factor

of two.

In this Letter, we perform AND in both the Cu plates in the leads and the massive
CBT islands, thus combining direct on-chip cooling with a reduced external heat leak
emanating from the leads. We obtain significantly improved cooling, lowering the
electronic temperature by a factor of 8.6, from ~24 mK down to 2.8+ 0.1 mK, thereby
further reducing the lowest reported electronic temperature in a solid state device
[41]. We present a simple model giving a qualitative account of the cooling cycle.
The performance is limited by a heat leak caused by the pluse-tube vibrations. With
improved decoupling, the micro-Kelvin regime in nanoelectronics should be within

reach.

6.2 Experimental Setup and CBT Device

The present experiment is performed on a cryo-free platform [33, 51|, where each of
the 16 leads is equipped with its own nuclear refrigerator (see Fig.6.1), consisting
of two moles of copper. The system allows for cooling of the Cu pieces down to
Tow= 150 uK [33], see supplementary chapter for details. To integrate the CBT, it is

placed inside a Cu box, see Fig. 6.1(a), which will also be demagnetized and further
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shields the CBT from high frequency radiation, arising e.g. from higher temperature
stages of the refrigerator. The Cu box is equipped with coaxial MMCX connectors,
and connected directly to additional Ag-epoxy microwave filters [34]. The microwave
filters used here are made from rather thick copper wire (0.35 mm instead of 0.1 mm)
and contain a thicker and longer copper core, thus facilitating direct demagnetization
of the filters themselves. The Cu box and the microwave filters are glued onto a Cu
nuclear refrigerator with conductive Ag-epoxy in order to ensure good thermalization.
The CBT consists of an array of 16 large metallic islands with 1 um? AlO, tunnel
barriers in-between, as shown in Fig. 6.1(b,c). This gives a device resistance of 150 k{2
and provides a rather small charging energy FE. ~ 6.5mK, thus allowing accurate
thermometry down to ~ 2mK [139]. The islands are of almost macroscopic size (Cu
layer ~ 810 - 260 - 0.2 um?), making available a large reservoir of nuclear spins for

demagnetization, see supplementary chapter.
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Al/AIO,

Al/AIO,/Al/Cu

Figure 6.1: (a) Schematic with CBT enclosed in a copper box (yellow), connected to
Ag-epoxy microwave filters (grey), and glued onto a Cu plate (orange) with Ag-epoxy.
(b) Electron micrograph (false color) of the CBT island (volume ~ 42,000 ym?), with
tunnel junctions (inside yellow rectangles) to adjacent Al/AlOy/Al/Cu pads. The
brown sections comprise very large areas, giving very low resistances of these large
junctions. (c¢) Zoom-in of a tunnel junction from (b), showing the overlap (white
rectangle) between the top layer (Al/Cu, brown) and the bottom layer (Al/AlOx,
blue).



6. On-and-off chip cooling of a Coulomb blockade thermometer down to 2.8 mK 99

6.3 Measurements

In order to extract the electronic temperature of the device, we measure the 2-wire
differential conductance g of the CBT as a function of the bias voltage V},.s by means
of a standard low-frequency lock-in technique using a few puV of AC excitation. Fig-
ure 6.2(a) shows typical conductance traces, measured at various refrigerator temper-
atures, as indicated. Due to Coulomb blockade effects[140], the zero bias conductance
go is suppressed below its asymptotic, large bias value gr. Both width and depth of
the conductance dip are commonly used for thermometry[134, 137]. While fitting the
full conductance trace allows one to use the CBT as a primary thermometer, using
the depth of the zero bias dip requires pre-calibration and thus can be used only as a
secondary thermometer. However, the primary mode is prone to overheating due to
the large applied DC bias. This effect becomes particularly important at the lowest
temperatures, illustrated in Fig.6.2(a). The conductance gy measured while perma-
nently staying at zero bias ? is clearly lower in conductance (dark blue marker) — and
thus also lower in temperature — than the one obtained from a bias sweep at the same
refrigerator temperature (dark blue trace), see also supplementary chapter. Therefore,

the CBT is used in secondary mode here for the rest of this work [13, 134, 137].

