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Abstract

Optimization plays an important role in many methods routinely used in statistics,
machine learning and data science. Often, implementations of these methods rely on
highly specialized (non-reusable) optimization algorithms. However, in many instances
recent advances, in particular in the field of convex optimization, make it possible to con-
veniently and straightforwardly use modern solvers (reusable) instead with the advantage
of enabling broader usage scenarios and thus promoting reusability. This paper introduces
the R Optimization Infrastructure package which provides an extensible infrastructure to
model linear, quadratic, conic and general nonlinear optimization problems in a consistent
way. Furthermore, the infrastructure administers many different solvers, reformulations,
problem collections and functions to read and write optimization problems in various
formats.

Keywords: optimization, mathematical programming, linear programming, quadratic pro-
gramming, convex programming, nonlinear programming, mixed integer programming, R.

1. Introduction

Optimization is at the core of inference in modern statistics since solving statistical inference
problems goes hand in hand with solving optimization problems (OPs). As such statisticians,
data scientists, and others who regularly employ computational methods ranging from various
types of regression (e.g., constrained least squares, regularized least squares, nonlinear least
squares), and classification (e.g., support vector machines, convex clustering) to covariance
estimation and low rank approximations (e.g., multidimensional scaling, non-negative matrix
factorization) benefit from advances in optimization, in particular in mixed integer and con-
vex optimization. For example, Bertsimas, King, and Mazumder (2016) show that, due to a
striking speedup factor of 450 billion in mixed integer optimization in the period of 1991-2015,
the NP-hard best subset problem (Miller 2002) can now be solved reasonably fast (number
of observations in the 100s and number of variables in the 1000s is solved within minutes).
O’Donoghue, Chu, Parikh, and Boyd (2016) introduce the SCS solver for convex optimization
problems, which can be used to solve among others (logistic) regression with l{1,2}- regular-
ization, support vector machines, convex clustering, non-negative matrix factorization and
graphical lasso.
For R (R Core Team 2017), being a general-purpose tool for scientific computing and data
science, optimization and access to highly efficient solvers play an important role. The field
of optimization has already many resources to offer, like software for modeling, solving and
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randomly generating optimization problems, as well as optimization problem collections used
to benchmark optimization solvers. In order to exploit the available resources more conve-
niently, over the years many modeling tools have emerged. One of the first systems used
to model linear optimization problems is the so-called Mathematical Programming System
(MPS) format (see Kallrath 2004). Developed in the 1960’s, the MPS format today seems rather
archaic but it is still widely used to store and exchange linear problems and is supported by
most of the linear optimization solvers. Later, algebraic modeling languages (AML) (e.g.,
GAMS (Bisschop and Meeraus 1982) and AMPL (Fourer, Gay, and Kernighan 1989)) became
available. AMLs are domain specific languages (DSL) dedicated to optimization. Today mod-
ern optimization systems are typically implemented in high-level programming languages like
Julia (Bezanson, Edelman, Karpinski, and Shah 2017), MATLAB(The MathWorks Inc. 2017),
Python (Python Software Foundation 2017) or R. Many of these systems are DSLs specially
suited for convex optimization, such as YALMIP (Löfberg 2004) and CVX (Grant and Boyd
2014) in MATLAB, CVXPY (Diamond and Boyd 2016) and CVXOPT (Andersen, Dahl, and
Vandenberghe 2016) in Python, Convex.jl (Udell, Mohan, Zeng, Hong, Diamond, and Boyd
2014) in Julia and CVXR (Fu 2017) in R. JuMP (Lubin and Dunning 2015) is a DSL imple-
mented in Julia designed for mixed-integer programming. pyOpt (Perez, Jansen, and Martins
2012) is a Python package for nonlinear constrained optimization.
Despite R having access to many modern optimization solvers which are capable of solving
a wide class of optimization problems (see e.g., the CRAN optimization and mathematical
programming task view by Theußl and Borchers 2017), it is still commonplace to develop
highly sophisticated special purpose code (SPC) for many statistical problems. The reasons
are manyfold. To name but a few: 1) efficiency, i.e., SPC tends to be faster, 2) reusability,
i.e., many solvers have not been easily reusable (at least without the knowledge of a DSL)
and 3) capability, i.e., problems could not be solved due to a lack of adequate solvers.
This paper introduces the R Optimization Infrastructure (ROI), which is composed of package
ROI (Theußl, Schwendinger, Hornik, and Meyer 2017) and its (at the time of this writing) 22
companion packages. The companion packages equip ROI with state of the art optimization
solvers, benchmark collections and functions to read and write optimization problems in
various formats (increase capability). In contrast to DSLs, the ROI package does not aim to
create a new language but provides a modeling mechanism borrowing its strength from the
rich language features R has to offer (facilitate reusability). Another key feature of ROI is
that it is designed to be extensible, thus allowing package developers to plug-in new solvers
and make use of their highly efficient code (eliminate efficiency detriments). Already a wide
range of suitable solvers exist for which interfaces have been written and they are typically
made available via so-called plug-ins. Currently ROI can be used to model and solve linear,
quadratic, second order cone, semidefinite, exponential cone, power cone and general nonlinear
optimization problems as well as mixed integer problems. This makes it applicable to many
optimization problems encountered in statistics, machine learning and data science. Such
problems are then formulated and manipulated by using provided R functions instead of
special syntax from DSLs for which highly specialized knowledge would be required.
The remainder of this paper is organized as follows: In Section 2 we discuss the basic optimiza-
tion problem classes, with a special focus on the newer developments in convex optimization.
A survey of the R packages concerned with solving the problem classes introduced in Sec-
tion 2 is given in Section 3. Section 4 shows how to formulate optimization problems with the
ROI package. How to solve the previously formulated optimization problems is discussed in
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Section 5. Section 6 is dedicated to the extension of ROI. Applications in the field of statistics
are presented in Section 7. Section 8 concludes this paper.

2. Problem classes
Optimization is the process of allocating scarce resources to a feasible set of alternative
solutions in order to minimize (or maximize) the overall outcome. Given a function f0 :
Rn → R and a set C ⊂ Rn we are interested in finding an x∗ ∈ Rn that solves

minimize f0(x)
subject to x ∈ C. (1)

The function f0 is called the objective function. A point x is said to be feasible if it satisfies
every constraint given by the set C of all feasible points defining the feasible region. If C is
empty then we say that the optimization problem is infeasible. Since maximization problems
can be expressed as minimization problems by just changing the sign in the objective
function, we will mainly deal with minimization problems subsequently.

An OP can be bounded or unbounded. For the latter, the value of the objective for a given
sequence xj ∈ C tends to −∞ in a minimization problem, symbolically f0(xj) → −∞ as
j → +∞. Thus, a problem like in Equation 1 may or may not have a solution. If the problem
is neither infeasible nor unbounded then we can often find a vector x∗ ∈ C that satisfies

f0(x∗) ≤ f0(x), ∀x ∈ C,

which is commonly referred to as a solution of the OP.

Since any feasible set C can be expressed by the combination of constraint functions, the OP
from Equation 1 can be written as:

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m, (2)

where b ∈ Rm is the so-called right-hand-side. The constraints fi, i = 1, . . . ,m are sometimes
referred to as functional constraints (Ben-Tal and Nemirovski 2001; Nesterov 2004). Since
any equality constraint can be expressed by two inequality constraints and vice versa any
inequality constraint can be expressed as an equality constraint by adding additional variables
(also called slack variables), it is common practice to define OPs only in terms of either
equality, less than or equal or greater than or equal constraints, to avoid redundancies.
Equation 2 is also sometimes referred to as the primal problem, which highlights the fact
that there exists an alternative problem formulation the dual problem. The dual problem is
typically defined via the Lagrangian function (Lagrange duality) (Nocedal and Wright 2006).
There are several interconnected characteristics which determine how efficiently a given OP
can be solved, namely convexity, the functional form of the objective, the functional form of
the constraints and if the variable x is binary, integer, or continuous. An OP as displayed in
Equation 1 is convex, if f0 is convex and the set C is convex. Whereas modern solvers can
efficiently solve a wide range of convex OPs and verify that a global solution was obtained,
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the same is mostly not true for non-convex problems. More information about convex pro-
gramming can be found in, e.g., Boyd and Vandenberghe (2004); Ben-Tal and Nemirovski
(2015).
Based on the functional form of the objective function and of the constraints, OPs can be
divided into linear and nonlinear OPs. Thereby, the class of nonlinear OPs can again be
subdivided into conic, quadratic and general nonlinear OPs. In the following we give a formal
definition of the different classes of OPs and some information about their properties.

2.1. Linear programming

Starting from Equation 2, a linear program (LP) is an OP where all fi (i = 0, . . . ,m) are
linear. Thus an LP can be defined as:

minimize a>0 x
subject to Ax ≤ b (3)

where x is the vector of objective variables which has to be optimized. The coefficients of
the objective function are represented by a0 ∈ Rn. A ∈ Rm×n is a matrix of coefficients
representing the constraints of the LP, hence in accordance with Equation 2 Ax ≤ b could
also be written as a>i x ≤ bi, i = 1, . . . ,m (here ai refers to the i−th row of the coefficient
matrix A). All LPs are convex and normally solved via interior-point or simplex methods.
For more information about the origination and mathematical properties of these methods
we refer the reader to the book of Nocedal and Wright (2006).

2.2. Quadratic programming

A quadratic program (QP) is a generalization of the standard LP shown in Equation 3, where
the objective function contains a quadratic part in addition to the linear term. The quadratic
part is typically represented by a matrix Q0 ∈ Rn×n. Therefore QPs can be expressed in the
following manner:

minimize 1
2x
>Q0x+ a>0 x

subject to Ax ≤ b. (4)

Unlike LPs not all QPs are convex. A QP is convex if and only if Q0 is positive semidefinite.
A generalization of the QP is the quadratically constrained quadratic program (QCQP):

minimize 1
2x
>Q0x+ a>0 x

subject to 1
2x
>Qix+ a>i x ≤ bi, i = 1, . . . ,m. (5)

A QCQP is convex if and only if all Qi (i = 0, . . . ,m) are positive semidefinite (Lobo,
Vandenberghe, Boyd, and Lebret 1998). Whereas convex QP or even QCQP are commonly
solved by reformulations (transformations) to second-order cone programming (SOCP) or
semidefinite programming (SDP) (see Section 2.3), the question how to obtain a reliable global
solution for non-convex QCQP is still an active field of research. Details on the necessary
transformations to cast convex QCQP into an SOCP or SDP can be found in, e.g., Lobo et al.
(1998); Alizadeh and Goldfarb (2003); Bao, Sahinidis, and Tawarmalani (2011).

2.3. Conic programming
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Conic programming (CP) refers to a class of problems designed to model convex OPs. The
most prominent members of this class are LP, SOCP and SDP. In the following we will define
a CP as:

minimize a>0 x
subject to Ax+ s = b

s ∈ K,
(6)

where the set K is a nonempty closed convex cone, often constructed by the Cartesian product
of simpler cones K = ∏

Ki. Every cone K has a dual cone K∗ = {y|x>y ≥ 0 for all x ∈
K} for more information about the dual cone we refer the interested reader to Boyd and
Vandenberghe (2004).
The standard form of CP as given in Equation 6 minimizes a linear objective over a convex
cone (b − Ax = s ∈ K). As Nemirovski (2006) points out, representing CPs in this form
has two main advantages. First, this formulation has strong unifying abilities which means
only a few cones allow to model many different types of OPs. Additionally the nonlinearities
are no longer represented by general nonlinear objective and constraint functions but vectors
and matrices which allows the algorithms to utilize the structure present in the convex OPs.
Second, the convexity is built-in into the definition of CPs. At the same time, theoretically,
any convex OP can be reformulated into the form given in Equation 6. Thereby nonlinear
objective functions are expressed in epigraph form (see e.g., Boyd and Vandenberghe 2004):

minimize t
subject to f0(x) ≤ t

fi(x) ≤ bi.
(7)

Practically the amount of OPs which can be solved via CP is limited by the number of cones
supported by a given optimization solver. State of the art solvers distinguish between up to
eight different types of cones. Following the definitions in Diamond and Boyd (2015) and
O’Donoghue et al. (2016), a convex cone K is typically a Cartesian product from simple
convex cones of the following types.

