
Author Manuscript
The final publication is available at IEEE Xplore via https://doi.org/10.1109/BigData.2016.7840932
© 2016 IEEE

Analyzing the Performance of Data Replication and Data Partitioning in the Cloud:
the BEOWULF Approach

Alexander Stiemer∗ Ilir Fetai§ Heiko Schuldt∗

∗Department of Mathematics and Computer Science
University of Basel, Switzerland
{firstname.lastname}@unibas.ch

§Swiss Distance University of Applied Sciences
ilir.fetai@ffhs.ch

Abstract—Applications deployed in the Cloud usually come
with dedicated performance and availability requirements. This
can be achieved by replicating data across several sites and / or
by partitioning data. Data replication allows to parallelize
read requests and thus to decrease data access latency, but
induces significant overhead for the synchronization of updates.
Partitioning, in contrast, is highly beneficial if all the data
accessed by an application is located at the same site, but again
necessitates coordination if distributed transactions are needed
to serve applications. In this paper, we analyze three protocols
for distributed data management in the Cloud, namely Read-
One-Write-All-Available (ROWAA), Majority Quorum (MQ)
and Data Partitioning (DP) – all in a configuration that
guarantees strong consistency. We introduce BEOWULF, a meta
protocol based on a comprehensive cost model that integrates
the three protocols and that dynamically selects the protocol
with the lowest latency for a given workload. In the evaluation,
we compare the prediction of the BEOWULF cost model with
a baseline evaluation. The results nicely show the effectiveness
of the analytical model and the precision in selecting the best
suited protocol for a given workload.

Keywords-cloud data management; data replication; data
partitioning.

I. INTRODUCTION

Applications deployed in the Cloud usually have concrete
requirements towards the services they consume. If we con-
sider data management services, which are the main focus
of this work, application requirements typically include the
desired levels of data availability and consistency, but also
aspects related to performance. However, the requirements
are not independent, but influence each other. According
to the CAP theorem (consistency, availability, partition tol-
erance) [1], [2], only two of these three properties can
be provided at the same time. As tolerance to network
partition cannot be sacrificed, applications can either choose
to provide strong consistency or availability. Moreover, even
in the failure-free case, there is an inherent trade-off between
consistency and latency, which is captured by PACELC [3].

There are basically two approaches to provide a high
degree of scalability. First, to replicate data and use the
additional processing capabilities of the replica sites to

distribute the overall load. This perfectly works for read-
only or read-mostly workloads. In case of high update rates,
however, a considerable coordination overhead between the
replica sites is necessary if strong consistency, such as
One-Copy Serializability (1SR) [4], is required. Different
replication protocols exist at different costs, such as Read-
One Write-All-(Available) (ROWA(A)) [5] and quorum-
based protocols. Second, data can be partitioned so that
the load is evenly distributed across sites; in the ideal case,
costly distributed transactions can be completely avoided.

The decision on the optimal data distribution (replication
or partition) and the optimal protocol to use is heavily
dependent on the application workload and the applications’
performance requirements. However, as the workload is
usually very dynamic, this decision must continuously be
assessed and, if necessary, be adapted.

In this paper, we introduce BEOWULF, a meta-protocol
that allows to switch between data replication and data
partitioning on the basis of the costs that incur for data
management. BEOWULF is based on three protocols, namely
ROWAA [5]–[7] and a Majority Quorum (MQ) [8] for the
management of replicas, and Data Partitioning (DP) [9]
for the (non-replicated) placement and distribution of data
across sites. All these protocols have different characteris-
tics; some are more suited for high read loads while others
are optimized for a higher percentage of write operations in
the workload. BEOWULF uses a comprehensive cost model
based on which it is able to dynamically select the protocol
that provides the lowest response time given an estimation
of the applications’ workload.

The contribution of this paper is twofold: First, we intro-
duce the cost model of BEOWULF, which takes into account
the characteristics of ROWAA, MQ, and DP. Essentially, it
analytically assesses the costs that incur for the different
protocols for a given workload. Second, we asses the pre-
diction quality of the cost model by comparing it with the
costs of a real deployment. We have evaluated the BEOWULF
cost model by comparing its recommendation of the best
suited protocol with a real implementation using the TPC-
C benchmark. The results confirm the accuracy of the cost
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model and with that the ability of BEOWULF to choose the
optimal protocol.

