
Boise State University
ScholarWorks
Respiratory Therapy Faculty Publications and
Presentations Department of Respiratory Therapy

2-1-2018

Clinical Management of Pressure Control
Ventilation: An Algorithmic Method of Patient
Ventilatory Management to Address “Forgotten but
Important Variables”
Lonny Ashworth
Boise State University

Yasuhiro Norisue
Tokyo Bay Urayasu Ichikawa Medical Center

Megan Koster
Boise State University

Jeff Anderson
Boise State University

Junko Takada
Tokyo Bay Urayasu Ichikawa Medical Center

See next page for additional authors

This document was originally published in Journal of Critical Care by Elsevier. This work is provided under a Creative Commons Attribution-Non
Commercial-No Derivatives 4.0 International license. Details regarding the use of this work can be found at: http://creativecommons.org/licenses/by-
nc-nd/4.0/ doi: 10.1016/j.jcrc.2017.08.046

Publication Information
Ashworth, Lonny; Norisue, Yasuhiro; Koster, Megan; Anderson, Jeff; Takada, Junko; and Ebisu, Hatsuyo. (2018). "Clinical
Management of Pressure Control Ventilation: An Algorithmic Method of Patient Ventilatory Management to Address “Forgotten but
Important Variables”". Journal of Critical Care, 43, 169-182. http://dx.doi.org/10.1016/j.jcrc.2017.08.046

https://scholarworks.boisestate.edu
https://scholarworks.boisestate.edu/resp_facpubs
https://scholarworks.boisestate.edu/resp_facpubs
https://scholarworks.boisestate.edu/respiratory
http://dx.doi.org/10.1016/j.jcrc.2017.08.046
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jcrc.2017.08.046


Authors
Lonny Ashworth, Yasuhiro Norisue, Megan Koster, Jeff Anderson, Junko Takada, and Hatsuyo Ebisu

This article is available at ScholarWorks: https://scholarworks.boisestate.edu/resp_facpubs/11

https://scholarworks.boisestate.edu/resp_facpubs/11


Clinical management of pressure control ventilation: An algorithmic
method of patient ventilatory management to address “forgotten but
important variables”☆
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Junko Takada, PT RRT b, Hatsuyo Ebisu, RN RRT b

a Boise State University, Department of Respiratory Care, 1910 University Drive, Boise, ID, USA
b Department of Pulmonary and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, 3-4-32 Todaijima, Urayasu City, Chiba 2790001, Japan

a b s t r a c ta r t i c l e i n f o

Available online xxxx Pressure controlled ventilation is a commonmode of ventilation used to manage both adult and pediatric popu-
lations. However, there is very little evidence that distinguishes the efficacy of pressure controlled ventilation
over that of volume controlled ventilation in the adult population. This gap in the literature may be due to the
absence of a consistent and systematic algorithm for managing pressure controlled ventilation. This article pro-
vides a brief overview of the applications of both pressure controlled ventilation and volume controlled ventila-
tion and proposes an algorithmic approach to the management of patients receiving pressure controlled
ventilation. This algorithmic approach highlights the need for clinicians to have a comprehensive conceptual un-
derstanding of mechanical ventilation, pulmonary physiology, and interpretation of ventilator graphics in order
to best care for patients receiving pressure controlled ventilation. The objective of identifying a systematic ap-
proach to managing pressure controlled ventilation is to provide a more generalizable and equitable approach
to management of the ICU patient. Ideally, a consistent approach to managing pressure controlled ventilation
in the adult population will glean more reliable information regarding actual patient outcomes, as well as the ef-
ficacy of pressure controlled ventilation when compared to volume controlled ventilation.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Pressure control as a mode of ventilation was developed in the
1980's as an option to treat Acute Respiratory Distress Syndrome
(ARDS) [1]. Pressure Control Ventilation (PCV), typically available as
Pressure control–continuous mandatory ventilation (PC-CMV) or Pres-
sure control-intermittent mandatory ventilation (PC-IMV), was de-
signed to deliver mechanical breaths at a set inspiratory
pressure—allowing clinicians to control the amount of distending pres-
sure applied to airways and subsequently, to the alveoli. Because the
amount of driving pressure applied to the airway is preset, the delivered
volume is variable and dependent upon the patient's inspiratory effort,
pulmonary mechanics (i.e. pulmonary compliance, airway resistance
andAutoPEEP) and to a lesser extent, other ventilator settings, including
rise time and inspiratory time.

The ability of the clinician to use PC-CMV to best treat a patient with
variable and often poor pulmonary mechanics depends upon an in-
depth understanding of themode and how to safely apply it to the spe-
cific patient management scenario. Although nearly all ventilator man-
ufacturers now include one, if not several, options for PC-CMV or PC-
IMV, relatively little information is available to clinicians on how best
to utilize the functions within thesemodes in a way that is most advan-
tageous for their patients.