The normalized Coulomb blockade zero bias dip dg = 1 — go/gr is given by the third
order expansion [137]

6g = u/6 — u*/60 + u* /630, (6.1)

for sufficiently small u (see below), where u = E./kgTcpr, and kg is the Boltzmann
constant. The inset of Fig.6.2(b) shows the measured dg as a function of temperature
Tcw (red circles) along with a fit (solid black) performed in the high temperature regime
above 30 mK using Eq. 6.1. The fit delivers the charging energy E. = 6.540.1 mK, which
now allows us to convert the measured dg to Tcpr for the whole temperature regime,

thus providing the calibration of the secondary thermometer. The fit agrees very well

9This requires careful input voltage drift stabilization as provided by our home built IV converter,
particularly below 10 mK [141]
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with the data for high temperatures, but weak overheating is seen at lower temperatures

Tepr < 30 mK, see Fig. 6.2b inset.

The CBT calibration curve Eq. 6.1 is becoming more benign at the lowest temperatures,
where a much larger change in g is required for a given change in Tt compared
to high temperatures. Thus, a small deviation in dg has a very small effect on the
temperature reading and the calibration curve becomes more accurate at the lowest
temperatures. The validity of Eq. 6.1 was investigated in detail in Ref. [139], showing
that an accurate temperature reading to within ~10 % error or less is obtained as long
as v < 3. In practice, this means that the extracted CBT temperature, shown in
Fig.6.2(b) as a function of Cu plate temperature T¢,, would be quite precise down to

roughly 2mK.
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Figure 6.2: (a) Bias dependence of the differential conductance g normalized with the
high bias conductance gr, shown for various Cu plate temperatures T¢,. An in-plane
field B = 0.375T drives the Al thin films normal. The zero bias conductance (dark
blue circle, measured after equilibrating at T, = 7mK) remains clearly below the bias
sweep (dark blue curve). (b) CBT temperature Tcgr versus T¢,. The diagonal dashed
line indicates ideal thermalization Tt = Tcy. The inset shows the normalized zero
bias conductance dip dg as a function of T¢,. A fit using Eq. 6.1 is done over the high
temperature, well thermalized regime T¢,, > 30 mK (solid black curve) and delivers the
charging energy E. of the device as the only fit parameter. The dashed curve indicates
the low temperature extension below 30 mK of the fit with the same E..
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6.4 Magnetic Cooling of a CBT and Cu Plate

In the second part of this Letter, we address the simultaneous adiabatic nuclear demag-
netization (AND) of the CBT and its leads. AND is a single shot technique comprising
three stages. First, magnetization of the nuclear spins at large initial magnetic field
B; = 9 T is performed. Then, the actual demagnetization is carried out down to a
final field By of 0.375T. Finally, the warm up stage commences, where a heat load is
warming up the system until the magnetization is exhausted. Here, B; is limited by

the critical field required to break superconductivity of the Al thin film in the CBT.

Upon increasing the magnetic field to 9T, a large amount of heat due to the magne-
tization of the nuclear spins has to be drained into the mixing chamber in order to
polarize the nuclear spins during precooling, depicted in Fig. 6.3(a). The heat switches
of the parallel refrigerator network are therefore driven normal to obtain a strong ther-
mal link to the mixing chamber. While T¢, (orange markers, Fig.6.3(a)), eventually
closely approaches the mixing chamber temperature Ty (red solid line), the CBT
temperature (blue data) is increased much more during ramping of the magnetic field
to By = 9T and saturates significantly above Tyic, indicating a significant heat leak
onto the CBT and a weak thermal link between the CBT and the Cu plates. After
precooling for almost 3 days, we obtain T¢, &~ 10mK and Tept &~ 24 mK, which sets

the starting point for the nuclear demagnetization!®.

In the second AND step, shown in Fig. 6.3(b), the nuclear stage is thermally decoupled
from the mixing chamber (heat switches in the superconducting state) and the magnetic
field is ramped down slowly to its final value By = 0.375T. This reduces the nuclear
spin temperature according to Ty = T; - By/B; for an ideal adiabatic process, where T;
and Tt denote initial and final temperature, respectively. The efficiency £ < 1 of the
process can be defined as the ratio of the realized and the ideal, adiabatic temperature

reduction [31] £ = 1;/Ty- B/ B; , where £ = 1 corresponds to perfect adiabaticity. The

10This corresponds to a nuclear polarization of ~ 40% in the Cu plates and ~ 17 % in the CBT
islands[1].
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Figure 6.3: (a) Various temperatures as a function of the precooling time, as labeled.
The inset shows a schematic of the thermal model. (b) Evolution of various tempera-
tures during the AND process. Blue and orange dashed line indicate ideal cooling of
CBT and Cu plates, respectively. (¢) Warm up curves for various thermometers. The
model is shown as black dashed curve for all panels.

