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1.0  Introduction 
    Currency options are traded over-the-counter (OTC) and in organized 

exchanges. According to Bank for International Settlements (BIS) quarterly review 

from December 2003 to December 2005, the currency options’ annual average growth 

rates were 12.30% and 34.54% for OTC and organized exchanges, respectively. These 

growth rates are enormous. Unfortunately, ever since the major contribution by 

Grabbe (1983) and Garman and Kohlhagan (1983), serious research involving the 

currency options have been missing in the empirical literature. 

    The pricing of currency options are closely linked to the expected volatility of 

the underlying exchange rate over the time until expiration for European options. The 

volatility is inherently unobservable and its accurate measure is crucial for options 

pricing techniques. The unobservable volatility can be estimated in several ways. 

First, this can be done by studying volatility implied by option prices in conjunction 

with specific option pricing models such as Black-Scholes (B-S). Second, the realized 

volatility can be used for this purpose. Realized volatility can be defined as the sum of 

intra-day squared return. A third way to estimate unobserved volatility is by fitting 

parametric econometric models such as generalized autoregressive conditional 

heteroscedasticity (GARCH).  

     In practice, option traders use implied volatility (IV) which is widely believed 

to be the market’s best forecast regarding the future volatility over the remaining life 

of the option. A number of studies have focused on the predictive power of IV. Earlier 

research by Latane and Rendleman (1976), Schmalensee and Trippi (1978), Chiras 

and Manaster (1978), Beckers (1981) indicated that IV was a better predictor of actual 

volatility than volatility based on historical data. Lamourex and Lastrapes (1993) 

conducted a joint test of the Hull-White (1987) option pricing model and market 

efficiency, and they find that although IV helps predict volatility, available 

information in historical data can be used to improve the market’s forecasts as 

measured by IV. Day and Lewis (1992) show that IV in the equity market contains 

incremental information relative to the conditional volatility from GARCH models. 

Similar results are also reported in Fleming et al. (1995), Christensen and Prabhala 

(1998), Fleming (1998), Bates (2000), and Kazantzis and Tessaromatis (2001). Chang 

and Tabak (2007) presented evidence that IV in option prices contain information that 
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is not present in past returns for the Brazilian exchange rate against U.S. dollar. In 

contrast, Canina and Figlewski (1993) find that IV has little predictive power for 

future volatility. Jorion (1995), however, reports that IV outperforms statistical time-

series models in terms of information content and predictive power, but IV appears to 

be too variable relative to future volatility.  

Another strand of research has focused on examining the dynamics of IV. 

Using S&P 100 index option, Harvey and Whaley (1992) report that IV changes can 

be predicted ahead of time. This study also indicates that IV tends to fall on Fridays 

and rise on Mondays. Using CBOE Market Volatility Index (VIX), an average of S&P 

100 option IV, Fleming et al. (1995), however, rejects inter-week seasonality. 

Furthermore, this study indicates that VIX is inversely related to the contemporaneous 

S&P 100 index return, and that both daily and weekly VIX changes are more sensitive 

to the negative shock than the positive shock in the market. Simon (1997) also reports 

similar IV asymmetries for treasury bonds and futures options. Ederington and Lee 

(1996), however show that the IV in the treasury bonds and Eurodollar options on 

futures markets tend to decline on the days with scheduled announcements as the 

uncertainty regarding the impact of the announcement on security prices is resolved. 

Most of the above studies use daily prices favor the conclusion that option prices 

provide more accurate forecasts than historical information. Furthermore, those 

studies using low-frequency data often find that contains more relevant information 

content for future volatilities.  

The recent research has emphasized that the additional historical information 

in high-frequency intraday data can be used to produce volatility forecasts of higher 

accuracy. The sum of intraday squared returns is defined as realized volatility (RV). 

Andersen and Bollerslev (1998) find that the RV provides a more accurate estimate of 

the latent process that defines volatility than is given by daily squared returns. 

Andersen, Bollerslev, Diebold and Labys (henceforth ABDL) (2001) derived the 

theoretical and empirical properties of RV for foreign exchange. Blair et al. (2001) 

results for equity volatility confirm the conclusion of Andersen and Bollerslev (1998). 

Further similar empirical evidence is provided in Andersen, Bollerslev, Diebold and 

Ebens (henceforth ABDE) (2001) for US equities. Brandorff -Nielsen and Shephard 

(2002) also studied the statistical properties of RV in the context of stochastic 
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volatility model. Their findings can be used in conjunction with a model for the 

dynamics of volatility to produce a more accurate estimate of actual volatility. 

As the most popular extension to Engles (1982) ARCH model, the GARCH 

model of Bollerslev (1986) has been the most successful model for financial market 

volatility. In the GARCH (1,1) model, the variance of returns is driven by a 

combination of the latest squared innovation and the previous conditional variance. 

Duan (1995) was first to propose an option-pricing model based on the assumption 

that the exchange rate follows a GARCH process. Ritchken and Trevor (1999) and 

Heston and Nandi (2000) show the empirical successes of GARCH model for pricing 

options. Gwilym (2001) finds that the GARCH (1,1) model fits stock return data 

particularly well. Since the foreign currency return is an analogous to stock return, 

GARCH (1,1) can be appropriate model to capture the volatility of underlying 

exchange rate return.  

Ederington and Guan (2006) hold that IV measure suffers from an obvious 

chicken and egg problem: calculation of IV requires the option price, and to calculate 

the appropriate option price requires a volatility estimate. In addition, Pong et al. 

(2004) show that IV may be a biased representation of market expectations when 

option prices do not represent equilibrium market price. Kazantzis and Tessaromatis 

(2001) also find similar empirical evidence. Further Gospodinov et al. (2006) suggest 

that an unbiased IV can be extracted from near-the-money options.  

This paper focuses on exploring the alternative volatility models, namely, 

implied volatility model (IVM), realized volatility model (RVM) and GARCH (1,1)-

based volatility model (GVM) to find which model can best describe the foreign 

exchange return behavior that leads to more accurate point for pricing currency 

options. There are several attractive features of this paper. First, as indicated earlier, in 

comparison to the volume of work on options on stock, stock index, and bonds, 

options on currencies have so far received much less attention in empirical research. 