Free cone

From Equation 6 it can be immediately seen, that in the case of linear equality constraints si
has to be zero, i.e., si ∈ Kzero. Where the zero cone is defined as

Kzero = {0} (8)

therefore its dual, the free cone is defined as

Kfree = R. (9)

Nonnegative cone

Linear inequality (less than or equal) constraints are represented by requiring si to be non-
negative, i.e., si ∈ Knneg.

Knneg = {x ∈ R | x ≥ 0} (10)

From the definition of the free cone and nonnegative cone, it is apparent that any LP can be
written as a CP where K is a product of free and nonnegative cones.
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Second-order cone

Knsoc = {(t, x) ∈ Rn | x ∈ Rn−1, t ∈ R, ||x||2 ≤ t} (11)

The second-order cone is commonly used to model sums of norms as well as convex QP and
QCQP (Lobo et al. 1998; Alizadeh and Goldfarb 2003). CPs where K is a product of free,
nonnegative and second-order cones are commonly referred to as SOCP.

Positive semidefinite cone

Knpsd = {X | X ∈ Sn, z>Xz ≥ 0 for all z ∈ Rn} (12)

Here Sn refers to the space of real-symmetric n × n matrices. SDPs are commonly used for
solving combinatorial problems (e.g., maximum cut problem) and for solving convex QPs and
QCQPs (Vandenberghe and Boyd 1996a; Helmberg 2000; Freund 2009; Bao et al. 2011). Lobo
et al. (1998) show that each SOCP can be rewritten into a SDP.

Exponential cone

The primal exponential cone can be defined as

Kexpp = {(x, y, z) ∈ R3 | y > 0, ye
x
y ≤ z} ∪ {(x, 0, z) ∈ R3 | x ≤ 0, z ≥ 0}, (13)

therefore the dual exponential cone is given by

Kexpd = {(u, v, w) ∈ R3 | u < 0,−ue
v
u ≤ ew} ∪ {(0, v, w) ∈ R3 | v, y ≥ 0}. (14)

As can be inferred from Equation 13, the exponential cone can be used to model expo-
nential functions and logarithms. More details about the exponential cone and functions
representable by the exponential cone can be found in Chares (2009) and Serrano (2015).

Power cone

The 3-dimensional primal power cone has been already investigated in Koecher (1957) and is
defined as

Kαpowp = {(x, y, z) ∈ R3 | x, y ≥ 0, xαy1−α ≥ |z|}, where α ∈ [0, 1], (15)

therefore the dual power cone is given by

Kαpowd =
{

(u, v, w) ∈ R3 | u, v ≥ 0,
(
u

α

)α ( v

1− a

)1−α
≥ |w|

}
, where α ∈ [0, 1]. (16)

The power cone can be used to model powers and p-norms. For more information about the
power cone and its modeling capabilities we refer to Chares (2009).
Putting the hierarchies described above all together we get the following ordering among OPs

LP ⊂ convex QP ⊂ convex QCQP ⊂ SOCP ⊂ SDP ⊂ CP.
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2.4. Nonlinear optimization

The most general problem class is nonlinear optimization or nonlinear programming (NLP).
Considering Equation 2, this is the problem where at least one fi, i = 0, . . . ,m is not linear.
NLPs are not required to be convex, which makes it in general hard to obtain a reliable global
solution. Contrary to the convex case, in a non-convex setting most optimization algorithms
only find the extrema of f0 in the neighborhood of the starting value (local optimum).

2.5. Mixed integer programming

A mixed integer program (MIP) adds additional requirements to the optimization problem,
namely it requires that some of the objective variables can only take integer values. Consid-
ering Equation 2, a problem is called a mixed integer problem if the (type) constraint xk ∈ Z
for at least one k is added. In the case where all n objective variables are integral we speak
of a pure integer programming (IP) problem. An IP where all variables are bounded between
zero and one, i.e., x ∈ {0, 1}n, is called a binary (integer) program.
Since MIPs are non-convex, even mixed integer linear programs (MILP) are in general NP-
Hard. Typically they are solved via branch-and-bound (Land and Doig 1960) and the cutting
plane (Gomory 1960) algorithms or a combination of both. Both algorithms avoid to solve
the problem directly, but instead solve multiple relaxations where the integrality constraint
is dropped. MILP problems are known to be very difficult to solve, nevertheless an increase
in quantity and quality of free and nonfree solvers was observed in the last decade (Linderoth
and Ralphs 2005; Bixby 2012).

3. Software
Recently, an increase of the available packages handling many different OPs in R could be
observed. The CRAN optimization and mathematical programming task view (Theußl and
Borchers 2017) currently lists around 100 different optimization related packages. These
packages reach from solvers which can solve a wide range of optimization problems (e.g.,
Rcplex (Theußl and Bravo 2016), Rmosek (Friberg 2014), optimx (Nash and Varadhan 2011;
Nash 2014a)) to very specialized solvers which are created to solve a specific problem type
very fast. This section provides an overview of the solver landscape in R. The insights gained
in this section will be used to derive a consistent solver infrastructure. First we divide the
solver landscape into commercial and non-commercial solvers. Second, in accordance with
Section 2, we split the group of non-commercial solvers into linear solvers, quadratic solvers,
conic solvers and general purpose solvers.

3.1. Overview

As pointed out in Section 2, in the field of optimization we are typically facing different
problem classes. The possibly three most important distinctions are between linear versus
nonlinear problems, integer versus continuous and convex versus non-convex problems.
Ordered based on increasing complexity, an objective function might be of type linear, (con-
vex) quadratic, conic (i.e., any objective expressible as a CP) or functional (i.e., any objective
expressible as function). Similarly constraints are typically of type box, linear, (convex)
quadratic, conic or functional. Box constraints (or variable bounds) are a special type of lin-
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Objective
Constraints linear quadratic conic functional

no 02, 33

box 07, 08, 10, 13, 16, 19, 22
25, 26, 29, 31, 32, 34

linear 04 , 11 , 15 12, 14 , 20
21 , 28

quadratic

conic 03 , 05 , 09
23 , 24 , 30

functional 01, 06, 17
18, 27

Table 1: Overview on optimization problems and solvers.1

ear constraints which enforce lower and upper bounds on the objective variables. The terms
conic objective/constraints are used in a general way and refer to any linear and nonlinear ob-
jective/constraints that can be reformulated as a conic problem. Therefore this also includes
problems with linear and convex quadratic objective/constraints. The most general form are
functional objective/constraints which includes all linear and nonlinear objective/constraints.
Table 1 gives an overview on which solver can be used to solve which types of OPs. Solvers
allowing mixed integer constraints are highlighted with a rectangular frame (e.g., 00 ) and
solvers restricted to convex problems are highlighted with a circular frame (e.g., 00 ). Con-
sequently solvers which are restricted to convex problems and can handle integer constraints
are marked with both a circular and rectangular frame (e.g., 00 ). For completeness, we note
that the linear solvers are also marked to be restricted to convex problems although this is
no restriction since all linear problems are convex.
Therefore the position and the frame of a particular solver in the table indicates its ability to
solve a given problem. Each problem class to the left and above of the current position can be
handled by the solver including its current position. For instance the ECOS (Domahidi, Chu,
and Boyd 2013) solver provided in package ECOSolveR (Fu and Narasimhan 2017, 09 ) is a
convex optimization solver, which can solve conic problems restricted to combinations of the
zero, nonnegative, second-oder and primal exponential cone. Since ECOS is equipped with a
branch-and-bound algorithm, it can also be used to solve mixed integer conic problems.

1The corresponding identifiers can be found in Table 5 in Appendix A.
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3.2. Commercial solvers

Since commercial solver packages often bundle a variety of solvers, it is often not possible to
assign them to a certain problem class, therefore we will treat them separately. At the time of
this writing R interfaces are available to the commercial solver software CPLEX (ILOG 2015),
MOSEK (ApS 2017), Gurobi (Gurobi Optimization 2016), Lindo (Lindo Systems 2003) and
localsolver (Benoist, Estellon, Gardi, Megel, and Nouioua 2011).

3.3. Non-commercial solvers

The non-commercial solvers landscape can be split into two parts. First, solvers where the
functional form is fixed and only the coefficients are provided, this includes all LP, QP, QCQP
and CP solvers currently available in R. Second, solvers which can optimize any functional
form expressible as an R function. This includes most NLP solvers, sometimes summarized
as general purpose solvers.

Linear solvers

Interfaces to several open source LP and MILP solvers are available in R. Most of these
packages provide a high-level access to the solver, those explicitly designed to provide a low-
level access are commonly marked with the suffix API.
The Computational Infrastructure for Operations Research (COIN-OR) project (https://
www.coin-or.org/) provides open-source software for the operations research community.
Among this software there are the COIN-OR linear programming (Clp, Forrest, de la Nuez,
and Lougee-Heimer 2004) solver and the SYMPHONY (Ralphs and Güzelsoy 2005, 2011)
solver. Clp is mainly used as library and provides methods for solving LPs via interior point
methods or the simplex algorithm. In R Clp is available through clpAPI (Fritzemeier and
Gelius-Dietrich 2016) which provides a low level interface to Clp. SYMPHONY is a flexible
MILP solver written in C++, that transforms the MILP into LP relaxations to be solved by
any LP solver callable through the Open Solver Interface (OSI). Rsymphony (Hornik, Harter,
and Theußl 2017a) provides an interface to the SYMPHONY solver, where by default the LP
relaxations are solved by the Clp solver.
GNU Linear Programming Kit (GLPK, Makhorin 2011) is a solver library written in ANSI C,
for solving LP and MILP. In R the low level interface glpkAPI (Fritzemeier, Gelius-Dietrich,
and Luangkesorn 2015) and the high level interface Rglpk (Theußl and Hornik 2017) are
available.
lp_solve (Berkelaar, Eikland, and Notebaert 2016) uses the simplex algorithm combined with
branch-and-bound to solve LPs and MILPs. It furthermore allows to model semi-continuous
and special ordered sets problems. Packages lpSolve (Berkelaar 2015) and lpSolveAPI (Konis
2016) provide access to the lp_solve solver in R.
Additionally the function lpcdd() from package rcdd (Geyer and Meeden 2017) and the
function simplex() from package boot (Canty and Ripley 2017) can be used to solve LPs via
the simplex algorithm.
By taking a closer look at the elements needed by packages capable of solving LPs and MILPs2

we can conclude that the following elements should be present in a consistent and convenient
2This includes commercial and non-commercial solvers.

https://www.coin-or.org/
https://www.coin-or.org/
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optimization infrastructure for modeling LPs and MILPs.

objective: A numeric vector giving the coefficients of the linear objective.

constraints:

• A constraint matrix A (see Equation 3).
• A vector giving the direction of the constraints (i.e., ==, <= or >=).
• A vector giving the right hand side b (see Equation 3).

bounds: Two vectors giving the lower and upper bounds.

types: A vector storing the type information, i.e., binary, integer and numeric.

maximum: A boolean indicating if the objective function should be maximized or minimized.

Although the elements bounds and maximum, as well as the constraint directions and the
binary types are not strictly necessary. Their inclusion is motivated by the fact that they are
supported by many solvers and simplify the problem specification.

Quadratic solvers

At the time of this writing there exist two non-commercial packages specialized on solv-
ing quadratic OPs in R, namely quadprog and LowRankQP. Both are able to solve stricly
convex QPs but can not be used to solve QCQPs. The quadprog (Turlach and Weinges-
sel 2013) package uses the dual method described in Goldfarb and Idnani (1983), whereas
LowRankQP (Ormerod and Wand 2014) is based on an interior point algorithm described in
Fine and Scheinberg (2001).
Additionally, package kernlab (Karatzoglou, Smola, Hornik, and Zeileis 2004; Karatzoglou,
Smola, and Hornik 2016) contains the function ipop() which implements an interior point
solver capable of solving QPs.
QP solver generally take the same arguments as LP solver plus an additional matrix parameter
storing the coefficients of the quadratic term Q0.