AND process for the Cu plates (orange markers in Fig. 6.3(b)) is almost ideal (orange
dashed line), resulting in an efficiency & 2 0.9. A larger deviation is observed for
the CBT (compare blue data and dashed blue line), resulting in £ 2 0.35. However,

despite the reduced efficiency for the CBT, we obtain a significant reduction in CBT
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temperature by a factor of 8.6, giving a final Tt of 2.8 £ 0.1 mK. These error bars
result from the uncertainty in E., obtained from the curve fit in the inset of Fig. 6.2(b).
The present measurement shows significantly improved AND efficiency compared to

previous works [40, 41] and constitutes an important step towards the puK regime.

To get more insight about the thermal coupling of the CBT to its environment, we
monitor the warm up process after AND, shown in Fig.6.3(c). While T¢, remains
almost constant during the twenty hours period of time investigated here (increase by
less than 50 uK), the CBT starts to warm up immediately and reaches an equilibrium
value of 7.5 mK after eight hours. Furthermore, the CBT conductance does not recover
its low temperature zero bias value when returning to zero bias after performing a bias
sweep of the CBT after AND (not shown). Instead, it saturates at 7.5 mK, while the
Cu plates are still well below 1 mK. These observations indicate a rather limited spin
reservoir due to the finite size of the CBT islands as well as a significant heat leak due
to applied bias, in a limit where the CBT is well decoupled from the Cu plates. This
indicates that the AND process directly demagnetizes the CBT while little cooling

power is provided externally from the Cu plates.

6.5 Thermal Model

In order to obtain a more quantitative insight, a simple thermal model is developed
(schematic in inset of Fig.6.3(a)) to qualitatively capture the main features of the
experiment. For the Cu plates and the CBT islands, we have three different thermal
subsystems, namely phonons, electrons and nuclei. We note that at low temperature,
the largest contribution to the specific heat by far is provided by the nuclei. Electrons
are coupled on one hand to the nuclear bath by the hyperfine interaction via the
Korringa link [1], and on the other hand to the phonon bath by means of the electron-
phonon interaction. Hence, nuclei and phonons are only indirectly coupled through the

electronic system.

The CBT device with its large metallic islands is in principle connected thermally to the
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Cu plates through its electronic leads and through its substrate. For an array of resistive
tunnel junctions separating the islands from the leads, the resulting Wiedemann-Franz
cooling turns out to be weak. Given the insulating substrate on which the CBT resides,
there is only the phonon degree of freedom available for transferring heat between
Cu plates and CBT islands — thus again giving only weak coupling. This phonon
process contains several thermal resistances in series, namely the weak electron-phonon
coupling in the CBT islands (negligibly weak resistance in the Cu plates due to their
much larger size), the acoustic mismatch at the metal-semiconductor interfaces giving
rise to a Kapitza boundary resistance [1, 142] and finally the weak thermal conductivity
within the insulating substrate itself. In presence of a finite heat leak onto the CBT
islands, these weak thermal links lead to a significant temperature difference between
CBT and Cu plates and associated long time constants, as observed, particularly during

precooling.

Given such a limiting bottle neck between Cu plates and CBT islands, we assume the
electronic, phononic and nuclear temperature within the CBT itself to be well coupled
(bold arrows in the schematics) and equilibrated. Thus, in a simplified model, the CBT
is taken as a single thermal system carrying the nuclear specific heat and is assumed
to be weakly coupled to the Cu plate through Qeoup = A(Thgp — T8,) (dashed arrows),
where the coupling constant A and the exponent p are fit parameters. In addition, a
parasitic heat load Qpar to the CBT is assumed to subsume e.g. electronic noise, heat

release, or pulse tube eddy current heating, see supplementary chapter.

We obtain qualitative agreement between model and data for all three stages of the
AND process — precool, demagnetization and warm up — using a single coupling con-
stant A = 7.6-10712 W/K?, and a static parasitic heat leak (during precool and warm
up) of Qpar = 32aW per island. However, a substantially increased dynamic heat
load of Qpar = 485aW has to be assumed during demagnetization in order to explain
the low demagnetization efficiency in Fig.6.3(b). Furthermore, we allow for a weak

temperature dependence of the coupling exponent p, reducing its value from p = 3.2
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during precool to p = 2.7 during demagnetization and further down to p = 2.5 for
the warm up process. Similar exponents were also obtained in earlier works [13, 134].
Under these assumptions, the thermal response of the CBT is qualitatively captured

by the model.

