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The ICON Challenge on Algorithm Selection

Lars Kotthoff, Barry Hurley, Barry O’Sullivan



Algorithm selection is of increasing practical relevance in a variety
applications. Many approaches have been proposed in the literature, but their
evaluations are often not comparable, making it hard to judge which
approaches work best. The ICON Challenge on Algorithm Selection
objectively evaluated many prominent approaches from the literature, making
them directly comparable for the first time. The results show that there is still
room for improvement, even for the very best approaches.

In many areas of AI decades of research have resulted in many different
approaches to solving similar problems. These different approaches exhibit
different performance characteristics on different problem types, and it is usually
unclear when to choose which approach. This is known as the algorithm selection
problem (Rice 1976).

The challenge of algorithm selection in practice has led to the development of
various data-driven, automated solutions to it. Machine learning techniques are
used to transparently select the most appropriate algorithm for the problem at
hand (O’Mahony et al. 2008;
Hurley et al. 2014;
Xu et al. 2008). Such systems have demonstrated that significant performance
improvements can be achieved over using just a single approach. The interested
reader is referred to a recent survey for more information (Kotthoff 2014).

There are many different approaches to solving the algorithm selection problem.
While the majority of these have been evaluated empirically in the literature, such
evaluations often use different data sets, different performance measures, and
different experimental setups. The results are not directly comparable and do not
provide a clear picture of the state of the art.

The ICON Challenge on Algorithm Selection provided the first comprehensive,
objective evaluation of several state-of-the-art approaches. Its results gave an
overview of the state of the art at the time of the competition, highlighting the
strengths and weaknesses of different approaches.

Challenge Setting
The challenge leveraged the ASlib benchmark library for algorithm
selection (Bischl et al. 2016). We used thirteen scenarios, drawn from prominent
publications, in release 1.0. They represent a number of important AI application
areas, including SAT, CSP, QBF, ASP, and heuristic search.

Challenge participants were required to output a schedule of algorithms to run
for each problem instance in a scenario. They were allowed to specify: (a) a list of
scenarios to run on; (b) the problem features they wanted their submission to have
access to (feature computation incurs a cost that may reduce overall performance;
and (c) an algorithm to run as presolver for a small amount of time, thereby
reducing the overhead of feature computation and the selection process on easy
instances. Since the ASlib dataset is public and was available to contestants before
they submitted their system, the submissions were trained on ten different
bootstrap samples of a scenario and evaluated on the remaining data.

All submissions were required to provide the full source code, with instructions
on how to run the system. The submissions, full details of the challenge, along with
detailed results and all data used in the evaluation, are available at
http://challenge.icon-fet.eu/.

Results and Discussion
The challenge received a total of eight submissions from four different groups of
researchers comprising fifteen people. Participants were based in four different
countries on two continents. In alphabetical order, the submitted systems were
ASAP kNN, ASAP RF, autofolio, flexfolio-schedules, sunny, sunny-presolv, zilla,
and zillafolio.

The overall winner of the ICON challenge was zilla, based on the prominent
SATzilla (Xu et al. 2008) system. The ASAP RF system received an honourable

http://challenge.icon-fet.eu/


Table 1: Submission ranking.
System Total score

1 zilla 0.36603
2 zillafolio 0.37021
3 autofolio 0.39083
4 ASAP RF 0.41603
5 ASAP kNN 0.42318
6 flexfolio-schedules 0.44251
7 sunny 0.48259
8 sunny-presolv 0.48488

mention as a new system that had not been described in the literature before and
outperformed all other submissions on some of the ASlib scenarios.

Table 1 shows the final ranking. Scores were aggregated over all scenarios and
samples, with 0 corresponding to perfect predictions where on each problem
instance the optimal algorithm is chosen (oracle) and 1 corresponding to a static
predictor that chooses the overall best algorithm on each problem instance (single
best).

All submissions achieve significant performance improvements over always
choosing a single algorithm. The scores of the top-ranked approaches are very
close, and in practice all of them will likely achieve good performance.

Nevertheless, there is scope for improvement. Even the best approach is still far
away from being a perfect predictor. Especially the industrial SAT scenarios turned
out to be challenging, with many systems not even achieving the performance of
the single best solver. Detailed results are presented in (Kotthoff 2015).
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