Growth and popularity of foreign currency option has recently been exploding and in 

that perspective, the current study on pricing of European options on major 

currencies, including Euro, is expected to help fill the void. Second, this study pays 

particular attention to the process of highly persistent nature of the underlying 

exchange rate volatility that can be used as an input for B-S model, rather than 

proposing an alternative to B-S model for pricing options. Third, this paper innovates 
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on interpolating unbiased IV from the nearest two at-the-money (ATM) options 

series: one above and one below the underlying exchange rate. Fourth, the IVM has 

often been found better than historical price model and GVM for pricing options in 

the literature. If RVM performs better in pricing options than that of IVM and GVM, 

this will be a novel approach to identify the underlying exchange rate volatility 

process for pricing currency options accurately. 

The paper is organized as follows. The next section gives the research 

methodology and the data used in this study. The empirical results are discussed in 

sections 3. The last section concludes the paper. 

 
2.0 Methodology and Data 

For methodology, the first step involves selecting a pricing model for pricing 

currency options. Under the assumption that the underlying asset return follows the 

geometric Brownian motion with constant volatility, Black and Scholes (1973) first 

derived a closed form solution for pricing European options. As widely known, B-S 

model is mainly used for pricing options on stocks. This model also spawns the field 

of financial engineering, which is dedicated to designing and implementing such 

derivatives pricing models. B-S model assumes that no dividends are paid on the 

stock during the life of the option. This model is extended by Merton (1973) for 

continuous dividends. Since the interest gained on holding a foreign security is 

equivalent to a continuously paid dividend on a stock share, the Merton version of the 

B-S can be applied to foreign security. To value currency option, stock prices are 

substituted for exchange rates. Unless otherwise stated, B-S model is chosen in this 

paper for pricing European currency options. We describe the details of the B-S 

model for pricing currency option as follows:  

tS   exchange rate at time t; 

T   expiration time of the option; 

tC  price of call option in domestic currency at time t; 

tP   price of put option in domestic currency at time t; 

tX  option exercise price in domestic currency at time t; 

d
tR  rate of return on risk-free domestic asset at time t; 

f
tR  rate of return on risk-free foreign asset at time t; 
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N  cumulative normal distribution function; 

tσ  volatility of underlying exchange rate at time t. 

The price of European call and put option on currency is stated as equations (1) and 

(2), respectively, 

( ) ( )1 2 ,
f d

t tR T R T
t t tC S e N d X e N d− −= −             (1) 

( ) ( )2 1 ,
d f
t tR T R T

t t tP X e N d S e N d− −= − − −            (2) 

where,   
( ) ( )2

1

ln 2
,

d f
t t t t t

t

S X R R T
d

T

σ

σ

+ − +
= and  

   
( ) ( )2

2 1

ln 2
.

d f
t t t t t

t
t

S X R R T
d d T

T

σ
σ

σ

+ − −
= = −  

 

For notation convenience, let’s define  

 ,
f d

t tR R
t t t tS e X eξ η− −= = , 

and equations (1) and (2) can be rewritten as equations (3) and (4), respectively,  

( )( ) ( )( )1 2 ,t t t t tC N d N dξ σ η σ= −              (3) 

( )( ) ( )( )2 1 .t t t t tP N d N dη σ ξ σ= − − −             (4) 

In equations (3) and (4), volatility of underlying exchange rate ( )tσ  is not directly 

observable from market. Our objective is to exploit implied volatility model (IVM), 

realized volatility model (RVM) and GARCH (1,1) volatility model (GVM) to 

estimate tσ  of trading day t  for pricing options in next trading day ( )1t + .  

 

2.1 Implied Volatility Model (IVM)    

     In this section we discuss about the construction of implied volatility (IV). 

The IV of an option contract is the volatility implied by the options market price 

based on B-S model. In other words, it is the solution for tσ  given , , ,t t t tC P ξ η in 

equations (3) and (4). It provides market information about the expected exchange 

rate volatility for the period until the expiry date of the option. Pong et al. (2004) 

show that IV may be a biased representation of market expectations when option 

market prices do not represent equilibrium market prices. Kazantzis and Tessaromatis 
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(2001) also find similar empirical evidence. Further, Gospodinov et al. (2006) suggest 

that an unbiased IV can be extracted from near at-the-money (ATM) options. In this 

study, we, therefore, obtain the IV of underlying exchange rate from Datastream 

which is interpolated from the nearest two ATM options series: one above and one 

below the underlying exchange rate. 

For a call option, if the nearest two ATM strike prices , ,
a b
c t c tX and X  are above 

and below of the underlying exchange rate tS , respectively, the IV per annum is 

estimated by equation (5),  

( ),
,

,

ˆ ln ln 1 ,
a
c tIV t

c t b
tc t

XS
x W x W

SX
σ

⎛ ⎞ ⎛ ⎞
= + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
         (5) 

where, W is weighted as 0.9. Similarly, for a put option, if the nearest two ATM strike 

prices , ,
a b
p t p tX and X  are above and below of the underlying exchange rate tS , 

respectively, the IV per annum is estimated by equation (6), 

   ( ),
,

,

ˆ ln ln 1 ,
a
p tIV t

p t b
tp t

XS
x W x W

SX
σ

⎛ ⎞ ⎛ ⎞
= + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
       (6) 

where, W is weighted as 0.9. As Whaley (1986), among others, shows that the IV of 

call option price is lower, on average, than IV of put option price. For consistency, we 

take the average of IV estimated by equations (5) and (6) as stated by equation (7),   

, ,ˆ ˆ
ˆ

2

IV IV
c t p tIV

t

σ σ
σ

+
=               (7) 

 

2.2 Realized Volatility Model (RVM) 

 In this section, the notion of realized volatility (RV) is introduced, which is an 

unbiased measure for the unobserved market volatility and has wide application for 

volatility modeling. In many studies, the absolute daily returns and squared daily 

returns have been chosen as indicators of daily volatility. However, Andersen and 

Bollerslev (1998) find that both measures are noisy estimators for daily volatility. 

They show that the sum of intraday squared returns is a closer proxy for daily 

volatility than either absolute or squared daily returns, providing that sampling is 

sufficiently frequent. Further, given the Brownian motion, asset return might have 

quadratic variation (see Baxter and Rennie, 1996). The quadratic variation process, 
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therefore, measures the realized sample-path variation of the squared return process. 

The theory of quadratic variation suggests that RV is an unbiased and highly efficient 

estimator of asset return volatility, as discussed in ABDL(2001) and Brandorff-

Nielsen and Shephard (2002). By making use of the theory of quadratic variation and 

arbitrage-free processes, ABDL (2001, 2003) provide theoretical justification for the 

construction of RV from high frequency intra-day returns.  