The remainder of the paper is structured as follows:
Section II summarizes the foundations of data replication
and partitioning. In Section III, we introduce the cost model
of BEOWULF and present details of the implementation of
BEOWULF in Section IV. Section V discusses the results
of the evaluation of BEOWULF using TPC-C. Section VI
surveys related work and Section VII concludes.

II. FOUNDATIONS

In what follows we will briefly summarize the main
concepts related to data replication and partitioning.

1) Data Consistency: 1SR consistency requires that the
effects of an interleaved transaction execution on a replicated
database is equivalent to a serial execution on a single-
copy database. 1SR is therefore a strong consistency model
whereas Eventual Consistency (EC) is a weak consistency
model that was made popular in the context of CAP. In
[10] the authors provide a formal definition of EC which is
based on the visibility and arbitration order. The visibility
order defines the updates that are visible to a transaction,
whereas the arbitration order defines the relative order of
the updates. It is well known that eventual consistency
can tolerate network partitions, as the arbitration order can
remain partially determined for some time after transaction
commit. There is a number of different consistency levels
that lie in the range defined by the 1SR and EC consistency.

2) Application Workload: A workload is a set of trans-
actions and their occurrence (frequency) at time period pi:

W pi := Ωpi × N+

= {(ω1, occ (ω1)) , . . . , (ωn, occ (ωn))}
occ : Ωpi → N+

(1)

Ω defines the set of all possible transactions ω, whereas
Ωpi ⊆ Ω is a set of all transactions occurring in the time
period pi.

A transaction ω ∈ Ω can be described by its access pattern
ap being a set of operations that act on specific data objects:

ap = {op1(do1), op2(do2), . . . , opn(don)}
op ∈ {r, w} (2)

Therefore, a workload can also be described as a set of
tuples consisting of access patterns and their occurrence:

W pi := AP × N+

= {(ap1, occ (ap1)) , . . . , (apn, occ (apn))}
ap ∈ AP
occ : AP → N+

(3)

AP defines the set of all possible access patterns and
occ the number of occurrences of an access pattern in the
workload W pi .

A. ROWA and ROWAA

ROWA replication protocols ensure that an update trans-
action commits at all sites before the response is delivered to
a client (eager replication). Thus, a read-only transaction can
be executed at any single site without any additional coordi-
nation. ROWAA also provides eager replication semantics.
However, in contrast to ROWA, it provides a higher degree
of availability as only the available sites are considered and
thus failures of sites can be tolerated. As a consequence,
ROWAA protocols need to incorporate complex reconcilia-
tion algorithms in order to properly manage recovered sites.

B. Quorum Protocols

In quorum protocols, only a subset of sites is eagerly
updated. In order to ensure strong consistency, subsets must
be chosen so that two writes or a write and a read on the
same data object intersect [11]. Compared to ROWA and
ROWAA, quorum protocols reduce the overhead for update
transactions. However, this is done at a higher cost for read-
only transactions, as reads must access a subset of sites that
form a read quorum, and typically this subset includes more
than one site. Quorum-based replication protocols differ in
the size of read and write quorums, and thus in the overhead
they generate for read-only and update transactions. Certain
protocols organize the sites in a logical structure and exploit
that structure to determine the quorums. Thus, they also
differ in the generated overhead for creating and maintaining
that structure, for example in case of site failures.

MQ is a simple quorum protocol, in which each site has a
non-negative number of votes. The quorums are then chosen
in such a way so that they exceed half of total votes [8]:

|RQ| ≥
⌈

#votes

2

⌉
(4)

|WQ| >
⌊

#votes

2

⌋
+ 1 (5)

In the basic MQ, each site has the same amount of votes.
Hence, a read quorum (rq) consists of half of the sites, if
the number of sites is even, or else the majority of the sites.
A write quorum (wq) consists of the majority of the sites.

C. Data Partitioning

The goal of data partitioning protocols is twofold. First,
they avoid expensive distributed transactions by collocating
objects that are accessed inside the same transaction [12].
Second, they avoid performance bottlenecks by evenly dis-
tributing the load between the partitions. There are three
basic approaches to partition a database: horizontal, vertical,
and hybrid partitioning [13]. Horizontal partitioning splits
data across partitions based on key ranges. Vertical parti-
tioning splits the data along the line of attributes, and hybrid
partitioning is a combination of the other two approaches.
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Figure 1. Overview of the discussed parameter space and its classification
into the three categories: application requirements, application properties
and infrastructure properties

D. Replication vs. Data Partitioning Protocols

In what follows we will analytically compare ROWAA,
MQ, and DP protocols in terms of performance.

