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Abstract
Introduction: Memory	 functions	 are	 highly	 variable	 between	 healthy	 humans.	 The	
neural correlates of this variability remain largely unknown.
Methods: Here,	we	investigated	how	differences	in	free	recall	performance	are	associ-
ated with DTI- based properties of the brain’s structural connectome and with grey 
matter	volumes	in	664	healthy	young	individuals	tested	in	the	same	MR	scanner.
Results: Global	 structural	 connectivity,	 but	 not	 overall	 or	 regional	 grey	matter	 vol-
umes,	 positively	 correlated	 with	 recall	 performance.	 Moreover,	 a	 set	 of	 22	 inter-	
regional	connections,	including	some	with	no	previously	reported	relation	to	human	
memory,	such	as	the	connection	between	the	temporal	pole	and	the	nucleus	accum-
bens,	explained	7.8%	of	phenotypic	variance.
Conclusions: In	 conclusion,	 this	 large-	scale	 study	 indicates	 that	 individual	 memory	
performance is associated with the level of structural brain connectivity.
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1  | INTRODUCTION

Much	about	the	group-	level	neuroanatomical	basis	of	episodic	mem-
ory functions is known today from studies in patients with brain lesions 
and from imaging studies investigating brain activations related to 
memory	processes	in	healthy	humans	(Battaglia,	Benchenane,	Sirota,	
Pennartz,	&	Wiener,	2011;	Cabeza,	Ciaramelli,	Olson,	&	Moscovitch,	
2008;	Eichenbaum,	2000;	Kragel	&	Polyn,	2015;	Rugg	&	Vilberg,	2013;	
Uncapher,	 Hutchinson,	 &	Wagner,	 2011;	Watrous,	 Tandon,	 Conner,	
Pieters,	&	Ekstrom,	2013).	However,	large	interindividual	differences	

in	memory	performance	are	observed,	even	across	healthy	individuals	
(de	Quervain	et	al.,	2003).	Little	is	known	about	the	neuroanatomical	
basis	of	such	behavioral	variability.	It	might	be	explained,	at	least	partly,	
by	individual	differences	in	white-	matter	properties,	given	their	link	to	
memory	 disorders	 (Metzler-	Baddeley	 et	al.,	 2012;	 Pievani,	 Filippini,	
van	 den	 Heuvel,	 Cappa,	 &	 Frisoni,	 2014).	 In	 this	 context,	 previous	
studies related diffusion characteristics such as fractional anisotropy 
(FA)	to	 individual	differences	 in	episodic	memory	performance,	both	
for	well-	known	white	matter	pathways	 (Rudebeck	et	al.,	2009)	or	at	
the	voxel-	wise	level	(Fuentemilla	et	al.,	2009).	However,	that	approach	
might	 not	 be	 able	 to	 characterize	 how	 inter-	regional	 connections	
relate	 to	behavior.	For	 this	purpose,	brain	connectomics	has	proven	*Andreas	Papassotiropoulos	and	Dominique	J.-F.	de	Quervain	are	Co-senior	authors.
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to	be	a	relevant	approach	to	studying	brain	connectivity	(Behrens	&	
Sporns,	2012),	both	from	functional	and	structural	perspectives.	The	
brain	 is	modeled	as	network,	or	a	graph,	where	each	brain	region	 is	
represented	by	a	node,	and	 the	edges	of	 the	graph	 represent	 inter-	
regional connections. These edges can represent both functional or 
structural	connections.	Complex	behavior	is	associated	with	a	dynamic	
repertoire	of	functional	interactions,	so	far	mainly	studied	during	rest	
(Sporns,	2014),	which	are	related	to	structural	connections.	The	struc-
tural connectome can be reliably investigated in vivo by using diffusion 
imaging-	based	tractography	 (Bassett,	Brown,	Deshpande,	Carlson,	&	
Grafton,	 2011;	Owen	 et	al.,	 2013).	The	 structural	 connectome	may	
provide	 a	 basis	 to	 explain	 interindividual	 differences	 in	 behavior	
(Behrens	&	Sporns,	2012;	Johansen-	Berg,	2010,	2012).	Interindividual	
variability in the structural connectome has been associated with in-
tellectual	performance	in	healthy	young	adults	(Li	et	al.,	2009)	and	in	
aging	individuals	(Fischer,	Wolf,	Scheurich,	&	Fellgiebel,	2014).	But	it	
is	not	yet	known	whether	or	not	specific	neurocognitive	systems,	such	
as	episodic	or	working	memory,	exhibit	similar	patterns.	Furthermore,	
as	low	sample	sizes	can	be	detrimental	in	obtaining	reliable	effect	size	
estimations	(Button	et	al.,	2013),	large	cohorts	are	needed	in	order	to	
better	understand	interindividual	variability	in	complex	behavior.

In	 the	 present	 study	 of	 a	 large	 cohort	 of	 664	 subjects,	 we	 fo-
cused on relations between the structural connectome and free re-
call	 performance	of	 previously	 seen	 IAPS	pictures	 (Lang,	Bradley,	&	
Cuthbert,	2008).	Even	though	several	mechanisms	might	be	involved	
in	successful	 free	recall	 (Dickerson	&	Eichenbaum,	2010),	 this	 inter-
nally cued retrieval process is thought to depend mainly on recollec-
tion	 (Squire	&	Wixted,	2011).	Consequently,	 free	 recall	allows	us	 to	
assess one aspect of the multi- dimensional processes that underlie 
episodic memory. This test can be complemented by tests of cued re-
call	or	recognition,	which	 inform	us	about	 item	familiarity.	The	 IAPS	
normalized	picture	system	has	been	used	previously	 to	characterize	
free	 recall	 (Heck	et	al.,	2015)	as	well	 as	emotional	memory	 (Dolcos,	
LaBar,	 &	Cabeza,	 2004;	Hofstetter,	Achaibou,	&	Vuilleumier,	 2012).	
Emotional material is usually better remembered than neutral ma-
terial	 (McGaugh,	2000),	 and	 functional	 interactions	during	encoding	
and retrieval have been shown to be affected by emotional valence 
(Hermans	 et	al.,	 2014;	 Kark	 &	 Kensinger,	 2015).	 However,	 it	 is	 not	
known whether or not structural network properties are related to in-
dividual	variability	in	emotional	memory.	The	stimuli	used	in	this	study,	
containing	both	emotional	and	neutral	pictures,	consequently	allowed	
us to test the potential impact of emotional valence on brain- behavior 
relationships.	An	additional	working	memory	task	(N-	Back)	served	as	a	
non- episodic control task.

Several	 aspects	 of	 brain	 connectivity	were	 assessed.	We	 first	 fo-
cused	on	characterizing	inter-	regional	connections:	the	average	connec-
tion strength of a node to the rest of the network is called degree,	which	
can	 in	 turn	be	generalized	 to	a	metric	 called	network cost,	which	 is	 a	
simple estimator of physical wiring cost. We took advantage of this nat-
ural hierarchical representation of inter- regional connections by inves-
tigating their association with memory performance at the whole- brain 
level,	at	the	regional	level,	and	at	the	region-	to-	region	level.	Each	higher-	
resolution level was investigated only if the lower- level null hypothesis 

was	 rejected	 (Duarte-	Carvajalino	 et	al.,	 2012).	 While	 this	 approach	
avoids	testing	first	at	high	resolutions,	where	the	number	of	hypotheses	
to	be	tested	can	be	very	large,	it	can	also	hide	certain	effects	that	are	too	
specific.	As	a	consequence,	this	approach	was	complemented	by	the	di-
rect investigation of the association between memory performance and 
region- to- region connections in the network- based statistic framework 
(Zalesky,	Fornito,	&	Bullmore,	2010),	which	aims	to	identify	connected	
components of a graph while controlling for family wise error rate. In this 
context,	and	given	prior	findings	relating	intelligence	to	the	total	num-
ber	of	edges	(Li	et	al.,	2009),	we	hypothesized	that	cost-	related	metrics	
would be associated to free recall performance.