Conic solvers

Most of the conic solvers use a standard form similar to Equation 6, where the objective
function is assumed to be linear and the vector b − Ax is restricted to a certain cone K.
Nevertheless, in Table 1 they are shown to have a conic objective function and conic constraints
to express that they are able to solve any LP and convex NLP expressible by a CP. Therefore,
which types of NLPs a given solver can solve, depends on the types of cones the solver can
model. Table 2 shows the conic solvers available in R and the types of cones they support.
Package CLSOCP (Rudy 2011) is specialized in solving SOCPs, it is a pure R implementation
of the one-step smoothing Newton method based on the algorithm described in Tang, He,
Dong, and Fang (2012). For solving SDP there exist the specialized packages Rcsdp and
Rdsdp. Since any SOCP can be transformed into an SDP they can also be used for solving
SOCPs. Rcsdp (Bravo 2016) is an interface to the CSDP (Borchers 1999) library which is
part of the COIN-OR project. Rdsdp (Zhisu Zhu 2016) is an interface to the DSDP (Benson
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CLSOCP X X X
cccp X X X X
ECOSolveR X X X X
Rcsdp X X X X
Rdsdp X X X X
scs X X X X X X X X

Table 2: Conic packages and the supported cones.

and Ye 2008) library. Both packages can read and Rcsdp can also write "sdpa"-files, which is
a file format commonly used to store SDPs. The cccp (Pfaff 2015) package provides functions
to solve LPs, QPs, SOCPs and SDPs, the algorithms are reported to be similar to those in
CVXOPT (Andersen et al. 2016). CVXOPT is a Python package for solving convex OPs via
interior-point methods (more information about the algorithms can be found in Andersen,
Dahl, Liu, and Vandenberghe 2012). ECOSolveR (Fu and Narasimhan 2017) is an interface
to the embedded conic solver ECOS (Domahidi et al. 2013). A special feature of ECOS is
that it combines convex optimization with branch-and-bound techniques, therefore it can be
used to solve CPs where some variables are required to be integer. The scs (O’Donoghue and
Schwendinger 2016) package is an interface to the Splitting Conic Solver (SCS, O’Donoghue
2015) library, which uses a version of the alternating direction method of multipliers (ADMM)
for solving CPs. SCS is designed to solve large cone problems faster than standard interior-
point methods. More information about the algorithm and a comparison to other solvers can
be found in O’Donoghue et al. (2016).

General purpose solvers

Solvers capable of handling nonlinear objective functions without further restrictions are called
general purpose solvers (GPS). These solvers can minimize (or maximize) any functional form
representable as an R function with different types of constraints.
Dependent on the solver different types of constraints can be used, where the most general
form of constraint is the functional constraint (i.e., any constraint expressible as an R func-
tion). The generality of GPS comes at the price of performance and that there is usually no
guarantee that a global optimum is reached.

Global GPS Local GPS
Gradient free Gradient Gradient free Gradient

No Constraint 5 0 7 8
Box Constraint 16 4 7 10
Functional Constraint 2 0 7 7

Table 3: Overview of general purpose solvers.
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Important properties of GPS are whether they are designed to search for a local or global
optima, if gradient information has to be provided or the method is gradient free and which
type of constraints can be set. Table 3 shows the number of GPS methods grouped by these
properties (the counts are based on Table 6 where additional details can be found) and reveals
some interesting details about the R GPS landscape. There exist almost twice as many GPS
for local optimization than for global optimization and, even though most of the local solvers
utilize gradient information, only four of the global solvers use gradient information. The
difference in distribution of gradient based and gradient free optimization algorithms between
global and local GPS can be explained by the fact that in global optimization, metaheuristics
like evolutionary methods or particle swarm optimization are commonly used. In a recent
study Mullen (2014a) surveys the continuous global optimization packages available in R and
compares their performance on a set of tests bundled in the globalOptTests (Mullen 2014b)
package. Table 6 gives an extensive listing of which methods are applicable to global OPs.
For more information about the methods we refer to Mullen (2014a).
Based on the type of constraints, the GPS can be divided into no constraints, box constraints,
linear constraints, quadratic constraints and functional constraints. As Table 3 shows, most
of the GPS support no constraint or box constraints. Fortunately, package optimx (Nash and
Varadhan 2011) provides a unified interface to many of these solvers, consolidating methods
from packages stats, ucminf (Nielsen and Mortensen 2016), minqa (Bates, Mullen, Nash, and
Varadhan 2014), Rcgmin (Nash 2014b), Rvmmin (Nash 2017) and BB (Varadhan and Gilbert
2009). It was designed as a possible successor of optim which is part of the stats package and
can be used to solve OPs with box constraints. Another package which incorporates many
different algorithms is nloptr (Ypma, Borchers, and Eddelbuettel 2017). It is an R interface
to the NLopt (Johnson 2016) library, which bundles several global and local optimization
algorithms. Depending on the algorithm it can solve NLPs with box-constraints or functional-
constraints.
Most of the GPS able to handle functional constraints allow to specify functional equality
and/or functional inequality constraints.
To model functional equality constraints the following two forms are most commonly used

• hi(x) = 0, i = 1, . . . , k (e.g., alabama (Varadhan 2015), DEoptimR (Conceicao 2016),
nloptr::auglag, nloptr::isres, nloptr::slsqp, NlcOptim and Rnlminb2 (Wuertz 2014))

• hi(x) = bi, i = 1, . . . , k (e.g., Rsolnp (Ghalanos and Theussl 2015))

where h is a function and b ∈ Rk gives the right hand side. Similarly, functional inequality
constraints are commonly given in one of the following three forms:

• gj(x) ≤ 0, j = k + 1, . . . ,m (e.g., DEoptimR, nloptr::nloptr, NlcOptim (Chen and Yin
2017), Rnlminb2, csr::snomadr (Racine and Nie 2017))

• gj(x) ≥ 0, j = k + 1, . . . ,m (e.g., alabama, nloptr::auglang,
nloptr::auglang, nloptr::cobyla, nloptr::ires, nloptr::mma, neldermead (Bihorel and
Baudin 2015) and nloptr::slsqp)

• lj ≤ gj(x) ≤ uj , j = k + 1, . . . ,m (e.g., ipoptr (Ypma 2011), Rdonlp2 (Wuertz 2007),
Rsolnp).
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where g is a function and l ∈ Rm−k, u ∈ Rm−k are the lower and upper bounds of the
constraints. A general optimization infrastructure should be designed in a way that the
functional form employed can be transformed into the commonly used forms shown above.
An analysis of the above solver spectrum reveals that the critical arguments to GPS are:

start: The initial values for the (numeric) parameter vector.

objective: The function to be optimized.

constraints: Depending on the GPS the constraints can be, none, linear, quadratic, func-
tional equality or functional inequality constraints. To model functional constraints
consistently with linear and quadratic constraints the following elements are needed.

• A function representing the constraints.
• A vector giving the direction of the constraints.
• A vector giving the right hand side.

bounds: Variable bounds, commonly given as lower and upper bounds.

Additionally some GPS make use of the gradient and/or hessian of the objective and the
jacobian of the constraints. The optional elements can be summarized by:

gradient: A function that evaluates the gradient of the argument objective.

hessian: A function that evaluates the hessian of the argument objective.

jacobian: A function that evaluates the jacobian of the argument constraints.

maximum: A boolean indicating whether the objective function should be maximized or min-
imized.

control: Further control arguments specific to the solver.

Return values include:

par: The “solution” (parameters) found.

value/objective: The value of the objective function evaluated at the “solution”.

convergence, status: An integer information about the convergence and exit status of the
optimization task.

gradient: The gradient evaluated at the solution found.

hessian: The hessian evaluated at the solution found.

message: A text message giving additional information about the optimization / exit status.

iterations/evaluations: The number of iterations and / or evaluations.
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4. A general optimization infrastructure for R
After reviewing the optimization resources available in R, it is apparent that the main function
of a general optimization infrastructure package should take at least three arguments:

problem representing an object containing the description of the corresponding OP,

solver specifying the solver to be used (e.g., "glpk", "nlminb", "scs"),

control containing a list of additional control arguments to the corresponding solver.

The arguments solver and control are easily understood, since from the available solver
spectrum we only have to choose those which are capable to handle the corresponding OP and
(optionally) supply appropriate control parameters. However, building the problem object,
in a general and intuitive way, seems to be a very challenging task which leads to several
design issues.
Based on the review in Sections 2 and 3 it seems natural to instantiate OPs based on an
objective function, one or several constraints, types and bounds of the objective variables, as
well as the direction of optimization (whether a minimum or a maximum is sought).

4.1. Optimization problem

A new optimization problem is created by calling

OP(objective, constraints, types, bounds, maximum)

where the arguments are explained in detail below.
Alternatively, an OP can be formulated piece by piece, by creating an empty OP

OP()

and using the setter functions to assign the values. The setter and getter functions have the
same names as the arguments of OP and can be used to manage specific parts of the OP.
For instance, by replacing the linear objective of an LP with a quadratic objective the LP
is altered into a QP. An extensive set of examples showing the creation and modification of
OPs can be found at the end of this sections.
Function OP() always returns an S3 object of class OP which stores the entire OP. Storing the
OP in a single R object has many advantages, among others:

• the OP can be checked for consistency during the creation of the problem,

• the different elements of the OP can easily accessed after the creation of the problem,

• and the OP can be easily altered, e.g., a constraint can be added, bounds can be
changed, without the need to redefining the entire OP.

The consistency checks verify that the dimensions of the arguments fit together.
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4.2. Objective function

The survey of optimization solvers in Section 3 reveals that the way the objective function is
stored depends primarily on its functional form. If the objective function is linear (L), i.e.,
a>0 x, then it is common practice to only supply a coefficient vector a0 ∈ Rn. For quadratic
objective functions (Q) of the form 1

2x
>Q0x+ a>0 x most solvers take a vector a0 ∈ Rn and a

matrix Q0 ∈ Rn×n as input. General nonlinear objective functions (i.e., nonlinear functions
which can not be represented as an QP or CP), are represented as an R function (F) which
takes the vector of objective variables as argument and returns the objective value. Depending
on the type of the objective function, i.e., F, Q, or L only a subset of the solver spectrum can
be used.
Objective function types and corresponding constructors implemented in ROI are:

F The most general form of an objective function is created with the F_objective(F, n,
G, H, names) constructor by simply supplying F, an R function representing f0(x),
and n the length of x. Optionally, information about the gradient and the hessian can
be provided via the arguments G and H. Is no gradient provided it will be calculated
numerically if needed. The optional names argument is propagated to the solution
object to make the solution more readable.

Q Objective functions representing a quadratic form as outlined above can be easily created
with the Q_objective(Q, L, names) constructor taking Q, the quadratic part Q0, and
optionally L, the linear part a0, as arguments. The names argument is again optional.

L If the objective to be optimized is a linear function then one should use the L_objective(L,
names) constructor supplying L (the coefficients to the objective variables) as a numeric
vector. The names argument is again optional.

All three constructors return an object inheriting from class ‘objective’.

4.3. Constraints

To model all the problem classes introduced in Section 2 four different types of constraints are
sufficient. Thereby arguments with the same name have the same functionality irrespective
of the constraint type hence they are only explained once.

F The most general form of constraints can express any constraint representable by an R
function. They are created via F_constraint(F, dir, rhs, J, names), here F is
either a function or a list of functions. dir is a character vector giving the direction of
the constraint and rhs is a numeric vector giving the right hand side of the constraint.
The optional arguments J and names can be used to provide the Jacobian and the
variable names of the constraints.

C Conic constraints are constructed via the function C_constraint(L, cones, rhs,
names), thereby L can be either a numeric vector of length n or a matrix of dimen-
sion m× n. In accordance with Equation 6 the cones impose a restriction on the slack
variable s.
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Q Quadratic constraints as defined in Equation 5 can be easily created with the constructor
Q_constraint(Q, L, dir, rhs, names). The quadratic constraints Q are given as a
list of length m where the entries are either of n× n matrices or NULL.

L Linear constraints are constructed via the function L_constraint(L, dir, rhs, names).