In reviewing the existing literature on the topic of algorithmic pa-
tientmanagement—specifically, literature explicit to PCV, it is important
to note that there was no consistency in how authors address or ap-
proach methods of PCV management between and among studies.
This inconsistency may highlight a true lack of consensus among lead-
ing physicians and respiratory therapists on how best to utilize pressure
control ventilation. This article does not attempt to dictate a manage-
ment approach; rather, the goal of this article is to first provide a brief
overview of how PC-CMV differs from modes of volume ventilation,
then to highlight the detailed nature of the relationships between pul-
monary mechanics and PC-CMV settings and finally, to suggest a
broad, yet systematic, algorithmic approach to managing patients in
the Intensive Care Unit who are ventilated using PC-CMV.
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2. Pressure and volume controlled modes of ventilation

Pressure-controlled ventilation (PCV) is a pressure-targeted, time-
cycled mode of ventilation. During inspiration, the ventilator adjusts
the flowrate to keep the airway pressure at the set level. The clinician
sets the peak inspiratory pressure (PIP), respiratory rate (f), inspiratory
time (TI), positive end expiratory pressure (PEEP) and fraction of in-
spired oxygen (FIO2). The clinician also sets how quickly the PIP will
be reached with a control usually named slope, rise time or ramp, de-
pending upon the brand of the ventilator. The most common mode of
PCV is pressure-targeted assist-control (PC-CMV), in which aminimum
respiratory rate is set, but the patient is allowed to trigger additional
breaths. Each breath, whether it is delivered at the set respiratory rate
or an additional breath triggered by the patient, is delivered at the set
PIP and the set TI.

Volume-controlled ventilation (VCV) is a volume-targeted mode in
which the tidal volume, respiratory rate (f), PEEP, inspiratory flowrate,
flow waveform, inspiratory pause time and inspiratory time are con-
trolled. The most common mode of VCV is volume-targeted assist-con-
trol (VC-CMV), inwhich aminimum f is set, but the patient is allowed to
trigger additional breaths. Each breath, regardless of whether it is pa-
tient or machine-triggered, will be delivered at the set tidal volume;
however, the airway pressure may vary as the patient's airway resis-
tance (Raw), compliance (C) and effort change.

3. Patient-ventilator synchrony during VC-CMV and PC-CMV

Although VC-CMV guarantees tidal volume, which appears to be an
ideal mode for “lung protective strategy”, many clinicians prefer PC-
CMV to VC-CMV. Themain reason for the preference is probably the su-
periority in patient-ventilator synchrony and thus patient comfort dur-
ing PC-CMV. To meet the respiratory demands of a patient, the
ventilator's flow and pressure delivery must synchronize with the
patient's respiratory demands. The fact that a patient is able to control
inspiratory flowrate is the most important aspect of PC-CMV in terms
of patient-ventilator synchrony.

During PC-CMV, as the patient's airway resistance, compliance or ef-
fort changes, the inspiratory flowrate and tidal volume (VT) will poten-
tially change. To have a constant airway pressure during PC-CMV, the
ventilator varies the inspiratory flow based upon the inspiratory
flowrate of the patient. In other words, the spontaneously breathing pa-
tient is able to vary the inspiratory flowrate, and thus the tidal volume
as well, depending on his/her inspiratory effort, in contrast to VC-CMV
where the inspiratory flow is set by the clinician [2]. When the patient's
flow demand is not met in VC-CMV, it is common that the demand for
tidal volume is not met. As a result, flow asynchrony is frequently ac-
companied by cycle asynchrony and double triggering.

4. Comparing VC-CMV to PC-CMV in the literature

Studies have been published since the early 1990's comparing VC-
CMV and PC-CMV. An article by Rittayami et al., published in 2015,
was a comprehensive review of published studies comparing VC-CMV
to PC-CMV. According to Rittayami, there were no differences in physi-
ologic or clinical outcomes between the two modes and that adjusting
the ventilator settings based upon the patient's individual characteris-
tics may help to reduce lung damage, minimize work of breathing,
and improve patient comfort [3]. Findings froma 2015 Cochrane Review
by Chacko, et al., stated that there was insufficient evidence that PC-
CMV improved outcomes for people with acute lung injury when com-
pared to VC-CMV. The authors suggested that not only more, but larger
studies may provide evidence as to whether PC-CMV improves out-
comes when compared to VC-CMV [4].

