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Abstract

Biomarker studies may involve a multilevel outcome, such as no, mild, or severe

disease. There is often interest in predicting one particular level of the outcome due to

its clinical significance. The standard approach to constructing biomarker combinations

in this context involves dichotomizing the outcome and using a binary logistic regression

model. We assessed whether information can be usefully gained from instead using

more sophisticated regression methods. Furthermore, it is often necessary to select

among several candidate biomarker combinations. One strategy involves selecting a

combination on the basis of its ability to predict the outcome level of interest. We

propose an algorithm that leverages the multilevel outcome to inform combination

selection. We apply this algorithm to data from a study of acute kidney injury after

cardiac surgery, where the kidney injury may be absent, mild, or severe. Using more
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sophisticated modeling approaches to construct combinations provided gains over the

binary logistic regression approach in specific settings. In the examples considered,

the proposed algorithm for combination selection tended to reduce the impact of bias

due to selection and to provide combinations with improved performance. Methods

that utilize the multilevel nature of the outcome in the construction and/or selection

of biomarker combinations have the potential to yield better combinations.

Keywords: biomarker, combinations, multilevel

1 Background

In some clinical settings, a patient can experience one of several outcomes. For example,

he can have no, mild, or severe disease. In the setting of cancer diagnosis, a patient can be

disease-free, have a benign mass, or have a malignancy. However, it may be most important

to be able predict one level of the outcome in particular, typically the level that poses the

greatest threat in terms of morbidity and mortality. In the examples just given, this may

be severe disease or the presence of a malignant tumor. Here, investigators are interested

in “single-level prediction,” but a multilevel outcome is available. The question becomes

whether and how the information from the multilevel outcome can be leveraged to improve

prediction of the outcome level of interest.

It is becoming increasingly common for studies to measure several biomarkers in each

participant. Such studies often seek to develop a combination of biomarkers that can be

used in risk prediction. When a multilevel outcome is available, the development of such

combinations becomes potentially more complicated; we consider two such complications.

The first complication relates to the construction of biomarker combinations, specifically,

how the biomarkers should be combined when a multilevel outcome is available but there is

interest in single-level prediction. The most common approach is to dichotomize the outcome

and fit a binary logistic regression model. Of course, this discards some information availa-

ble in the multilevel outcome. We evaluate the potential benefits of alternative regression
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methods that utilize the multilevel outcome.

The second complication concerns how a biomarker combination should be selected. In

many studies, the number of candidate biomarker combinations is quite large. Investigators

may consider, for example, all possible pairs of biomarkers. In a study with 20 biomarkers,

there would be nearly 200 such candidate combinations. One strategy is to choose the com-

bination with the best performance in terms of single-level prediction. As with combination

construction, it may be possible to leverage the additional information in the multilevel out-

come to aid in combination selection. We propose an algorithm for doing so, and provide

examples to illustrate the benefits of this method.

We illustrate the application of our combination selection algorithm to data from the

Translational Research Investigating Biomarker Endpoints in Acute Kidney Injury (TRIBE-

AKI), a study of acute kidney injury (AKI) after cardiac surgery [1]. This study aims to

use biomarkers measured immediately after surgery to provide an earlier diagnosis of AKI.

Clinical definitions of AKI include both mild and severe types, though severe AKI is of

primary clinical interest due to its impact on long-term morbidity and mortality [2]. As a

result, there is interest in developing a biomarker combination to diagnose severe AKI.

1.1 Constructing Combinations

We consider a set of predictors X and an outcome D with K levels. We consider outcomes

whose levels can be ordered by, for example, their clinical significance.

1.1.1 Models for Binary Outcomes

One set of regression-based approaches involves treating the outcome as binary by dichoto-

mizing D and/or subsetting the data and subsequently fitting one or more binary logistic

regression models [7, 3, 4, 5, 6]. These include:

(i) Standard. One binary logistic model based on dichotomizing D at some fixed level,

k′: logit {P (D ≤ k′|X = x)} = α + βTx [8, 9, 10, 11, 12].

3

Hosted by The Berkeley Electronic Press



(ii) Each level vs. others. K binary logistic models comparing each level to the combi-

nation of the other levels: logit {P (D = k|X = x)} = αk + βT
k x, k = 1, ..., K [14, 13].

(iii) Each level vs. reference. (K − 1) binary logistic models comparing each level

to a reference level k′: log {P (D = k|X = x)/P (D = k′|X = x)} = αk + βT
k x, k 6=

k′ [15, 16].

(iv) Sequential. (K−1) binary logistic models comparing each level to the combination of

the levels above it: logit {P (D = 1|X = x)}= α1+βT
1 x, logit {P (D = 2|D ≥ 2,X = x)} =

α2 + βT
2 x, etc. [14].

1.1.2 Models for Ordinal Outcomes

Several regression models are available that fully modelD (i.e., do not combine different levels

of the outcome together) while accounting for the ordered, categorical nature of D [18, 6].

Such ordinal methods do not assume equal spacing between the levels of D; they simply use

the ordering of D [19].

Cumulative Logit Model The cumulative logit model can be written as

logit {P (D ≤ k|X = x)} = αk + βTx, (1)

k = 1, ..., K − 1, where the αk are ordered in k [18]. Under model (1), the log cumulative

odds ratio is proportional to the distance between the predictor values being compared and

the proportionality constant does not depend on k [18]:

logit {P (D ≤ k|X = x1)} − logit {P (D ≤ k|X = x2)}

= βT (x1 − x2).

As a result of this proportionality (sometimes referred to as the parallel slopes assumption),

model (1) is also called the proportional odds model [18]. It is possible to include a separate
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β vector, βk, for each value of k [18, 21, 20, 3]. However, doing so may lead to crossing

of the cumulative probability curves P (D ≤ k|X = x) for some values of X, violating the

ordering of the cumulative probabilities [18, 21]. Importantly, the estimates provided by the

cumulative logit model may be biased under case-control sampling [12, 22].

Adjacent-Category Logit Model The adjacent-category logit model can be written as

logit {P (D = k|X = x)/P (D = k + 1|X = x)}

= αk + βTx,

k = 1, ..., K − 1 [18]. The adjacent-category logit model can be used with data from case-

control studies [18].