The RV is constructed by summing the squared intraday returns sampled at a 

particular frequency. ABDL (2001, 2003) have shown that as sampling becomes more 

frequent the RV is an increasingly accurate measure of the integrated return volatility. 

The optimal frequency for constructing RV is unknown. We construct daily RV series 

using 5 minutes sampling frequency as two sampling frequencies 5 and 30 minutes 

are the most popular choices in previous studies (see followed by Pong et al., 2004). If 

iS  is the exchange rate for 5 minutes sampling frequency, underlying exchange rate 

return in 5 minutes interval is estimated by equation (8), 

1

ln .i
i

i

S
r

S −

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
                (8) 

The realized variance of day t  is computed by equation (9), 

2

1
,

n

t i
i

v r
=

=∑                  (9) 

where n  is the total number of interval for option trading period from 7:30 AM to 

2:30 PM, Monday to Friday. Since RV is the standard deviation of the realized 

variance, equation (10) estimates RV per trading day, 

ˆ .RV
t tσ ν=                 (10) 

Since intra-day data of trading days are used to provide RV estimate, days when the 

exchange is closed are ignored and the RV per annum should be calculated as 

equation (11), 

ˆ ,RV
t tDσ ν=                 (11) 

where, D  is 252 trading days per year consistent with the normal assumption of 

options market.  
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2.3 GARCH(1,1) Volatility Model (GVM)  

      In this section we describe how to capture the unobservable exchange rate 

volatility into GARCH (1,1) model. Financial return volatility data is influenced by 

time dependent information flows which result in pronounced temporal volatility 

clustering. It means that at times volatility values tend to cluster, together with smooth 

transitions from higher to lower volatility and conversely.  

This phenomenon is not uncommon to most time series of financial returns, 

and is a source of non-trivial problems. For example, classic option and derivative 

pricing models have an unknown volatility parameter which is assumed to be constant 

over time, and which needs to be estimated from past returns. When volatility changes 

with time in such contexts, it is not clear how to use past returns to obtain a good 

estimate of volatility for the current time. There has been considerable research on 

generalized autoregressive conditional heteroscedastic (GARCH) models for dealing 

with these problems (see Engle (1982), Bollerslev (1986), Engle and Ng (1993) and 

Glosten et al. (1993)). As GARCH models are useful and robust when analyzing data 

that appears to exhibit volatility clustering and excessive kurtosis, we apply the 

GARCH (1,1) process to estimate volatility of the underlying exchange rate. If tS  is 

the exchange rate for day t , then regression model with normal-GARCH (1,1) error is 

( )
0 1 1

2
1 1 1 1

ln ln , (12)

, ~ 0,1 ,

. (13)

t t t

t t t t

t t t

S S

h iid

h h

α α ε

ε κ κ

ω β ε γ

−

− −

= + +

=

= + +
 

Since th  is the one-period ahead forecast variance based on the past information in 

equation (13), it is called conditional variance. The conditional variance equation is a 

function of three terms:  

• A constant term: .ω  
• News about volatility from the previous period, measured as the lag of the 

squared residual from equation (12): 1.tε −  (the ARCH term). 
• Last period’s conditional variance: 1.th −  (the GARCH term). 

Given this specification, equation (14) estimates GARCH (1,1)-based volatility (GV) 

per trading day, 
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            ˆ .GV
t thσ =                   (14) 

As previously, the days when the exchange is closed are ignored and the GV per 

annum is calculated as 

            ˆ ,GV
t tDhσ =                       (15) 

where, D  is 252 trading days per year consistent with the normal assumption of 
option market.  
 
2.4   Generating the Price Data 

    In this section we discuss the computing procedures of implied volatility 

model price (IVMP), realized volatility model price (RVMP) and GARCH (1,1)-

based volatility model price (GVMP) in-sample and out-of-sample. For in-sample 

procedures, the IV, RV and GV are obtained from equations (7), (11) and (15) 

respectively, using a total 1022 observations. The estimated IV, RV and GV values 

are used as inputs for equations (3) and (4) to calculate IVMP, RVMP, and GVMP, 

respectively, for call and put options as follows: 

 ( )( ) ( )( ), 1 1 1 1 2
ˆ ˆ ˆ ,j i i

c t t t t tN d N dξ σ η σ+ + +Π = −             (16) 

( )( ) ( )( ), 1 1 2 1 1
ˆ ˆ ˆ ,j i i

p t t t t tN d N dη σ ξ σ+ + +Π = − − −           (17) 

for , ,i IV RV GV∀ = and , , .j IVMP RVMP GVMP∀ =  

For out-of-sample estimations, the sample is truncated, and two steps are 

involved to generate volatility model prices based on the alternative volatility models. 

In step one, the IV, RV and GV are estimated by equations (7), (11) and (15), 

respectively, for the first two-thirds observations of the sample (i.e. 681 observations). 

In step two, we follow Pong et al. (2004) for generating future implied volatility (FIV) 

and future realized volatility (FRV). In this procedure, we use an ARMA (2,1) model 

            0 1 1 1 2 1 1 ,i i i
t t t t tv v vγ φ φ θ ε ε− − −= + + + +             (18) 

for ,i IV RV∀ = , for the remaining one-third of the sample (i.e. 341 observations). 

Again the values of estimated IV and RV in step one are used in step two. 