In reviewing the existing literature on the topic, it is important to
note that there was no consistency in how a PC-CMV algorithmwas ap-
plied to ventilator management between studies. The lack of a

consistently applied algorithm across studies that investigate the use
of PC-CMV may account for some of the variability in identifying the
key differences between outcomes of patients ventilated using either
VC-CMV or PC-CMV. For example, when using VC-CMV in a patient
who has a respiratory acidosis, the options for ventilator changes to en-
hance CO2 removal generally include increasing the tidal volume, in-
creasing the respiratory rate, or both. When ventilating a similar
patient with PC-CMV, although the options for enhancing CO2 removal
are mainly considered to be increasing the inspiratory pressure and f,
these options may have little effect and could be harmful due to in-
creased asynchrony under certain conditions. There are a number of ad-
justments that should be considered even before changing the two easy
and attractive variables to help with CO2 removal if clinicians fully un-
derstand the lungmechanics and ventilator graphics, whichmay poten-
tially reduce patient ventilator asynchrony, ventilator days, and
hopefully even mortality. The algorithm we suggest in this article pro-
vides clinicians with a systematic approach to adjust PC-CMV settings.

5. Prerequisite physiological knowledge regarding inspiratory time,
expiratory time and inspiratory pressure before using PC-CMV

5.1. Time constant and autoPEEP

The time constant (TC) is a mathematical relationship between the
airway resistance and static compliance, and is related to the time it
takes to get gas into and out of the lung.

Inspiratory Raw ¼ PIP−Pplat
� �

=Flowrate l= secð Þ

Cst ¼ VTE= Pplat−PEEP
� �

Cdyn ¼ VTE= PIP−PEEPð Þ

TC ¼ Rawð Þ Cstð Þ

Where: Raw= airway resistance (cm H2O/l/s); Cst = static compli-
ance (l/cm H2O); Cdyn = dynamic compliance (l/cm H2O); VTE = ex-
haled tidal volume (l); Pplat = plateau pressure, equivalent to average
alveolar pressure at end inspiration (cm H2O); PIP = peak inspiratory
pressure (cm H2O); TC = time constant (seconds).

The following two examples demonstrate a difference in the time
constant for two patients. In a patient with COPD who is intubated
and mechanically ventilated, the airway resistance may be 25 cm H2O/
l/s and the compliance may be 0.04 l/cm H2O. The expiratory resistance
will be higher than the inspiratory resistance in these patients, which
results in a longer expiratory time constant [5]. In this case the inspira-
tory time constant would be 1.0 s (25 cmH2O/l/s × 0.04 l/cmH2O). In a
patient with ARDS who is intubated and mechanically ventilated, the
airway resistance may be 12 cm H2O/l/s and the compliance may be
0.02 l/cm H2O. In this case the time constant would be 0.24 s (12 cm
H2O/l/s × 0.02 l/cm H2O).

The inspiratory time constant refers to the amount of inspiratory
time required for the alveolar pressure to reach the set pressure during
PC-CMV. The inspiratory timemust be equal to at least three and as long
as five time constants for the alveolar pressure to approximate the set
inspiratory pressure [5,6,7]. If the airway resistance or compliance in-
creases, the inspiratory time constant will increase, and more time
will be required for the alveolar pressure to reach the set pressure. If air-
way resistance or pulmonary compliance decreases, the inspiratory
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time constant will decrease and it will take less time for the alveolar
pressure to reach the set pressure.

The expiratory time constant influences the amount of expiratory
time required for the patient to passively exhale to the PEEP level and
prevent AutoPEEP. The expiratory time must be equal to at least three
to five expiratory time constants for the patient to exhale andminimize
or prevent AutoPEEP [6,7]. If the airway resistance or compliance in-
creases, the expiratory time constant will increase, and more time will
be required for complete exhalation and to prevent AutoPEEP. If airway
resistance or pulmonary compliance decreases, the expiratory time con-
stant will decrease and it will take less time for complete exhalation to
prevent AutoPEEP.

6. Inspiratory pressure on PC-CMV

During PC-CMV, the manner in which the clinician sets the inspira-
tory pressure (PI) varies depending upon the specific ventilator used.
When using some ventilators, such as the Servo i or Servo U (Maquet),
Puritan Bennett (PB) 840 or 980, and CareFusion's Avea, PI is set directly.
In other words, changes in PEEPwill affect the total pressure but not the
distending pressure. In these cases, the PIP= PI + PEEP. In other venti-
lators such as the Drager Evita XL and Drager V500 ventilators, PI is set
as the difference between PIP and PEEP. In other words, PIP is set direct-
ly and the inspiratory pressure setting is referenced to atmospheric
pressure not PEEP. This is an important distinction - increases in PEEP
will now decrease the distending pressure and vice versa.