Continuation-Ratio Logit Model The continuation-ratio logit model can be written as

logit {P (D = k|D ≥ k,X = x)} = αk + βTx,

k = 1, ..., K − 1, where the αk are ordered in k [18]. Allowing a separate β vector for each

k gives the sequential approach described earlier [19, 3]. The estimates provided by the

continuation-ratio logit model may be biased under case-control sampling [12].

Stereotype Model The stereotype model is a sort of compromise between models that

incorporate the ordinality of the outcome and more flexible models (i.e., the baseline-category

logit model defined below). The stereotype model actually includes a hierarchy of models that

vary in flexibility, as defined by the dimension of the model, though the term “stereotype

model” is generally reserved for the one-dimensional model and we focus on that model

here [23]. This model can be written as

log {P (D = k|x)/P (D = K|x)} = αk + φkβ
Tx, (2)
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k = 1, ..., K − 1 [23]. Essentially, this model allows some variation in the coefficient vector,

but restricts βk = φkβ [23]. Identifiability constraints must be imposed on the φk; typically,

these are φ1 = 0 and φK = 1 [23]. The definition of the stereotype model also typically

includes the requirement that φ1 < φ2 < ... < φK ; when this holds, the one-dimensional

model given in (2) is an ordered model [23]. However, it has been noted that this ordering

does not need to be specified a priori and most statistical packages (e.g., R and Stata) do

not impose such a restriction [24, 3]. Thus, in practice, a fairly flexible model is fit and used

to assess whether the data suggest ordering [25, 23]. The stereotype model can be used with

case-control data [12].

1.1.3 Models for Nominal Outcomes

The baseline-category logit model is a very flexible approach that considers the categorical

nature of the outcome but does not incorporate the ordering [18, 26, 6]. The baseline-category

logit model can be written as

log {P (D = k|x)/P (D = K|x)} = αk + βT
k x,

k = 1, ..., K−1 [18]. Thus, the baseline-category logit model allows the effect of the predictors

to vary with the level of the outcome [18]. The set of models specified by the each level

vs. reference approach with k′ = K is parametrically equivalent to the baseline-category

logit model. Furthermore, the adjacent-category logit model is a reparameterization of the

baseline-category logit model with a common β [18].

1.1.4 Models for Continuous Outcomes

When the number of outcome levels K is large, linear regression models may be appealing [6,

12, 27]. These models consider the ordering of the outcome but ignore the categorized

nature of D [6]. In other words, these models are only strictly valid if the intervals between
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consecutive outcome levels are considered equivalent [3]. Problems may arise in the use

of these models with a multilevel outcome, including predictions beyond the reasonable

range [27]. As a result of these issues, we do not consider this approach further.

1.1.5 Comparing Modeling Approaches

Some work has been done to compare the models described above, particularly in terms

of efficiency of the model estimates. Briefly, gains in efficiency have been found for the

baseline-category logit model relative to the each level vs. reference approach [15, 16], for

the cumulative logit model relative to the standard approach [3, 9, 5], and for the stereotype

model relative to the baseline-category logit model [28]. These results suggest that informa-

tion can be gained from using all of the data in a single model, not dichotomizing D, and/or

incorporating the ordinal nature of D.

Armstrong and Sloan conclude that in general, if the order of categories can be speci-

fied with confidence, models that incorporate this ordering are preferable to more flexible

models [3]. In other words, it is reasonable to expect that when the outcome is ordinal,

information is gained when this ordinality is used by the model [12]. Additionally, Harrell

et al. note that models can exhibit lack of fit and yet still provide quite accurate predicted

probabilities [29]. In comparing the cumulative logit model to the standard approach, Risse-

lada et al. argued that the impact of “mild violations” of the proportional odds assumption

is expected to be less severe than the loss of information resulting from dichotomizing D [6].

On the other hand, others have noted that ordinal models become “increasingly unrealistic”

as the number of outcome levels and/or predictors increases [28, 9].

1.1.6 Applications in Risk Prediction

Multilevel outcomes are frequently encountered in the risk prediction setting, and a common

approach is to dichotomize the outcome and fit a binary logistic regression model (the stan-

dard approach defined above) [13, 7, 6, 17]. The literature on using multilevel outcomes for

7
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single-level prediction has largely focused on the area under the receiver operating charac-

teristic (ROC) curve (AUC) as a measure of predictive capacity. Briefly, the AUC assesses

the ability of a model to discriminate between individuals who have or will experience the

outcome level of interest and those who do not have or will not experience the outcome level

of interest; the AUC for a model that is able to perfectly separate these groups is 1, while

the AUC for a useless model is 0.5 [30].

The previous work in this area has primarily involved using individual datasets to compare

modeling strategies. Biesheuvel et al. compared the baseline-category logit model to the

sequential approach and found fairly similar AUCs for both strategies [13]. Roukema et

al. compared the baseline-category logit model, the sequential approach, and the each level

vs. others strategy [14]. They found similar discriminatory power for all three strategies,

though they employed variable selection procedures for all of the models, making comparisons

difficult [14].

1.2 Combination Selection

Often, a number of candidate biomarker combinations are available, and some form of se-

lection is required. When the goal is to use a biomarker combination for risk prediction, it

seems appropriate to select combinations based on predictive capacity. For a binary out-

come, one possibility is to use the AUC (e.g., [31]). That is, the AUC for each candidate

combination is estimated, and the combination with the highest AUC is chosen.

Two challenges arise in utilizing this approach. The first is that when the same data

are used to construct a biomarker combination and estimate the AUC (or other measure of

performance) for that combination, the resulting AUC estimate will be optimistic relative to

the AUC for the same fitted combination in independent data; we refer to this as “resubsti-

tution bias” [32]. Methods such as bootstrapping can be used to correct the apparent AUC

estimate [19].

An additional challenge applies to selection more generally. If many models are consi-
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dered and a model is selected on the basis of some estimated measure of performance, that

estimated measure of performance will be optimistically biased; we refer to this as “model

selection bias” [32]. This idea has been explored in the bioinformatics/machine learning lite-

rature, where estimates of the classification error rate are often used to select a model. The

estimated error rate for a model selected on the basis of its favorable error rate will be opti-

mistic relative to the same model’s error rate in independent data [33, 34, 35, 36, 37, 38, 39].

Cawley and Talbot call this issue “overfitting the model selection criterion” [35]. Although

this issue has not yet been fully characterized in the clinical risk prediction setting, where the

AUC is generally preferred over the classification error, the problem is expected to persist.