     For future GARCH (1,1)-based volatility (FGV), GRACH (1,1) model is used 

to generate FGV for the last one-third of the sample (i.e. 341 observations) using GV 

estimated in step one.  
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      Next, the estimated FIV, FRV, and FGV values are used as input for (3) 

and (4) to calculate IVMP, RVMP, GVMP, respectively, using the following 

equations for call and put options, respectively,  

  ( )( ) ( )( ), 1 1 1 1 2
ˆ ˆ ˆ ,j i i

c t t t t tN d N dξ σ η σ+ + +Π = −            (19) 

  ( )( ) ( )( ), 1 1 2 1 1
ˆ ˆ ˆ ,j i i

p t t t t tN d N dη σ ξ σ+ + +Π = − − −           (20) 

for , ,i FIV FRV FGV∀ = and , , .j IVMP RVMP GVMP∀ =   

 
2.5 Measuring Price Deviations 

In this section we set up the criteria to measure the implied volatility model 

pricing error (IVMPE), realized volatility model pricing error (RVMPE), and 

GARCH(1,1)-based volatility model pricing error (GVMPE) for in-sample and out-

of-sample. If , 1
ATM
i t+Π and , 1

ˆ j
i t+Π represent observed ATM option prices and estimated 

model-based prices, respectively, we have the following criteria to calculate IVMPE, 

RVMPE and GVMPE for n number of observations in the sample: 

(i) The mean squared error (MSE) = 2
, 1 , 1

1

1 ˆ( ) ,
n

ATM j
i t i t

tn + +
=

Π −Π∑  

(ii) The mean absolute error (MAE) = , 1 , 1
1

1 ˆ ,
n

ATM j
i t i t

tn + +
=

Π −Π∑   

(iii) The mean absolute percentage error (MAPE) = , 1 , 1

1 , 1

ˆ1 ,
j ATMn
i t i t

ATM
t i tn

+ +

= +

Π −Π

Π∑  

for ,i C P∀ = and , ,j IVMP RVMP GVMP∀ = .  

 
2.6 Significance Tests of Price Deviations   

     Next, we examine whether the deviations of estimated prices from the 

observed prices in section 2.5 (i.e. IVMPE, RVMPE and GVMPE) are statistically 

different from each other, so that a comparison can be made as to the performance of 

alternative volatility models for pricing options. Diebold and Mariano (1995) propose 

a test statistic that explicitly tests the null hypothesis of no difference in the accuracy 

of two competing forecasts. This statistic can easily be applied to test whether the 

IVMPE, RVMPE and GVMPE are statistically different from each other.  
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The original test compares the errors ( )1, 2 ,, , 1,........, ,t te e t n=  produced by two 

competing forecasts. These forecasts are evaluated using some loss function, ( ) ,f e  

and the null hypothesis is the equality of the expected forecast performance, 

( ) ( )1, 2, 0.t tE f e f e⎡ ⎤− =⎣ ⎦  For our purpose, the relevant loss function is the MSE, MAE 

and MAPE computed by each competing volatility model. For n  number of 

observations, the original statistic proposed by Diebold and Mariano (1995) is given 

by 

( )

( ) ( )
( ) [ ]

1

1, 2,

1

, (21)
ˆ

,

1,........., ;

1 1; var( ) .

t t t

n

t t
t

dS
V d

where

d f e f e and t n

d d V d d
n n=

=

= − =

= =∑

 

However, Harvey et al. (1997) showed that the original statistic proposed by Diebold 

and Mariano (1995) can be over-sized and proposed the following adjusted statistic; 

       ( )*
1

1 .t
nS x S

n
−

=                    (22) 

We use this adjusted test statistic which follows a t-distribution with 1n −  degrees of 

freedom.  

 
2.7 The Data 

The data for three major European currency options, namely, British pound, 

Swiss franc and Euro traded in Philadelphia Stock Exchange from 22 July 2002 to 30 

June 2006 are obtained from Datastream. The options are written for maximum 3 

months and traded on Mondays through Fridays excluding public holidays from 7:30 

AM to 2:30 PM. The data consist of daily ATM options prices, ATM strike prices, 

closing spot exchange rates, Eurocurrency (i.e. British pound, Swiss franc, Euro) and 

domestic currency (U.S. dollar) interest rates.  

For each sample currency, the daily ATM implied volatility of underlying 

exchange rate for call and put option are also obtained from Datastream. The GARCH 

(1,1)-based volatility is generated for daily closing spot exchange rates. In order to 

construct realized volatility with 5-min frequency Reuter’s data, the intra-day 
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exchange rate quotations for the sample currencies against U.S. dollar are extracted 

from SIRCA database for the sample period. Reuters provides intra-day trade and 

quote information for over 240 markets around the world with data coverage 

beginning in January 1996. The Microsoft Structured Query Language (SQL) is used 

to manipulate the high frequency intra-day exchange rate data as described in Table 1. 

The total number of quotations for sample period, average number of quotations per 

day and average number of quotations per 5-min are presented in columns 2, 3 and 4 

of Table 1, respectively. In column 3, the average number of quotations per day is 

computed by the total number of quotations for sample period from column 2 is 

divided by number of trading days (i.e. 1022). Similarly in column 4, the average 

number of quotations per 5-min is computed by average number of quotations per day 

from column 3 is divided by total number of intervals for 5-min frequency per trading 

day (i.e. 84). Further, 20, 16, 17 corresponds to the average number of quotations per 

5-min for British pound, Swiss franc and Euro, respectively, indicate the high volume 

of quotations due to keep changing the market information.   

The total number of 5-min interval quotations for sample period and average 

number of 5-min interval quotations per day are presented in columns 5 and 6 of 

Table 1, respectively. In column 6, the average number of 5-min interval quotations 

per day is computed by the total number of 5-min interval quotations for sample 

period from column 5 is divided by number of trading days (i.e. 1022). The average 

number of 5-min interval quotations per day should be 85. For British pound, the 

average number of 5-min interval quotations per day is 43 and 85 for two sub-sample 

periods 22/07/2002 – 05/08/2004 and 06/08/2004 – 30/06/2006, respectively. For 

whole sample, the average number of 5-min interval quotations per day quotation is, 

therefore, 63 as the average of 43 and 85 of two sub-sample periods. For Swiss franc 

and Euro, the average number of 5-min interval quotations per day is 84 which are 

consistent. 

 
 
 
 
 
 
 



 14

Table 1: Intra-day exchange rate data description for realized volatility construction 
 

Sample period: 22/07/2002 - 30/06/2006; Trading hours: 0730 – 1430; Trading days: 1022 
 

Exchange rate 
against U.S. 
dollar Total number of 

quotations for 
sample 
 

Average number 
of  quotations 
per day 

Average number 
of quotations per 
5-min 

Total number of  
5-min interval 
quotations for 

Average number 
of  5-min 
interval 

British pound 
 

1,723,712 1687 20 64,700 64 

Swiss franc 
 

1,381,667 1352 16 86,161 84 

Euro 
 

1,482,584 1451 17 86,276 84 

Average number of quotation per day = Total number of quotations for sample period ÷ number of trading days (i.e.1022); 
Average number of quotations per 5-min = Average number of quotation per day ÷ number of 5-min interval per day (i.e.85); 
Average number of 5-min interval quotations per day = Total number of 5-min interval quotations for sample period ÷ number of 5-min interval 
per day (i.e.85). 