The average alveolar pressure is estimated as the plateau pressure
(Pplat) during a 0.5–2.0 s inspiratory hold. It is recommended tomonitor
and keep thePplatb25–30 cmH2O in all ventilatedpatients in traditional
“lung protective strategy”. In addition to monitoring the absolute num-
ber of Pplat, increasing evidence is being published emphasizing the
importance of targeting a Pplat – PEEP (ΔP) of b16 cm H2O, especially
in patients with severe ARDS. It has been shown that if the ΔP is
N16 cm H2O in patients with severe ARDS, the relative risk of death in-
creases [8]. Thus, permitting a low tidal volume, even b6 ml/kg, to keep
ΔP b16 cmH2O as long as pH is acceptable, seems a reasonable practice.

When a patient has an increased inspiratory effort, the pleural pres-
sure (Ppl) becomes more negative. Clinically, we can estimate the pleu-
ral pressure by monitoring the esophageal pressure (Pes). This requires
the insertion of an esophageal balloon into the distal third of the thorac-
ic esophagus. After calibrating the system and ensuring that the balloon
is properly positioned, the pleural pressure is estimated by the esopha-
geal pressure.

A value that is sometimes used clinically is referred to as the
transpulmonary pressure (PL). The transpulmonary pressure is the av-
erage alveolar pressure minus the pleural pressure (Ppl), and is reflec-
tive of the amount of strain on the lung. Care should be taken to not
allow the patient in PC-CMV to breathe with a strong inspiratory effort
as the transpulmonary pressure will increase.

PL ¼ Pplat−Ppl

Fig. 1. Normal waveforms in PC-CMV. Fig. 1 displays normal waveforms during PC-CMV. The top waveform demonstrates pressure (Paw) versus time, the middle waveform form
demonstrates flow versus time and the bottom waveform is volume versus time.
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Fig. 3. Short inspiratory time. Fig. 3 demonstrates that if inspiratory time is too short, not allowing alveolar pressure to reach set airway pressure, inspiratory time ends before inspiratory
flowrate returns to baseline (as indicated by the red arrow) and tidal volume is reduced. (For interpretation of the references to colour in thisfigure legend, the reader is referred to theweb
version of this article.)

Fig. 2. Decreasing DeltaPInsp during inspiration. Fig. 2 demonstrates that the set airway pressure remains constant throughout inspiration, but as the alveolar pressure increases, the
DeltaPInsp (ΔP) decreases.
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During PC-CMVwithout spontaneous breathing, if Pplat – PEEP (ΔP)
remains constant, as compliance decreases, exhaled tidal volume will
decrease. Similarly, as compliance increases, exhaled tidal volume will
increase.

Cst ¼ VTE= Pplat−PEEP
� �

7. Initial ventilator settings when beginning PC-CMV

When initiating PC-CMV, although the settings below are frequently
used, it is very important to individualize patients by evaluating the VTE,
Pplat, SpO2 and graphic waveforms soon after initiating PC-CMV. Even
though the tidal volume is not set directly, it is important to consider
the milliliters per kilogram (ml/kg) of tidal volume in relation to the
predicted body weight (PBW). Current recommendations are to keep
tidal volume no N6–8 ml/kg PBW, unless the patient has ARDS, in
which case the recommended tidal volume should be 4–6 ml/kg PBW.
Arterial blood gasses (ABGs) should be drawn and evaluated. Ventilator
changes to achieve a target PaCO2 are described below.

Mode: PC-CMV
PI: 5–10 cm H2O
TI: 0.7–1.0 s
f: 10–20 BPM
FIO2: 0.5
PEEP: 5–10 cm H2O

8. Understanding the basic ventilator graphics to guide decisions

An understanding of the use of graphic analysis during mechanical
ventilation is a key in managing patients receiving ventilatory support.
The importance of evaluating the pressure-versus-time and the flow-
versus-time waveforms will be discussed in depth below.

8.1. Pressure versus time waveform

Fig. 1 is an example of a typical waveform of a patient ventilated in
PC-CMV. In this example, PIP 24 cm H2O, TI 0.9 s, f 20/min, PEEP
6.0 cm H2O, Slope 0.20 s. The pressure-versus-time waveform (Fig. 1,
Top Waveform) shows that at the beginning of inspiration, the ventila-
tor increases the airway pressure from the PEEP level of 6 cmH2O up to
the set PIP of 24 cm H2O; the time to reach this PIP is set with the slope
and in this case, it is set at 0.20 s. Inspiration continues until the set in-
spiratory time of 0.90 s has been reached. At that time, inspiration ends
and the patient is allowed to exhale back to the PEEP level of 6 cm H2O.