All constructors return an object inheriting from class ‘constraint’.
A conic constraint can be comprised of several cones, where each cone type can occur multiple
times. The cone constructors all start with K_ followed by an short cut of the cone name, as
defined in Section 2.3. Currently ROI implements constructors for the cones K_zero, K_nneg,
K_soc, K_psd, K_expp, K_expd, K_powp, and K_powd. To combine different cones the generic
combine function c() can be used.
Since in many situations it is desirable to optimize a given objective function subject to a
constraint object composed out of different constraints (which may be of different type), ROI
can combine multiple constraints into a single constraint using the generic functions c() or
rbind(). Therefore, the following constraints

L11 x + L12 y = rhs1
L21 x + L22 y ≤ rhs2
L31 x

2 + L32 y
2 ≤ rhs3

(17)

could be formulated in several equivalent ways. First as combination of linear and quadratic
constraints

R> library("ROI")

c(L_constraint(L = rbind(c(L11, L12), c(L21, L22)),
dir = c("==", "<="), rhs = c(rhs1, rhs2)),

Q_constraint(Q = rbind(c(2 * L31, 0), c(0, 2 * L32)), L = c(0, 0),
dir = "<=", rhs = rhs3))

second as combination of linear and conic constraints

c(L_constraint(L = rbind(c(L11, L12), c(L21, L22)),
dir = c("==", "<="), rhs = c(rhs1, rhs2)),

C_constraint(L = rbind(c(0, 0), c(-L31, 0), c(0, -L32)),
cones = K_soc(3), rhs = c(rhs3, 0, 0)))

or entirely as conic constraints.

C_constraint(L = rbind(c(L11, L12), c(L21, L22),
c(0, 0), c(-L31, 0), c(0, -L32)),

cones = c(K_zero(1), K_nneg(1), K_soc(3)),
rhs = c(rhs1, rhs2, rhs3, 0, 0))

Additionally the constraints could also be formulated entirely as Q_constraint or
F_constraint or other constraint combinations.
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4.4. Objective variable types

As it is common practice in mixed-integer solvers to distinguish between the variable types
continuous, integer and binary we follow this practice. To encode the variable choice charac-
ters are used, "C" for continuous, "I" for integer and "B" for binary, where by default all the
variables are assumed to be of continuous type.

4.5. Bounds

Variable bounds are a special type of constraints typically used to restrict the objective vari-
able between real lower and upper bounds, these are often referred to as “box bounds” or “box
constraints”. Although variable bounds could be easily modeled as constraints, most solvers
which support any type of constraint also support variable bounds directly. Furthermore,
many GPS only support variable bounds as can be seen in Table 3. Thus, it is reasonable
but also convenient to consider them separately.
Typically, implementations of optimization algorithms differentiate between five types of ob-
jective variable bounds: free (−∞,∞), upper (−∞, ub], lower [lb,∞), double bounded [lb, ub],
and fixed bounds. In ROI variable bounds are represented as a list with two elements—upper
and lower, where only the non-default values are stored in a simple sparse format. In this
sparse format only indices and the values of the non-default values are stored. For the lower
bounds the default value is zero and for the upper bounds the default value is infinity. Thus
for OPs where all the variables are required to take values in the interval [0,∞) no bounds
have to be specified. Upper and/or lower bounds are specified by providing the index i of
the corresponding variable (arguments li, ui) and its lower (lb) or upper (ub) bound, re-
spectively. Therefore the box constraints −∞ ≤ x1 ≤ 4, 0 ≤ x2 ≤ 100, 2 ≤ x3 ≤ ∞ and
0 ≤ x4 ≤ ∞ are constructed in ROI as follows,

R> V_bound(li = 1:4, ui = 1:4, lb = c(-Inf, 0, 2, 0),
+ ub = c(4, 100, Inf, Inf))

ROI Variable Bounds:

2 lower and 2 upper non-standard variable bounds.

in the case all the upper and lower values are provided (default values are not omitted) the
indices can be left out

R> V_bound(lb = c(-Inf, 0, 2, 0), ub = c(4, 100, Inf, Inf))

ROI Variable Bounds:

2 lower and 2 upper non-standard variable bounds.

in the case default values are omitted the number of objective variables has to be provided.

R> V_bound(li = c(1L, 3L), ui = c(1L, 2L), lb = c(-Inf, 2), ub = c(4, 100),
+ nobj = 4L)
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ROI Variable Bounds:

2 lower and 2 upper non-standard variable bounds.

4.6. Examples

Here we show how the different types of OPs can be formulated in ROI.

LP

Putting all this together, the LP

maximize 3x1 + 7x2 − 12x3
subject to 5x1 + 7x2 + 2x3 ≤ 61

3x1 + 2x2 − 9x3 ≤ 35
x1 + 3x2 + x3 ≤ 31

x1, x2 ≥ 0, x3 ∈ [−10, 10]

can be created by

R> lp <- OP(objective = L_objective(c(3, 7, -12)),
+ constraints = L_constraint(
+ L = rbind(c(5, 7, 2), c(3, 2, -9), c(1, 3, 1)),
+ dir = c("<=", "<=", "<="), rhs = c(61, 35, 31)),
+ bounds = V_bound(li = 3, ui = 3, lb = -10, ub = 10, nobj = 3),
+ maximum = TRUE)
R> lp

ROI Optimization Problem:

Maximize a linear objective function of length 3 with
- 3 continuous objective variables,

subject to
- 3 constraints of type linear.
- 1 lower and 1 upper non-standard variable bound.

Once an OP is constructed, the functions objective(), constraints(), bounds(), types()
and maximum() can be used to access/alter the corresponding element. The function
objective() returns the objective as function, which can be directly used to evaluate param-
eters. The number of parameters required, can be obtained by the generic function length().

R> param <- rep.int(1, length(objective(lp)))
R> objective(lp)(param)

[1] -2
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To access the data of the objective, the generic function terms() should be used.

R> terms(objective(lp))

$L
A 1x3 simple triplet matrix.

$names
NULL

For all the other elements the corresponding getter returns directly the underlying data rep-
resentation.

MILP

To extend the LP from above to an MILP, we add the additional requirements x2, x3 ∈ Z,
which results in the following OP:

R> milp <- lp
R> types(milp) <- c("C", "I", "I")
R> milp

ROI Optimization Problem:

Maximize a linear objective function of length 3 with
- 1 continuous objective variable,
- 2 integer objective variables,

subject to
- 3 constraints of type linear.
- 1 lower and 1 upper non-standard variable bound.

BLP

The following example of a binary linear programming (BLP) problem is based on Fischetti
and Salvagnin (2010) and will be used later to illustrate how multiple solutions can be ob-
tained.

minimize −x1 − x2 − x3 − x4 − 99x5
subject to x1 + x2 ≤ 1

x3 + x4 ≤ 1
x4 + x5 ≤ 1
xi ∈ {0, 1}

(18)

R> blp <- OP(objective = L_objective(c(-1, -1, -1, -1, -99)),
+ constraints = L_constraint(L = rbind(c(1, 1, 0, 0, 0), c(0, 0, 1, 1, 0),
+ c(0, 0, 0, 1, 1)), dir = c("<=", "<=", "<="), rhs = rep.int(1, 3)),
+ types = rep("B", 5L))
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QCQP

Following the definition from Equation 5, the quadratic terms are multiplied by one-half,
therefore the QCQP

minimize 1
2(x2

1 + x2
2)

subject to 1
2x

2
1 ≥ 1

2
x1, x2 ≥ 0

(19)

can be constructed by

R> qcqp <- OP(objective = Q_objective(Q = diag(2), L = c(0, 0)),
+ constraints = Q_constraint(Q = rbind(c(1, 0), c(0, 0)), L = c(0, 0),
+ dir = ">=", rhs = 0.5))
R> qcqp

ROI Optimization Problem:

Minimize a quadratic objective function of length 2 with
- 2 continuous objective variables,

subject to
- 1 constraint of type quadratic.
- 0 lower and 0 upper non-standard variable bounds.

SOCP

For formulating SOCPs it can be advantageous to consider the following alternative standard
form (Lobo et al. 1998; Andersen et al. 2012),

minimize a>0 x
subject to ‖Bix+ wi‖2 ≤ u>i x+ vi, i = 1, . . . , k (20)

here k is the number of second-order cones, Bi ∈ R(di−1)×n, wi ∈ Rdi−1, ui ∈ Rn, vi ∈ R and
the dimension of each cone is given by di. Starting from Equation 20 the transformation into
the standard form given in Equation 6 can be accomplished by

A = −


u>1
B1
...
u>k
Bk

 , b =


v1
w1
...
vk
wk

 , s ∈
∏

i=1,...,k
Kdi

soc. (21)

Therefore the OP
maximize x+ y + z

subject to
√
x2 + z2 ≤

√
2

x, y, z ≥ 0, y ≤ 5
(22)

can be easily solved in ROI.
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R> socp <- OP(objective = L_objective(c(1, 1, 1), names = c("x", "y", "z")),
+ constraints = C_constraint(rbind(c(0, 0, 0), c(-1, 0, 0), c(0, 0, -1)),
+ cones = K_soc(3), rhs = c(sqrt(2), 0, 0)),
+ bounds = V_bound(ui = 2, ub = 5, nobj = 3L), maximum = TRUE)
R> socp

ROI Optimization Problem:

Maximize a linear objective function of length 3 with
- 3 continuous objective variables,

subject to
- 3 constraints of type conic.

|- 3 conic constraints of type 'soc'
- 0 lower and 1 upper non-standard variable bound.

Similarly by making use of the epigraph form (see Equation 7, the convex QP

minimize
√
x2

1 + x2
2

subject to x1 + x2 = 2
x1, x2 ≥ 0

(23)

can be formulated as a SOCP.

R> A <- rbind(c(0, 0, -1), c(-1, 0, 0), c(0, -1, 0), c(1, 1, 0))
R> b <- c(1, 0, 0, 2)
R> cp <- OP(objective = L_objective(c(0, 0, 1)),
+ constraints = C_constraint(A, c(K_soc(3), K_zero(1)), b))
R> cp

ROI Optimization Problem:

Minimize a linear objective function of length 3 with
- 3 continuous objective variables,

subject to
- 4 constraints of type conic.

|- 3 conic constraints of type 'soc'
|- 1 conic constraint of type 'zero'

- 0 lower and 0 upper non-standard variable bounds.

SDP
Another standard form commonly used for SDPs (e.g., Vandenberghe and Boyd (1996b);
Nemirovski (2004); Andersen et al. (2012)) is

minimize a>0 x
subject to ∑n

i=1 xiFi � F0,
(24)
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here a0 ∈ Rn and Fi ∈ Rd×d are symmetric matrices and � is the generalized inequality.
Therefore ∑n

i=1 xiFi � F0 is equivalent to F0 −
∑n
i=1 xiFi ∈ Kdpsd. In order to transform an

SDP problem given in the form of Equation 24 into the form shown in Equation 6, a half-
vectorization should be performed. Half-vectorization is a special kind of matrix vectorization
for symmetric matrices, which transforms a symmetric matrix

R> (A <- matrix(c(1, 2, 3, 2, 4, 5, 3, 5, 6), nrow = 3))

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 5
[3,] 3 5 6

into a vector, alike vech transforms n symmetric d×d matrices into a (d(d+1)/2)×n matrix:

R> vech(A)

[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
[5,] 5
[6,] 6

Specifically, the following problem

minimize x1 + x2 − x3

subject to x1

(
10 3
3 10

)
+ x2

(
6 −4
−4 10

)
+ x3

(
8 1
1 6

)
�
(

16 −13
−13 60

)
x1, x2, x3 ≥ 0

can be modeled as follows:

R> F1 <- rbind(c(10, 3), c(3, 10))
R> F2 <- rbind(c(6, -4), c(-4, 10))
R> F3 <- rbind(c(8, 1), c(1, 6))
R> F0 <- rbind(c(16, -13), c(-13, 60))
R> psd <- OP(objective = L_objective(c(1, 1, -1)),
+ constraints = C_constraint( L = vech(F1, F2, F3), cone = K_psd(3),
+ rhs = vech(F0)))
R> psd

ROI Optimization Problem:

Minimize a linear objective function of length 3 with
- 3 continuous objective variables,
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subject to
- 3 constraints of type conic.

|- 3 conic constraints of type 'psd'
- 0 lower and 0 upper non-standard variable bounds.