 
 
3.0 Empirical Results 
    We start with a snapshot of empirical results. Figures 1, 2, and 3 show the time 

series of implied volatility, GARCH (1,1) volatility and realized volatility for British 

pound/U.S. dollar, Swiss franc/U.S. dollar and Euro/U.S. dollar exchange rate, 

respectively. In all Figures, the vertical axis represents volatility in percentage and the 

horizontal axis represents trading dates. All Figures show the level of implied 

volatility, GARCH (1,1) volatility and realized volatility in solid line, broken line and 

non-smoothed solid line, respectively. Consistent with the findings of Jackwerth and 

Rubinstein (1996) and Doran and Ronn (2005), the sample clearly indicates that 

implied volatility is higher than realized volatility for all currency exchange rates. 

GARCH (1,1) volatility is also higher than realized volatility and followed by implied 

volatility.    
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Fig 1:  Implied, GARCH(1,1) and Realized Volatility for 
British pound/US dollar Exchange Rate
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Fig 2: Implied, GARCH (1,1) and Realized Volatility for Swiss 
franc/US dollar Exchange Rate
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Fig 3. Implied, GARCH (1,1) and Realized Volatility for Euro/US 
dollar Exchange Rate
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3.1 In-sample Results  

 In this section we compare IVMPE, RVMPE and GVMPE for in-sample to 

assess the performance of IVM, RVM and GVM, respectively, for pricing next 

trading day options. The estimation of GARCH (1,1) using equation (12) for 1022 

observations of underlying daily closing exchange rate is presented in Table 2. As can 

be seen the sum of coefficients β1 and γ1 of equation (13) is less than 1 indicates the 

validity of GV based on GARCH (1, 1) estimations for all currency. The estimated 

GV is used to generate GVMPE which are reported in Tables 4 and 5. 

 
Table 2: In-sample GARCH (1, 1) estimation for GV 

 
Currency Coefficients 

 
 ω β1 γ1 

British pound 
 

9.47E-07 
(1.5259) 

 

0.0294 
(2.2005) 

0.9381 
(31.3732) 

Swiss franc 
 

3.39E-06 
(1.3091) 

 

0.0084 
(1.2478) 

0.9216 
(16.9635) 

Euro 
 

1.72E-06 
(1.4995) 

 

0.0165 
(1.3969) 

0.9354 
(24.5264) 

GARCH (1,1) estimation by equation (12) for 1022 observations of underlying exchange rate. The coefficients of equation (13) 
with t-ratios in the parenthesis are presented. 
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     The comparison of RVMPE and IVMPE for MSE, MAE and MAPE 

measures are given in Table 3. For British pound call option, 4.81E-5, 6.07E-5, and -

20.76% corresponds to the RVMPE, IVMPE, and difference between RVMPE and 

IVMPE in per cent, respectively, under MSE measure. Similarly, rest of the Table 3 is 

populated. The negative differences in column 6 indicate that RVMPE is less than 

IVMPE under each assessment criteria for all currency options. 

 
Table 3: Comparison of RVMPE and IVMPE for in-sample 

 
Currency Options Model pricing errors 

 
Measures 

  RVMPE 
 
 

IVMPE RVMPE ─ IVMPE % 
IVMPE 

Call 4.81E-5 6.07E-5 -20.76 British pound 
Put 

 
6.90E-5 

 
1.05E-4 -34.29 

Call 2.31E-5 4.11E-5 -43.80 Swiss franc 
Put 

 
1.83E-5 2.48E-5 -26.21 

Call 3.36E-5 5.19E-5 -35.26 

MSE 

Euro 
Put 

 
4.57E-5 6.23E-5 -26.65 

Call 0.0056 0.0063 -11.11 British pound 
Put 

 
0.0065 0.0082 -20.73 

Call 0.0038 0.0051 -25.49 Swiss franc 
Put 

 
0.0033 0.0039 -15.38 

Call 0.0046 0.0058 -20.69 

MAE 

Euro 
Put 

 
0.0049 0.0058 -15.52 

Call 0.3650 0.4539 -19.59 British pound 
Put 

 
0.3647 0.4871 -25.13 

Call 0.4039 0.5683 -28.93 Swiss franc 
Put 

 
0.4848 0.8212 -40.96 

Call 0.3609 0.4906 -26.44 

MAPE 

Euro 
Put 

 
0.3960 0.5085 -22.12 

Negative differences indicate that RVPE is less than IVPE by reported percentage. 
 
   The Table 4 is constructed as the Table 3 and populated with the data of RVPE 

and GVPE. As can be seen the negative differences between RVPE and GVPE in the 

last column under MSE, MAE, and MAPE measures, indicate that the RVPE is lower 

than GVPE for all currency. In general, the results in Tables 3 and 4 suggest that the 

RVMP fits in-sample market price better than that of IVMP and GVMP.  
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Table 4: Comparison of RVMPE and GVMPE for in-sample 
 

Currency Options Model pricing errors 
 

Measures 

  RVMPE 
 
 

GVMPE RVMPE ─ GVMPE % 
GVMPE 

Call 4.81E-5 6.46E-05 -25.54 British pound 
Put 

 
6.90E-5 

 
1.04E-04 -33.65 

Call 2.31E-5 3.81E-05 -39.37 Swiss franc 
Put 

 
1.83E-5 2.22E-05 -17.57 

Call 3.36E-5 4.93E-05 -31.85 

MSE 

Euro 
Put 

 
4.57E-5 5.62E-05 -18.68 

Call 0.0056 0.0065 -13.85 British pound 
Put 

 
0.0065 0.0083 -21.69 

Call 0.0038 0.0050 -24.00 Swiss franc 
Put 

 
0.0033 0.0039 -15.38 

Call 0.0046 0.0056 -17.86 

MAE 

Euro 
Put 

 
0.0049 0.0056 -12.50 

Call 0.3650 0.4743 -23.05 British pound 
Put 

 
0.3647 0.5025 -27.42 

Call 0.4039 0.5615 -28.07 Swiss franc 
Put 

 
0.4848 0.6440 -24.72 

Call 0.3609 0.4824 -25.19 

MAPE 

Euro 
Put 

 
0.3960 0.5036 -21.37 

Negative differences indicate that RVPE is less than GVPE by reported percentage. 
 