ROWAA is best suited for read-heavy workloads, as the
load can be fully distributed between the different sites in
the system. However, as the ratio of updates in the workload
increases, the coordination overhead between the replica
sites becomes the limiting factor to scalability. This overhead
is defined in terms of messages that are exchanged between
the sites and their processing overhead. MQ tackles this
issue by enforcing coordination only between a subset of
sites. However, this comes at a price, as in MQ read-only
transactions must also access a subset of sites, which is not
the case in ROWAA.

The quality of a partition schema is measured in terms
of the number of distributed transactions and the degree
of load distribution. In the best case, the schema perfectly
matches the access patterns, and by that completely avoids
distributed transactions. Moreover, an ideal protocol should
evenly distribute the load between the sites. The load may
be defined in terms of data size or number of transactions.

III. THE BEOWULF SYSTEM & COST MODEL

A. Parameter Space

We group the parameter space into three different cat-
egories: Application Requirements, Application Properties
and Infrastructure Properties. Figure 1 depicts these three
categories.

1) Application Requirements (AppReq): contain, for in-
stance, the requirements on the sites and / or the availability,
consistency and latency of the distributed system. We con-
sider these parameters as time-independent, meaning that
changes do not occur frequently.

2) Application Properties (AppProp): are runtime prop-
erties, i.e., properties that occur in the running system, for
example, workload, throughput and the amount of data.
These properties are time-dependent.

3) Infrastructure Properties (InfProp): contain, for in-
stance, the network distance between the sites resp. hosts
and the network capabilities like bandwidth and latency, but
also other properties like packet loss or data transfer rate.

Algorithm 1 BEOWULF-Protocol – Client
Require: Address trxExecSiteAddr, Transaction trx

Executor exec ← getTrxExecSite(trxExecSiteAddr)

// Figure 2, (1):
// The transaction execution site executes the transaction
// according to the currently applied protocol and its
// configuration.
TransactionResponse trxResp ← exec.execute(trx)

Algorithm 2 BEOWULF-Protocol – Beowulf
Require: Properties p

List configs ← getAllConfigs(p)

loop
Config curConfig ← getCurrentConfig()
Workload w ← getWorkloadFromExecutionSites()

// Figure 2, (2)
Int cost ← MAX VALUE
Config newConfig ← null

for all Config c in configs do
Int newCost ← cost(p, curConfig, c, w)
if newCost < cost then

cost ← newCost
newConfig ← c

end if
end for

if newConfig 6= curConfig then
reconfigureSystem(newConfig) // Figure 2, (3)

end if
end loop

B. System Model

The BEOWULF system is defined by the set of available
protocols, together with their configurations. For example,
the configuration of the MQ protocol is determined by the
definition of the quorums, whereas the configuration of a
DP protocol is determined by its partition schema.

The system consists of sites, which execute transactions
according to a protocol and its configuration. The protocol
is determined by BEOWULF based on the cost model and
the workload. Figure 2 and the Algorithms 1 and 2 describe
BEOWULF’s meta protocol. (1) Clients execute transactions
on the transaction execution sites without any notice about
the currently applied protocol / configuration. In the back-
ground, BEOWULF monitors transparently to the client the
workload occurring at the transaction execution sites by
polling the corresponding data (2). The future workload is
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Figure 2. BEOWULF’s deployment scenario: BEOWULF interacts with the local transaction execution sites inside a datacenter to gather the required
data to schedule reconfigurations if necessary. (1) The client executes the transaction at the specified Transaction Execution Sites which executes the
transaction according to the currently applied protocol and its configuration. (2) BEOWULF fetches the workload from the Transaction Execution Sites
and (3) triggers a reconfiguration if needed.

predicted using this data which is then used to calculate
the cost for each available configuration. The configuration
with the lowest cost is finally applied in the system which
may require a reconfiguration at the transaction execution
sites (3).

C. Cost Model Parameters

The current version of the cost model considers the fol-
lowing parameters: 1) From the AppReq we use the number
of sites and the binary parameter replication, which are
compiled in the configuration parameter. 2) The parameter
space of the AppProp is reduced to the workload and its
properties read / write-ratio and access pattern. 3) In this
work we do not yet consider any parameter from the InfProp;
this will be subject to future work.