NLP
The following example from Rosenbrock (1960) is some times referred to as Rosenbrock’s post
office problem.

maximize x1x2x3
subject to x1 + 2x2 + 2x3 ≤ 72

x1, x2, x3 ∈ [0, 42]
(25)

R> nlp_1 <- OP()
R> gradient <- function(x) c(prod(x[-1]), prod(x[-2]), prod(x[-3]))
R> objective(nlp_1) <- F_objective(F = function(x) prod(x), n = 3, G = gradient)
R> rosenbrock <- function(x) x[1] + 2 * x[2] + 2 * x[3]
R> constraints(nlp_1) <- F_constraint(F = rosenbrock, dir = "<=", rhs = 72,
+ J = function(x) c(1, 2, 2))
R> bounds(nlp_1) <- V_bound(ud = 42, nobj = 3L)
R> maximum(nlp_1) <- TRUE
R> nlp_1

ROI Optimization Problem:

Maximize a nonlinear objective function of length 3 with
- 3 continuous objective variables,

subject to
- 1 constraint of type nonlinear.
- 0 lower and 3 upper non-standard variable bounds.

Alternatively the linear constraint x1 + 2x2 + 2x3 ≤ 72 could and should be modeled directly
as a linear constraint,

R> nlp_2 <- nlp_1
R> constraints(nlp_2) <- L_constraint(L = c(1, 2, 3), "<=", 72)
R> nlp_2

ROI Optimization Problem:

Maximize a nonlinear objective function of length 3 with
- 3 continuous objective variables,

subject to
- 1 constraint of type linear.
- 0 lower and 3 upper non-standard variable bounds.
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using L and Q constraints rather than F_constraint has the advantage that for L and Q
constraints the Jacobian is derived analytically if needed and not provided.

5. Package ROI
The R optimization infrastructure can be structured into the package ROI and its accom-
panying extensions. Package ROI provides all the necessary classes, methods and manages
the extensions. The extension packages add optimization solvers, read/writing functions and
additional resources (e.g., model collections). Currently ROI distinguishes between two dif-
ferent types of extensions, namely, plug-ins and models. Here plug-ins play a special role,
hence all plug-ins are loaded automatically when ROI is loaded. When a plug-in is loaded
it provides data about its capabilities. This data is stored in an in-memory database and
includes information about to which problems the plug-in is applicable, which formats it can
read/write and the control arguments available from the solver and how the solver specific
control arguments relate to arguments commonly used.
This mechanism makes it possible that ROI is aware of all the installed plug-ins, without the
need to change ROI when a new plug-in is added. To make the automatic loading possible
the plug-ins have to follow the name convention ROI.plugin.<name>, where <name> is
typically the name of an optimization solver (e.g., ROI.plugin.glpk (Theussl 2017)). The
prefix ROI.models (e.g., ROI.models.netlib (Schwendinger 2016)) is used for data packages
with predefined OPs. In Section 5.6 we give an overview about the data packages available
in the ROI format.

5.1. Solving optimization problems

After formulating an OP as described in Section 4, it can be solved by calling the func-
tion ROI_solve(x, solver, control, ...). This function takes an R object of class OP
containing the formulation of the OP, the name of the solver to be used and a list con-
taining solver-specific parameters as arguments. The solver and control arguments are
optional, if no solver argument is provided ROI will choose an applicable solver automati-
cally (see Section 5.7.1). Alternatively the solver-specific parameters can be specified via the
dots arguments.

R> lp_sol <- ROI_solve(lp, solver = "glpk")
R> lp_sol

Optimal solution found.
The objective value is: 8.670149e+01

R> milp_sol <- ROI_solve(milp, solver = "symphony")
R> milp_sol

Optimal solution found.
The objective value is: 8.100000e+01

R> blp_sol <- ROI_solve(blp, solver = "glpk")
R> blp_sol
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Optimal solution found.
The objective value is: -1.010000e+02

R> socp_sol <- ROI_solve(cp, solver = "ecos")
R> socp_sol

Optimal solution found.
The objective value is: 4.142136e-01

R> psd_sol <- ROI_solve(psd, solver = "scs")
R> psd_sol

Optimal solution found.
The objective value is: -1.486461e+00

R> nlp_1_sol <- ROI_solve(nlp_1, solver = "alabama", start = c(10, 10, 10))
R> nlp_1_sol

Optimal solution found.
The objective value is: 3.456000e+03

Some OPs have multiple solutions, in the case of BLP (MILP) some solver can retrieve all
(multiple) solutions. For MILPs it is in general not possible to obtain all the solutions but
only multiple solutions, since even this simple MILP

minimize x1 − x2
subject to x1 − x2 = 0

x1, x2 ∈ Z
(26)

has an infinite number of solutions. In the following we use the "msbinlp" solver to retrieve
all the solutions to the OP defined in Equation 18, here method gives the solver used within
the inner loop and nsol_max the maximal number of solutions to be returned. Since we have
a pure binary problem and five objective variables, it is clear that there can be at most ten
solutions,

R> blp_sol <- ROI_solve(blp, solver = "msbinlp", method = "glpk", nsol_max = 10)
R> blp_sol

2 optimal solutions found.
The objective value is: -1.010000e+02

alternatively it is also possible to set nsol_max to Inf. Then ROI tries to retrieve all the
solutions.

5.2. Solution and status code

To make the solutions of the various solvers easy to understand, all the solutions are canon-
icalized within the plug-ins. After the canonicalization each solution contains the following
components:
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solution the solution of the OP,

objval the optimal objective value,

status the canonicalized status code,

message the original solver message

and a meta attribute containing the solver name and additional optional arguments.

Solver status codes are used to inform the user about the exit status of the solver.
Despite the common usage of status codes in optimization solvers there is no widely used
standard. Nevertheless, we believe it is desirable to provide unified status codes. The status
codes used in ROI_solve are simple and consistent with the common practice, to return 0
on success (if a “solution” meeting the solver specific requirements was found) 1 otherwise.
To obtain the (primal) “solution” the generic function solution(x, type) should be used,

R> solution(lp_sol)

[1] 0.000000 9.238806 -1.835821

in the case of multiple solutions a "list" of solutions is returned.

R> solution(blp_sol)

[[1]]
[1] 0 1 1 0 1

[[2]]
[1] 1 0 1 0 1

If the status code is 1 solution will return NA, to prevent the user from using solutions with
a status code different from 0.

R> lp_inaccurate_sol <- ROI_solve(lp, solver = "scs", tol = 1e-32)
R> solution(lp_inaccurate_sol)

[1] NA NA NA

However in a few situations it can be desirable to obtain solutions even if the solver signals
no success. In these cases ROI can be forced to return the solution provided by the solver
regardless of the status code.

R> solution(lp_inaccurate_sol, force = TRUE)

[1] 8.142725e-16 9.238806e+00 -1.835821e+00

The “solution” to the dual problem can be retrieved by.
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R> solution(lp_sol, type = "dual")

[1] -4.298507 0.000000 0.000000

Furthermore, auxiliary variables

R> solution(lp_sol, type = "aux")

$primal
[1] 61.0000 35.0000 25.8806

$dual
[1] 0.5820896 1.4626866 0.0000000

the solution matrices of a PSD problem

R> lapply(solution(psd_sol, type = "psd"), as.matrix)

$`4`
[,1] [,2]

[1,] 0.11050022 0.031337481
[2,] 0.03133748 0.008887201

the original solver message

R> solution(lp_sol, type = "msg")

$optimum
[1] 86.70149

$solution
[1] 0.000000 9.238806 -1.835821

$status
[1] 5

$solution_dual
[1] -4.298507 0.000000 0.000000

$auxiliary
$auxiliary$primal
[1] 61.0000 35.0000 25.8806

$auxiliary$dual
[1] 0.5820896 1.4626866 0.0000000

the objective value



28 R Optimization Infrastructure

R> solution(lp_sol, type = "objval")

[1] 86.70149

the status

R> solution(lp_sol, type = "status")

$code
[1] 0

$msg
solver glpk

code 5
symbol GLP_OPT

message Solution is optimal.
roi_code 0

and the status code

R> solution(lp_sol, type = "status_code")

[1] 0

of the OP can be retrieved by the function solution().

5.3. Reformulations

Reformulations are often used to transform a problem of class A into a problem of
class B, where the solution of the original problem can be derived from the solution
of the reformulation (which is typically easier to solve). Although reformulation tech-
niques are commonly used in optimization the functions performing these reformula-
tions are generally hidden within the optimization software. To facilitate the compari-
son of different reformulation algorithms ROI provides functions for managing reformula-
tions. Function ROI_registered_reformulations() lists the available reformulations and
ROI_reformulate(x, to, method) performs the reformulation. Following Boros and Ham-
mer (2002) we illustrate the transformation of a binary QP into a MILP, the code for the
reformulation is based on the implementation in the relations (Meyer and Hornik 2017) pack-
age.

minimize 6− x− 4y − z + 3xy + yz
x, y, z ∈ {0, 1} (27)

R> Q <- rbind(c(0, 3, 0), c(0, 0, 1), c(0, 0, 0))
R> bqp <- OP(Q_objective(Q = Q + t(Q), L = c(-1, -4, -1)), types = rep("B", 3))
R> glpk_signature <- ROI_solver_signature("glpk")
R> head(glpk_signature, 3)
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objective constraints bounds cones maximum C I B
1 L X X X TRUE TRUE FALSE FALSE
2 L L X X TRUE TRUE FALSE FALSE
3 L X X X TRUE FALSE TRUE FALSE

R> milp <- ROI_reformulate(x = bqp, to = glpk_signature)
R> ROI_solve(milp, solver = "glpk")

Optimal solution found.
The objective value is: -4.000000e+00

Here ROI selects the applicable reformulations based on the provided signatures. A method
is considered to be applicable if it can transform the given OP into a new OP, where the
signature of the new OP is a subset of the signature provided in the argument to. Since it
is possible that several methods are applicable, the argument method can be used to select a
specific reformulation method.

5.4. ROI solvers

ROI currently can make use of eighteen different solvers, applicable to a wide range
of OPs. Inspired by R’s available.packages() function, ROI can return a listing of
the solver plug-ins available at CRAN (https://CRAN.R-project.org), R-Forge (https:
//r-forge.r-project.org/, Theußl and Zeileis 2009) and GitHub (https://github.com/).
ROI_available_solvers() without an argument lists all the available solvers. If an OP is
provided as argument, only the available solvers applicable will be returned.

R> ROI_available_solvers(cp)[, c("Package", "Repository")]

Package Repository
4 ROI.plugin.ecos https://cran.r-project.org/src/contrib
12 ROI.plugin.scs https://cran.r-project.org/src/contrib
17 ROI.plugin.ecos http://R-Forge.R-project.org
27 ROI.plugin.scs http://R-Forge.R-project.org

A listing of all the available plug-ins on CRAN and R-Forge could be easily compiled by just
using the available.packages() function. But to be able to find all the solvers available and
applicable to a given OP also the solver signature is needed. Therefore a database containing
the solver signatures and the information provided by available.packages was compiled
and is queried whenever ROI_available_solvers is called.
A vector of all solvers installed and loaded (registered) can be obtained by,

R> ROI_registered_solvers()

nlminb alabama cbc
"ROI.plugin.nlminb" "ROI.plugin.alabama" "ROI.plugin.cbc"

clp cplex deoptim
"ROI.plugin.clp" "ROI.plugin.cplex" "ROI.plugin.deoptim"

https://CRAN.R-project.org
https://r-forge.r-project.org/
https://r-forge.r-project.org/
https://github.com/
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ecos glpk gurobi
"ROI.plugin.ecos" "ROI.plugin.glpk" "ROI.plugin.gurobi"

ipop lpsolve mosek
"ROI.plugin.ipop" "ROI.plugin.lpsolve" "ROI.plugin.mosek"

msbinlp nloptr optimx
"ROI.plugin.msbinlp" "ROI.plugin.nloptr" "ROI.plugin.optimx"

quadprog scs symphony
"ROI.plugin.quadprog" "ROI.plugin.scs" "ROI.plugin.symphony"

similarly

R> ROI_applicable_solvers(cp)

[1] "ecos" "scs"

returns a vector giving the names of the registered solvers applicable to a given problem.
Both return values are based on the solver registry, which stores the solver method and
information about the solver registered by the plug-ins. The solver registry is an in-memory
database based on the registry (Meyer 2015) package.
ROI_installed_solvers gives a listing of all the installed plug-ins (not necessarily loaded)
delivered directly with ROI and found

R> ROI_installed_solvers()

nlminb alabama cbc
"ROI.plugin.nlminb" "ROI.plugin.alabama" "ROI.plugin.cbc"

clp cplex deoptim
"ROI.plugin.clp" "ROI.plugin.cplex" "ROI.plugin.deoptim"

ecos glpk gurobi
"ROI.plugin.ecos" "ROI.plugin.glpk" "ROI.plugin.gurobi"

ipop lpsolve mosek
"ROI.plugin.ipop" "ROI.plugin.lpsolve" "ROI.plugin.mosek"

msbinlp nloptr optimx
"ROI.plugin.msbinlp" "ROI.plugin.nloptr" "ROI.plugin.optimx"

quadprog scs symphony
"ROI.plugin.quadprog" "ROI.plugin.scs" "ROI.plugin.symphony"

by searching for the prefix ‘ROI.plugin’ in the R library trees.
An overview on the currently available solver plug-ins based on the problem types is given
in Table 4. Please note that the functionality provided in a plug-in does not necessarily have
to be the same as the functionality of the solver, e.g., ROI.plugin.nlminb can take functional
constraints nlminb can only take box constraints. Furthermore we want to emphasize that
ROI was built to be extended, as shown in Section 6.