We	also	assessed	other	network	properties,	such	as	measures	of	
segregation (e.g.	 clustering	 coefficient),	 centrality	 (e.g. betweenness 
centrality),	 or	 integration	 (e.g.	 global	 efficiency)	 (Rubinov	 &	 Sporns,	
2010).	The	latter	has	been	positively	linked,	for	example,	to	individual	
differences	 in	 intelligence	 tests	 performance	 (Li	 et	al.,	 2009).	Again,	
those	network	characteristics	were	extracted	at	the	global	(network),	
regional,	 or	 region-	to-	region	 level	 (Duarte-	Carvajalino	 et	al.,	 2012).	
In	line	with	previous	findings,	we	hypothesized	that	better	free	recall	
performance would be reflected by more effective networks proper-
ties (e.g.	higher	centrality	and	integration	measures).

2  | MATERIAL AND METHODS

2.1 | Participants

A	 total	 of	N	=	679	 participants	 of	 an	 ongoing	 study	were	 included	
(275	males,	404	females;	22.85	±	3.37	years	old;	dataset	status	April	
2013).	This	 large-	scale	and	ongoing	study	serves	to	address	several	
scientific	questions,	including	questions	in	the	field	of	imaging	genet-
ics,	where	several	papers	on	the	dataset	have	been	previously	pub-
lished	(Harrisberger	et	al.,	2014;	Heck	et	al.,	2014).	The	subjects	were	
free	of	any	lifetime	neurological	or	psychiatric	illness,	and	did	not	take	
any	medication	at	the	time	of	the	experiment	(except	hormonal	con-
traceptives).	All	subjects	gave	written	 informed	consent	before	par-
ticipation	in	the	study.	The	ethics	committee	of	the	Canton	of	Basel,	
Switzerland,	approved	the	study	protocol.	Complete	datasets	(behav-
ior	and	structural	 imaging)	 for	analysis	were	available	 from	N = 664 
participants	(see	below).

2.2 | Episodic memory task

We used a picture free recall task to assess episodic memory. For pic-
ture	encoding,	72	pictures,	divided	into	three	valence	groups	(nega-
tive,	 neutral,	 and	 positive),	 as	 well	 as	 24	 scrambled	 pictures	 were	
presented	during	the	MRI	scans	by	using	MR-	compatible	LCD	goggles	
(VisualSystem,	NordicNeuroLab).	On	the	basis	of	normative	valence	
scores,	pictures	from	the	International	Affective	Picture	System	(IAPS;	
[Lang	et	al.,	2008])	were	assigned	to	emotionally	negative	(2.3	±	0.6),	
neutral	 (5.0	±	0.3),	and	positive	 (7.6	±	0.4)	groups.	Eight	neutral	pic-
tures	 were	 selected	 from	 an	 in-	house	 standardized	 picture	 set	 in	
order	to	equate	the	picture	set	for	visual	complexity	and	content	(e.g. 
human	presence).	Examples	of	pictures	are	as	follows:	erotica,	sports,	
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and	appealing	animals	 for	 the	positive	valence;	bodily	 injury,	 snake,	
and	attack	scenes	for	the	negative	valence;	and	finally,	neutral	faces,	
household	objects,	and	buildings	for	the	neutral	condition.

Pictures	were	 presented	 in	 an	 event-	related	 design,	 for	 2.5	s	 in	
a	quasi-	randomized	order	so	that	a	maximum	of	four	pictures	of	the	
same	category	were	shown	consecutively.	A	fixation-	cross	appeared	
on the screen for 500 ms before each picture presentation. Trials were 
separated by a variable inter- trial period (period between appearance 
of	a	picture	and	the	next	fixation	cross)	of	9–12	s	(jitter).	During	the	
inter-	trial	period,	subjects	 rated	the	presented	pictures	according	to	
valence	 (negative	 –	 neutral	 –	 positive)	 and	 arousal	 (low	–	middle	 –	
high)	on	a	three-	point	scale.	Four	additional	pictures	showing	neutral	
objects were used to control for primacy and recency effects in mem-
ory. The scrambled pictures consisted of a geometrical object in the 
foreground while the background contained the color information of 
all	pictures	used	in	the	experiment	(except	primacy	and	recency	pic-
tures),	overlayed	with	a	crystal	and	distortion	filter	(Adobe	Photoshop	
CS3).	The	object	had	to	be	rated	regarding	its	form	(vertical,	symmet-
ric,	horizontal)	and	size	(small,	medium,	large).

In	 an	 unannounced	 recall	 task	 outside	 of	 the	 scanner,	 subjects	
had	to	freely	recall	the	previously	presented	pictures,	10	min	after	the	
end	of	picture	encoding.	An	unannounced	 free	 recall	 test	was	used	
to avoid recall performance to be influenced by interindividual dif-
ferences	 in	 learning	 strategies,	 potentially	 reflecting	 non-	mnemonic	
processes. Participants had to write down a short description (a few 
words)	of	the	previously	seen	pictures.	Primacy	and	recency	pictures	
that	were	remembered	as	well	as	training	pictures	were	excluded	from	
the analysis. No time limit was set for this task. Two trained investi-
gators independently rated the descriptions for recall success (inter-
rater	reliability	>98%).	No	details	were	required	for	correct	scoring	as	
pictures were all distinct from each other. The total number of freely 
recalled pictures was defined as the episodic memory performance 
phenotype.

2.3 | Working memory task

Subjects	completed	the	0-		and	2-	back	version	of	the	n-	back	task	after	
picture	encoding,	and	before	the	recall	 task	 (Heck	et	al.,	2014).	The	
task	 consists	of	12	blocks	 (six	0-	back,	 six	2-	back),	 in	which	14	 test	
stimuli	 (letters)	were	presented.	The	0-	back	condition	 required	par-
ticipants	to	respond	to	the	occurrence	of	the	letter	‘x’	in	a	sequence	of	
letters (e.g.,	N	–	l	–	X	–	g)	and	served	as	a	non-	memory-	guided	control	
condition,	measuring	 general	 attention,	 concentration,	 and	 reaction	
time. The 2- back condition required subjects to compare the cur-
rently presented letter with the penultimate letter to decide whether 
they are identical or not (e.g.,	S	–	f	–	s	–	g).	This	task	requires	online	
monitoring,	updating,	and	manipulating	remembered	information.	It	is	
therefore assumed to involve key working memory- related processes. 
Performance was recorded as a number of correct responses (accu-
racy).	Performance	in	the	0-	back	condition	(mean	accuracy)	served	as	
the	phenotype	reflecting	attentional	processes,	and	the	difference	in	
accuracy between the 2- back and the 0- back condition served as the 
phenotype reflecting working memory performance.