D. Cost Model

Let W pi =
{
ω1, ..., ωn

}
be a workload of the time

period pi with size n consisting of the transactions ω and
∆ = {ROWAA,MQ,DP} be the set of all configura-
tions.

Given a (predicted) workload W pi (a set of transac-
tions ω) we can calculate the cost for each configuration
δ ∈ ∆ and we find the new configuration that minimizes
the cost

δnew = arg min
∀ δ ∈∆

( ∑
ω ∈Wpi

cost(P, δcur, δ, ω)

+ cch · changeCost(δcur, δ)

) (6)

with the vector P = (AppReq,AppProp, InfProp) con-
taining the properties as mentioned above and δcur as the
currently applied configuration. cost(P, δcur, δ, ω) is defined
as follows:

cost(P, δcur, δ, ω) := cmon · trxCost(δ, ω) (7)

with the constants cmon and cch which are used for weight-
ing the cost components. The parameter cmon is used to
transform the abstract costs into real monetary costs (e.g.,
cmon = 7.6 · 10−8 USD per distributed transaction1). The
function changeCost(δcur, δ) determines or estimates the
number of data objects which have to be transferred between
the sites to switch the configuration. This number strongly
depends on the size of the database. It is scaled by cch
which is a data cost coefficient depending on the system.
It abstracts cost values such as the cost for a data transfer
which, among others, depends on the site and the network
between the sites (e.g., cch = 2.28 · 10−7 USD per data
object to be moved / copied2).

Using the Distribution-Degree-Function introduced in
[14], we define:

trxCost(δ, ω) :=


(

dD(δ, ω)

max dD(δ)

)
, if max dD(δ) > 0

0 , otherwise
(8)

with
dD(δ, ω) := #AccessedSites(δ, ω)− 1 (9)

as the distribution degree and

max dD(δ) := #Sites(δ)− 1 (10)

as the maximum distribution degree. Please note that we
assume each transaction to anyways run on at least one
site; hence, the maximum distribution degree specifies the
number of additional sites (at most n− 1, with n being the

1Using Amazon Web Services EC2 network pricing listed at
https://aws.amazon.com/ec2/pricing/on-demand/ (accessed Nov. 2016) and
assuming messages having a size of 1 kB:
0.02 USD/GB ≈ 1.9 · 10−8 USD/kB

One distributed transaction (dTrx) needs for 2PC four messages:
4 msg/dTrx · 1 kB/msg · 1.9 ·10−8 USD/kB = 7.6 ·10−8 USD/dTrx

2Four sites imply three 2PC-messages; do meaning data object:
3 dTrx/do · 7.6 · 10−8 USD/dTrx = 2.28 · 10−7 USD/do



Table I
trxCost(δ, ω) WITH ∆ = {ROWAA,MQ,DP}

Configuration Read-Only Transaction Write Transaction
ROWAA = 0 = 1

MQ ≥ 0.5 > 0.5

DP
schema & access
pattern dependend

schema & access
pattern dependent

overall number of sites in the system) which also need to
be considered in case of distributed transactions.

changeCost(δcur, δ) estimates the costs that incur if
there is a need to change a configuration, e.g., for copy-
ing / moving data objects. This can be the case if the config-
uration switches, for instance, from a partitioned to a fully
replicated configuration. Then, every data object needs to
be copied on all other sites. We define changeCost(δcur, δ)
in a straightforward way as the sum of location mismatches
(locMis) of D containing all data objects do:

changeCost(δcur, δ) :=
∑
do∈D

locMis(δcur, δ, do) (11)

We define a location mismatch (locMis) as a database object
which does not reside on the physical location(s) specified
by the configuration or schema. Hence, a location mismatch
generates costs by the need of copying / moving it to the new
location(s).

E. Analysis

Table I shows a rough analysis of trxCost(δ, ω) for
∆ = {ROWAA,MQ,DP}:

1) In case of δ = ROWAA, trxCost(δ, ω) = 0 for
read-only transactions (ωro) and trxCost(δ, ω) = 1 for
transactions containing write operations (ωrw).
For ωro: dD(ROWAA,ωro) = 0 and therefore also
trxCost = 0. For ωrw: dD(ROWAA,ωrw) = n − 1
since a write transaction needs to be executed on all
(remaining) sites and therefore dD(ROWAA,ωrw) =
max dD(ROWAA).