5.5. ROI read/write
OPs are commonly stored in flat file formats, different solvers allow to read/write different
types of this file formats. ROI manages the reader/writer registered in the plug-ins, thus
allows to write
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Objective Constraints Types Bounds
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alabama X X X X
cbc X X X X X X
clp X X X X
cplex X X X X X X X X
deoptim X X X X
ecos X X X X X X X
glpk X X X X X X
gurobi X X X X X X X X
ipop X X X X X
lpsolve X X X X X X
mosek X X X X X X X
msbinlp X X X X X X
nlminb X X X X
nloptr X X X X
optimx X X X X
quadprog X X X X
scs X X X X X
symphony X X X X X X

Table 4: Currently available ROI plugins.

R> lp_file <- tempfile()
R> write.op(lp, lp_file, "lp_lpsolve")
R> writeLines(readLines(lp_file))

/* Objective function */
max: +3 C1 +7 C2 -12 C3;

/* Constraints */
+5 C1 +7 C2 +2 C3 <= 61;
+3 C1 +2 C2 -9 C3 <= 35;
+C1 +3 C2 +C3 <= 31;

/* Variable bounds */
-10 <= C3 <= 10;

and read

R> read.op(lp_file, "lp_lpsolve")

ROI Optimization Problem:
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Maximize a linear objective function of length 3 with
- 3 continuous objective variables,

subject to
- 3 constraints of type linear.
- 1 lower and 1 upper non-standard variable bound.

OPs in various formats. Information about the available reader/writer can be obtained via
the functions ROI_registered_reader() and ROI_registered_writer().

5.6. ROI models
In optimization test problem collections are commonly used to evaluate and compare the
performance of solvers. Thereby each class of optimization problems has its own test sets
stored in various formats, ROI currently provides access to NETLIB-LP, MIPLIB and
the globalOptTests package. The NETLIB-LP (Gay 1985) is a collection of linear pro-
gramming problems, which, even though the main part was created more than 30 years
ago is still used today. Mixed integer optimization problems are commonly evaluated us-
ing MIPLIB (Koch, Achterberg, Andersen, Bastert, Berthold, Bixby, Danna, Gamrath,
Gleixner, Heinz, Lodi, Mittelmann, Ralphs, Salvagnin, Steffy, and Wolter 2011), an exten-
sive collection of academic and industrial MILP applications. The globalOptTests (Mullen
2014a) package contains 50 box constrained nonlinear global OPs for benchmarking pur-
poses. These libraries were transformed into ROI optimization problems and can be accessed
through packages ROI.models.netlib, ROI.models.miplib (Schwendinger and Theussl 2017)
and ROI.models.globalOptTests (Schwendinger 2017). Since MIPLIB provides no license
file, the OPs are not included in the package but can be easily obtained with the function
miplib_download().

R> library("ROI.models.miplib")
R> if ( length(miplib()) == 0L ) {
+ miplib_download_benchmark(quiet = TRUE)
+ miplib_download_metainfo()
+ }
R> ops <- miplib("ns1766074")
R> ops

ROI Optimization Problem:

Minimize a linear objective function of length 100 with
- 10 continuous objective variables,
- 90 integer objective variables,

subject to
- 182 constraints of type linear.
- 0 lower and 0 upper non-standard variable bounds.

Since the problems are stored as objects of class ‘OP’ they can be directly entered into
ROI_solve. In the following we show a benchmark example, to make the example easily
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R> boxplot(benchmark, ylab = "Time in Milliseconds", xlab = NULL, unit = "ms",
+ outline = FALSE)
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Figure 1: LP solver benchmark.

reproducible, we only considered open source solvers and a small OP. However this can be
easily extended by adding solvers and iterating over more problems.

R> library("ROI.models.netlib")
R> library("microbenchmark")
R> agg <- netlib("agg")
R> x <- list()
R> benchmark <- microbenchmark(
+ ecos = (x$ecos <- ROI_solve(agg, "ecos")),
+ glpk = (x$glpk <- ROI_solve(agg, "glpk")),
+ lp_solve = (x$lp_solve <- ROI_solve(agg, "lpsolve")),
+ symphony = (x$symphony <- ROI_solve(agg, "symphony")),
+ times = 30)

ROI makes these data collections (test problem sets) available in a common format, so users
can easily compare the different solvers and developers interested in creating optimization
software can use them to test their packages. Furthermore, the intuitive structure of ROI
objects and its use of sparse data structures makes it possible to directly derive a new format
for the exchange of linear, quadratic and conic optimization problems.

R> library("jsonlite")
R> nested_unclass <- function(x) {
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+ x <- unclass(x)
+ if ( is.list(x) )
+ x <- lapply(x, nested_unclass)
+ x
+ }
R> agg_json <- toJSON(nested_unclass(agg))
R> tmp_file <- tempfile()
R> writeLines(agg_json, tmp_file)

The resulting text file can be easily imported into any programming language supporting
JavaScript Object Notation (JSON). JSON is an open-standard file format that can be parsed
by almost all programming languages. For historic reasons, OP collections are commonly
provided in flat file formats (e.g., MPS, QPS). We believe, that today it would be advantageous
to store them in general data exchange formats like JSON or XML.

5.7. ROI settings

Solver selection

In the case no solver is provided in ROI_solve, the default solver set in ROI_options will be
used.

R> ROI_options("default_solver")

[1] "auto"

By default the option "default_solver" is set to "auto" which enables automatic solver
selection, if any other solver name (e.g., "glpk") is provided the automatic solver selection is
discarded in favor of the specified solver.

R> ROI_options("default_solver", "glpk")

Load plug-ins

The plug-ins are loaded automatically, in some situations it is desirable to deactivate the
automatic loading and require plug-in packages one at a time. This can be accomplished by
setting the environment variable "ROI_LOAD_PLUGINS" to FALSE.

R> Sys.setenv(ROI_LOAD_PLUGINS = FALSE)

Afterwards the default load behavior of ROI is altered and only the "nlminb" solver (which
is included in ROI) gets registered when library("ROI") is called. Therefore all the other
plug-ins have to be loaded manually if needed (e.g., library("ROI.plugin.glpk")).

6. Extending ROI
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To stay abreast of changes and further the availability of different solvers in the ROI ecosys-
tem, ROI allows developers to integrate their own extensions, so called plug-ins. This can be
seen as one of the key features, since it allows the use of new solvers with no or minimal code
changes.
Extending ROI with a new solver method can be split into three parts. First, a function to
be called by ROI has to be written. Second, the function plus information about the function
are added into the ROI solver registry. Third, a mapping from the solver specific arguments
and the status codes to their ROI counterpart has to be provided.

6.1. Signatures

In order to establish a connection between the OP and the solvers provided via plug-ins,
both are equipped with a signature. The signature captures all the information necessary to
determine which solver is applicable to a given problem.

R> OP_signature(lp)

objective constraints bounds cones maximum C I B
1 L L V X TRUE TRUE FALSE FALSE

New signatures are created by the function ROI_plugin_make_signature(). The following
shows how to create the signature for the glpk solver,

R> glpk_signature <- ROI_plugin_make_signature(objective = "L",
+ constraints = "L", types = c("C", "I", "B", "CI", "CB", "IB", "CIB"),
+ bounds = c("X", "V"), maximum = c(TRUE, FALSE))

where the objective and the constraints have to be linear. Furthermore this signature indicates
that, the variable types are allowed to be binary ("B"), integer ("I"), continuous ("C") or
any combinations of them. The bounds have to be variable bounds ("V") or no bounds at all
encoded by "X". The last argument maximum specifies that, GLPK can find both maxima
and minima.

6.2. Writing a new solver method

Any function supposed to add a solver to ROI has to take the arguments x and control,
where x is of class ‘OP’ and control a list containing the additional arguments. Additionally
the solution has to be canonicalized before it is returned. The following shows the code from
ROI.plugin.glpk for solving linear problems.

R> glpk_solve_OP <- function(x, control = list()) {
+ control$canonicalize_status <- FALSE
+ glpk <- list(Rglpk_solve_LP, obj = terms(objective(x))[["L"]],
+ mat = constraints(x)$L, dir = constraints(x)$dir,
+ rhs = constraints(x)$rhs, bounds = bounds(x),
+ types = types(x), max = maximum(x), control = control)
+ mode(glpk) <- "call"
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+ if ( isTRUE(control$dry_run) )
+ return(glpk)
+
+ out <- eval(glpk)
+ ROI_plugin_canonicalize_solution(solution = out$solution,
+ optimum = out$optimum, status = out$status, solver = "glpk",
+ message = out)
+ }

As can be seen from this example, most plug-ins support the optional control argument
dry_run, which returns the solver call. This is especially useful for debugging wrapper func-
tions with more transformation steps, so the data used in the solver call can be easily shared
and inspected.

6.3. Register solver methods
Registering a solver method can be seen as telling ROI which function it should use when
ROI_solve with argument solver set to the name of the plug-in (e.g., "glpk") is called. In
order to avoid ambiguity, each plug-in should at most provide one method for each problem
type. Solver methods are registered via the function ROI_plugin_register_solver_method,
which takes as arguments the problem types (as signatures), the solver name and a wrapper
function ROI_solve() is dispatched to.

ROI_plugin_register_solver_method(glpk_signature, "glpk", glpk_solve_OP)

After the solver registration the name of the solver will appear among the registered solvers.

6.4. Adding additional information
To be able to provide a consistent interface, each plug-in has to define a mapping between the
solver specific status codes and the status codes used by ROI, as well as a mapping between
solver specific control variables and ROI control variables.

Status codes
Status codes can be added via the function ROI_plugin_add_status_code_to_db():

ROI_plugin_add_status_code_to_db(solver = "glpk", code = 5L,
symbol = "GLP_OPT",
message = "Solution is optimal.",
roi_code = 0L)

Here, the "glpk" specific status code 5L is mapped to the canonicalized ROI status code 0L,
which signals that the solution has been optimal as indicated by the status message.

Control variables
Plug-ins are contracted to provide a mapping between the names of the control variables used
by ROI and the names of the control variables used by the plug-in. The following maps the
glpk argument tm_limit to the ROI equivalent max_time.



Stefan Theussl, Florian Schwendinger, Kurt Hornik 37

ROI_plugin_register_solver_control(solver = "glpk", args = "tm_limit",
roi_control = "max_time")

6.5. Register reformulations
While in Section 5.3 we showed how to use reformulations, here we explain how new re-
formulations can be added through plug-ins. Again, the signature is used to define which
transformations can be performed by a given method.