 

Table 5 consists of IVMPE and GVMPE under MSE, MAE and MAPE 

measures and structured as the Table 3. If more than 10% differences between 

IVMPE and GVMPE in the last column are notable, the positive differences can only 

be seen for Swiss franc put for MSE and MAPE criteria and Euro put for MSE 

criterion. It means the GVMPE is less than IVMPE only for Swiss franc put under 

MSE and MAPE measures and Euro put under MSE measure. Overall there are no 

remarkable differences between IVMPE and GVMPE.  
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Table 5: Comparison of IVMPE and GVMPE for in-sample 
 

Currency Options Model pricing errors 
 

Measures 

  IVMPE 
 
 

GVMPE IVMPE ─ GVMPE % 
GVMPE 

Call 6.07E-5 6.46E-05 -6.04 British pound 
Put 

 
1.05E-4 1.04E-04 0.96 

Call 4.11E-5 3.81E-05 7.87 Swiss franc 
Put 

 
2.48E-5 2.22E-05 11.71 

Call 5.19E-5 4.93E-05 5.27 

MSE 

Euro 
Put 

 
6.23E-5 5.62E-05 10.85 

Call 0.0063 0.0065 -3.08 British pound 
Put 

 
0.0082 0.0083 -1.20 

Call 0.0051 0.0050 2.00 Swiss franc 
Put 

 
0.0039 0.0039 0.00 

Call 0.0058 0.0056 3.57 

MAE 

Euro 
Put 

 
0.0058 0.0056 3.57 

Call 0.4539 0.4743 -4.30 British pound 
Put 

 
0.4871 0.5025 -3.06 

Call 0.5683 0.5615 1.21 Swiss franc 
Put 

 
0.8212 0.6440 27.51 

Call 0.4906 0.4824 1.70 

MAPE 

Euro 
Put 

 
0.5085 0.5036 0.97 

Positive differences indicate that IVPE is greater than GVPE by reported percentage. Negative differences indicate that GVPE is 
greater than IVPE by reported percentage.  
      
    Now we examine whether IVPE, RVPE and GVPE are statistically different 

from each other under the framework proposed by Diebold and Mariana (1995) and 

the results are given in Table 6. The IVMPE and RVMPE are statistically different 

(i.e. IVMPEa ≠ RVMPEb) at 1 percent level of significance for all currency options. 

Further the positive differences in column 3 indicate that RVMPE is less than 

IVMPE. Similarly, the GVMPE and RVMPE are not statistically equal (i.e. GVMPEa 

≠ RVMPEb) at 1 percent level of significance and the positive differences in column 4 

indicate that RVMPE is less than GVMPE for all currency options. The results shown 

in columns 3 and 4 of Table 6 are consistent with the results reported in Tables 3 and 

4, respectively. In column 5, the results indicate that GVMPE and IVMPE are not 

statistically different (i.e. GVMPEa = IVMPEb) at 1 percent level of significance for 

all currency options that supporting the conclusion of Table 5. 
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Table 6: In-sample model pricing errors equality test   
 

Currency Options IVMPEa - RVMPEb GVMPEa - RVMPEb GVMPEa - IVMPEb 
 

Call 4.23* 5.08* 1.86 British pound 
Put 

 
7.99* 

 
8.80* 

 
1.08 

 
Call 10.38* 13.77* -1.43 Swiss franc 
Put 

 
4.80* 

 
5.33* 

 
0.03 

 
Call 7.22* 11.04* -2.28 Euro 
Put 

 
5.39* 

 
4.74* 

 
-2.54 

 
The test statistic follows a t-distribution with 1n − degrees of freedom. * denotes 1% level of significance. The positive 
values indicate that model pricing error of superscript (a) is greater than the model pricing error of superscript (b). The 
negative values indicate that model pricing error of superscript (a) is less than the model pricing error of superscript (b).  
 

 
3.2 Out-of-sample Results 

In-sample test results, in general, indicate that RVM outperforms IVM and 

GVM in context of pricing options. One may argue that the RVMP fits in-sample 

better due to its additional explanatory power as a proxy of true exchange rate 

volatility. It is, therefore, further necessary to compute and compare the IVMPE, 

RVMPE and GVMPE for out-of-the sample to weigh up the performance of IVM, 

RVM and GVM, respectively, for pricing options. The estimation of GARCH (1,1) 

using equation (12) for 681 observations (i.e. two-third of the sample) of underlying 

daily closing exchange rate is presented in Table 7. As can be seen the sum of 

coefficients β1 and γ1 of equation (13) is less than 1 indicates validity of GV based on 

GARCH (1, 1) estimations for all currency. The estimated GV is used to generate 

GVMPE which are reported in Tables 11 and 12. 

 
Table 7: Out-of-sample GARCH (1, 1) estimation for GV  

 
Currency Coefficients 

 
 ω β1 

 

γ1 

British pound 
 

8.33E-07 
(1.5297) 

 

0.0376 
(2.3465) 

0.9340 
(32.5028) 

Swiss franc 
 

6.20E-05 
(2.8513) 

 

0.0429 
(2.6232) 

-0.1772 
(0.4549) 

Euro 
 

1.88E-06 
(1.3263) 

 

0.0216 
(1.3140) 

0.9293 
(20.6174) 

GARCH (1,1) estimation by equation (12) for first 681 observations of underlying exchange rate (i.e. about two-
third of the sample) to generate future GARCH (1,1)-based volatility (FGV) for last 341 observations (i.e. one-
third of the sample). The coefficients of equation (13) with t-ratios in the parenthesis are presented. 
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    The estimation of ARMA (2,1) using equation (18) for 681 observations (i.e. 

two-third of the sample) of RV is presented in Table 8. As can be seen the sum of 

coefficients φ1 and φ2 of equation (18) is less than 1 indicates the validity of RV for 

out-of-sample based on ARMA (2,1) estimations for all currency. The estimated RV 

is used to generate RVMPE that are reported in Tables 10 and 11. 

 
Table 8: Out-of-sample ARMA (2, 1) estimation for RV  

 
Coefficients 

 
Currency 

γ φ1 φ2 θ1 

 
British pound 
 

0.0016 
(1.8037) 

 

1.028 
(19.8928) 

-0.0548 
(1.2267) 

-0.8811 
(26.3900) 

Swiss franc 
 

0.0029 
(2.0031) 

 

0.9493 
(17.4418) 

0.0102 
(0.2299) 

-0.8620 
(22.4425) 

Euro 
 

0.0041 
(2.1912) 

 

0.9182 
(14.6192) 

0.0191 
(0.4157) 

-0.8208 
(16.4362) 

ARMA (2,1) estimation by equation (18) for first 681 observations of RV (i.e. about two-third of the sample) to 
generate future realized volatility (FRV) for last 341 observations (i.e. one-third of the sample). Coefficients of 
equation (18) for RV with t-ratios in the parenthesis are presented. 
 