We note that significant temperature differences between electronic and nuclear system
would lead to initial cooling effects during the warm up process due the much smaller
static heat leak compared to the dynamic case. This is in contrast to the measurements,
thus supporting the hypothesis of equilibrated subsystems within the CBT. We also
observe that the parasitic heat determined from warm up curves of the Cu plates|33]
is similar to that obtained from the CBT model here '. This suggests that both the
cooling power as well as the parasitic heat leak scale with the volume and area of copper
used. This is confirmed with measurements on a different CBT (see supplementary
chapter), showing very similar demagnetization performance despite CBT islands which
are about 150 times smaller in area and volume. Thus, the predominant heat leak is not
coupling in through the leads of the CBT (e.g. electronic noise or external electronic
heat leak), but rather through the area or volume of the islands (e.g. microwave

absorption or eddy currents and material heat release).

6.6 Conclusion

In conclusion, we demonstrate simultaneous on-and-off chip magnetic cooling of a CBT
with an efficiency of 35 %, thereby lowering the device temperature by a factor of 8.6
from 24 mK down to 2.8 mK. The CBT remains colder than the dilution refrigerator
mixing chamber for more than 6 hours. Future improvements include improved mi-
crowave filtering, reduction of vibration induced eddy current heating due to active
damping, better mounting and by rigidly fixing the support structure of the nuclear

stage to the mixing chamber shield and magnet support assembly [39]. This should

HStatic heat leak: 32aW per CBT junction, corresponding to 5.4 nW/mol Cu, compared to typi-
cally 1 — 2nW/mol Cu for the large plates. Dynamic heat leak: 485aW per junction during AND,
corresponding to 82nW /mol Cu, compared to an estimated 30 n'W/mol Cu for the large plates. [33]
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improve the currently inefficient precooling process as well as reduce the large dynamic

heat leak, and thus reduce the final temperature after AND.
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6.7 Supplementary Material

6.7.1 Sample Fabrication and Mode of Operation

The device is fabricated on top of a silicon wafer with an insulating SiO, layer in two
steps using electron-beam lithography. In the first lithography step, a ground plane is
created that consists of 5J0nm of Cu and is covered by a 100nm of Al,O3 insulator,
grown by atomic layer deposition. In the second lithography step, a 40 nm thick Al
bottom electrode is evaporated and subsequently in-situ thermally oxidized. After the
oxidation, a 40nm thick top Al electrode is evaporated under a different tilt angle
(two-angle shadow mask evaporation), thereby forming an Al-AlO,-Al tunnel junction
of 1um? area. Finally, the top Al electrode is overgrown with a 200nm thick Cu
layer of the same geometry and tilt angle. Hence, the Cu layer of the top electrode
makes available a large reservoir of nuclear spins that may be used for adiabatic nuclear

demagnetization (AND) experiments.

Metallic Coulomb blockade thermometers (CBTs) can be operated in two different
modes, either as a primary thermometer, where the electronic temperature is inferred

from the full bias dependence (or simply the full width at half maximum of the zero bias
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Figure 6.4: (a-c) Differential conductance as a function of voltage bias (red data),
shown for different temperatures as indicated. In addition, the differential conductance
measured at zero bias as a function of time (data taken immediately after the corre-
sponding bias scan) is shown in black, plotted versus the upper axis. (d) High bias
(Vbias = 1mV) magneto-conductance gr and its average value are shown in red and
black, respectively. No magnetic field dependence is observed.

conductance dip, when neglecting ohmic heating effects), or as secondary thermometer.
In the latter mode of operation, the relative conductance dip size g = (gv—go)/gr can
be used as a measure of temperature after pre-calibration at high temperature where
the device is at equilibrium with the Cu plates, T, = Tepr. Here, gy and gr denote
the conductance at zero and high bias, respectively. Figure 6.4(a,b,c) shows bias traces
in red color, recorded at T, = 60 mK, T, = 20mK, and T, = 10 mK, respectively.
In addition, the zero bias conductance traces (black curves), measured as a function
of time right after the respective bias traces, are shown. At high temperature T, >
15 mK, the minimum conductance from bias traces agrees very well with gy measured as

a function of time at effectively zero bias, see Fig. 6.4(a,b). However, a clear deviation
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is observed at low temperature e.g. T¢, = 10mK, where the conductance gy drops
over a time scale of roughly ten minutes and saturates well below the minimum value
obtained from the bias scan, as seen in Fig. 6.4(c). This indicates overheating of the
device at finite bias. The thermal relaxation time is very long and increases sharply at
lower temperatures. Thus, there is not nearly enough time for adequate equilibration
of the zero bias point taken during the scan. Scanning at sufficiently slow speed would
consume hours or longer and is therefore not practical. In addition, while some steady
state situation may be reached eventually after a long time, this may still be in an
overheated state when not at zero bias. We therefore measure exclusively at zero bias
to avoid overheating and use the relative conductance dip size after pre-calibration to

measure temperature.