8.2. Flow versus time waveform

On a typical flow-versus-time graphic display, inspiratory flow is de-
marcated above the horizontal baseline and expiratory flow is noted
below that baseline. When looking at the flow-versus-time waveform
(Fig. 1, Middle Waveform) the flowrate increases immediately at the
beginning of inspiration and then gradually decreases throughout inspi-
ration. Generally, the flow-versus-time waveform will be decelerating

Fig. 4. Inspiratory Pause. Fig. 4 shows that if the inspiratory time is too long, the alveolar pressure will reach the set airway pressure, resulting in an inspiratory pause (as indicated by the
red arrow). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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during PC-CMV. At the end of inspiration, the inspiratory valve closes
and the expiratory valve opens, allowing the patient to passively exhale.
If the expiratory time is long enough, thepatientwill be able to exhale to
baseline before the next breath begins, and there will be no AutoPEEP.

8.2.1. Inspiration
When using PC-CMV, the peak flowrate is dependent upon the Total

PEEP, set PIP and Slope, as well as the patient's airway resistance, pul-
monary compliance, and effort. The difference between the PIP and
the alveolar pressure is frequently referred to as the Delta PInsp (PIP – al-
veolar pressure). During inspiration, as the alveolar pressure increases,
the Delta PInsp decreases (Fig. 2), resulting in a decreasing inspiratory
flowrate. If the inspiratory time is long enough for the alveolar pressure
to equilibrate with the set pressure, the inspiratory flow waveform will
return to baseline (Fig. 1, MiddleWaveform). However, if the inspirato-
ry time is not long enough for the alveolar pressure to reach the set pres-
sure, the inspiratory flow waveform will not return to baseline. This
generally results in a lower alveolar pressure and a reduced tidal vol-
ume (Fig. 3, Middle Waveform). If the inspiratory time continues after
the inspiratory flow has returned to the zero-flow baseline, an inspira-
tory pause will occur (Fig. 4, Middle Waveform).

8.2.2. Exhalation
If the expiratory time is long enough for the expiratory flowrate to

return to the zero-flow baseline before the beginning of the next inspi-
ration, there will be no AutoPEEP (Fig. 1, Middle Waveform). However,

if the expiratory time is too short and there is not enough time for the
expiratory flowrate to return to baseline before the next breath begins,
AutoPEEP is present (Fig. 5, Middle Waveform).

When ventilating a patient in PC-CMV, the presence of AutoPEEP
will reduce the actual Delta PInsp by the amount of the AutoPEEP. For ex-
ample, if the PIP is set at 24 cm H2O, and the PEEP at 6 cm H2O, and
AutoPEEP is 0 cm H2O, the Delta PInsp will equal 24 cm H2O – 6 cm
H2O = 18 cm H2O. However, if the patient has a Total PEEP 7.8 cm
H2O, but the set PEEP is 6 cm H2O, AutoPEEP is present and can be cal-
culated as 7.8 cm H2O (TotalPEEP) – 6 cm H2O (set PEEP) = 1.8 cm
H2O (AutoPEEP). This means that the alveoli are actually starting at
7.8 cm H2O (Total PEEP) rather than 6 cm H2O (PEEP), which results
in a reduction in theDelta PInsp by 1.8 cmH2O, resulting in an overall de-
crease in delivered tidal volume (Fig. 6).

During PC-CMV, if AutoPEEP exists and is subsequently reduced
(e.g. a reduction in airway resistance after delivery of an inhaled
bronchodilator), the Delta PInsp will increase. This usually results in
an increase in delivered tidal volume. Options to reduce the
AutoPEEP in PC-CMV include decreasing airway resistance and/or in-
creasing expiratory time. Expiratory time can be increased by
decreasing respiratory rate and/or decreasing inspiratory time
(Fig. 7). However, it is important to make sure that a decrease in re-
spiratory rate does not result in a decreased minute ventilation, es-
pecially in a spontaneously breathing patient. Similarly, tidal
volume must be monitored carefully as a decrease in inspiratory
time may result in a decreased tidal volume.

Fig. 5. Identifying AutoPEEP. Fig. 5 demonstrates that if the expiratory time is too short, AutoPEEP is likely to result. The red arrow indicates that the next breath begins before expiratory
flow returns to baseline, resulting in AutoPEEP. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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9. Making changes: an algorithmic approach

9.1. Treatment of hypercapnia

9.1.1. Initial decision
When a patient has an elevated PaCO2 resulting in a respiratory aci-

dosis, and the decision ismade to reduce the PaCO2, onemust either de-
liver a larger tidal volume or increase the respiratory rate. In cases
where ventilator induced lung injury is a concern, cliniciansmay choose
to not increase the tidal volume.