2.4 | MRI acquisition

Measurements	 were	 performed	 on	 a	 Siemens	 Magnetom	 Verio	
3T	whole-	body	MR	unit	 equipped	with	 a	 twelve-	channel	 head	 coil.	
A	 high-	resolution	 T1-	weighted	 anatomical	 image	 was	 acquired	
with	 a	 magnetization	 prepared	 gradient	 echo	 sequence	 (MPRAGE,	
TR	=	2000	ms;	TE	=	3.37	ms;	TI	=	1,000	ms;	flip	angle=8;	176	sagittal	
slices;	FOV	=	256	mm;	voxel	 size	1	×	1	×	1	mm3).	Diffusion	volumes	
were	acquired	by	using	a	single-	shot	echo-	planar	sequence,	and	con-
sisted	 of	 64	 diffusion-	weighted	 volumes	 (b	=	900	s/mm2)	 and	 one	
unweighted	volume	 (b	=	0).	Acquisition	parameters	were	as	 follows:	
TR	=	9,000	ms,	 TE	=	82	ms,	 FOV	=	320	mm,	GRAPPA	R	=	2.0,	 voxel	
size	2.5	×	2.5	×	2.5	mm3.

2.4.1 | Anatomical T1- weighted imaging analyses

After	 visual	 inspection,	 T1-	weighted	 images	 of	 fifteen	 partici-
pants	were	excluded	due	 to	excessive	movement	or	 scanner	noise.	
Complete	 datasets	 (behavior	 and	 structural	 imaging)	were	 available	
from N = 664 participants.

Preprocessing
T1- weighted images were segmented into cortical and subcor-
tical	 structures	 by	 using	 FreeSurfer	 v4.5	 (Fischl	 et	al.,	 2002)	
(RRID:SCR_001847).	Labeling	cortical	gyri	was	based	on	the	Desikan-	
Killiany	 atlas	 (Desikan	 et	al.,	 2006),	 yielding	 34	 regions	 per	 hemi-
sphere.	 Eighty-	two	 regions	 (68	 cortical	 and	 14	 subcortical)	 were	
subsequently considered as nodes for the network analyses. The 
binary masks defining these nodes were coregistered to the refer-
ence	 unweighted	 diffusion	 volume	 (b	=	0)	 using	 FreeSurfer’s	bbreg-
ister	 command,	 initialized	with	 the	spm_coreg	 command	 from	SPM8	
(RRID:SCR_007037).

Statistical analyses
The association between memory performance and grey matter vol-
umes	 was	 determined	 by	 Spearman	 correlation	 analyses.	 Memory	
performance was corrected for age and gender. This was achieved 
by considering as a new memory performance variable the residuals 
of a linear model including memory as a dependent variable and age/
gender	 as	 independent	 variables.	 Similarly,	 volumes	were	 corrected	
for	age,	gender	and	intracranial	volume	(as	estimated	by	FreeSurfer’s	
total	intracranial	volume).

2.4.2 | Diffusion- weighted imaging analyses

The	 processing	 steps	 involved	 in	 this	 section	 are	 summarized	 in	
Figure 1a.

Preprocessing
Diffusion-	weighted	 images	 were	 pre-	processed	 by	 using	 FSL	
v4.1.7	 (Jenkinson,	 Beckmann,	 Behrens,	 Woolrich,	 &	 Smith,	 2012)	
(RRID:SCR_002823).	 Data	 of	 76	 participants,	 for	 whom	 slice	 cor-
ruption	due	 to	movement	was	detected	 (at	maximum	2	directions),	

http://scicrunch.org/resolver/SCR_001847
http://scicrunch.org/resolver/SCR_007037
http://scicrunch.org/resolver/SCR_002823
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were corrected by removing the corrupted directions before further 
processing	 (Sharman	et	al.,	2011).	 Images	were	 first	 coregistered	 to	
the	reference	unweighted	volume	(b	=	0)	by	using	an	affine	transfor-
mation for the correction of head motion and eddy current induced 
image	distortion.	Voxelwise	model	fitting	of	diffusion	orientations	was	
then performed. The local probability distribution of fiber direction 
was estimated by using bedpostx,	 allowing	 for	automatic	estimation	
of	multiple	fiber	directions	within	each	voxel	(at	most	two).	This	ap-
proach leads to better sensitivity in the detection of fiber populations 
as	 compared	 to	 single-	fiber	 or	 deterministic	 approaches	 (Behrens,	
Berg,	Jbabdi,	Rushworth,	&	Woolrich,	2007).

Structural brain network construction: single subject level, 
weighted connectivity matrix
Each	 FreeSurfer-	segmented	 region	 was	 considered	 as	 a	 node	 (see	
Figure	1a).	 Connectivity	 probability	 between	 nodes	 was	 estimated	
by using probabilistic tractography as implemented in probtrackx2 in 

FSL	v5.0.2	(Behrens	et	al.,	2007).	Each	node	was	selected	as	a	seed	
region,	and	five	thousand	sample	streamlines	were	drawn	from	each	
voxel	within	the	seed	nodes.	Each	streamline	followed	local	orienta-
tions sampled from the posterior distribution given by bedpostx. The 
streamline	stopped	when	 it	 reached	another	node,	or	was	excluded	
when it left the brain or passed through the ventricles. The node- to- 
node	connection	probability	was	represented	in	a	weighted	fashion,	
computed as the number of streamlines successfully reaching another 
node,	divided	by	the	total	number	of	drawn	streamlines	that	were	not	
excluded	(Behrens	et	al.,	2007).	We	focused	our	subsequent	analyses	
on weighted networks to avoid a potential loss of information when 
studying	binary	networks,	 in	which	 case	 all	 non-	null	weights	would	
have	 been	 set	 to	 1.	A	whole-	brain	 symmetrical	 connectivity	matrix	
was constructed for each subject by averaging the connectivity prob-
abilities obtained from node i to j and from node j to i	 (Gong	et	al.,	
2009).	In	summary,	we	computed	one	82	×	82	weighted	connectivity	
matrix	per	subject	that	was	used	for	subsequent	analyses.

F IGURE  1 Analysis	pipeline.	
(a)	Summary	of	the	preprocessing	steps	
at the single- subject level. Individual 
brain segmentation was used as the basis 
to	compute	a	connectivity	matrix	from	
which	global,	regional,	and	node-	to-	node	
network characteristics were computed. 
(b)	Summary	of	statistical	analyses	at	the	
population- level. Interindividual differences 
in network characteristics were related 
to	memory	performance.	Association	to	
network	cost	was	tested	first,	followed	by	
other topological metrics. Cost- integrated 
metrics were computed if a relation to 
network	cost	was	found.	All	tests	were	
done	following	a	hierarchical	scheme,	from	
global,	to	regional,	to	node-	to-	node	level,	
using an FDR procedure at each level
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Structural brain network construction: population level, 
discarding spurious connections
A	common	connectivity	threshold	at	the	population	level	was	used	to	
discard	 spurious	 connections.	More	precisely,	 those	 connections	Cij 
for	which,	across	subjects,	mean(Cij)+2std(Cij)	was	below	a	connectiv-
ity	value	of	0.01	were	excluded	in	all	subjects	(Gong	et	al.,	2009).

2.4.3 | Diffusion- weighted brain network 
characteristics

For	each	subject,	brain	network	characteristics	were	computed	with	
the	Brain	Connectivity	Toolbox	(Bassett	et	al.,	2011;	Rubinov	&	Sporns,	
2010)	(RRID:SCR_004841).	G	refers	to	a	weighted	connectivity	matrix,	
i.e.	a	weighted	graph,	where	R	=	82	is	the	number	of	nodes	in	the	graph	
and connections between nodes are referred to as edges. The analyses 
steps	involved	in	this	section	are	summarized	in	Figure	1b.