2) For MQ (δ = MQ), trxCost(δ, ω) can be estimated
with 0.5 as the lower bound for both read-only and
write transactions. The reason is the quorum construc-
tion rule (Equations (4) and (5)).

3) The cost for DP strongly depends on the applied par-
titioning schema and the current access pattern caused
by the current workload. A well partitioned system
experiencing nearly matching access patterns can have
very little cost since only some “outlier-transactions”
need to be distributed in the system.

The costs of changeCost(δcur, δ) for ∆ = {ROWAA,
MQ,DP} can be estimated as follows:

1) There is no cost at all if δcur = ROWAA. The reason
is that with the ROWAA configuration the data is fully
replicated. Switching to partial replication (MQ) or no
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Workload Analysis
Reconfiguration

Client

Transaction Execution Sites

BEOWULF

Figure 3. Conceptual architecture of BEOWULF. BEOWULF consists of
subsystems which are responsible for collecting meta data, providing a
timestamp service, centralized locking and executing transactions using one
of the three protocols (ROWAA, MQ, DP).

replication at all (DP) simply means that some data
objects will not be maintained anymore.

2) Changing to ROWAA requires copying data. For partial
replication, the amount of data to be copied is not as
high as for partitioned data. For switching from DP to
ROWAA, every data object of the whole database needs
to be replicated on every other site which causes high
transition costs.

3) The overhead for changing the partition schema is
schema dependent. Also the change from MQ to DP
depends on the desired partitioning schema since not
all data is located everywhere like it is in ROWAA.

IV. IMPLEMENTATION

The BEOWULF system as well as the three protocols
are implemented as web services. BEOWULF consists of
management modules and transaction execution sites as
depicted in Figure 3. BEOWULF has four different roles
to fulfill: 1) BEOWULF analyses the transactions w.r.t. the
resulting workload. This information is needed, for instance,
to predict future workloads. 2) It calculates the cost for
each protocol using the introduced Cost Model and decides
whether the actual active protocol is still the one with the
lowest cost. If not, it schedules a reconfiguration or protocol
switch, resp. 3) BEOWULF steers and monitors the reconfigu-
ration. 4) Additionally, BEOWULF collects empirical data for
statistical analysis like the latency of a transaction, current
throughput, average workload within a time period, etc. This
information and additional meta data can be used for further
improvements of BEOWULF and its deployment.

A. Management Modules

BEOWULF uses several management modules which pro-
vide services for the transaction execution sites. For instance,
the Meta Data module as shown in Figure 3 collects meta
data of the whole system. The Timestamp module provides a
central timestamp service and the Locking module provides
Two-Phase Locking (2PL) [7].



B. Transaction Execution Sites

The transaction execution sites are able to provide 1SR
consistency. To achieve this, BEOWULF uses 2PL as concur-
rency control protocol and Two-Phase Commit (2PC) [15]
for the consistent propagation of updates [7].

1) ROWAA: According to the protocol, read-only trans-
actions are executed locally. Write transactions are executed
on all sites.

2) Majority Quorum: Our implementation of the MQ
protocol is similar to ROWAA. Both share a common code
base. However, in contrast to ROWAA, MQ commits only
on a subset of all available sites according to the MQ
protocol. Also, the execution of read operations differs since
for MQ more than one site is needed to read the value of
a data object. We construct the quorums at site level, not at
data object level. This means that each site has its quorum
partners that are inquired for read resp. write requests.

3) Data Partitioning: For the DP part we use Cumulus,
which is an implementation of a dynamic data partitioning
protocol [14]. Cumulus collects the workload of the last
period from all available sites. The workload is then used
for workload prediction. With this information Cumulus
calculates the partition schema using graph partitioning. This
schema is then applied on its transaction execution sites.

C. BEOWULF’s Cost Model

The implementation of the Cost Model uses the workload
provided by the workload analyzer to compute the cost given
a certain system configuration. The cost model needs the
DP schema with the lowest cost. For the time being, the
workload analyzer is trained with the actual workload. The
cost calculation (calculating the the distribution degree) of
ROWAA and MQ is straightforward. However, to calculate
the values for DP, BEOWULF also uses the graph partition
engine of our baseline implementation. Running the partition
engine requires an initial schema. In the baseline implemen-
tation, this initial schema is obtained by querying the whole
underlying database. For BEOWULF, the initialization is
simply replayed in an in-memory database. Using this initial
schema and the provided workload, the partition engine
computes the new schema. This in turn is used to compute
the cost for the DP configuration by comparing the desired
locations (provided by the schema) of the data objects.