In general, when some form of model selection is done and the performance of the chosen

model is evaluated without accounting for the selection, that is, treating the selected model

as though it were pre-specified, optimistic bias is expected [19, 40, 41, 42, 36].

2 Methods

We will suppose that for an outcome D with K levels, “single-level prediction” relates to

predicting D = K.

2.1 Constructing Combinations

We have described several regression-based approaches to modeling a multilevel outcome.

In particular, we can dichotomize the outcome or subset the data and use one of the four

binary strategies, we can treat the outcome as ordered and use one of the four ordinal

approaches, or we can use the more flexible baseline-category logit model. Using a binary

strategy requires either combining several levels of the outcome together, or fitting several

models to subsets of the data. Likewise, the ordinal models require restricting the nature of

the relationship between the biomarkers and the outcome so as to achieve parsimony. The

baseline-category logit model, on the other hand, imposes no such restrictions and includes
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all of the data in a single model; of course, this comes at the cost of having to estimate

additional parameters. We use simulations to evaluate the impact of these modeling choices

on the performance of the resulting estimated combinations. The key question is whether

more sophisticated modeling approaches can offer improvements in performance in terms of

single-level prediction over the standard approach, that is, a single binary logistic regression

model.

Since we are interested in predicting D = K, we considered k′ = K − 1 in the standard

approach. Furthermore, for the purposes of predicting D = K, the standard approach and

the each level vs. others strategy are identical, and so the latter was not considered further.

Finally, as the baseline-category logit model is parametrically equivalent to the each level

vs. reference approach with k′ = K, and the former is generally more efficient than the

latter, we did not include the each level vs. reference strategy in our investigation. Thus,

we considered seven different modeling strategies: the standard approach (“Standard”), the

sequential strategy (“Sequential”), the cumulative logit model (“CumLogit”), the adjacent-

category logit model (“AdjCatLogit”), the continuation-ratio logit model (“ContRatLogit”),

the stereotype model (“Stereo”), and the baseline-category logit model (“BaselineCat”).

We considered two broad simulation scenarios. In the first scenario, the biomarkers were

simulated such that the cumulative logit model with proportional odds did not hold; in

the second scenario, the data were simulated under the cumulative logit model where the

assumption of proportional odds held. In both scenarios, we considered two biomarkers,

X = (X1, X2). We considered outcomes with either 3 or 5 levels, that is, K = 3 or K =

5. The combinations were constructed using training data with 200, 400, 800, or 1600

observations and evaluated in test data with 104 observations. We simulated data such that

P (D = 1) = 0.1 or 0.5 and P (D = K) = 0.05 or 0.3; when K = 5, P (D = 2), P (D = 3),

and P (D = 4) were approximately equal.

We used each of the modeling strategies to fit a linear combination of the biomarkers

X in the training data, yielding estimates β̂. We then applied these estimates to the test
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data to determine P̂ (D = K|X, β̂). Finally, we assessed the ability of P̂ (D = K|X, β̂) to

discriminate between D = K and D < K in the test data via the AUC.

In the simulations where the cumulative logit model with proportional odds did not

hold (the first scenario mentioned above), the biomarkers had conditional bivariate normal

distributions. In particular, for K = 3, we considered (X|D = 1) ∼ N(0,Σ), (X|D = 2) ∼

N(µ,Σ), and (X|D = 3) ∼ N(2,Σ), and for K = 5, we considered (X|D = 1) ∼ N(0,Σ),

(X|D = 2) ∼ N(0.5,Σ), (X|D = 3) ∼ N(1,Σ), (X|D = 4) ∼ N(µ,Σ), and (X|D = 5) ∼

N(2,Σ). We used µ ∈ {−1,0, ...,2,3} and Σ = 2I2, where I2 is a two-dimensional identity

matrix. Other covariance matrices (including those with correlation between the biomarkers

and unequal covariance matrices) were explored; details are given in Section S1.1 (Additional

File 1).

To evaluate data generated by the cumulative logit model with proportional odds (second

scenario), we simulated two independent normal biomarkers, both with mean 1 and variance

0.25. The outcome was then simulated as a multinomial random variable, where the success

probabilities of the K levels were determined by β0i + β>X such that the cumulative logit

model held. Three sets of coefficients β were considered (β = (1, 2), (1, 1.5), (1,−1)) and

values of β0i were chosen such that the desired prevalences (given above) were achieved in a

large dataset.

The simulations were repeated 1000 times.

2.2 Combination Selection

As above, we suppose that for an outcome D with K levels, “single-level prediction” relates

to predicting D = K.

As with combination construction, the presence of a multilevel outcome requires that

decisions about how to select a biomarker combination be made. One strategy is to simply

estimate the AUC for D = K vs. D < K (including correcting this estimate for resubstitu-

tion bias due to any model fitting), and select the combination with the highest estimated
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AUC. As discussed above, the estimated AUC for this selected combination will be optimis-

tically biased relative to the AUC for the same fitted combination in independent data due

to model selection bias. We propose an alternative strategy where combination selection

is done on the basis of not only the AUC for D = K vs. D < K, but also the AUC for

D = K − 1 vs. D < K − 1, the AUC for D = K − 2 vs. D < K − 2, and so on. We antici-

pate that in some settings, the estimated AUC for D = K vs. D < K for the combination

selected in this way will be less affected by model selection bias and so may be preferred. In

particular, if some of the same biomarkers are associated with multiple levels of the outcome,

our proposed method could offer improvements over the standard approach. Furthermore,

we expect our approach to be useful when many biomarkers have modest associations with

the outcome and the candidate combinations include subsets of these biomarkers.

More precisely, for K = 3, we define our algorithm (including constructing combinations

and estimating their performance) as follows.

(1) In the training data, dichotomize D at D = 3 vs. D < 3 and construct all candidate

biomarker combinations using binary logistic regression.

(2) Based on the combinations fit in (1), estimate (i) the AUC for D = 3 vs. D < 3 and

(ii) the AUC for D = 2 vs. D = 1 in the training data.

(3) Generate B bootstrap samples from the training data.

(a) In each bootstrap sample, dichotomize D at D = 3 vs. D < 3 and construct all

candidate biomarker combinations using binary logistic regression.

(b) For each of the fitted combinations from (a), estimate (i) the AUC for D = 3 vs.