Network cost
The left side of Figure 1b represents the hierarchical approach relating 
connection strength to network cost. The network cost (or weighted 
network	density)	 is	defined	as	 the	sum	of	connection	weights	 in	G,	
normalized	by	the	total	possible	number	of	edges	(R*(R−	1)/2)	(Latora	
&	Marchiori,	2003).	This	measure	is	a	generalization	of	the	nodal	de-
gree	(or	nodal	strength),	which	is	defined	as	the	average	connectivity	
of	a	node,	across	its	R−	1	connections.	It	represents	a	simple	estimator	
of physical wiring cost.

Topological metrics: definitions
The right side of Figure 1b represents the hierarchical approach for the 
other	network	properties.	A	set	of	topological	properties	(Bullmore	&	
Sporns,	2009)	were	computed	in	order	to	further	quantify	the	struc-
tural networks. We furthermore indicate when measures can be gener-
alized	at	different	spatial	scale	(whole-	brain,	regional,	or	node-	to-	node):

• Clustering coefficient: the fraction of a node’s neighbors that are 
also	neighbors	of	each	other.	This	measure	can	be	generalized	to	
the whole-brain level.

• Characteristic path length: the average shortest path length between 
all	pairs	of	nodes.	The	value	was	normalized	by	the	average	charac-
teristic path length of 100 comparable random networks (preserving 
the	degree	distribution,	with	approximately	20	rewirings	per	edge).

• Global efficiency: the average inverse shortest path length. It can 
be	decomposed	as	the	average	nodal	efficiency,	computed	on	local	
subgraphs comprising neighbors of each node.

• Betweenness centrality: the fraction of shortest paths between any 
pair of edges that travel through the node. This measure can be 
generalized	to	the	whole-brain	level.

Topological metrics: cost- integrated metrics
It has been shown that differences in topology due to differences in 
cost,	or	cost-	dependency,	can	confound	the	comparison	of	different	
brain	 networks	 (Ginestet,	 Nichols,	 Bullmore,	 &	 Simmons,	 2011).	 A	
proposed	solution	is	to	study	cost-	integrated	network	characteristics,	

integrating over the whole range of possible costs. We therefore 
computed the cost- integrated versions of the above- mentioned topo-
logical metrics if a significant association was found between network 
cost	and	memory	performance	 (Figure	1b,	 labeled	 I-	M	metrics).	Not	
controlling for differences in network cost might result in spurious 
associations with memory performance (e.g. with the clustering co-
efficient),	 and	 lead	 to	 a	 potentially	misleading	 interpretation	 of	 the	
findings.	 One	 drawback	 of	 cost-	integrated	 metrics,	 on	 the	 other	
hand,	 is	 that	 they	might	 fail	 to	 capture	 subtle	 interindividual	differ-
ences	 that	might	occur	only	 in	a	 limited	density	 range.	Appropriate	
network	 comparison	 is	 still	 a	 topic	 of	 ongoing	 discussions	 (Fornito,	
Zalesky,	&	Breakspear,	2013;	Ginestet	et	al.,	2011;	van	Wijk,	Stam,	&	
Daffertshofer,	2010).	As	anatomical	networks	are	sparse	(i.e. not fully 
connected),	we	did	not	 investigate	the	whole	possible	range	of	cost	
values	(in	theory	between	1/(R*(R−	1)/2)	and	1),	but	values	between	 
1/(R*(R−	1)/2)	and	the	smallest	common	value	across	all	subjects	for	
the	maximum	 cost	 (0.3538).	 If	 no	 association	were	 found	 between	
network	 cost	 and	memory	 performance,	we	would	 have	 computed	
the	standard	topological	metrics	(Figure	1b,	labeled	M	metrics).

Statistical analyses
The association between interindividual differences in memory per-
formance and brain network properties was assessed by using linear 
mixed-	effects	models	 and	 Spearman	 correlation.	 Spearman	 correla-
tion is a non- parametric measure of association better suited than 
Pearson correlation for brain- behavior correlation analyses as it is less 
sensitive	to	outliers	(Rousselet	&	Pernet,	2012).	We	also	report	95%	
percentile	bootstrap	confidence	intervals	(CIs)	(Wilcox,	2012),	which	
are not often reported in such associations and might give important 
information about the reliability of the estimates. We first regressed 
out the effects of age and gender for memory performance and net-
work	properties,	and	additionally	the	effect	of	intracranial	volume	for	
the network properties. We did so by considering the residuals of a 
linear model including them as covariates.

Linear	mixed-	effect	models,	as	implemented	in	the	R	package	nlme	
(Pinheiro,	Bates,	DebRoy,	&	Sarkar,	2012;	R	Core	Team,	2012),	were	
used	to	test	for	possible	interaction	effects	between	valence	(positive,	
negative,	 and	 neutral	 pictures)	 and	 network	 properties	 on	memory	
performance.	 Subjects	were	 entered	 as	 random	effect.	 If	 no	 signifi-
cant	interaction	was	present,	a	Spearman	correlation	coefficient	was	
used to estimate the association between the global memory perfor-
mance	(positive+negative+neutral	pictures)	and	the	network	property.	
Possible interaction effects between gender or age and global network 
properties on memory performance were assessed with linear mod-
els.	Finally,	to	assess	the	combined	effect	of	multiple	connections	on	
episodic	memory	performance,	 robust	 linear	 regression	models	with	
bisquare	 weight	 function,	 as	 implemented	 in	 the	 Matlab	 function	
LinearModel.fit,	were	employed.

We	adopted	a	hierarchical	approach	in	hypothesis	testing,	similar	
to	the	one	proposed	by	(Duarte-	Carvajalino	et	al.,	2012).	Briefly,	the	
brain network characteristics can be arranged in a hierarchical fashion 
from	global	 (one	measure	per	subject,	 lowest	 level	 in	the	hierarchy),	
to	the	node	level	(82	measures	per	subject),	and	to	the	node-	to-	node	

http://scicrunch.org/resolver/SCR_004841
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level	(at	most	R*(R−	1)/2	measures	per	subject,	highest	level	in	the	hi-
erarchy).	 In	 this	 framework,	higher	 resolution	hypotheses	are	 tested	
with an FDR procedure at each level to control for multiple hypothesis 
testing,	but	only	if	the	lower-	level	null	hypothesis	is	rejected	(Duarte-	
Carvajalino	 et	al.,	 2012;	Yekutieli,	 2008).	This	 avoids	 testing	 first	 at	
high	resolutions,	where	the	number	of	hypotheses	to	be	tested	can	be	
very large. This procedure has the advantage of allowing us to identify 
global effects because of the reduced number of multiple compari-
sons.	However,	very	 specific	 effects	may	 remain	undetected	 if	 they	
do not impact the global measures sufficiently. In the case of the cost 
analysis,	the	nodal	degree	and	the	node-	to-	node	connectivity	values	
were the highest level of the hierarchy. For the topological metrics 
analysis,	 node-	specific	 characteristics,	 such	 as	 clustering	 coefficient	
or	betweenness	centrality,	were	averaged	to	create	a	global	value	that	
represented the lower level in the hierarchy.