R> bqp_signature <- ROI_plugin_make_signature(objective = "Q",
+ constraints = c("X", "L"), types = c("B"), bounds = c("X", "V"),
+ cones = c("X"), maximum = c(TRUE, FALSE))
R> milp_signature <- ROI_plugin_make_signature(objective = "L",
+ constraints = c("X", "L"),
+ types = c("C", "I", "B", "CI", "CB", "IB", "CIB"), bounds = c("X", "V"),
+ maximum = c(TRUE, FALSE), cones = c("X"))

ROI_plugin_register_reformulation(
from = bqp_signature, to = milp_signature, method_name = "bqp_to_lp",
method = bqp_to_lp, description = "", cite = "", author = "")

The code above registers the function bqp_to_lp(), which is based on the function
.linearize_BQP() from the relations package, as a new reformulation named "bqp_to_lp".
The parameter from defines which signatures the original problem is allowed to have and to
defines all possible signatures the reformulation could have.

6.6. Register reader/writer
Plug-ins can also add new read and write functions. Any method to be registered as read
function has to take as arguments file the file name and ... for optional additional argu-
ments.

R> library("slam")
R> json_reader_lp <- function(file, ...) {
+ stopifnot(is.character(file))
+ y <- read_json(file, simplifyVector = TRUE)
+ to_slam <- function(x) do.call(simple_triplet_matrix, x)
+ x <- OP()
+ objective(x) <- L_objective(to_slam(y[["objective"]][["L"]]),
+ y[["objective"]][["names"]])
+ constraints(x) <- L_constraint(to_slam(y[["constraints"]][["L"]]),
+ y[["constraints"]][["dir"]], y[["constraints"]][["rhs"]],
+ y[["constraints"]][["names"]])
+ types(x) <- y[["types"]]
+ bounds(x) <- structure(y[["bounds"]], class = c("V_bound", "bound"))
+ maximum(x) <- as.logical(y[["maximum"]])
+ x
+ }
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The write functions need the additional argument x, which is the OP to be written out.

R> json_writer_lp <- function(x, file, ...) {
+ writeLines(toJSON(nested_unclass(x), null = "null"), con = file)
+ }

Using the JSON based exchange format propagated in Section 5.6, we illustrate how to register
simple JSON read and write functions for linear problems.

R> plugin_name <- "io"
R> ROI_plugin_register_writer("json", plugin_name, milp_signature,
+ json_writer_lp)
R> ROI_plugin_register_reader("json", plugin_name, json_reader_lp)

After the registration of the functions they can be used in the typical way.

R> fname <- tempfile()
R> file <- write.op(lp, file = fname, type = "json")
R> (lp_json <- read.op(file = fname, type = "json"))

ROI Optimization Problem:

Maximize a linear objective function of length 3 with
- 3 continuous objective variables,

subject to
- 3 constraints of type linear.
- 1 lower and 1 upper non-standard variable bound.

6.7. ROI tests

Writing tests is an important task in software development. The ROI.tests package provides
a collection of tests which should be applied to any ROI plug-in during development. Since
ROI knows the signature of each solver, ROI.tests can select the appropriate tests based on
the solver name.

R> library("ROI.tests")
R> test_solver("glpk")

LP-01: OK!
LP-02: OK!
LP-03: OK!
MILP-01: OK!
MILP-02: OK!

7. Applications



Stefan Theussl, Florian Schwendinger, Kurt Hornik 39

In the following we demonstrate how ROI can be used to solve selected problems from statis-
tics.

7.1. Best subset selection

Recently Bertsimas et al. (2016) reported a bewildering 450 billion factor speedup from 1991
to 2015 for solving MIP, which is partly due to algorithmic improvements and partly through
hardware speedups. They show how this speed gain can be utilized to solve the best subset
selection problem in regression (see for example Miller 2002), which is an NP hard combi-
natorial OP. The best subset selection problem is a variable selection scheme which extends
linear least-squares by adding a constraint on the number of predictor variables.

minimize
β

1
2 ||y −Xβ||

2
2 subject to

p∑
i=1

I{βi 6=0} ≤ k (28)

As Equation 28 suggests the best subset selection is in spirit similar to ridge regression and
lasso. However instead of the l2 and l1 norm best subset selection uses the l0 norm which
makes it non-convex and therefore hard to solve. The leaps (Lumley 2017) package imple-
ments an efficient branch-and-bound algorithm which is significantly faster than exhaustive
search. Using a optimization solver has the additional advantage that it is possible to im-
pose additional restrictions, like if the quadratic term of a covariate is selected to be in the
equation the linear term has also to be selected. In ROI best subset selection can be either im-
plemented as mixed integer quadratic problem or as mixed integer second order cone problem.
An implementation of the second order cone version can be found in the Appendix B.

7.2. Sum-of-norms clustering

Borrowing ideas from regularization, sum-of-norms (SON) clustering (convex clustering) is
an interesting alternative to established clustering approaches like hierarchical or k-means
clustering, which has attracted a lot of research in recent years (Pelckmans, De Brabanter,
De Moor, and Suykens 2005; Lindsten, Ohlsson, and Ljung 2011; Hocking, Joulin, Bach, and
Vert 2011; Zhu, Xu, Leng, and Yan 2014; Chi and Lange 2015; Tan, Witten et al. 2015).
Pelckmans et al. (2005); Hocking et al. (2011) describe SON clustering as a convexification of
hierarchical clustering and Lindsten et al. (2011) establish that SON clustering can be seen
as a convex relaxation of k-means clustering. Due to its convexity, SON clustering is not
dependent on the starting values, which is a clear advantage over the non-convex k-means
and hierarchical clustering.

SON clustering solves the following convex OP,

minimize
Mi

1
2

m∑
i=1
||Xi∗ −Mi∗||22 + λ

∑
i<j

||Mi∗ −Mj∗||q (29)

where q ∈ {1, 2,∞}, X ∈ Rm×n is the data matrix and Mi∗ the i-th row of the optimization
variable M . The regularization term λ

∑
i<j ||Mi∗ − Mj∗||q induces equal rows Mi∗. For

λ = 0 all rows are unique and M is equal to X, when λ increases the number of unique rows
of M will decrease. This gives a clustering where all equal rows belong to the same cluster.
By solving Equation 29 for different λi, where λ1 < λ2 < · · · < λk−1 < λk, one can obtain a
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hierarchical clustering tree (Pelckmans et al. 2005).

There exist at least two implementations of SON clustering in R, Hocking et al. (2011) pro-
vide their code on R-Forge (https://r-forge.r-project.org/projects/clusterpath/)
and Chi and Lange (2015) provide a fast implementation of SON clustering on CRAN
(https://cran.r-project.org/package=cvxclustr).

A ROI formulation as SOCP of SON clustering can be found in the Appendix C.

7.3. Graphical lasso

Obtaining good estimates of the covariance matrix Σ is important in modern statistics. Often
Σ is not estimated directly but its inverse, the precision matrix Θ = Σ−1 (e.g., Meinshausen
and Bühlmann (2006)). Estimating the precision matrix instead of the covariance matrix has
the advantage that there is a direct connection between the precision matrix and Gaussian
graphical models, in the sense that the precision matrix defines the structure of the Gaussian
graphical model. Since the elements of the precision matrix are the partial correlations, Θij

is zero if and only if i and j are conditionally independent. Translated to Gaussian graphical
models, two edges A and B are only connected if the corresponding entry in the precision
matrix is non zero (Lauritzen 1996).
Several authors proposed an algorithm connected to the lasso (Tibshirani 1996), to obtain
a sparse estimate of the precision matrix, the so-called graphical lasso (glasso) (Friedman,
Hastie, and Tibshirani 2008). The glasso solves the following convex OP,

minimize Θ�0 f(Θ) = − log(det(Θ)) + tr(S Θ) + λ ||X||1 (30)

here the data matrix X ∈ Rm×p is assumed to be generated from a p-dimensional multivariate
normal distribution Np(µ,Σ) and S is the sample covariance matrix of X. Making use of the
exponential and semidefinite cone, this can be brought into the CP standard form and solved
by ROI using SCS. The corresponding R code can be found in the Appendix D.

8. Conclusions
In this paper we presented the ROI package and its extensions (plug-ins). ROI provides a
consistent way to model OPs in R. Thereby it makes strong use of R’s generic functions, such
that users already familiar with R are not obligated to learn a new language. The plug-in
packages equip ROI with optimization solvers and predefined optimization models. ROI is
currently applicable to linear, quadratic, conic and general nonlinear OPs and provides access
to eighteen solvers and three model plug-ins.
We illustrated how ROI can be used to solve OPs from many different problem classes. Fur-
thermore, we have shown how ROI can be used to solve challenging statistical problems like
best subset, convex clustering and glasso. The plug-in package ROI.plugin.msbinlp (Hornik,
Meyer, and Schwendinger 2017b) serves as an example to highlight the benefit of the devel-
opment of new packages based on ROI. The main benefit is that there is no need to have
a dependency on a specific solver which could be also interesting for the implementation of
nonlinear optimization algorithms (e.g., sequential quadratic programming). Another benefit

https://r-forge.r-project.org/projects/clusterpath/
https://cran.r-project.org/package=cvxclustr
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is that package authors can reuse test cases from other packages based on ROI and the plug-in
package ROI.tests provides a standardized way to test new solver plug-ins.
Although ROI already is able to cope with a wide range of optimization problems, there
are still many possibilities for extensions. These include extending the supported functional
forms of the objective functions and constraints as well as adding additional solvers or model
collections through plug-ins. The following gives an overview of the planned extensions.

• Add solver for non-convex QPs (prototype for COIN-OR qpOASES (Ferreau, Kirches,
Potschka, Bock, and Diehl 2014) solver interface is already on R-Forge).

• Add solver for mixed integer nonlinear problems, since Couenne (Belotti, Lee, Liberti,
Margot, and Wächter 2009) is built on top of Ipopt (Wächter and Biegler 2006) and
Bonmin (Bonami and Lee 2013) these solvers are also included in the interface.

• Add reader for the QPLIB file format (Furini, Traversi, Belotti, Frangioni, Gleixner,
Gould, Liberti, Lodi, Misener, Mittelmann, Sahinidis, Vigerske, and Wiegele 2017).

• Add neos solver plug-in, at least for linear and quadratic problems the transforma-
tion into formats acceptable by the neos server (https://neos-guide.org/) should be
possible.

• Add plotting methods.

• Explore possibilities of supervised solver recommendation.

We are working on extending the amount of solvers and resources available through ROI.
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A. Tables

Package Library Objective Constraints Mixed Integer
1 alabama functional nonlinear No
2 BB functional no No
3 cccp conic conic No
4 clpAPI clp linear linear No
5 CLSOCP conic conic No
6 clue:::sumt functional nonlinear No
7 DEoptim functional box No
8 dfoptim functional box No
9 ECOSolveR ECOS conic conic Yes
10 GenSA functional box No
11 glpkAPI, Rglpk GLPK linear linear Yes
12 kernlab:::ipop quadratic linear No
13 lbfgsb3 functional box No
14 LowRankQP quadratic linear No
15 lpSolve, lpSolveAPI lp_solve linear linear Yes
16 minqa functional box No
17 NlcOptim functional nonlinear No
18 nloptr NLopt functional nonlinear No
19 optimx functional box No
20 quadprog quadratic linear No
21 rcdd cddlib linear linear No
22 Rcgmin functional box No
23 Rcsdp CSDP conic conic No
24 Rdsdp DSDP conic conic No
25 rgenoud functional box No
26 Rmalschains functional box No
27 Rsolnp functional nonlinear No
28 Rsymphony symphony linear linear Yes
29 Rvmmin functional box No
30 scs scs conic conic No
31 soma functional box No
32 stats functional box No
33 trustOptim functional no No
34 ucminf functional box No

Table 5: Overview optimization packages in R.