Staying very close to zero bias within a narrow window of tolerance over long periods
of time e.g. hours or days is not trivial. Commercially available instruments usually
have significant drift of 10 4V or more of the voltage emanating from the amplifier
input (input voltage), thus changing the bias voltage. To avoid these problems, we
have built a low noise, high stability current preamplifier which keeps its input voltage
stable within £0.15uV /K, see Ref. [141] for details. This eliminates the need for any

cumbersome corrections or external feedback to keep the bias very close to zero voltage.

In addition, applying a high bias to the CBT quickly destroys any previous nuclear
heat capacity and AND cooling, thus giving us yet another reason to only monitor
the zero bias conductance, particularly during demagnetization and warm up in the
main text. For reliable temperature extraction, we need to assume that the high bias
tunneling conductance value gy (needed for calculation of the relative conductance dip
size 6g = 1 —go/gr ) is independent of magnetic field. In order to test this assumption,
the magneto-conductance at Vi,s = 1 mV is shown in Fig. 6.4(d). Indeed, the high bias
conductance is observed to be B-field independent to within our measurement error.
This guarantees that the sole measurement of the zero bias conductance is a reliable

and simple thermometer.
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6.7.2 Experimental Setup

Efficient thermalization and filtering of the leads from room temperature down to the
mixing chamber (MC) is required in order to sufficiently suppress microwave radiation.
The leads consist of thermocoaxes [49], thermalized to the different temperature stages
of the dilution refrigerator, followed by low resistance home-built Ag-epoxy microwave
filters [34] and standard 2-pole RC-filters with 45kHz cut-off frequency. After the
filtering stages, the leads are fed through the mixing chamber, where they are efficiently
thermalized with the *He—*He mixture by means of Ag-sinters [31, 33]. They continue
as massive, annealed Ag-wires and finally, each wire is spot-welded to its own Cu
plate. In order to thermally decouple the Cu pieces from the mixing chamber during
AND, the silver wires are fused to Aluminum heat switches [50]. The temperature of
the Cu pieces is measured with a magnetic field fluctuation thermometer [45, 46, 52|,
connected to a SQUID amplifier'?. This thermometer performs an inductive read-out
of the thermal currents inside an annealed Ag-wire [53, 54|, which is well thermally

coupled to one of the Cu pieces.

6.7.3 Warm up With Heat Applied to the Cu Plates

In the main text, the warm up of the CBT was monitored for the first 20 hours after
nuclear demagnetization. After roughly 8 hours the CBT temperature increased and
saturated at 7.5 mK electron temperature, while the Cu plate temperature T, is almost
unchanged during this period. Here, we discuss the further warm up behavior of the
CBT, when the Cu plates themselves start to warm up. In order to speed up this
process, a heat load is applied to three Cu plates (100 nW /plate). One of these plates
carries the MFFT thermometer, used to measure the Cu plate temperature, and serves
at the same time as one of the leads for the CBT. The other two plates are left without

additional function.

121_stage current sensor C4L1W DC-SQUID, Magnicon GmbH, Hamburg, Germany.
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t (h)
Figure 6.5: Warm up curves Tt and T, for the CBT and the Cu plate, respectively,

upon applying an external heat load of 100nW /plate (for 3 different Cu plates).

The Cu plate reacts immediately to the large external heat load, rises above 1 mK
after a bit more than 2 hours, and finally heats above the CBT temperature after more
than 4 hours. About half an hour after this crossing of temperatures, and roughly ten
minutes after the complete Cu plate warm up, Tepr jumps abruptly up to ~ 30 mK,
see first step in Topr in Fig. 6.5. Before that, the CBT temperature remains constant
for the first &~ 5 hours, indicating strong thermal decoupling of those systems. After
waiting another ~ 15 minutes at ~ 30 mK, a second step is observed, raising the CBT
temperature to ~ 60 mK. The second step is possibly due to a delayed warm up of the

Cu plate hosting the CBT, which is not directly heated.
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6.7.4 High Charging Energy CBT