Network- based statistics
The hierarchical approach on the association between node- to- node 
connections and memory performance was complemented by a mass- 
univariate	approach	as	implemented	in	the	Network-	Based	Statistics	
toolbox	(NBS)	(Zalesky	et	al.,	2010).	Starting	from	the	individual	con-
nectivity	matrices,	 this	 approach	aims	 to	 identify	 sets	of	 connected	
regions	while	controlling	for	family	wise	error	(FWE)	rate.	It	consists	
of	 four	main	 steps:	 (1)	 a	 test	 statistic	 is	 computed	 for	 each	 link,	 in	
this case a t- test representing the association between the link and 
memory	performance,	including	age,	gender,	and	intracranial	volume	
as	covariates;	(2)	a	threshold	is	selected	to	construct	a	set	of	suprath-
reshold	 links,	 and	we	 employed	 a	 stringent	 threshold	 of	 p < .0063,	
corresponding to T = 2.5;	 (3)	 connected	 components	 are	 identified	
by	using	a	breadth	first	search	algorithm,	and	the	number	of	 links	 it	

comprises	 is	 stored;	 (4)	 a	 permutation-	based	p- value is assigned to 
each	identified	component	by	indexing	its	size	with	the	null	distribu-
tion	 of	maximal	 component	 size.	 Ten	 thousand	 permutations	 were	
computed,	and	 the	 resulting	significant	components	were	 identified	
at a cluster- level FWE- corrected p- value of p < .005.

2.4.4 | Data visualization

Results	were	visualized	with	the	PySurfer	software	(https://pysurfer.
github.io,	RRID:SCR_002524)	and	the	BrainNet	Viewer	(Xia,	Wang,	&	
He,	2013)	(http://www.nitrc.org/projects/bnv/,	RRID:SCR_009446).

3  | RESULTS

3.1 | Global network characteristic

Free recall performance was positively correlated with network cost 
(Figure	2;	Spearman	r = .102; pnominal=.0086;	pFDR=.043; coefficient of 
determination R2=.011;	95%	confidence	 interval	 [0.02,0.18]).	This	 is	
a measure of global structural connectivity. There were no significant 
interactions	with	 gender,	 age,	 or	 emotional	 valence	of	 the	 stimulus	
material on this association (all p ≥ .39).	 Furthermore,	 we	 assessed	
whether	or	not	other	cognitive	functions,	such	as	attention	or	work-
ing	memory,	 influenced	 this	 association.	 The	 relationship	 remained	
significant after controlling for attention (r = .098;	p = .0117)	or	work-
ing memory performance (r = .097;	 p = .0125),	 indicating	 that	 the	
reported association does not depend on the assessed non- episodic 
cognitive domains. These measures were themselves not signifi-
cantly associated with network cost (rattention=.015; p = .7 and rworking 

memory=.029;	p = .46).

F IGURE  2 Picture	recall	performance.	(a)	Distribution	of	picture	recall	performance;	(b)	Association	between	network	cost	and	picture	recall	
performance

https://pysurfer.github.io
https://pysurfer.github.io
http://scicrunch.org/resolver/SCR_002524
http://www.nitrc.org/projects/bnv/
http://scicrunch.org/resolver/SCR_009446
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3.2 | Region- specific level

Next,	we	proceeded	with	 the	hierarchical	approach	 (Figure	1b),	and	
investigated nodal degree (i.e.	 the	 average	 connectivity	 of	 a	 node)	
with respect to an association with free recall performance. This re-
vealed seven nodes whose degree was associated with recall perfor-
mance at an FDR-corrected (q < .05)	level	(Figure	3	and	Table	1):	the	
left	 fusiform	gyrus,	 left	 superior	 temporal	 gyrus,	 left	 temporal	pole,	
left	transverse	temporal	cortex,	the	left	insula,	as	well	as	the	right	fusi-
form gyrus and inferior temporal gyrus (see Table 2 for the complete 
distribution	of	correlation	coefficients).

Based on prior evidence of the influence of hippocampus- related 
white-	matter	connectivity	on	memory	performance	(Metzler-	Baddeley,	

Jones,	Belaroussi,	Aggleton,	&	O’Sullivan,	 2011),	 and	on	 a	 post-	hoc	
analysis	on	hippocampal	degree,	we	found	a	significant	association	be-
tween memory performance and right hippocampus degree (r = .087;	
pnominal=.024).	 In	total,	 the	degree	of	17	nodes	were	nominally	asso-
ciated	 with	 free	 recall,	 including	 contralateral	 regions	 to	 the	 FDR-	
corrected	nodes	(temporal	pole,	insula,	transverse	temporal,	superior	
temporal;	see	Table	2	and	Supplementary	Figure	1).	The	right	hippo-
campus ranked at the 12th position.

3.3 | Region- to- region level

The final level in the hierarchical analysis consisted of investigating the 
node- to- node connectivity profile (i.e. the edges of the connectivity 

F IGURE  3 Recall- relevant nodes. Nodes for which the degree (i.e.	average	connectivity	of	a	node)	was	associated	with	picture	recall	
performance at an FDR- corrected level (q < .05).	L:	left;	R:	right
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matrix)	of	 the	seven	FDR-	corrected	nodes.	Out	of	 the	possible	551	
edges that represent the connectivity profile of the FDR- corrected 
nodes	to	all	other	nodes,	170	of	the	edges	were	considered	after	re-
jection	 of	 false-	positive	 connections	 (see	Methods:	 Structural brain 
network construction: population level, discarding spurious connections; 
Figure	4a).	 Among	 these	 170	 edges,	 22	 connections	 were	 associ-
ated with free recall performance at an FDR- corrected level (q < .05,	
Figure	4b,	Table	3).	Four	of	these	22	connections	were	between	the	
seven	 FDR-	corrected	 nodes,	 which	 represent	 40%	 of	 the	 existing	
connections	 between	 them,	whereas	 the	 remaining	18	 connections	
represented	 11.2%	of	 all	 other	 edges.	A	 robust	multiple	 regression	
model including individual values of these 22 connections accounted 
for	7.8%	of	the	variance	in	picture	recall	performance.

3.4 | Cost- integrated metrics

As	a	further	characterization	of	structural	networks,	we	investigated	
several key topological metrics. Interindividual differences in mem-
ory performance were related to interindividual cost differences. 
Therefore,	we	 investigated	cost-	integrated	topological	values	rather	
than	standard	weighted	topological	metrics	(see	Figure	1b)	(Ginestet	
et	al.,	2011).	No	significant	association	was	found	between	recall	per-
formance	and	cost-	integrated	measures,	nor	did	we	find	any	signifi-
cant	valence-	by-	topological	metric	interaction	(Table	4).

3.5 | Network- based statistics

The region- to- region level results were compared to a mass- univariate 
approach	working	 directly	 at	 the	 connection	 level,	 provided	 by	 the	
network-	based	statistics	toolbox.	It	identified	one	connected	compo-
nent	associated	with	picture	recall	performance,	at	p = .0016 (FWE- 
controlled).	This	component	consisted	of	23	nodes	and	30	edges,	and	
included	 left-	sided	nodes	 representing	mainly	occipito-	temporal,	 in-
sular,	and	temporo-	frontal	connections.	At	the	nodal	level,	there	was	
an	overlap	of	50%	between	those	23	nodes	and	the	16	nodes	form-
ing	the	edges	in	the	hierarchical	approach,	including	five	of	the	seven	

TABLE  1 List	of	nodes	associated	with	picture	recall	
performance,	at	an	FDR-	corrected	level	(q < .05)

NODES

Association with picture recall

r p robust CI

Left	fusiform .115 .0030 0.04,0.19

Left	superiortemporal .149 1.12E- 04 0.08,0.22

Left	temporalpole .121 .0018 0.04,0.20

Left	transversetemporal .124 .0013 0.05,0.20

Left	insula .117 .0025 0.04,0.19

Right fusiform .140 2.86E-	04 0.07,0.22

Right inferiortemporal .143 2.15E- 04 0.07,0.22

The FDR-corrected critical p- value was p = .0032. r:	Spearman	correlation	
coefficient; p: nominal p- value; CI:	 95%	percentile	 bootstrap	 confidence	
interval.