 
Similarly, The estimation of ARMA (2,1) using equation (18) for 681 observations 

(i.e. two-third of the sample) of IV is presented in Table 9. As can be seen the sum of 

coefficients φ1 and φ2 of equation (18) is less than 1 indicates the validity of IV based 

on ARMA (2,1) estimations for all currency. The estimated IV is used to generate 

IVMPE that are reported in Tables 10 and 12. 

 
Table 9: Out-of-sample ARMA (2, 1) estimation for IV  

 
Coefficients 

 
Currency 

γ φ1 φ2 θ1 

 
British pound 
 

0.0098 
(4.0548) 

 

0.8849 
(6.3327) 

0.0077 
(0.0638) 

-0.0787 
(0.5447) 

Swiss franc 
 

0.0028 
(1.5079) 

 

1.5428 
(13.7267) 

-0.5666 
(5.7560) 

-0.8105 
(8.4973) 

Euro 
 

0.0047 
(3.1708) 

 

1.0253 
(12.1898) 

-0.0708 
(0.9243) 

-0.4324 
(5.292) 

ARMA (2,1) estimation by equation (18) for first 681 observations of IV (i.e. about two-third of the sample) to 
generate future implied volatility (FIV) for last 341 observations (i.e. one-third of the sample). Coefficients of 
equation (18) for IV with t-ratios in the parenthesis are presented. 
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     In this section, the construction method of Tables 10, 11 and 12 are same as 

Table 3 for out-of-sample. The RVMPE and IVMPE and the difference between 

RVMPE and IVMPE in per cent under MSE, MAE, and MAPE measures are 

presented in Table 10. As can be seen the negative differences between RVMPE and 

IVMPE in the last under MSE, MAE, and MAPE measures, indicate that the RVMPE 

is substantially less than IVMPE for all currency options.  

 
Table 10: Comparison of RVMPE and IVMPE for out-of-sample 

 
Currency Options Model pricing errors 

 
Measures 

  RVMPE 
 
 

IVMPE RVMPE ─ IVMPE % 
IVMPE 

Call 3.75E-05 1.21E-04 -69.01 British pound 
Put 

 
4.02E-05 1.17E-04 -65.64 

Call 2.13E-05 6.58E-05 -67.63 Swiss franc 
Put 

 
6.99E-06 2.88E-05 -75.73 

Call 2.92E-05 9.28E-05 -68.53 

MSE 

Euro 
Put 

 
1.56E-05 5.41E-05 -71.16 

Call 0.0050 0.0094 -46.81 British pound 
Put 

 
0.0052 0.0091 -42.86 

Call 0.0038 0.0069 -44.93 Swiss franc 
Put 

 
0.0021 0.0047 -55.32 

Call 0.0045 0.0083 -45.78 

MAE 

Euro 
Put 

 
0.0031 0.0064 -51.56 

Call 0.3436 0.7016 -51.03 British pound 
Put 

 
0.3302 0.6227 -46.97 

Call 0.4204 0.8069 -47.90 Swiss franc 
Put 

 
0.2747 0.6948 -60.46 

Call 0.3616 0.7090 -48.50 

MAPE 

Euro 
Put 

 
0.2895 0.6551 -55.81 

Negative differences indicate that RVPE is less than IVPE by reported percentage. 
 

 
     The Table 11 includes RVMPE, GVMPE and the difference between 

RVMPE and GVMPE in per cent under MSE, MAE, and MAPE measures. As can be 

seen the negative differences between RVMPE and GVMPE in column 6 under MSE, 

MAE and MAPE comparison criteria, specify that the RVMPE is significantly less 

than IVMPE for all currency options. The results in Tables 10 and 11 suggest that the 

RVMP fits out-of-sample market price considerably better than that of IVMP and 
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GVMP. The out-of-sample results in Tables 10 and 11 are surprisingly similar to the 

in-sample results reported in Tables 3 and 4, respectively.  

 
Table 11: Comparison of RVMPE and GVMPE for out-of-sample 

 
Currency Options Model pricing errors 

 
Measures 

  RVMPE 
 
 

GVMPE RVMPE ─ GVMPE % 
GVMPE 

Call 3.75E-05 9.79E-05 -61.70 British pound 
Put 

 
4.02E-05 9.53E-05 -57.82 

Call 2.13E-05 6.52E-05 -67.33 Swiss franc 
Put 

 
6.99E-06 2.83E-05 -75.30 

Call 2.92E-05 8.10E-05 -63.95 

MSE 

Euro 
Put 

 
1.56E-05 4.52E-05 -65.49 

Call 0.0050 0.0083 -39.76 British pound 
Put 

 
0.0052 0.0081 -35.8 

Call 0.0038 0.0068 -44.12 Swiss franc 
Put 

 
0.0021 0.0047 -55.32 

Call 0.0045 0.0076 -40.79 

MAE 

Euro 
Put 

 
0.0031 0.0057 -45.61 

Call 0.3436 0.6212 -44.69 British pound 
Put 

 
0.3302 0.5505 -40.02 

Call 0.4204 0.7992 -47.40 Swiss franc 
Put 

 
0.2747 0.6839 -59.83 

Call 0.3616 0.6520 -44.54 

MAPE 

Euro 
Put 

 
0.2895 0.5855 -50.56 

Negative differences indicate that RVPE is less than GVPE by reported percentage. 
 