Here, we compare on-and-off chip magnetic cooling of a second CBT device with higher
charging energy (E. = 17.2mK instead of E. = 6.5 mK), different number of junctions
(64 instead of 32 junctions) and much smaller CBT island volume (300 um? instead of
42,000 pm?®) compared to the one shown in the main text, see Fig. 6.6(b). As described
in the main text, this can deliver some important clues about the origin of the heat
leak. Both CBTs are mounted in the same Cu box (Faraday cage), use the same
microwave filters, and are measured in two different cool-downs. While the relative
conductance dip size in Fig. 6.6(a,b) clearly reflects the differing charging energies,
the extracted electron temperature is the same in both cases, as expected. This holds
also for the adiabatic nuclear demagnetization process, giving a final temperature of
~ 2.5 mK after demagnetization, close to the 2.8 mK reported in the main text for the
low charging energy device. However, while the £. = 17.2mK device is more accurate
for the high temperature regime, precise temperature extraction (to within 10 %) is
only guaranteed down to roughly 5mK [137, 139]. Nonetheless, the demagnetization
behavior of the two devices are consistent, thus giving additional confirmation for the

low temperature results in the main text.
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Figure 6.6: (a) Differential conductance as a function of voltage bias, normalized to
the high bias value, shown for 2 devices with different charging energy, and recorded at
base temperature of the refrigerator. (b) Relative conductance dip size versus tempera-
ture for the two devices in (a). Dashed traces are curve fits to Eq.1 from the main text,
used to extract the charging energy. (¢) CBT temperature for both devices, measured
as a function of applied magnetic field during the adiabatic nuclear demagnetization
process.

6.7.5 Vibrations and Electrical Noise

The large precooling temperature of the CBT (see main article) and the reduced effi-
ciency during the adiabatic nuclear demagnetization process are the two main limiting
factors for reaching lower temperatures. In this section, we discuss vibration induced
eddy current heating as a possible cause for both factors. In order to investigate this
scenario, the voltage across the CBT is measured during 50s using a fast DAQ with
the sample mounted in perpendicular configuration (in contrast to all other data).
Fig.6.7(a,b) show the Fast Fourier Transform (FFT) for such time traces, recorded at

magnetic fields ranging from 80 mT up to 8 T.

The FFT shows frequency bands with varying noise level. In particular, up to 20 Hz,
the level is rather low (note that lock-in measurements are done at 7 Hz) while it in-

creases significantly above 20 Hz and has a pronounced peak structure around 140 Hz
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(see integrated noise at 4T in Fig. 6.7(c)). A zoom in around 140 Hz shows a clear
substructure with very sharp peaks, separated exactly by the pulse tube frequency of
1.4Hz. This suggests that around 140 Hz the nuclear stage vibrates at an eigenfre-
quency and is driven by the slow vibrations of the pulse tube. As the field is changing,
some of these vibration noise peaks seem to grow while others become weaker. We note
that at low field <0.1 T, the overall noise integrated up to 1 MHz is about 1 #Vrms. At
higher fields this increases by about an order of magnitude with a broad peak around
2-3 T. In addition to vibration induced noise, also the omnipresent 50 Hz noise peak
(and its multiples, e.g. at 150 Hz) are clearly seen in the FFT spectrum. The electrical
noise at 150 Hz shows small frequency variations, in contrast to the vibration induced

peaks.

In conclusion, Fig. 6.7 suggests that there is a significant level of vibrations in the
present system, which displaces the sample periodically from the center of the solenoid
and therefore results in a time-dependent magnetic field. The resulting vibration in-
duced eddy current heating may present one of the limiting factors for the current

measurement and will be addressed in future experiments.
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Figure 6.7: (a) Logarithm of the absolute value of the noise spectrum as function of
the frequency and magnetic field. A zoom-in of the frequency range between 135 Hz
and 152 Hz is shown on the right hand side. (b) Vertical cut of (a) at 4 T. (c) Integrated
noise of the spectrum shown in (b). A red arrow indicates a large increase in the noise

level around 140 Hz.
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7 Conclusion & Outlook

In the first part of the thesis the focus is on the realization of a parallel network of
Nuclear Refrigerator (NRs). We demonstrate successful cooling of the nuclear refriger-
ant down to 150 uK and a reduction the residual heat leak to few nW/mol of Copper.
Additionally, a simple thermal model of the demagnetization process, which takes into
account the dynamic heal leak and the hyperfine link between electrons and nuclei,
describes well the efficiency of the process. Now, the setup is being completed with
a chip-socket to perform experiments on different devices. Two different chip-sockets
have been tested, one made of Ag-epoxy with incorporated microwave filters and the
other made of Sapphire without microwave filters. The latter performs better than the
former, since it has less heat release so that the samples are cooled down to 13 mK
while for the Ag-epoxy socket the lowest temperature is only 16 mK and the heat re-
lease is large. To improve the performance the Sapphire socket can be modified by
incorporating microwave filters and using a Cu box instead of Ag-foil to shield samples

from radiations and electrical noise.