When evaluating acid-base status, the first decision that has to be
made is whether or not the PaCO2 is high enough and/or the pH is low
enough to necessitate a reduction in PaCO2. If the PaCO2 is not N50–
70 Torr and the pH is not b7.25, the decision may be made to maintain
current therapy. However, if there is a need to reduce PaCO2, the next
decision is whether or not to increase minute ventilation by changing
ventilator settings or to utilize other, non-ventilator strategies to de-
crease the PaCO2 (Fig. 8). If the decision is made to change the ventila-
tory setting to increase the minute ventilation, the Pplat and tidal
volume must first be evaluated. If the Pplat is b25–30 cm H2O (or less
than the desired Pplat), or if the tidal volume is b6–8 ml/kg PBW, and
if the desired outcome is an increase in tidal volume, then options to in-
crease tidal volume should be considered (Fig. 9). If the decision ismade
to not increase the tidal volume, then options to increase respiratory
rate should be considered (Fig. 10). If the decision is made to not in-
crease tidal volume or respiratory rate, then non-ventilatory strategies
should be considered (Fig. 11).

9.1.2. Increasing tidal volume
When a decision is made to increase the tidal volume, there are

many options to consider. As illustrated in Fig. 9, increasing the PIP
should not be considered the default option. As discussed earlier, if the
patient has low compliance, PC-CMVwill result in a decreased tidal vol-
ume at a givenpressure. Consideration should be given to try to increase
the compliance by either increasing the PEEP level if it is too low (poten-
tially causing atelectasis), or by decreasing the PEEP level if it is too high
(potentially resulting in overdistension), as both of these issues can re-
sult in a low compliance.

As previously described, AutoPEEP will reduce the effective Delta
PInsp. Evaluating the patient for AutoPEEP should be part of the ongoing
patient assessment. If the patient has AutoPEEP, methods to decrease
the AutoPEEP should be considered. Such considerations include de-
creasing the airway resistance, increasing expiratory time by decreasing
inspiratory time, prolonging the expiratory time by changing the I:E,
and/or decreasing the respiratory rate.

The inspiratory flow waveform should be a major part of both rou-
tine and continual patient assessments. Throughout inspiration, as the
alveolar pressure increases, the inspiratory flow will return closer to
baseline. If the inspiratory flow does not return to baseline, an increase
in inspiratory timewill generally result in an increased tidal volume and
should be considered as long as increasing inspiratory time does not re-
sult in shortening expiratory time, causing AutoPEEP, or result in pa-
tient-ventilator asynchrony. When the inspiratory flow waveform
does not return to baseline, the Pplat will be less than the set PIP.
When adjusting the inspiratory time, it is important to re-assess the

Fig. 6.Measurement of AutoPEEP. Fig. 6 demonstrates how tomeasure AutoPEEP. The red arrows indicate the end of the expiratory pause and the total PEEP displayedwhile the screen is
frozen. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Pplat and evaluate the patient-ventilator asynchrony that could be
caused by the inspiratory time being too short or too long.

The next step in a complete assessment is to evaluate the Pplat. If the
Pplat is b25–30 cm H2O, or less than the desired Pplat, and the tidal vol-
ume is less than the desired tidal volume, PIP should be increased

gradually to achieve the desired tidal volume, ensuring that the Pplat is
b25–30 cm H2O.

If the Total PEEP is too high, it may lead to overdistension of alveoli.
This will generally result in a decrease in compliance and potentially an
increase in alveolar dead space due to stretching of the alveoli and

Fig. 8. Initial decision. Fig. 8 demonstrates the initial decision necessary to determine how to reduce the PaCO2.

Fig. 7. Expiratory time. Fig. 7 illustrates the effect on expiratory time of changes in inspiratory time and total time.

176 L. Ashworth et al. / Journal of Critical Care 43 (2018) 169–182



compression of the pulmonary capillaries. This causes reduced perfu-
sion to the over-distended alveoli and an increase in the ventilation/
perfusion ratio, which may increase the dead space and result in an in-
creased PaCO2. A decremental PEEP trial involves decreasing the set
PEEP 1 or 2 cmH2O every one to twominutes while monitoring the dy-
namic compliance (Cdyn), tidal volume, and SpO2. If the Total PEEP was
too high, as the set PEEP is decreased, the Cdyn will increase. The optimal

PEEP level can be identified as the point at which the highest Cdyn oc-
curred. The set PEEP level should be set 2–3 cm H2O above this point
[6,10].

If the desired increase in minute ventilation is achieved, ABG's
should be repeated after 30min and the patient continually re-evaluat-
ed. If the desired increase in minute is not achieved, see the section en-
titled ‘the Initial Decision’ (Fig. 8).

Fig. 9. Increase tidal volume. Fig. 9 demonstrates the options that are available during PC-CMV to increase the tidal volume.
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9.1.3. Increasing respiratory rate
The total time in one respiratory cycle is the amount of time from the

beginning of one breath (inspiration) to the beginning of the next
breath. When the decision is made to increase the respiratory rate, the
total time will be decreased.