 
      Table 12 consists of IVMPE, GVMPE and the difference between IVMPE 

and GVMPE under MSE, MAE and MAPE measures. In column 6, the positive 

differences between IVMPE and GVMPE for British pound call and put under all 

measures, Euro call for MSE criterion and Euro put for all assessment criteria are 

found as previously the differences more than 10% are notable. In general, the results 

indicate that the GVMPE is less than IVMPE for out-of-sample. 
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Table 12: Comparison of IVMPE and GVMPE for out-of-sample 
 

Currency Options Model pricing errors 
 

Measures 

  IVMPE 
 
 

GVMPE IVMPE ─ GVMPE % 
GVMPE 

Call 1.21E-04 9.79E-05 23.60 British pound 
Put 

 
1.17E-04 9.53E-05 22.77 

Call 6.58E-05 6.52E-05 0.92 Swiss franc 
Put 

 
2.88E-05 2.83E-05 1.77 

Call 9.28E-05 8.10E-05 14.57 

MSE 

Euro 
Put 

 
5.41E-05 4.52E-05 19.69 

Call 0.0094 0.0083 13.25 British pound 
Put 

 
0.0091 0.0081 12.35 

Call 0.0069 0.0068 1.47 Swiss franc 
Put 

 
0.0047 0.0047 0.00 

Call 0.0083 0.0076 9.21 

MAE 

Euro 
Put 

 
0.0064 0.0057 12.28 

Call 0.7016 0.6212 12.94 British pound 
Put 

 
0.6227 0.5505 13.12 

Call 0.8069 0.7992 0.96 Swiss franc 
Put 

 
0.6948 0.6839 1.59 

Call 0.7090 0.6520 8.74 

MAPE 

Euro 
Put 

 
0.6551 0.5855 11.89 

Positive differences indicate that IVPE is greater than GVPE by reported percentage. Negative differences indicate that 
GVPE is greater than IVPE by reported percentage  

 
    Now we examine whether IVPE, RVPE and GVPE are statistically different 

from each other under the framework proposed by Diebold and Mariana (1995) and 

the results are given in Table 13. The IVMPE and RVMPE are statistically different 

(i.e. IVMPEa ≠ RVMPEb) at 1 percent level of significance for all currency options. 

Further the positive differences in column 3 indicate that RVMPE is less than 

IVMPE. Similarly, the GVMPE and RVMPE are not statistically equal  (i.e. GVMPEa 

≠ RVMPEb) at 1 percent level of significance and the positive differences in column 4 

indicate that RVMPE is less than GVMPE for all currency options. The results in 

columns 3 and 4 of Table 13 convey the information same as the results stated in 

Tables 10 and 11, respectively. It can also be seen that the GVMPE and IVMPE are 

statistically different (i.e. GVMPEa ≠ IVMPEb) at 1 percent level of significance for 

all currency. As can be seen the negative differences between GVMPE and IVMPE in 

the last column indicate that GVMPE is less than IVMPE which also supporting the 

conclusion of Table 12. 
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Table 13: Equality of pricing error out of the sample test 
 

Currency Options IVMPEa - RVMPEb GVMPEa - RVMPEb GVMPEa - IVMPEb 
 

Call 13.31* 11.26* -22.94* British pound 
Put 

 
11.35* 

 
9.19* 

 
-22.42* 

 
Call 14.91* 14.60* -2.63* Swiss franc 
Put 

 
13.66* 

 
13.45* 

 
-2.68* 

 
Call 14.36* 12.56* -15.75* Euro 
Put 

 
12.94* 

 
10.94* 

 
-16.26* 

 
The test statistic follows a t-distribution with 1n − degrees of freedom. * denotes 1% level of significance. The positive 
values indicate that model pricing error of superscript (a) is greater than the model pricing error of superscript (b). The 
negative values indicate that model pricing error of superscript (a) is less than the model pricing error of superscript (b).  

 
Overall, the in-sample and out-of-sample results for RVMPE against IVMPE and 

GVMPE are remarkably similar. While the IVMPE and GVMPE are consistent for in-

sample, there are some notable differences for out-of-sample.  

 
4.0 Conclusion 
     Due to explosive growth and popularity of foreign currency option, we focus 

on pricing of European options for European major currencies, including Euro traded 

in Philadelphia Stock Exchange. Our study pays particular attention to the highly 

persistent nature of exchange rate volatility process. We explore implied volatility 

model (IVM), realized volatility model (RVM) and GARCH (1,1) volatility model 

(GVM) to propose the volatility model that can best describe the foreign exchange 

return behavior to lead more accurate point for pricing currency options. 

The summary of the assessment procedure for IVM, RVM and GVM are as 

follows. First, we compute the volatility model pricing error as the variation of the 

volatility model price and ATM options market price under MSE, MAE, and MAPE 

measures for in-sample and out-of-sample. Secondly, we compare the volatility model 

pricing errors to assess the capability of different models to capture the underlying 

foreign exchange return behavior of trading day t  for pricing next trading day ( )1t +  

options accurately. Further supporting of the above assessment, we compare the 

volatility model pricing errors under the framework proposed by Diebold and Mariana 

(1995) for in-sample and out-of-sample.  

We find that the RVMP fits in-sample as well as out-sample market price 

considerably better than that of IVMP and GVMP.  The overall evidence presented in 
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this research work strongly suggests that RVM outperforms IVM and GVM in context 

of pricing options for both in-sample and out-of-sample. It happens as RVM contains 

more significant information than the information embedded in IVM and GVM of 

trading day t  for pricing next trading day ( )1t + options. Since, the IV is interpolated 

from ATM option strike prices, the IVM can capture the foreign exchange return 

behavior only for the specific point of time of the trading day t  at which the ATM 

option strike price is extracted. Similarly, the GVM can describe only for closing time 

foreign exchange return behavior of the trading day t  as the GV is generated for daily 

closing exchange rate. Further, the RV is constructed from 5-min interval intra-day 

data. The RVM, therefore, sum up the information of foreign exchange return 

behavior for the whole trading day t  that changes in every 5 minutes interval. In other 

words, the RVM constructing from high-frequency intraday data that contain adequate 

information of trading day t  which cannot be accommodated by the standard daily 

level volatility models such as IVM and GVM for pricing next trading day ( )1t +  

options accurately. 

Recently, Andersen at el. (in press) suggested modeling and forecasting the 

realized volatility of exchange rate, stock and bond returns by extracting the 

component due to jumps. Consistent with the findings of Andersen at el. (in press), 

jumps appeared in the realized volatility time series in Figures 1, 2, and 3 in section 3. 

Further Lanne (2007) addresses this issue by decomposing the realized volatility into 

its continuous sample path and jump components, and modeling and forecasting them 

separately instead of directly forecasting the realized volatility which improved out-

of-sample forecasts. As far as the jump component is concerned, further 

improvements of RVM might be attainable by the use of model proposed by Lanne 

(2007) for pricing options more accurately. We left it for the future research. 
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