The next step is to characterize the cooling power of our setups. For this purpose,
we need on-chip thermometer, which is capable of operating below 10 mK. Thus, we
employed a normal metal-insulator-superconducting (NIS) junction as the primary and
secondary thermometer. The temperature is extracted by fitting the entire I-V curve
or by a linear fit of the logarithm of the current in the exponential region of the
[-V curve. A thermal model predicts the potential to reach 1 mK in the junction,
however, both methods saturate at 7.3 mK. One possible cause for the higher saturation
temperature is the heat release of the Ag-epoxy socket, while another results from a
residual magnetic field present in the sample after demagnetization. A small residual
field at level of a Gauss might smear the superconducting density of states, which leads
to higher temperature reading. Subsequent experiments on the sub-gap current steps

demonstrate that some of the steps can be used as precise on-chip thermometer down
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to 4 mK. The temperature reading of the steps is robust against the residual magnetic
field, giving rise to a precise temperature reading after the demagnetization process.
The lowest temperature measured by the steps might be limited by the voltage noise,
which needs to be lower than 400nV to resolve a thermal broadening lower than 4 mK.
Additionally, since some steps cool and others do not, it might also be that some
steps are more strongly coupled, leading to life-time broadening which at some finite
temperature takes over and makes the thermometer saturates. The implementation
of cryogenic amplifiers [143] and additional on-chip filtering [40, 144] can reduce the
noise, which could lead to lower temperatures if the life-time broadening is not the

limiting factor.

To further refrigerate the NIS junctions might be useful to perform on-chip magnetic
cooling of them. The NIS has large Copper leads with low resistance, which makes a
strong thermal link between the junction and the NRs, leading to a good thermalization
during the precooling. There are two possible operation modes, one relies on-chip
magnetic cooling of the NIS, and the other relies on magnetic cooling of the NRs,
which transfer the cooling power to the NIS through the leads. One drawback of
the first operation mode is that it is impossible to monitor the temperature during
the demagnetization process, since the superconductivity of the junction is destroyed.
However, it is possible to align the junction with the magnetic field in order to reduce
perpendicular components once the demagnetization is finished, in order to recover
the superconductivity and to use the steps as thermometer. In the Second mode
the NIS junction needs to be shielded with superconducting shields, to preserve the

superconductivity on the junction during the whole demagnetization process.

Besides serving as a thermometry, the sub-gap steps are related to Andreev bound
states amplified by the disorder and the geometry of the junction. The numerical
simulation used to describe the steps predicts an increase of the sub-gap conductance
together with the disorder. The observation suggests that in a well filtered setup where

the photon absorption is negligible, the sub-gap conductance for a diffusive junction
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is only due to two-particle tunneling current given by interference effects enhanced by
disorder and geometry. To complete the characterization of the steps and quantify the
disorder, we can vary the metal thickness to observe a the effects of surface defect on
the disorder. Furthermore, changing the metal layer from Cu to Au might also help

reduce surface defects,- i.e. roughness, surface oxidation-, which can affect the disorder.

In the last part of the thesis we demonstrate on-chip magnetic cooling of an array of
Coulomb Blockade Thermometers with huge Copper islands down to 2.8 mK, which is
the lowest temperature reported so far in electronic devices. The reduction in temper-
ature is roughly a factor 8 compared to the previous experiments [41, 138], indicating
an increased efficiency of the cooling technique, possibly due to the improved filtering
and shielding of our setup. To further reduce the temperature, we need to decrease
the the rather high precooling temperature (~ 25 mK), which is limited by the weak
coupling to the NRs and parasitic heat leaks due to vibrations and voltage noise. The
coupling can be enhanced by using a conductive substrate, e.g. Si doped substrate or

metallic substrate with thin oxide layer on top, instead of an insulating one.

Recent experiments have demonstrated cooling of GaAs heterostructure as low as 6 mK,
using a large metallic island galvanically connected to the two-dimensional electron gas
formed within the semiconductor heterostructure [135]. This approach together with
conductive substrate can help lower the temperature of the two-dimensional electron
gas. On this note, it may be useful to perform experiments on quantum dot ther-
mometry on a filtered Sapphire socket, since they were performed by using a Macor
socket [63], which is a well known source of heat release. Additionally, experiments on
quantum dot at low temperatures can lead to new insights on the back-action effect
of the charge sensing on the dot [145, 146], which may be relevant for the design and
the operation of charge and spin qubits. It is interesting to carry out the magnetic
cooling of GaAs heterostructures. Since Ga and As atoms have gyromagnetic ratios
similar to Cu, ultra low temperature are likely to be achieved in such system. Signif-

icantly, at such low temperature, the two-dimensional ferromagnetic transition of the
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nuclei in GaAs might be observed, which occurs at a transition temperature of roughly

1mK [11, 12].