Total Time secð Þ ¼ 60 s= min= f BPMð Þ

Total Time ¼ Inspiratory timeþ Expiratory Time

Because total time equals inspiratory time plus expiratory time, the
total time can be decreased by shortening inspiratory time, shortening
expiratory time, or shortening inspiratory and expiratory time. The
guide as to whether the inspiratory time or the expiratory time should
be shortened is based upon the flow-versus-time waveform (Fig. 10).
If the inspiratory flow returns to baseline and an inspiratory pause is
present, the inspiratory time can be decreased without producing any
change in tidal volume. However, care must be taken to not reduce in-
spiratory time to the extent that inspiratory flow no longer returns to
baseline, as this may result in a decrease in delivered tidal volume.

Fig. 10. Increase respiratory rate. Fig. 10 demonstrates the options that are available during PC-CMV to increase the set respiratory rate.
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If the expiratory flow returns to baseline and is long enough to cause
an expiratory pause (no AutoPEEP), the expiratory time can be reduced
by increasing the respiratory rate by 2 BPM ensuring to carefully moni-
tor for AutoPEEP. If both an inspiratory pause and an expiratory pause
are present, inspiratory time can be decreased alongwith increasing re-
spiratory rate by 2 BPM, again making sure that tidal volume is not de-
creased and AutoPEEP does not occur.

If the ventilator is set up to maintain a constant I:E ratio, it is impor-
tant to note that increasing the set rate will result in a proportional de-
crease in inspiratory time and expiratory time. The opposite is also true,
that decreasing the set respiratory rate will lengthen inspiratory time
and expiratory time, proportionally.

If the desired increase in minute ventilation is achieved, ABG's
should be obtained after 30 min and the patient continually re-

evaluated. If the desired increase in minute ventilation is not achieved,
see the section entitled ‘the Initial Decision’ (Fig. 8).

9.1.4. Nonventilatory change strategies for reducing PaCO2

An increase in airway resistance increases the time constant, in-
creases the amount of time it takes for the alveolar pressure to reach
the set pressure, and increases the likelihood of AutoPEEP. Therefore,
if the patient has an increased airway resistance that can be reduced,
doing sowill result in an increase in delivered tidal volume and themin-
ute ventilation should increase. Options to decrease the airway resis-
tance include administration of a bronchodilator, removal of
secretions, and possibly replacing an endotracheal or tracheostomy
tube which is obstructed with dry sputum or secretions. However, the
use of intravenous beta agonists has been shown to increase the

Fig. 11. Nonventilatory strategies. Fig. 11 demonstrates the non-ventilatory strategies to consider when a patient has an increased PaCO2.
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mortality in patients with ARDS [11]. The use of Helioxmay also be con-
sidered, as long as the FIO2 is low enough to allow for an 80/20 or 70/30
mixture of Helium/Oxygen, and the ventilator is calibrated for this mix-
ture. Fig. 11 outlines a strategic approach to decreasing PaCO2 using
nonventilatory strategies.

If the patient's CO2 production is increased, consider methods of
reducing CO2 production. Improved patient-ventilator synchrony
may reduce CO2 production and may require altering the inspiratory
time, expiratory time, I:E, Delta PInsp, or changing modes of ventila-
tion. Sedation, anesthesia, and neuromuscular blockade may be nec-
essary in some situations. If the patient has a fever, reducing the

temperature is likely to reduce both CO2 production and the
PaCO2. Other methods of reducing the metabolic rate and reducing
CO2 production include a nutritional analysis to check for over
feeding.

Permissive hypercapnia, as previously discussed, refers to using a
limitedminute ventilation and allowing the PaCO2 to gradually increase.
Generally, as long as the increase in PaCO2 is gradual, and the pH N 7.25,
the respiratory acidosis is well-tolerated. However, some sedation is
usually required [5,6,9].

If thedesireddecrease in CO2 production is achieved, ABGs should be
obtained within 30 min and the patient continually re-evaluated. If the

Fig. 12. Treat hypocapnia. Fig. 12 demonstrates options to consider when a patient has hypocapnia.
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desired decrease in CO2 production is not achieved, refer to the section
entitled, ‘Initial Decision’ (Fig. 8).