D < 3 and (ii) the AUC for D = 2 vs. D = 1 in both the bootstrap sample and

the training data.

(c) Estimate the resubstitution bias as the average difference between the AUCs in

the bootstrap sample and the training data across the B samples.
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(4) Correct the estimated AUCs from (2) using the estimated bias from (3c).

(5) Determine the ranks for each of the two sets of corrected AUCs from (4) across all fitted

biomarker combinations. The “standard” approach involves choosing the combination

with the best AUC for D = 3 vs. D < 3. The “new” approach involves choosing the

combination with the best sum of ranks for the two AUCs.

(6) Apply the two chosen combinations to test data and estimate the AUC for D = 3 vs.

D < 3 for each. The estimated model selection bias is the difference between the AUCs

in the test data and the AUCs from (4).

In practice, test data may not be available, so it may not be possible to complete step (6). An

R package including code to implement this method, multiselect, will be publicly available.

We used simulations to investigate the potential benefits of the proposed method. We

considered five examples as a proof of concept; these are not intended to be exhaustive. In

the first two examples, the cumulative logit model with proportional odds held, and in the

other three, it did not. Throughout the simulations, there were p = 30 biomarkers and we

considered the set of candidate combinations to be all possible pairs of these biomarkers,

constructed via binary logistic regression. We used B = 50 bootstrap replicates, a training

set of 400 observations, and a test set of 104 observations. We repeated the simulations 500

times.

In Example 1, we had X ∼ N(1, 2Γ), where X was a vector of dimension 30 and Γ was a

30×30 matrix where the diagonal elements were 1 and the off-diagonal elements were 0.3. The

linear predictor was β>X, where β1 = 1, β2 = 2, β3 = ... = β16 = 0.5, β17 = ... = β30 = 0.1.

The outcome was simulated under the cumulative logit model such that P (D = 1) = 0.6,

P (D = 2) = 0.3, and P (D = 3) = 0.1 in a large dataset. Example 2 was identical to

Example 1, except that P (D = 2) = 0.335 and P (D = 3) = 0.065.

In Example 3, we had P (D = 1) = 0.6, P (D = 2) = 0.335, and P (D = 3) = 0.065. Ad-

ditionally, (X|D = 1) ∼ N(0, 2Γ), (X|D = 2) ∼ N(β(2), 2Γ), and (X|D = 3) ∼ N(β(3), 2Γ)

13
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where X was a vector of dimension 30, Γ was as defined above for Example 1, and β
(2)
1 =

1.5, β
(2)
2 = 1, β

(2)
3 = ... = β

(2)
16 = 0.5, β

(2)
17 = ... = β

(2)
30 = 0.1, β

(3)
1 = β

(3)
2 = 2, β

(3)
3 = ... =

β
(3)
16 = 0.8, and β

(3)
17 = ... = β

(3)
30 = 0.1. Example 4 was identical to Example 3, except that

β
(2)
1 = 1 and β

(3)
17 = ... = β

(3)
30 = 0.2. Finally, Example 5 was identical to Example 3, except

that β
(2)
1 = 1, β

(2)
17 = ... = β

(2)
30 = 0, and β

(3)
17 = ... = β

(3)
30 = 0.2.

3 Results

3.1 Constructing Combinations

First we consider the scenario where the cumulative logit model with proportional odds did

not hold. We present the results for a training set size of 400; the results for the other sample

sizes were similar. Here, we focus on the results for P (D = K) = 0.05 and provide the full

results in Section S1.1 (Additional File 1).

Table 1 presents the results for K = 3 and Table 2 presents the results for K = 5. We

see that when µ = −1, µ = 0, or µ = 1, the standard approach is comparable to or better

than the other approaches. When µ = 2, the standard approach may do slightly worse than

some of the ordinal approaches, particularly for K = 3. For µ = 3, the sequential approach,

the stereotype model, and/or the baseline-category logit model offer some gains over the

standard approach. In sum, when the cumulative logit model with proportional odds did

not hold but there was some ordering in the outcome by the biomarkers (that is, µ was not

extreme), the standard approach did well, but when µ was extreme, some of the alternative

approaches demonstrated improved performance.

When the cumulative logit model with proportional odds held, the performance was

comparable across the approaches considered for a training set size of 400 (Additional File

1: Section S1.2); similar patterns were seen for other sample sizes. Thus, even when the

data were generated by an ordinal model, the standard approach did well in terms of the

predictive capacity of the fitted combinations.

14

http://biostats.bepress.com/uwbiostat/paper423



Table 1: Simulation results for K = 3, n = 400, and P (D = 3) = 0.05 when the cumulative logit
model with proportional odds did not hold. The table presents the median and interquartile range
of the AUCs for D = K vs. D < K in the test data for the combinations fitted by each modeling
strategy.

Class Model µ = -1 µ = 0 µ = 1 µ = 2 µ = 3

P(D=1) = 0.1

Binary Standard 0.976 (0.974, 0.978) 0.920 (0.915, 0.924) 0.773 (0.764, 0.780) 0.530 (0.508, 0.543) 0.670 (0.642, 0.684)
Sequential 0.974 (0.971, 0.976) 0.920 (0.915, 0.924) 0.773 (0.764, 0.780) 0.532 (0.519, 0.544) 0.720 (0.708, 0.729)

Ordinal CumLogit 0.970 (0.946, 0.975) 0.918 (0.912, 0.923) 0.776 (0.769, 0.783) 0.544 (0.536, 0.552) 0.313 (0.306, 0.320)
AdjCatLogit 0.970 (0.952, 0.975) 0.918 (0.912, 0.923) 0.776 (0.769, 0.783) 0.544 (0.536, 0.552) 0.313 (0.306, 0.320)
ContRatLogit 0.971 (0.958, 0.976) 0.918 (0.912, 0.923) 0.776 (0.769, 0.783) 0.544 (0.536, 0.552) 0.313 (0.306, 0.320)
Stereo 0.976 (0.974, 0.978) 0.920 (0.915, 0.924) 0.776 (0.769, 0.783) 0.535 (0.520, 0.547) 0.724 (0.715, 0.732)

Nominal BaselineCat 0.976 (0.974, 0.978) 0.920 (0.915, 0.924) 0.773 (0.764, 0.780) 0.532 (0.519, 0.544) 0.720 (0.707, 0.728)