TABLE  2 Associations	between	picture	recall	performance	and	
node degree or node gray matter volume

Node

Association with 
node degree

Association with 
gray matter 
volume

r p r p

Left	superiortemporal .149 1.12E- 04 .008 8.44E-	01

Right inferiortemporal .143 2.15E- 04 .011 7.75E- 01

Right fusiform .140 2.86E-	04 .007 8.54E-	01

Left	transversetemporal .124 1.33E- 03 .027 4.88E-	01

Left	temporalpole .121 1.80E-	03 .033 4.02E- 01

Left	insula .117 2.45E- 03 .059 1.30E- 01

Left	fusiform .115 2.98E-	03 .007 8.52E-	01

Right temporalpole .113 3.46E- 03 .016 6.85E-	01

Left	Accumbens	area .103 7.88E-	03 .008 8.28E-	01

Right parahippocampal .090 1.98E-	02 .067 8.25E-	02

Right insula .088 2.30E- 02 .046 2.39E-	01

Right Hippocampus .087 2.43E- 02 .030 4.38E-	01

Left	isthmuscingulate .083 3.15E- 02 .020 6.05E- 01

Right 
transversetemporal

.081 3.72E- 02 .069 7.59E-	02

Right Putamen .080 3.96E-	02 .047 2.24E- 01

Right lateraloccipital .078 4.56E- 02 .016 6.81E-	01

Right superiortemporal .077 4.74E- 02 .001 9.83E-	01

Right precentral .075 5.29E-	02 .016 6.87E-	01

Left	supramarginal .075 5.34E- 02 .014 7.25E- 01

Left	bankssts .073 6.07E- 02 .054 1.67E- 01

Left	Thalamus	Proper .072 6.24E- 02 .032 4.11E- 01

Right inferiorparietal .072 6.30E- 02 .019 6.34E- 01

Left	lateralorbitofrontal .071 6.82E-	02 .043 2.65E- 01

Right postcentral .069 7.50E- 02 .042 2.85E-	01

Right	Accumbens	area .066 8.95E-	02 .032 4.04E- 01

Left	
caudalanteriorcingulate

.066 9.17E-	02 .014 7.23E- 01

Right	Amygdala .065 9.23E-	02 .011 7.75E- 01

Left	precuneus .065 9.47E-	02 .040 3.09E-	01

Right bankssts .064 9.75E-	02 .040 3.05E- 01

Right Caudate .064 1.01E- 01 .029 4.55E- 01

Left	Hippocampus .063 1.07E- 01 .016 6.88E-	01

Left	entorhinal .062 1.08E-	01 .102 8.65E-	03

Right 
caudalmiddlefrontal

.061 1.15E- 01 .078 4.33E- 02

Left	middletemporal .060 1.23E- 01 .043 2.66E- 01

Left	inferiorparietal .059 1.27E- 01 .017 6.60E- 01

Right entorhinal .057 1.43E- 01 .070 7.18E-	02

Left	Pallidum .053 1.72E- 01 .020 5.99E-	01

Left	posteriorcingulate .050 1.95E-	01 .012 7.55E- 01

Right 
rostralmiddlefrontal

.050 2.00E- 01 .013 7.42E- 01

(Continues)
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FDR-	corrected	nodes	 (Table	 S1).	At	 the	 connection	 level,	 36.8%	of	
the	30	NBS-	based	 connections	were	 identical	 to	 those	 that	 the	hi-
erarchical	approach	detected	(Figure	S2	and	Table	S1).	The	NBS	ap-
proach has been shown to be dependent on the initial cluster- forming 
threshold. We therefore report the results of two additional analyses 
in	the	Tables	S2	and	S3,	using	a	more	stringent	and	a	more	lenient	ini-
tial threshold (T = 3 and T = 2,	respectively).	A	single	FWE-	controlled	
component related to recall performance was identified in both cases 
(p = .0033 and p = .0001,	 respectively).	 The	 more	 liberal	 threshold	
component	included	140	edges,	among	which	all	22	of	the	hierarchi-
cal approach. The more stringent threshold component included nine 
edges,	 focusing	 on	 occipito-		 and	 fronto-	temporal	 connections.	 This	
independent approach supports our findings on the role that connec-
tions	 in	 occipito-	temporal	 regions	 play	 in	 explaining	 interindividual	
variability in memory performance.

3.6 | Brain volumetry

Interindividual differences in memory recall have often been investi-
gated	in	terms	of	brain	volumetry	(Van	Petten,	2004).	We	therefore	
investigated whether or not individual grey matter volumes were as-
sociated with picture recall performance. We did so by means of a 
FreeSurfer-	based	volumetric	approach.	We	found	neither	a	significant	
association for average volume (r = .05; p = .196),	nor	for	regional	vol-
umes (FDR level q < .05;	Table	2).

4  | DISCUSSION

The present study revealed that variability of free recall performance 
was	 associated	 with	 variability	 in	 network	 density,	 a	 property	 of	
global connectivity that has been shown to be important not only in 
the	 characterization	 of	 structural	 networks	 (Gong	 et	al.,	 2009),	 but	
also	in	functional	networks	related	to	memory	(Watrous	et	al.,	2013).	
Global structural connectivity has been shown to decrease with in-
creasing	age	 (Gong	et	al.,	2009).	This	finding	 led	to	speculation	that	
decreased global connectivity might represent an underlying factor 
for age- related cognitive decline. By demonstrating that picture recall 
is	positively	correlated	with	global	connectivity	 in	young	adults,	 the	