At sub-mK temperatures, many other phenomena can be explored such as fractional
quantum Hall states with small gap [6, 147], strip of stripes phase [148, 149] in quan-
tum Hall effect. In addition, ultra low temperature can solve the enigma of the sat-
uration [150] or not of the coherence time at low temperatures [151]. Low electronic

temperature can also benefit correlated many body system like Kondo effect [152].
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(a) inverse of Ty measured with the CMN thermometer versus time dur-
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¢ is located on the entropy curve at By =80 m'T with abscissa T ~90 uK 39

A schematic showing the different degrees of freedom present in the
Cu refrigerant. Electrons and phonons interact through Qe_ph, while
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(a) I-V curves of the NIS_ 2 for various thermal cycles. (b-d) I-V curves
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markers. . ... 73

(a-d) The logarithm of the absolute of the differential conductance as
a function of the in plane magnetic field and voltage bias for various
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(a) Simulation of the I-V curve. The upper inset shows Energy diagram
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normal metal. The lower inset shows simulated I-V curve for different
disorder strengths . . . . . . .. ... 7

(a-c) I-V curves and the differential conductance G for NIS 4 NIS 6
and NIS__8. The steps observed in the I-V characteristic are transformed
in symmetric peaks in the differential conductance. . . . . . . . .. .. 80



List of Figures

141

5.6

5.7

5.8

5.9

5.10

5.11

Devices simulated: The system is composed by a square lattice, on the
left side we have the normal lead, that is represented by shaded spots
that fade away from the device. Analogously, on the right side we have
the superconducting lead, that is represented by red spots. The central
region comprises also part of the superconducting lead. Impurities are
modelled as a local shift of energy and are represented by some indicative
white spot, whose size mimics the impurity strength. . . . . . . . ...

(a) Conductance as a function of the voltage bias and (b) I-V charac-
teristics of a 10nm thick NIS junction with the geometry of Fig. 5.6
for several values of the disorder strength U/t, = 0.0,0.3,0.6,0.9,1.2.
and the conductance has been averaged over 100 configuration for each
voltage V. The device has W = 100, L = 200, to = 1 eV, t; = 0.015 t,,
A=0.0051. . .

(a) Color plot of the conductance as a function of the magnetic field B
(abscissa) and the energy e (ordinata). (b) Color plot of log G, and (c)
color plot of log G with a cutoff for values G > 0.07. Parameters of the
simulations are tg = 1 eV, u = —2.25 to, A = 0.005 ty, t; = 0.015 #,
g /g=276,a~5A ...,

Study of the conductance for a slightly different geometry: W = 20
and L = 40 lattice sites. a) Conductance for two different values of
U/to = 0,0.8. b) Color plot of the conductance as a function of the
magnetic field B (abscissa) and the energy e (ordinata) for the case
U = 0.8 ty. c) Device geometry. d) Scattering states of the ZBP for
the U = 0 and U = 0.8 t, for two significant scattering channels. e)
Scattering states of the FBP for a given scattering channel. The device
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Logarithm of the absolute value of G as a function of the voltage bias
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(a) Logarithm of the absolute value of G as a function of P and voltage
bias for two different frequencies f and f’. Black arrows indicate the
different multiphoton absorption processes. (b) A cut of the color plot
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showing multiphoton absorption for the two different frequencies.
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(a-d) Logarithm of the absolute value of the differential conductance
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Tsep as a function of the time after performing an adiabatic nuclear
demagnetization. The black dashed line indicates the mean value of
Tiiep in the time interval between 4 and 8 hours . . . . . .. ... ...
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the high bias conductance g7, shown for various Cu plate temperatures
Tcou. An in-plane field B = 0.375 T drives the Al thin films normal. The
zero bias conductance (dark blue circle, measured after equilibrating at
Tcw = 7mK) remains clearly below the bias sweep (dark blue curve). (b)
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6.6 (a) Differential conductance as a function of voltage bias, normalized to
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and recorded at base temperature of the refrigerator. (b) Relative con-
ductance dip size versus temperature for the two devices in (a). Dashed
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