P(D=1) = 0.5

Binary Standard 0.950 (0.946, 0.952) 0.920 (0.915, 0.924) 0.841 (0.834, 0.848) 0.714 (0.705, 0.723) 0.588 (0.571, 0.599)
Sequential 0.924 (0.911, 0.933) 0.919 (0.915, 0.924) 0.842 (0.834, 0.848) 0.712 (0.701, 0.722) 0.743 (0.733, 0.752)

Ordinal CumLogit 0.054 (0.050, 0.062) 0.916 (0.907, 0.921) 0.844 (0.838, 0.849) 0.721 (0.715, 0.728) 0.599 (0.593, 0.604)
AdjCatLogit 0.073 (0.054, 0.198) 0.917 (0.911, 0.922) 0.844 (0.838, 0.849) 0.721 (0.715, 0.728) 0.599 (0.593, 0.604)
ContRatLogit 0.094 (0.057, 0.409) 0.917 (0.911, 0.922) 0.844 (0.838, 0.849) 0.721 (0.715, 0.728) 0.599 (0.593, 0.604)
Stereo 0.950 (0.947, 0.953) 0.920 (0.915, 0.924) 0.844 (0.838, 0.849) 0.718 (0.709, 0.725) 0.749 (0.741, 0.756)

Nominal BaselineCat 0.950 (0.946, 0.952) 0.920 (0.915, 0.924) 0.841 (0.835, 0.848) 0.712 (0.702, 0.722) 0.743 (0.733, 0.752)

Table 2: Simulation results for K = 5, n = 400, and P (D = 5) = 0.05 when the cumulative logit
model with proportional odds did not hold. The table presents the median and interquartile range
of the AUCs for D = K vs. D < K in the test data for the combinations fitted by each modeling
strategy.

Class Model µ = -1 µ = 0 µ = 1 µ = 2 µ = 3

P(D=1) = 0.1

Binary Standard 0.870 (0.864, 0.875) 0.851 (0.844, 0.856) 0.802 (0.794, 0.810) 0.721 (0.710, 0.730) 0.636 (0.615, 0.647)
Sequential 0.732 (0.699, 0.760) 0.836 (0.824, 0.845) 0.802 (0.793, 0.810) 0.720 (0.708, 0.729) 0.693 (0.681, 0.703)

Ordinal CumLogit 0.134 (0.128, 0.144) 0.804 (0.673, 0.843) 0.804 (0.797, 0.811) 0.728 (0.721, 0.735) 0.650 (0.643, 0.656)
AdjCatLogit 0.140 (0.130, 0.161) 0.831 (0.781, 0.847) 0.804 (0.797, 0.811) 0.728 (0.721, 0.735) 0.650 (0.643, 0.656)
ContRatLogit 0.138 (0.130, 0.158) 0.810 (0.690, 0.844) 0.804 (0.796, 0.811) 0.728 (0.721, 0.735) 0.650 (0.643, 0.656)
Stereo 0.872 (0.867, 0.877) 0.853 (0.847, 0.858) 0.804 (0.797, 0.811) 0.727 (0.718, 0.734) 0.701 (0.692, 0.709)

Nominal BaselineCat 0.870 (0.864, 0.875) 0.851 (0.844, 0.857) 0.802 (0.794, 0.810) 0.720 (0.709, 0.729) 0.696 (0.684, 0.704)

P(D=1) = 0.5

Binary Standard 0.893 (0.888, 0.898) 0.883 (0.877, 0.888) 0.856 (0.850, 0.862) 0.814 (0.807, 0.821) 0.769 (0.757, 0.777)
Sequential 0.791 (0.756, 0.824) 0.878 (0.869, 0.884) 0.856 (0.850, 0.862) 0.814 (0.807, 0.820) 0.790 (0.780, 0.798)

Ordinal CumLogit 0.878 (0.828, 0.891) 0.883 (0.877, 0.888) 0.858 (0.853, 0.864) 0.818 (0.813, 0.824) 0.777 (0.772, 0.782)
AdjCatLogit 0.866 (0.773, 0.889) 0.883 (0.876, 0.888) 0.858 (0.853, 0.864) 0.819 (0.813, 0.824) 0.777 (0.772, 0.782)
ContRatLogit 0.852 (0.720, 0.886) 0.882 (0.875, 0.887) 0.858 (0.853, 0.864) 0.818 (0.813, 0.824) 0.777 (0.772, 0.782)
Stereo 0.895 (0.890, 0.899) 0.884 (0.879, 0.889) 0.859 (0.853, 0.864) 0.818 (0.812, 0.824) 0.798 (0.790, 0.804)

Nominal BaselineCat 0.893 (0.888, 0.898) 0.883 (0.877, 0.888) 0.857 (0.851, 0.863) 0.815 (0.808, 0.821) 0.793 (0.786, 0.800)

For small to moderate sample sizes, several of the approaches had issues with convergence.

When the training set had 200 observations, the standard approach failed to converge in up to

3.1% of simulations, the sequential approach failed to converge in up to 38% of simulations,

the stereotype model failed to converge in up to 2.6% of simulations, and the baseline-

15

Hosted by The Berkeley Electronic Press



category logit model failed to converge in up to 1.4% of simulations. For training data with

400 observations, the sequential approach failed to converge in up to 7% of simulations. The

proportion of convergence failures was below 0.2% for all methods for larger sample sizes.

3.2 Combination Selection

Table 3 presents the results for Examples 1 and 4 for the proposed combination selection

method. The results for Examples 2, 3, and 5 show similar patterns; the full results are

presented in Section S2 (Additional File 1). The results in Table 3 demonstrate some benefit

to using the additional information available in the multilevel outcome to select a biomarker

combination for single-level prediction, both in terms of the degree of model selection bias

and the ability of the chosen combination to discriminate D = 3 from D < 3 in test data.

Table 3: Results for the proposed combination selection method for Examples 1 and 4. The table
gives the median (interquartile range) of the estimated model selection bias and the AUC for D = 3
vs. D < 3 in test data for the combinations selected by the two approaches.