Node

Association with 
node degree

Association with 
gray matter 
volume

r p r p

Right posteriorcingulate .049 2.10E- 01 .010 7.97E-	01

Left	Putamen .044 2.56E- 01 .037 3.44E- 01

Left	lingual .043 2.66E- 01 .052 1.78E-	01

Left	parahippocampal .039 3.16E- 01 .002 9.69E-	01

Right precuneus .039 3.17E- 01 .043 2.65E- 01

Right superiorparietal .038 3.28E-	01 .007 8.64E-	01

Right middletemporal .038 3.30E- 01 .051 1.87E-	01

Right 
caudalanteriorcingulate

.037 3.40E- 01 .053 1.75E- 01

Right paracentral .036 3.55E- 01 .041 2.95E-	01

Right isthmuscingulate .033 3.98E-	01 .044 2.63E- 01

Left	precentral .033 4.00E- 01 .079 4.14E- 02

Right parsorbitalis .032 4.15E- 01 .029 4.50E- 01

Left	postcentral .030 4.40E- 01 .025 5.17E- 01

Left	parstriangularis .030 4.44E- 01 .045 2.49E-	01

Left	inferiortemporal .028 4.68E-	01 .036 3.56E- 01

Right lateralorbitofrontal .027 4.80E-	01 .036 3.58E-	01

Left	paracentral .026 5.03E- 01 .028 4.64E- 01

Left	parsorbitalis .025 5.25E- 01 .026 5.00E- 01

Right 
medialorbitofrontal

.024 5.44E- 01 .007 8.63E-	01

Left	lateraloccipital .023 5.47E- 01 .018 6.41E- 01

Left	medialorbitofrontal .022 5.77E- 01 .013 7.29E-	01

Right Thalamus Proper .020 6.07E- 01 .049 2.11E- 01

Left	Amygdala .020 6.09E-	01 .062 1.09E-	01

Left	Caudate .019 6.26E- 01 .024 5.41E- 01

Left	pericalcarine .017 6.59E-	01 .066 8.93E-	02

Right supramarginal .017 6.62E- 01 .041 2.96E-	01

Right cuneus .016 6.82E-	01 .036 3.57E- 01

Left	
rostralanteriorcingulate

.015 7.05E- 01 .021 5.93E-	01

Left	parsopercularis .014 7.18E-	01 .008 8.39E-	01

Right lingual .013 7.39E-	01 .069 7.36E- 02

Left	caudalmiddlefrontal .012 7.59E-	01 .020 6.01E- 01

Left	rostralmiddlefrontal .011 7.86E-	01 .015 6.99E-	01

Right parstriangularis .010 7.99E-	01 .006 8.76E-	01

Right Pallidum .009 8.07E-	01 .017 6.57E- 01

Left	superiorfrontal .009 8.14E-	01 .059 1.27E- 01

Right parsopercularis .008 8.30E-	01 .032 4.06E- 01

Left	superiorparietal .008 8.44E-	01 .020 6.10E- 01

Left	frontalpole .007 8.55E-	01 .027 4.92E-	01

Right superiorfrontal .007 8.65E-	01 .087 2.46E- 02

Right frontalpole .006 8.85E-	01 .023 5.47E- 01

TABLE  2  (Continued)

(Continues)

Node

Association with 
node degree

Association with 
gray matter 
volume

r p r p

Left	cuneus .005 9.06E-	01 .094 1.50E- 02

Right pericalcarine .001 9.81E-	01 .050 2.00E- 01

Right 
rostralanteriorcingulate

.000 9.99E-	01 .000 9.94E-	01

Nodes highlighted in bold are those for which the association between 
memory performance and node degree was significant at an FDR- corrected 
level (q < .05);	whereas	nodes	highlighted	in	italics	were	nominally	associ-
ated. r:	Spearman	correlation	coefficient;	p: nominal p- value.

TABLE  2  (Continued)
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present results support the notion that decreased global structural 
connectivity might be involved in the age- related decline in episodic 
memory	performance.	Moreover,	we	found	evidence	 indicating	that	
the association between structural connectivity and memory perfor-
mance	might	be	 specific	 to	 the	episodic	 task,	 as	 it	did	not	apply	 to	
attention	 or	 working	 memory.	 As	 Schedlbauer	 et	 al.	 (Schedlbauer,	
Copara,	Watrous,	 &	 Ekstrom,	 2014)	 found	 an	 association	 between	
global functional network density and successful memory retrieval in 
a	spatiotemporal	task,	these	findings	also	point	toward	the	functional	
relevance	 of	 network	 density	 in	 episodic	 memory.	More	 generally,	
increased functional connectivity in a recollection- specific network 
has	also	been	related	to	recollection	accuracy	(King,	de	Chastelaine,	
Elward,	Wang,	&	Rugg,	2015).

A	post-	hoc	analysis	 revealed	that	 the	degree	of	 the	 right	hippo-
campus,	i.e.	its	average	connectivity,	was	significantly	associated	with	
recall	performance.	Such	a	nominal	association	was	observed	for	20%	

of	 the	nodes,	 reflecting	 the	network	density	 findings.	Together	with	
the whole- brain hierarchical approach that identified its connection 
with	the	superior	temporal	cortex	as	relevant	in	explaining	interindi-
vidual	 differences	 in	 recall	 performance,	 these	 findings	 confirm	 the	
role	of	the	hippocampus	as	a	key	region	for	episodic	memory	(Milner	
&	Penfield,	1955;	Schacter	&	Tulving,	1994;	Squire	&	Alvarez,	1995)	in	
healthy young adults.

The whole- brain hierarchical approach additionally allowed us 
to	 identify	seven	nodes,	mainly	 located	 in	the	temporal	 lobe,	whose	
degree was significantly associated with free recall performance. The 
fusiform	 gyrus,	 together	 with	 the	 inferior	 temporal	 cortex	 and	 the	
temporal	pole,	are	part	of	the	 inferior	 longitudinal	fasciculus,	a	fiber	
bundle	 that	 connects	 the	 occipital	 cortex	with	 the	 anterior	 tempo-
ral	 lobe	and	 the	amygdala	 (Catani,	Jones,	Donato,	&	 ffytche,	2003).	
Connections between these brain regions have been linked to episodic 
memory	(Fuentemilla	et	al.,	2009).	Furthermore,	age-	associated	white	

F IGURE  4 Recall-	relevant	edges.	(a)	Whole-	brain	connectivity	pattern	of	the	seven	nodes	associated	with	picture	recall	performance	at	an	
FDR- corrected level (q < .05).	The	seed	node	is	depicted	in	red.	(b)	Connections	significantly	associated	with	picture	recall	performance	(FDR-	
corrected level q < .05).	The	size	of	a	node	is	proportional	to	its	degree.	Green	nodes	are	those	for	which	degree	was	significantly	associated	
with	picture	recall	performance	(Figure	3).	L:	left;	R:	right
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matter	 injuries,	 as	measured	by	white	matter	 hyperintensities,	were	
shown to be negatively associated with episodic memory performance 
in	normal	aging	(Lockhart	et	al.,	2012).

The network- based statistics framework was employed as an in-
dependent confirmation approach. It identified one significant recall- 
related	 component	 of	 left-	sided	 regions,	 including	 all	 five	 left-	sided	
nodes of our main analysis. Fourteen edges were identified as com-
mon	between	 the	 two	analyses.	The	 fact	 that	 the	NBS	 toolbox	has	
distinct assumptions (mass- univariate approach and connectedness 

of	the	components)	offers	a	refined	view	on	the	main	analyses.	This	
approach highlights the role of connections of the superior tempo-
ral	cortex	and	fusiform	gyrus.	Overall,	 these	findings	strengthen	the	
importance of occipito- temporal structural connections for episodic 
memory.

Not only do our results provide more specific information regard-
ing	connections	previously	related	to	memory	performance,	they	also	
point	to	less	investigated	pathways,	such	as	connections	between	the	
insula	and	the	superior	temporal	cortex	(Cerliani	et	al.,	2012).	Whereas	

FDR edges Association with picture recall

FDR node Connecting node r p robust CI

Left	fusiform Left	superiortemporal .130 7.95E-	04 0.05,0.20

Left	fusiform Left	temporalpole .114 .0033 0.04,0.19

Left	fusiform Left	middletemporal .107 .0057 0.03,0.19

Left	insula Left	pericalcarine .133 5.76E- 04 0.06,0.21

Left	insula Left	lateraloccipital .121 .0018 0.04,0.20

Left	insula Left	accumbens-	area .120 .0020 0.04,0.20

Left	superiortemporal Left	lingual .189 8.87E-	07 0.11,0.26

Left	superiortemporal Left	pericalcarine .145 1.79E-	04 0.07,0.21

Left	superiortemporal Left	accumbens-	area .139 3.21E- 04 0.07,0.21

Left	superiortemporal Left	insula .132 6.30E- 04 0.06,0.21

Left	superiortemporal Left	lateraloccipital .130 8.09E-	04 0.05,0.20

Left	superiortemporal Left	lateralorbitofrontal .123 .0015 0.05,0.20

Left	superiortemporal Left	hippocampus .119 .0021 0.04,0.19

Left	superiortemporal Left	caudate .105 .0066 0.03,0.18

Left	temporalpole Left	lingual .145 1.70E- 04 0.06,0.22

Left	temporalpole Left	accumbens-	area .134 5.60E- 04 0.06,0.21

Left	temporalpole Left	pericalcarine .122 .0016 0.05,0.19

Left	temporalpole Left	caudate .112 .0039 0.04,0.19

Right fusiform Right accumbens- area .116 .0027 0.04,0.19

Right fusiform Right inferiortemporal .115 .0030 0.04,0.19

Right inferiortemporal Right superiortemporal .114 .0032 0.04,0.18

Right inferiortemporal Right accumbens- area .106 .0063 0.03,0.18

The FDR-corrected critical p- value was p = .0076. r:	 Spearman	 correlation	 coefficient;	 p: nominal 
 p- value; CI:	95%	percentile	bootstrap	confidence	interval.