V. EVALUATION

A. Evaluation Environment & Parameters

Our evaluation environment consists of one active client
executing the benchmark, the management nodes and the
transaction manager sites. The specification of the nodes
used in our evaluation is summarized in Table II. The
servers are running in a cluster built of commodity hardware,
interconnected via a 1 GBit/s Ethernet network.

The parameters of our tests are summarized in Table III.
We use the TPC-C benchmark (with a scale factor of 1) to

Table II
SPECIFICATION OF THE NODES USED IN THE EVALUATION

Sites & Management Client

CPU
Intel Pentium D 945
(2 C / 2 T @ 3.4 GHz)

Intel Core i5-2520M
(2 C / 4 T @ 2.5 GHz)

RAM 2 GB 8 GB

Network 1 GBit/s Ethernet 1 GBit/s Ethernet

OS Ubuntu Server 14.04 LTS Ubuntu Server 14.04 LTS

Arch. amd64 amd64

Software

Oracle Java 1.8.0 77
Apache Derby 10.11.1.1
Apache Tomcat 8.0.33
JAX-WS RI 2.2.10

OpenJDK 1.8.0 91

Table III
TEST PARAMETER DESCRIPTION

Workload Mix
Read/Write-Ratio (r/w-ratio), lies within
[100 / 0, 0 / 100].

Workload-Incr.
The number by which the read proportion is
the decreased resp. write increased.

# of Threads The number of threads sending transactions.

Threads-Incr.
The number by which the quantity of threads
is increased.

# Trx per Thread
The number of transactions a thread sends to
the system.

Transaction Size
The number of queries/statements in a
transaction.

Storage Nodes Number of sites/hosts/replicas.

Replication binary – If required, DP is excluded.

emulate our workload [16]. Moreover, we use the parameters
cmon = 1 and cch = 0 as the main objective in our
evaluation is to assess the quality of BEOWULF’s prediction,
not to actually apply changes to the current configuration.

B. Evaluation Results

1) Test 1 – Variable Read/Write-Ratio: Our first test uses
the following parameters: 10 threads execute 1,000 trans-
actions on four sites, each transaction containing three
operations. In this test, the r/w-ratio is varied from read-
only (r / w = 100 / 0) to write-only (r / w = 0 / 100) in steps of
10. The results of this test are illustrated in Figure 4.

Figure 4a depicts the outcome of BEOWULF’s Cost
Model. For ROWAA, the number increases linearly since
all read-only transactions are executed locally and every
write transaction on all available sites. As expected, MQ
has higher costs for read-heavy transactions since two of
the four sites are used for transaction execution. However,
for write-heavy transactions, the costs of MQ are lower than
the ones of ROWAA since only three of the four sites are
needed for execution. The cost estimation of DP shows that
there are few distributed transactions and these may require
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Figure 4. Results of Test 1: 10 threads, 1,000 transactions per thread, transaction size of 3, 4 transaction execution sites

only one to two additional sites for execution. However, most
transactions can be executed locally.

Figure 4b shows the measured average latency of
our baseline system. As expected, for the read-only
(r / w = 100 / 0) scenario ROWAA is the best of the three
protocols (although the differences between the protocols
are minimal). However, for higher write ratios, the average
latency of ROWAA increases the most. The reason is that all
four nodes have to execute write transactions and participate
in the commit phase. In contrast to ROWAA, only three
nodes are needed for write transactions in MQ. But to do
so, MQ needs at least two nodes to execute read transactions.
This results in only a slight improvement compared to
ROWAA. The average latency of DP has the lowest increase
because most transactions, regardless if read-only or write
transactions, can be executed locally.

A comparison of the results of BEOWULF and the baseline
regarding minimum costs and minimum latency, we see
that from a transction mix of r / w = 80 / 20 onward, the
minimum for both is achieved by DP. BEOWULF and the
baseline actually differ for r / w = 90 / 10. Here, BEOWULF’s
minimum is ROWAA whereas the actual minimum regarding
latency is DP. For the read-only workload, the minimum
for both is ROWAA. Comparing both results under the
assumption of required replication, which invalidates DP as
a valid protocol, results in the following observation: the
minimum cost for read-heavy workloads (r / w = 90 / 10 to
50 / 50) calculated by BEOWULF has the ROWAA protocol
whereas the minimum latency for the baseline is achieved
by MQ. For write-heavy workloads (r / w = 50 / 50 to 0 / 100)
the minimum for both is MQ.