Method Bias AUC

Example 1 Standard 0.030 (0.020, 0.044) 0.911 (0.905, 0.917)
New 0.014 (0.005, 0.026) 0.916 (0.911, 0.923)

Example 4 Standard 0.042 (0.012, 0.068) 0.794 (0.777, 0.834)
New 0.010 (-0.018, 0.037) 0.831 (0.822, 0.838)

There were no issues with the logistic regression model failing to converge in the Example

1 simulations, eight simulations (out of 500) had convergence issues in Example 2, and one

simulation had convergence issues in each of Examples 3, 4, and 5.

3.2.1 Application to TRIBE-AKI

We applied our proposed method for combination selection to data from the TRIBE-AKI

study. As noted above, the outcome in this study, AKI, is a multilevel outcome as patients

may be diagnosed with no, mild, or severe AKI. Furthermore, of the biomarkers measured in

the study, it is believed that only a subset are likely to be useful for early diagnosis. Thus,

we considered all possible pairs of 14 biomarkers measured in the study.
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The TRIBE-AKI study is a multicenter study, but we restricted attention to the largest

center in order to avoid issues related to center differences. We used the biomarker mea-

surements taken immediately after surgery, and removed observations missing any of these

measurements. This left 465 observations (61 with mild AKI and 30 with severe AKI). We

also log-transformed the biomarker measurements. As in the simulations, we applied our

proposed method with 50 bootstrap replications.

The results for the ten best combinations in terms of the AUC for severe vs. no/mild AKI

are given in Table 4. The combination with the highest AUC for severe vs. no/mild AKI,

which would be selected by the standard approach, includes urine interleukin-18 (IL-18)

and plasma N-terminal-pro-B-type natriuretic peptide (NT-proBNP). The estimated AUCs

(corrected for resubstitution bias) for this combination were 0.8575 for severe vs. no/mild

AKI and 0.6125 for mild vs. no AKI. The combination with the highest combined rank for

the AUC for severe vs. no/mild AKI and the AUC for mild vs. no AKI, which would be

selected by the proposed method, included plasma heart-type fatty acid binding protein (h-

FABP) and plasma interleukin-6 (IL-6). The estimated AUCs (corrected for resubstitution

bias) for this combination were 0.8365 for severe vs. no/mild AKI and 0.6757 for mild vs.

no AKI. Thus, the AUC for severe vs. no/mild AKI for this second combination is slightly

lower, but the AUC for mild vs. no AKI is substantially higher. It may be reasonable to

expect that the estimated AUC for severe vs. no/mild AKI for the second combination

(0.8365) is less affected by model selection bias than is the estimated AUC for severe vs.

no/mild AKI for the first combination (0.8575), which may motivate choosing to validate

the second combination instead of the first.

4 Discussion

When there is interest in using biomarker combinations for single-level prediction and a

multilevel outcome is available, common practice is often to dichotomize the outcome for
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Table 4: The ten best biomarker pairs in the TRIBE-AKI study. The table presents the ten pairs
with the highest estimated AUC for severe vs. no/mild AKI. The estimated AUCs for severe vs.
no/mild AKI and for mild vs. no AKI are presented. Both estimates are corrected for optimism
due to resubstitution bias.

Biomarkers AUC (Severe) AUC (Mild)

Urine IL-18 Plasma NT-proBNP 0.8575 0.6125
Plasma h-FABP Urine IL-18 0.8495 0.6394
Plasma h-FABP Plasma BNP 0.8464 0.6403
Plasma h-FABP Plasma NT-proBNP 0.8459 0.6329
Urine IL-18 Plasma BNP 0.8414 0.6168
Plasma h-FABP Urine KIM-1 0.8410 0.6400
Plasma h-FABP Plasma IL-6 0.8365 0.6757
Plasma h-FABP Plasma IL-10 0.8342 0.6405
Plasma h-FABP Plasma CKMB 0.8271 0.6558
Urine KIM-1 Plasma TNTHS 0.8253 0.6005

combination construction and selection. We have considered whether the information in a

multilevel outcome could be more fully leveraged in the development of biomarker combina-

tions for single-level prediction.

In the context of constructing biomarker combinations, we used simulations to compare

seven regression-based approaches: two binary approaches, four ordinal approaches, and one

nominal approach. We considered a variety of data-generating scenarios and found that when

some separation in the biomarker distributions between D = K and D < K existed (i.e.,

µ < 2 in our first simulation scenario) or when the cumulative logit model with proportional

odds held, the standard approach based on dichotomizing the outcome tended to work well

in terms of the ability of the resulting combinations to predict D = K.

We have also proposed a method that utilizes the multilevel nature of the outcome in

selecting a biomarker combination, as opposed to selecting a combination based solely on its

ability to predict the targeted level. Simulations provide evidence that use of the proposed

method may result in less model selection bias and could lead to selecting combinations with

greater predictive capacity. We applied this method to data from the TRIBE-AKI study,

where we demonstrated how the method could be used to select a combination in practice.

This approach is expected to be most useful when there is some ordering in the biomarkers

by the levels of D. It is important to study this method further in order to fully elucidate

the settings in which it could be beneficial.
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In using this method for selection, it is generally informative to look at the results for the

candidate combinations, as we have done in Table 4 for the top ten pairs in the TRIBE-AKI

study. If there is a clear “winner” in terms of the AUC for D = 3 vs. D < 3, that is, if

this AUC is substantially higher for one candidate combination, it is probably reasonable

to select that combination, regardless of the AUC for D = 2 vs. D = 1. This is because it

is unlikely that such a markedly higher AUC estimate is due to model selection bias. On

the other hand, if several combinations have fairly similar performance in terms of the AUC

for D = 3 vs. D < 3, it may be worth using the AUC for D = 2 vs. D = 1 to aid in

selection. One possible extension of this method could involve using a weighted average of

ranks for the two AUCs, rather than the sum; additionally, using a weighted average of the

AUC values themselves (as opposed to their ranks) could be considered.

5 Conclusions

When a multilevel outcome is available and there is interest in using biomarker combinations

to predict a single level of the outcome, the common approach of dichotomizing the outcome

necessarily discards some information. We have described when and how this information

might be usefully recovered to advance the goal of single-level prediction, thereby providing

insight into how best to use the data at hand.

Supplementary Materials

The Supplementary Materials contain Sections S1 and S2 and are available with this paper.