TABLE  3 List	of	edges	associated	with	
picture	recall	performance,	at	an	FDR-	
corrected level (q < .05)

Global cost integrated values 
(over nodes)

Association with picture recall

Overall performance
Valence 
interaction

r p robust CI F p

Global efficiency .013 .73 −0.061,0.086 0.39 .68

Clustering coefficient −.025 .53 −0.093,0.054 0.39 .68

Characteristic path length (a) .057 .14 −0.020,0.133 2.22 .11

Betweenness centrality .013 .73 −0.064,0.090 0.76 .47

No	metric	survived	correction	for	multiple	comparison	at	an	FDR	of	5%.	r:	Spearman	correlation	coef-
ficient; p: nominal p- value; CI:	95%	percentile	bootstrap	confidence	interval.
aComputed	on	a	sub-	sampled	cost	range	for	computational	efficiency,	due	to	the	large	number	of	ran-
dom graphs to generate.

TABLE  4 Association	between	picture	
recall performance and cost- integrated 
topological metrics
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the	insula	has	a	well-	known	role	in	emotional	processing	(Craig,	2009),	
findings	 indicate	 that	 insular	 cortex	 infarction	 causes	deficits	 in	 de-
layed	verbal	memory	recall,	which	suggests	that	the	insula	is	also	a	part	
of	a	functional	network	involved	in	episodic	memory	(Manes,	Springer,	
Jorge,	&	Robinson,	1999).	Furthermore,	there	is	evidence	that	an	ab-
normal insular functional network is associated with episodic mem-
ory	 decline	 in	 amnestic	mild	 cognitive	 impairment	 (Xie	 et	al.,	 2012)	
and	the	insular	cortex	is	known	to	be	important	for	memory	acquisi-
tion	 and	 consolidation	 in	 rodents	 (Bermudez-	Rattoni,	Ramirez-	Lugo,	
Gutierrez,	&	Miranda,	2004;	Miranda	&	McGaugh,	2004).	Our	study	
also points to the importance of connections between the temporal 
pole	and	the	nucleus	accumbens,	potentially	mediated	by	the	bed	nu-
cleus	of	the	stria	terminalis	(Avery	et	al.,	2014).	Interestingly,	studies	
in rodents have shown that the stria terminalis is involved in memory 
modulation	(Roozendaal	&	McGaugh,	1996).	So	far,	nothing	has	been	
known about the role of the stria terminalis in human memory.

Our results show that interindividual differences in memory per-
formance	were	not	explained	by	differences	in	grey	matter	volumes.	
Whereas grey matter volume differences have been linked to impaired 
memory performance when comparing cognitively impaired to healthy 
populations	(Chételat	et	al.,	2003),	or	young	to	old	populations	(Rajah,	
Kromas,	Han,	&	Pruessner,	2010),	 less	 is	known	about	 the	neuronal	
bases of interindividual variations in performance for young healthy 
subjects.	Furthermore,	in	the	latter	case,	the	hippocampus	has	often	
been	the	main	region	of	 investigation	 (for	a	 review	see	 (Van	Petten,	
2004)).	But	results	have	been	mixed,	possibly	due	to	low	sample	sizes	
or	 the	 heterogeneity	 of	 experimental	 protocols	 (Harrisberger	 et	al.,	
2014;	 Van	 Petten,	 2004).	 In	 contrast,	 our	 well-	powered	 study	 on	
whole- brain structural correlates of picture recall provides evidence 
that	interindividual	differences	in	recall	performance	could	not	be	ex-
plained by cortical or subcortical differences in grey matter volumes; 
rather,	they	can	be	explained	by	individual	differences	in	the	structural	
connections between grey matter structures.

Although	 the	 percentage	 of	 behavioral	 variance	 explained	 by	
structural	connectivity	measures	might	appear	to	be	low,	we	think	it	
represents	 a	 likely	 effect	 size,	 given	 the	 sample	 size	 of	 the	 present	
study	(Button	et	al.,	2013)	and	the	dynamic	nature	of	episodic	memory	
processes.	Structural	connectivity	represents	the	basis	for	the	dynamic	
repertoire	of	functional	interactions	(Sporns,	2013)	that	could	contrib-
ute to interindividual variability in behavior. Those interactions might 
further	 explain	 behavioral	variance	 related	 to	 the	different	 dynamic	
processes	 underlying	 episodic	memory	 (encoding,	 consolidation,	 re-
call).	Other	factors	that	were	not	assessed	in	this	study,	such	as	IQ	or	
education	level,	might	also	contribute	to	differences	in	memory	per-
formance.	Another	limitation	is	that	a	single	measure	of	picture	recall	
was employed. These points underscore the fact that replication of the 
present results with different episodic memory tasks and populations 
would be of particular interest.

Additional	methodological	limitations	also	have	to	be	mentioned.	
The DWI sequence used in this study allowed us to scan a large co-
hort in an acceptable amount of time on a clinical scanner. Recent de-
velopments	 in	 terms	of	multi-	band	 imaging	 (Feinberg	&	Setsompop,	
2013)	could	be	beneficial	to	increase	the	angular	resolution	for	such	

large-	scale	studies,	without	increasing	scanning	time.	Regarding	the	re-
construction	of	individual	connectomes,	we	opted	to	estimate	the	voxel	
fiber	 orientations	 by	 using	 a	 model-	based	 approach	 (Behrens	 et	al.,	
2007).	 Non-	parametric	 alternatives	 such	 as	 spherical	 deconvolution	
might	refine	the	estimation	in	complex	sub-	voxel	fiber	configurations	
(Lenglet	et	al.,	2009).	Tractography	choices,	ranging	from	node	defini-
tion	(de	Reus	&	van	den	Heuvel,	2013)	to	tracking	algorithms	(Bastiani,	
Shah,	 Goebel,	 &	 Roebroeck,	 2012;	 Girard,	Whittingstall,	 Deriche,	 &	
Descoteaux,	2014)	are	also	known	to	have	an	impact	on	connectome	
measures. Considering the lack of findings for cost- corrected graph 
metrics,	it	is	possible	that	the	cost	integration,	combined	with	the	hi-
erarchical	approach,	masks	isolated	effects.	We	nevertheless	consider	
this approach important regarding the problematic of correctly disen-
tangling the effects of cost from those of topology in the connectome.

In	conclusion,	we	report	that	interindividual	differences	in	picture	
free recall performance are related to interindividual differences in 
global structural connectivity and connectivity between specific brain 
regions.	 Structural	 connections	 between	 the	 occipital	 and	 temporal	
lobes	are	of	known	functional	relevance	for	memory	processes,	while	
connections between the temporal pole and the nucleus accumbens 
represent novel findings. The identification of connectome- based neu-
ral correlates of interindividual differences in memory performance 
demonstrates	the	usefulness	of	this	novel	approach	in	characterizing	
complex	cognitive	traits.	Such	correlates	could	represent	an	interest-
ing	starting	point	for	human	genetic	studies,	and	prove	useful	as	en-
dophenotypes of psychiatric disorders.
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