Hence, the minimum costs predicted by BEOWULF cor-
rectly correspond to the minimum latency of the baseline
implementation if DP is considered. When comparing only
ROWAA and MQ, BEOWULF correctly selects the best
protocol for high update rates.

2) Test 2 – Variable Read/Write-Ratio & Variable Num-
ber of Threads: Our second test varies the number of

threads additionally to the r/w-ratio from 10 to 50. Each
thread executes 200 transactions resulting for 50 threads in
10,000 transactions in total (like for Test 1).

The results of BEOWULF are shown in Figures 5a to 5c
and summarized in Figures 5g and 5i. Please note that
both summaries are depicted as meshes instead of only
points for better visibility. The outcome of Figures 5a
to 5c is straightforward by evaluating the appropriate cost
function. The summary (Figure 5g) shows, as expected, that
for read-heavy workloads BEOWULF suggests ROWAA and
for write-heavy DP. We did not expect that the transition
from ROWAA to DP shifts towards higher write workloads
for a higher number of workers. Instead, we expected the
transition to be independent of the number of workers. Note
that an increase of the workers corresponds to an increase
of number of transactions.

Figures 5d to 5f depict the results of the baseline which
correspond mostly with our expectations. The results are
summarized in Figures 5h and 5j. Increasing the number of
workers also increases the latency. For heavy-read or read-
only workloads, the latency stays nearly constant, only a
slight increase is visible as the shared locks used do not
block transactions. However, we did not expect that DP’s
latency increase is that low. Even for 50 workers and heavy
write workloads, the increase is roughly a third compared
to ROWAA. A simple explanation is that for ROWAA three
more sites have to participate in the atomic commit via 2PC.
Having fewer sites participating leads to a lower waiting
time, for example when waiting for the votes of the other
participants. For read-only workloads, we expected ROWAA
to be the best protocol. However, Figure 5h shows that for
(r / w = 100 / 0, no. threads = 10) MQ has the lowest latency
although both protocols actually show similar values. The
reason for MQ being better might simply be environmental
causes or other effects.

A comparison of Figure 5g with Figure 5h points out
that the differences are again for the r / w = 90 / 10 workload.
BEOWULF’s result is in general ROWAA whereas the DP



configuration yields the minimum latency. If replication is
required, meaning that DP is no valid choice, the result of the
comparison between BEOWULF and the baseline is similar
to Test 1. Figure 5i shows the same switch from ROWAA
to MQ for heavy-write workloads whereas the baseline’s
minimum is MQ even for read-heavy workloads (Figure 5j).

Again, BEOWULF correctly predicts the best protocol out
of ROWAA, MQ, and DP. If replication is needed for
reasons of availability, i.e., the without DP option, then
BEOWULF correctly predicts the best protocol for high
update rates. Even though the prognosis is not in line with
the baseline measurement for read-heavy workloads when
choosing between ROWAA and MQ, the consequences can
rather be neglected as no or few additional coordination
efforts are needed in both protocols for these workloads.

VI. RELATED WORK

As extension to the CAP theorem, Partition-Availability-
Consistency-Else-Latency-Consistency (PACELC) [3] de-
scribes the latency vs. consistency trade-off for failure-free
distributed systems. To minimize latency, several Concur-
rency Control Models (CCMs) [17] exist. 1SR [4] executes
transactions in a distributed system as if they were serially
executed on one database; Strong 1SR and Strong Ses-
sion 1SR [18] are even stronger CCMs. In [19], snapshot
isolation [20] is extended for distributed databases. Causal
consistency (e.g., [21], [22]) and eventual consistency (e.g.,
[10], [23]) are examples for weaker CCMs.

In [11], ROWAA is compared with other replication
protocols such as quorum, grid- and tree-based protocols
w.r.t. availability and scalability. [24] compares the latency
of ROWAA with MQ and Log-Write Tree Quorum.