Section S1 contains results for simulations comparing methods for constructing combinations

when the cumulative logit model with proportional odds did not hold (Section S1.1) and when

the cumulative logit model with proportional odds held (Section S1.2). Section S2 contains

results for simulations comparing methods for combination selection.
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S1 Constructing Combinations

S1.1 Cumulative Logit Model with Proportional Odds Did Not Hold

For the simulations where the cumulative logit model with proportional odds did not hold, the

biomarkers had multivariate normal distributions conditional on D. We considered four different

sets of covariance matrices for these distributions, and we call these sets ΣX where ΣX may be Σ1,

Σ2, Σ3, or Σ4. These four sets of matrices are defined below.

For K = 3, we have:

• Σ1

� For D = 1, D = 2, and D = 3: 2

 1 0

0 1


• Σ2

� For D = 1, D = 2, and D = 3:

 2 1

1 2


• Σ3

� For D = 1: 2

 1 0

0 1



� For D = 2 and D = 3: 2

 1 0.8

0.8 1


• Σ4

2
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� For D = 1 and D = 2: 2

 1 0

0 1



� For D = 3: 2

 1 0.8

0.8 1


For K = 5, we have:

• Σ1

� For D = 1, D = 2, D = 3, D = 4, and D = 5: 2

 1 0

0 1


• Σ2

� For D = 1, D = 2, D = 3, D = 4, and D = 5:

 2 1

1 2


• Σ3

� For D = 1, D = 2, and D = 3: 2

 1 0

0 1



� For D = 4 and D = 5: 2

 1 0.8

0.8 1


• Σ4

� For D = 1, D = 2, D = 3, and D = 4: 2

 1 0

0 1
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� For D = 5: 2

 1 0.8

0.8 1


The results for ΣX = Σ1 were presented in the paper.

S1.1.1 K = 3

Figure S1: Simulation results for K = 3, n = 400, P (D = 3) = 0.05, and ΣX = Σ1 when the
cumulative logit model with proportional odds did not hold. Each plot presents the median
and interquartile range of the AUCs for D = K vs. D < K in the test data for the combinations fitted
by each modeling strategy, which are given on the x-axis. The results are presented by P (D = 1)
(columns) and µ (rows). The standard approach is indicated by a slightly thicker line and larger
point.
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Figure S2: Simulation results for K = 3, n = 400, P (D = 3) = 0.3, and ΣX = Σ1 when the
cumulative logit model with proportional odds did not hold. Each plot presents the median
and interquartile range of the AUCs for D = K vs. D < K in the test data for the combinations fitted
by each modeling strategy, which are given on the x-axis. The results are presented by P (D = 1)
(columns) and µ (rows). The standard approach is indicated by a slightly thicker line and larger
point.
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Figure S3: Simulation results for K = 3, n = 400, P (D = 3) = 0.05, and ΣX = Σ2 when the
cumulative logit model with proportional odds did not hold. Each plot presents the median
and interquartile range of the AUCs for D = K vs. D < K in the test data for the combinations fitted
by each modeling strategy, which are given on the x-axis. The results are presented by P (D = 1)
(columns) and µ (rows). The standard approach is indicated by a slightly thicker line and larger
point.

6

http://biostats.bepress.com/uwbiostat/paper423



Figure S4: Simulation results for K = 3, n = 400, P (D = 3) = 0.3, and ΣX = Σ2 when the
cumulative logit model with proportional odds did not hold. Each plot presents the median
and interquartile range of the AUCs for D = K vs. D < K in the test data for the combinations fitted
by each modeling strategy, which are given on the x-axis. The results are presented by P (D = 1)
(columns) and µ (rows). The standard approach is indicated by a slightly thicker line and larger
point.
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Figure S5: Simulation results for K = 3, n = 400, P (D = 3) = 0.05, and ΣX = Σ3 when the
cumulative logit model with proportional odds did not hold. Each plot presents the median
and interquartile range of the AUCs for D = K vs. D < K in the test data for the combinations fitted
by each modeling strategy, which are given on the x-axis. The results are presented by P (D = 1)
(columns) and µ (rows). The standard approach is indicated by a slightly thicker line and larger
point.
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Figure S6: Simulation results for K = 3, n = 400, P (D = 3) = 0.3, and ΣX = Σ3 when the
cumulative logit model with proportional odds did not hold. Each plot presents the median
and interquartile range of the AUCs for D = K vs. D < K in the test data for the combinations fitted
by each modeling strategy, which are given on the x-axis. The results are presented by P (D = 1)
(columns) and µ (rows). The standard approach is indicated by a slightly thicker line and larger
point.
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Figure S7: Simulation results for K = 3, n = 400, P (D = 3) = 0.05, and ΣX = Σ4 when the
cumulative logit model with proportional odds did not hold. Each plot presents the median
and interquartile range of the AUCs for D = K vs. D < K in the test data for the combinations fitted
by each modeling strategy, which are given on the x-axis. The results are presented by P (D = 1)
(columns) and µ (rows). The standard approach is indicated by a slightly thicker line and larger
point.
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Figure S8: Simulation results for K = 3, n = 400, P (D = 3) = 0.3, and ΣX = Σ4 when the
cumulative logit model with proportional odds did not hold. Each plot presents the median
and interquartile range of the AUCs for D = K vs. D < K in the test data for the combinations fitted
by each modeling strategy, which are given on the x-axis. The results are presented by P (D = 1)
(columns) and µ (rows). The standard approach is indicated by a slightly thicker line and larger
point.
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S1.1.2 K = 5

Figure S9: Simulation results for K = 5, n = 400, P (D = 5) = 0.05, and ΣX = Σ1 when the
cumulative logit model with proportional odds did not hold. Each plot presents the median
and interquartile range of the AUCs for D = K vs. D < K in the test data for the combinations fitted
by each modeling strategy, which are given on the x-axis. The results are presented by P (D = 1)
(columns) and µ (rows). The standard approach is indicated by a slightly thicker line and larger
point.
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Figure S10: Simulation results for K = 5, n = 400, P (D = 5) = 0.3, and ΣX = Σ1 when the
cumulative logit model with proportional odds did not hold. Each plot presents the median
and interquartile range of the AUCs for D = K vs. D < K in the test data for the combinations fitted
by each modeling strategy, which are given on the x-axis. The results are presented by P (D = 1)
(columns) and µ (rows). The standard approach is indicated by a slightly thicker line and larger
point.
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Figure S11: Simulation results for K = 5, n = 400, P (D = 5) = 0.05, and ΣX = Σ2 when the
cumulative logit model with proportional odds did not hold. Each plot presents the median
and interquartile range of the AUCs for D = K vs. D < K in the test data for the combinations fitted
by each modeling strategy, which are given on the x-axis. The results are presented by P (D = 1)
(columns) and µ (rows). The standard approach is indicated by a slightly thicker line and larger
point.
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Figure S12: Simulation results for K = 5, n = 400, P (D = 5) = 0.3, and ΣX = Σ2 when the
cumulative logit model with proportional odds did not hold. Each plot presents the median
and interquartile range of the AUCs for D = K vs. D < K in the test data for the combinations fitted
by each modeling strategy, which are given on the x-axis. The results are presented by P (D = 1)
(columns) and µ (rows). The standard approach is indicated by a slightly thicker line and larger
point.