9.2. Treating hypocapnia

Auto-triggering refers to an additional breath being delivered that
was not triggered by the patient's inspiratory effort. Auto-triggering
may occur if the ventilator sensitivity is set too high (too sensitive).
Generally, a pressure trigger of−1 cmH2O is sufficient to allow the pa-
tient to trigger a breath, yet not so sensitive as to result in auto-trigger-
ing. A flow trigger of 2 or 3 LPM is generally sufficient and not too
sensitive. Auto-triggeringmay also occur if there is a leak in the system,
such as that of an endotracheal cuff leak or a leak in a chest tube
(bronchopleural fistula). When condensation collects in the circuit,
the tidal motion of the water during inspiration and expiration can cre-
ate enough of a change in pressure or flow to trigger a breath. Always
make sure that condensation is not allowed to collect in the circuit. An-
other cause of auto-triggering is referred to as cardiac triggering. Pa-
tients who have hyper-dynamic cardiac pulsations may experience
enoughmovement of the ventricle to trigger a breath. This is sometimes
seen in patients who are in a high cardiac output state of sepsis. Auto-
triggering may also occur from the inflation and deflation of an intra-
aortic balloon bump. If this occurs, it may be necessary tomake the ven-
tilator slightly less sensitive to the patient's effort to eliminate the Auto-
triggering. Double-triggering refers to the patient continuing to inhale,
even though the inspiratory time has terminated; this results in two
breathswithout an exhalation, and an increased tidal volume. Inspirato-
ry time should be checked tomake sure that it is not inappropriately too
short.

When evaluating acid-base status, if the PaCO2 is b30 Torr or the pH
is N7.50, it is important to determinewhether or not there are treatable
causes of an increased minute ventilation such as pain and anxiety. If
there are no treatable causes and the decision is made to decrease the
minute ventilation, the ventilator should first be checked for auto-trig-
gering and for double-triggering.

The next step in reducing the minute ventilation is to evaluate the
plateau pressure and tidal volume. If the plateau pressure is N25–
30 cm H2O or greater than the desired plateau pressure, or if the tidal
volume is N6–8 ml/kg PBW or greater than the desired tidal volume,
the Delta PInsp can be reduced in steps of 1 or 2 cm H2O.

If the plateau pressure is not N25–30 cmH2O and is not greater than
the desired plateau pressure and the tidal volume is not N6–8 ml/kg
PBW and is not greater than the desired tidal volume, the respiratory
rate can be decreased. If the inspiratory flow returns to baseline, then
the respiratory rate can be reduced by 2 breaths per minute, without
changing the inspiratory time. This will increase the expiratory time
and result in a reduced minute ventilation. If an inspiratory pause is
present, inspiratory time can be reduced, eliminating the inspiratory
pause, and the respiratory rate can be reduced. If the inspiratory
flowrate does not return to baseline, increase inspiratory time by 0.1–
0.2 s and reduce the respiratory rate by 2 breaths perminute. Always as-
sess the patient to ensure that the patient does not become asynchro-
nous with the ventilator when changing inspiratory time. Usually, an
inspiratory time of 0.6–1.2 s is appropriate. Rarely is an inspiratory
time N1.2 s well tolerated by patients. The suggestedmethod of treating
hypocapnia while in PC-CMV is illustrated in Fig. 12.

If the desired decrease in minute ventilation is achieved, the patient
should be continually monitored, including oxygenation. However, if
the desired decrease in minute ventilation is not achieved, the PaCO2

and pH should be re-evaluated, as listed at the top of this algorithm.

10. Discussion

Pressure-targeted ventilation allows the clinician to control the air-
way pressure and allows the patient to influence the inspiratory
flowrate and tidal volume. In some cases, this improves patient-

ventilator synchrony and reduces the work of breathing. Even though
multiple articles have been published on PC-CMV, there is little evi-
dence that PC-CMV improves outcomes when compared to VC-CMV.
However, this may be due to inconsistencies in ventilator management
strategies during PC-CMV.

The algorithms and descriptions included in this article are intended
to provide a standardized approach to the management of PC-CMV.
Every patient is unique and needs to be evaluated individually; howev-
er, these algorithms and descriptions are intended to provide the clini-
cian with a systematic method of evaluating the patient's physiology,
clinical status, ventilating pressures, and ventilator graphics, resulting
in a logical progression through which to recommend appropriate
changes in ventilator settings.

As summarized in Table 1, when a clinician wants to increase the
minute ventilation, either the tidal volume can be increased or the re-
spiratory rate can be increased. However, there are multiple options
available that will result in an increased tidal volume and several op-
tions available that will result in an increased respiratory rate. Selecting
which option is appropriate for any given patient requires the clinician
to progress through a systematic analysis of each option, after a thor-
ough evaluation of the patient.

11. Summary

Pressure-controlled ventilation is a method of ventilating patients
thatmay be beneficial for somepatients. However, successful utilization
of the mode requires a thorough understanding of PC-CMV, physiology,
pathophysiology, graphic analysis, and the mechanical aspects of each
specific ventilator. If a standardized and systematic approach is used
tomanage patients being ventilated in PC-CMV, it is possible that future
studies will be performed that use more comparable treatment algo-
rithms between studies. The goals of identifying a consistent approach
to themanagement of PC-CMV are to glean comparable data in an effort
to try to determine whether or not there is a significant difference in
outcomes when ventilating patients with PC-CMV versus VC-CMV,
and to improve management of patients ventilated with PC-CMV.
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