Workload-driven systems change their behavior or (inter-
nal) configuration in case of changing workloads. They are
especially of interest when using data partitioning protocols
since the partitioning itself depends on the actual (or future)
workload. In contrast, replication protocols usually do not
deal with varying user behavior as long as the load in the
entire system stays nearly the same. Schism [12] is a graph-
based, workload-driven partitioning system for transactional
workloads. Is uses a graph with data records as nodes and
edges that correspond to the co-occurrence of records in the
same transaction. The partitioning then aims at minimizing
the number of distributed transactions. AutoStore [25] anal-
yses access patterns (APs) using a sliding window approach
to create its partitioning schema. It compares the currently
applied schema with a new schema candidate using a cost
model that also considers the transition cost. Cumulus [14]
is a dynamic data partitioning protocol, also using a graph
based approach. To change the currently applied partitioning
schema dynamically, Cumulus derives its schema from an
analysis of the current workload. If the workload changes,
the system performs a dynamic reconfiguration.

The workload is one of the two main parameters of
BEOWULF’s cost model; hence the quality of the prediction
of the expected workload is crucial. The better these pre-
dictions are, the better the cost model is in optimizing the
system for future workloads. Different models are proposed,
e.g., the Exponential Moving Average (EMA) [26] or the
Autoregressive Integrated Moving Average (ARIMA) [27].

[28] uses the ARIMA model to predict future application
workload in Cloud environments. The proactive model is
implemented in a workload Analyzer and evaluated using
real web server traces.

Live-migration techniques and that allow to dynamically
migrate data to cope with changing workloads are relevant
when the current configuration and/or deployment is no
longer optimal for the expected workload. Zehpyr [29]
combines pulling transactions and asynchronous pushing to
migrate data. Zephyr provides ACID guarantees [30] during
migration. The consistency is guaranteed by the use of
2PL and 2PC. The Squall migration system [31] efficiently
performs a dynamic reconfiguration of partitioned databases
with strong consistency. The reconfiguration is done by
migrating the data asynchronously, by means of distributed
transactions, during execution of the actual transaction.
Squall keeps track of the migrated data items. This allows
its transaction managers to decide whether the transaction
can be executed or not. If not, the data has first to be
pulled. The Lazy Snapshot Isolation Rule (LSIR) [32],
allows a transparent live-migration under snapshot isolation.
During the copy process, LSIR keeps track of the operations
changing the state of the source database. These operations
need to be re-applied on the target database. Hand-over takes
place after these migration operations.

VII. CONCLUSION

In this paper, we have introduced BEOWULF, a system
tailored to distributed data management which is able to
dynamically switch between data replication and data par-
titioning, based on the actual and expected workload. The
heart of BEOWULF is a cost model that is used as a basis
to compare three data management protocols: ROWAA and
MQ for data replication with strong consistency constraints,
and data partitioning. In the evaluation, we have compared
the recommendation derived from the analytical analysis of
the three protocols with the results of measurements using
the TPC-C benchmark. The results show the effectiveness of
BEOWULF and its suitability for adaptive data management.

So far, we have considered either replication or partition-
ing, but no combination of both. In our future work, we aim
at modeling also hybrid cases (partial replication, combined
with data partitioning). The objective is to extend BEOWULF
and to identify, for each workload, the best possible protocol
(or protocol combination) for data management. As the
quality of the workload estimation is essential for this, we
also plan to use machine learning techniques to predict the



future workload of applications and also to assess the effects
of the window size in which the access pattern is collected.
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Test 2 – Beowulf Cost Model – ROWAA

(a) BEOWULF ROWA(A) results.
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(b) BEOWULF Majority Quorum (MQ) results.
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(c) BEOWULF Data Partitioning (DP) results.
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Test 2 – Baseline Measurement – ROWAA

(d) Baseline ROWA(A) results.
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Test 2 – Baseline Measurement – Majority Quorum

(e) Baseline MQ results.
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(f) Baseline DP results.
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(g) BEOWULF’s best protocol in terms of cost.
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(h) Baseline’s best protocol in terms of latency.
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(i) BEOWULF’s best protocol in terms of cost
requiring replication.

100/080/2060/4040/6020/800/100

10

20
30

40
50ROWAA

MQ

Read/Write – Ratio
Threads

Test 2? – Baseline Measurement – Best Protocol

(j) Baseline’s best protocol in terms of latency
requiring replication.

Figure 5. Results of Test 2: 10 to 50 threads, 200 transactions per thread, transaction size of 3, 4 transaction execution sites