15

Hosted by The Berkeley Electronic Press



Figure S13: Simulation results for K = 5, n = 400, P (D = 5) = 0.05, and ΣX = Σ3 when the
cumulative logit model with proportional odds did not hold. Each plot presents the median
and interquartile range of the AUCs for D = K vs. D < K in the test data for the combinations fitted
by each modeling strategy, which are given on the x-axis. The results are presented by P (D = 1)
(columns) and µ (rows). The standard approach is indicated by a slightly thicker line and larger
point.
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Figure S14: Simulation results for K = 5, n = 400, P (D = 5) = 0.3, and ΣX = Σ3 when the
cumulative logit model with proportional odds did not hold. Each plot presents the median
and interquartile range of the AUCs for D = K vs. D < K in the test data for the combinations fitted
by each modeling strategy, which are given on the x-axis. The results are presented by P (D = 1)
(columns) and µ (rows). The standard approach is indicated by a slightly thicker line and larger
point.
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Figure S15: Simulation results for K = 5, n = 400, P (D = 5) = 0.05, and ΣX = Σ4 when the
cumulative logit model with proportional odds did not hold. Each plot presents the median
and interquartile range of the AUCs for D = K vs. D < K in the test data for the combinations fitted
by each modeling strategy, which are given on the x-axis. The results are presented by P (D = 1)
(columns) and µ (rows). The standard approach is indicated by a slightly thicker line and larger
point.
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Figure S16: Simulation results for K = 5, n = 400, P (D = 5) = 0.3, and ΣX = Σ4 when the
cumulative logit model with proportional odds did not hold. Each plot presents the median
and interquartile range of the AUCs for D = K vs. D < K in the test data for the combinations fitted
by each modeling strategy, which are given on the x-axis. The results are presented by P (D = 1)
(columns) and µ (rows). The standard approach is indicated by a slightly thicker line and larger
point.
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S1.2 Cumulative Logit Model with Proportional Odds Held

S1.2.1 K = 3

Figure S17: Simulation results for K = 3, n = 400, and P (D = 3) = 0.05 when the
cumulative logit model with proportional odds held. Each plot presents the median and
interquartile range of the AUCs for D = K vs. D < K in the test data for the combinations fitted
by each modeling strategy, which are given on the x-axis. The results are presented by P (D = 1)
(columns) and µ (rows). The standard approach is indicated by a slightly thicker line and larger
point.
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Figure S18: Simulation results for K = 3, n = 400, and P (D = 3) = 0.3 when the cumulative
logit model with proportional odds held. Each plot presents the median and interquartile range
of the AUCs for D = K vs. D < K in the test data for the combinations fitted by each modeling
strategy, which are given on the x-axis. The results are presented by P (D = 1) (columns) and µ
(rows). The standard approach is indicated by a slightly thicker line and larger point.
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S1.2.2 K = 5

Figure S19: Simulation results for K = 5, n = 400, and P (D = 5) = 0.05 when the
cumulative logit model with proportional odds held. Each plot presents the median and
interquartile range of the AUCs for D = K vs. D < K in the test data for the combinations fitted
by each modeling strategy, which are given on the x-axis. The results are presented by P (D = 1)
(columns) and µ (rows). The standard approach is indicated by a slightly thicker line and larger
point.
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Figure S20: Simulation results for K = 5, n = 400, and P (D = 5) = 0.3 when the cumulative
logit model with proportional odds held. Each plot presents the median and interquartile range
of the AUCs for D = K vs. D < K in the test data for the combinations fitted by each modeling
strategy, which are given on the x-axis. The results are presented by P (D = 1) (columns) and µ
(rows). The standard approach is indicated by a slightly thicker line and larger point.
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S2 Combination Selection

Figure S21: Results for the proposed combination selection method for Example 1. The
plot on the left gives the median and interquartile range of the estimated model selection bias for the
combinations selected by the two approaches (the standard approach and the new approach) and the
difference in the estimated bias between the two approaches. The plot on the right gives the median
and interquartile range of the AUC for D = 3 vs. D < 3 in test data for the combinations selected by
the two approaches.
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Figure S22: Results for the proposed combination selection method for Example 2. The
plot on the left gives the median and interquartile range of the estimated model selection bias for the
combinations selected by the two approaches (the standard approach and the new approach) and the
difference in the estimated bias between the two approaches. The plot on the right gives the median
and interquartile range of the AUC for D = 3 vs. D < 3 in test data for the combinations selected by
the two approaches.
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Figure S23: Results for the proposed combination selection method for Example 3. The
plot on the left gives the median and interquartile range of the estimated model selection bias for the
combinations selected by the two approaches (the standard approach and the new approach) and the
difference in the estimated bias between the two approaches. The plot on the right gives the median
and interquartile range of the AUC for D = 3 vs. D < 3 in test data for the combinations selected by
the two approaches.
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Figure S24: Results for the proposed combination selection method for Example 4. The
plot on the left gives the median and interquartile range of the estimated model selection bias for the
combinations selected by the two approaches (the standard approach and the new approach) and the
difference in the estimated bias between the two approaches. The plot on the right gives the median
and interquartile range of the AUC for D = 3 vs. D < 3 in test data for the combinations selected by
the two approaches.
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Figure S25: Results for the proposed combination selection method for Example 5. The
plot on the left gives the median and interquartile range of the estimated model selection bias for the
combinations selected by the two approaches (the standard approach and the new approach) and the
difference in the estimated bias between the two approaches. The plot on the right gives the median
and interquartile range of the AUC for D = 3 vs. D < 3 in test data for the combinations selected by
the two approaches.
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