Method Package Type Constraint G H J
1 auglag alabama local nonlinear Yes No Yes
2 dfsane BB local no No No No
3 sumt clue local nonlinear Yes No No
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4 DEoptim DEoptim global box No No No
5 hjkb dfoptim local box No No No
6 nmk dfoptim local box No No No
7 GenSA GenSA global box No No No
8 LBFGSB3 lbfgsb3 local box Yes No No
9 SANN stats global no No No No

10 Nelder-Mead stats / optimx local no No No No
11 BFGS stats / optimx local no Yes No No
12 L-BFGS-B stats / optimx local box Yes No No
13 CG stats / optimx local no Yes No No
14 nlminb stats / optimx local box Yes Yes No
15 nlm stats / optimx local no Yes Yes No
16 ucminf ucminf / optimx local box Yes No No
17 uobyqa minqa / optimx local no No No No
18 newuoa minqa / optimx local no No No No
19 bobyqa minqa / optimx local box No No No
20 Rcgmin Rcgmin / optimx local box Yes No No
21 Rvmmin Rvmmin / optimx local box Yes No No
22 spg BB / optimx local box Yes No No
23 NlcOptim NlcOptim local nonlinear No No No
24 auglag nloptr local nonlinear Yes No Yes
25 bobyqa nloptr local box No No No
26 cobyla nloptr local nonlinear No No No
27 DIRECT nloptr global box No No No
28 isres nloptr global nonlinear No No No
29 lbfgs nloptr local box Yes No No
30 mlsl nloptr global box Yes No No
31 mma nloptr local nonlinear Yes No Yes
32 nedlermead nloptr local box No No No
33 newuoa nloptr local no No No No
34 sbplx nloptr local box No No No
35 slsqp nloptr local nonlinear Yes No Yes
36 stogo nloptr global box Yes No No
37 tnewton nloptr local box Yes No No
38 varmetric nloptr local box Yes No No
39 genoud rgenoud global box Yes No No
40 solnp Rsolnp local nonlinear No No No
41 MA-LS-Chains Rmalschains global box No No No
42 soma soma global box No No No
43 trustOptim trustOptim local no Yes Yes No
44 DEoptim RcppDE global box No No No
45 JDEoptim DEoptimR global nonlinear No No No
46 ga GA global box No No No
47 mcga mcga global box No No No
48 mcga2 mcga global box No No No
49 psoptim pso global box Yes No No
50 psoptim psoptim global box No No No
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51 cma_es cmaes global box No No No
52 cmaes cmaesr global no No No No
53 cmaes parma global box No No No
54 GAopt NMOF global no No No No
55 DEopt NMOF global box No No No
56 LSopt NMOF global no No No No
57 PSopt NMOF global box No No No
58 TAopt NMOF global no No No No
59 GrassmannOptim GrassmannOptim local no Yes No No
60 lbfgs lbfgs local no Yes No No
61 powell powell local no No No No
62 ceimOpt RCEIM local box No No No
63 subplex subplex local no No No No
64 ipoptr ipoptr local nonlinear Yes Yes Yes
65 Rdonlp2 Rdonlp2 local nonlinear No No No
66 Rnlminb2 Rnlminb2 local nonlinear Yes Yes No
67 CMAES adagio global box No No No
68 snomadr crs local nonlinear No No No
69 multimin gsl local no Yes No No
70 hydroPSO hydroPSO global box No No No
71 neldermead neldermead local nonlinear No No No
72 cmaOptimDP rCMA local nonlinear No No No
73 trust trust local no Yes Yes No

Table 6: GPS in R and their capability to handle type, con-
straint, gradient (G), Hessian (H), Jacobian (J) information.
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B. Best subset selection

R> subset_selection <- function(A, b, k, beta_lb = -1000, beta_ub = 1000,
+ count_intercept = FALSE, solver = "auto",
+ ...) {
+ control <- list(...)
+ Q <- 2 * t(A) %*% A
+ L <- -2 * t(b) %*% A
+ x <- OP(objective = Q_objective(Q=Q, L=L),
+ bounds = V_bound(li = seq_len(nrow(Q)),
+ lb = rep.int(-Inf, nrow(Q))))
+ y <- ROI_reformulate(x, "socp")
+ n <- length(objective(x))
+ x <- OP(objective = c(terms(objective(y))$L, double(n)))
+ L <- constraints(y)$L
+ L <- cbind(L, simple_triplet_zero_matrix(nrow(L), n))
+
+ if ( length(beta_lb) == 1L ) beta_lb <- rep.int(beta_lb, n)
+ if ( length(beta_lb) == 1L ) beta_ub <- rep.int(beta_ub, n)
+
+ LB <- cbind(simple_triplet_diag_matrix(-1, n),
+ simple_triplet_zero_matrix(n, 1),
+ simple_triplet_diag_matrix(beta_lb, n))
+ UB <- cbind(simple_triplet_diag_matrix(1, n),
+ simple_triplet_zero_matrix(n, 1),
+ simple_triplet_diag_matrix(-beta_ub, n))
+
+ if (count_intercept) {
+ SUM <- cbind(simple_triplet_zero_matrix(1, n+1), matrix(1, 1, n))
+ } else {
+ SUM <- cbind(simple_triplet_zero_matrix(1, n+2), matrix(1, 1, n-1))
+ }
+
+ constraints(x) <- C_constraint(rbind(L, LB, UB, SUM),
+ c(constraints(y)$cones,
+ K_lin(n), K_lin(n), K_lin(1L)),
+ c(constraints(y)$rhs, double(n),
+ double(n), k))
+
+ types(x) <- c(rep.int("C", length(objective(y))), rep.int("B", n))
+ len <- length(objective(x))
+ bounds(x) <- V_bound(li = seq_len(len), lb = rep.int(-Inf, len))
+ maximum(x) <- maximum(y)
+
+ if ( isTRUE(control$dry_run) )
+ return(x)
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+ z <- ROI_solve(x)
+ head(solution(z), n)
+ }

C. SON clustering

R> convex_clust <- function(A, gamma, solver = "auto", control = list()) {
+ m <- nrow(A)
+ n <- ncol(A)
+ ncombn <- ( m * (m-1) / 2 )
+ k <- ncombn * (n+1)
+ obj <- c(rep.int(0, n * m), 1/2, rep.int(gamma, ncombn))
+ b <- c(1, -1, 2*as.double(A), rep.int(0, k))
+ L <- simple_triplet_zero_matrix(nrow = 2 + n * m + k,
+ ncol = n * m + 1 + ncombn)
+ L[1, n*m+1] <- -1
+ L[2, n*m+1] <- -1
+ L[2+seq_len(n * m), seq_len(n * m)] <- diag(2, n * m)
+
+ ko <- combn(seq_len(m), 2)
+ M <- matrix(seq_len(n*m), m, n, byrow=FALSE)
+ irow <- n * m + 3
+ cones <- K_soc(n*m+2)
+ for ( i in seq_len(ncol(ko)) ) {
+ L[irow, n * m + 1 + i] <- -1
+ cones <- c(cones, K_soc(n+1))
+ irow <- irow + 1
+ for (j in seq_len(n)) {
+ L[irow, M[ko[,i], j]] <- c(-1, 1)
+ irow <- irow + 1
+ }
+ }
+
+ op <- OP(objective=L_objective(obj),
+ constraints = C_constraint(L=L, cones=cones, rhs=b),
+ bounds = V_bound(ld = -Inf, nobj = nrow(L)))
+ if ( isTRUE(control$dry_run) )
+ return(op)
+
+ x <- ROI_solve(op, solver, control)
+ matrix(x$solution[seq_len(n*m)], m, n)
+ }
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D. Graphical lasso

R> index_to_vech <- function(i, j, n) {
+ ind_to_vech <- function(i, j, n) {
+ if (j > i) return(NA)
+ (j - 1) * n + i - (j - 1) * j / 2
+ }
+ unlist(mapply(ind_to_vech, i, j, MoreArgs = list(n = n),
+ SIMPLIFY = FALSE, USE.NAMES = FALSE),
+ recursive = FALSE, use.names = FALSE)
+ }

R> ROI_glasso <- function(s, rho, solver = "auto", ...) {
+ stopifnot(nrow(s) > 1)
+ control <- list(...)
+ stm <- simple_triplet_matrix
+ n <- nrow(s); nv <- (n + 1) * n / 2; nij <- choose(n, 2)
+ ndzx <- (2 * n + 1) * 2 * n / 2
+ seqn <- seq_len(n); seqnv <- seq_len(nv); seqnij <- seq_len(nij)
+
+ obj <- c(as.vector(vech(s + s * lower.tri(s))), double(ndzx))
+ A <- simple_triplet_diag_matrix(-1, nv + ndzx)
+ cones <- K_psd(c(nv, ndzx))
+
+ ij <- combn(seqn, 2)
+ k <- index_to_vech(n + ij[1,], ij[2,], 2 * n)
+ Z_UPPER <- stm(seqnij, nv + k, rep.int(1, nij), nrow = nij,
+ ncol = nv + ndzx)
+ cones <- c(cones, K_zero(nij))
+
+ k <- index_to_vech(ij[2,], ij[1,], 2 * n)
+ D_DIAG <- stm(seqnij, nv + k, rep.int(1, nij), nrow = nij,
+ ncol = nv + ndzx)
+ cones <- c(cones, K_zero(nij))
+
+ kd <- index_to_vech(seqn, seqn, 2 * n)
+ kz <- index_to_vech(n + seqn, seqn, 2 * n)
+ EQ_DIAG <- stm(c(seqn, seqn), nv + c(kd, kz),
+ c(rep.int(-1, n), rep.int(1, n)),
+ nrow = n, ncol = nv + ndzx)
+ cones <- c(cones, K_zero(n))
+ A <- rbind(A, rbind(Z_UPPER, D_DIAG, EQ_DIAG))
+
+ EQ_X <- stm(c(seqnv, seqnv), c(seqnv, ndzx + seqnv),
+ c(rep.int(-1, nv), rep.int(1, nv)),
+ nrow = nv, ncol = ncol(A))
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+ cones <- c(cones, K_zero(nrow(EQ_X)))
+ A <- rbind(A, EQ_X)
+ rhs <- double(nrow(A))
+
+ obj <- c(obj, rep.int(-1, n))
+ j <- nv + kd
+ LOG <- stm(c(3 * seqn, 3 * seqn - 2), c(j, ncol(A) + seqn),
+ rep.int(-1, 2 * n), nrow = 3 * n, ncol = ncol(A) + n)
+ A <- rbind(cbind(A, simple_triplet_zero_matrix(nrow(A), n)), LOG)
+ cones <- c(cones, K_expp(n))
+ rhs <- c(rhs, rep.int(c(0, 1, 0), n))
+
+ rho_matrix <- matrix(rho, n, n)
+ obj <- c(obj, vech(rho_matrix + rho_matrix * lower.tri(rho_matrix)))
+ NORM <- stm(i = c(seq_len(2 * nv), seq_len(2 * nv)),
+ j = c(seqnv, seqnv, ncol(A) + seqnv, ncol(A) + seqnv),
+ v = c(rep.int(1, nv), rep.int(-1, 3 * nv)),
+ nrow = 2 * nv, ncol = ncol(A) + nv)
+ A <- rbind(cbind(A, simple_triplet_zero_matrix(nrow(A), nv)), NORM)
+ cones <- c(cones, K_lin(2 * nv))
+ rhs <- c(rhs, double(2 * nv))
+
+ model <- OP(objective = L_objective(obj),
+ constraints = C_constraint(A, cones = cones, rhs = rhs),
+ bounds = V_bound(ld = -Inf, nobj = length(obj)))
+
+ if ( isTRUE(control$dry_run) )
+ return(model)
+
+ so <- ROI_solve(model, solver=solver, control)
+ Y <- matrix(0, n, n)
+ Y[lower.tri(Y, diag=TRUE)] <- so$solution[seq_len(n * (n+1) / 2)]
+ Y[upper.tri(Y)] <- t(Y)[upper.tri(Y)]
+ list(w=chol2inv(chol(Y)), wi=Y,
+ errflag=so$status$code, niter=so$message$info$iter)
+ }

E. Abbreviations
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Abbreviation Full Name
BLP Binary Linear Programming
CP Conic Programming
IP Integer Programming
LP Linear Programming
MILP Mixed Integer Linear Programming
MIP Mixed Integer Programming
NLP Nonlinear Programming
QCQP Quadraticly Constraint Quadratic Programming
QP Quadratic Programming
SDP Semidefinite Programming
SOCP Second Order Cone Programming
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