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Abstract: Declining gauging infrastructure and fractious water politics have decreased available 

information about river flows globally. Remote sensing and water balance modelling are 

frequently cited as potential solutions, but these techniques largely rely on these same in-decline 

gauge data to make accurate discharge estimates. A different approach is therefore needed, and 

we here combine remotely sensed discharge estimates made via at-many-stations hydraulic 

geometry (AMHG) and the PCR-GLOBWB hydrological model to estimate discharge over the 

Lower Nile. Specifically, we first estimate initial discharges from 87 Landsat images and AMHG 

(1984-2015), and then use these flow estimates to tune the model, all without using gauge data. 

The resulting tuned modelled hydrograph shows a large improvement in flow magnitude: 

validation of the tuned monthly hydrograph against a historical gauge (1978-1984) yields an 

RMSE of 439 m
3
/s (40.8%). By contrast, the original simulation had an order-of-magnitude flow 

error. This improvement is substantial but not perfect: tuned flows have a one-to two-month wet 

season lag and a negative baseflow bias. Accounting for this two-month lag yields a hydrograph 

RMSE of 270 m
3
/s (25.7%). Thus, our results coupling physical models and remote sensing is a 

promising first step and proof of concept toward future modelling of ungauged flows, especially 

as developments in cloud computing for remote sensing make our method easily applicable to 

any basin. Finally, we purposefully do not offer prescriptive solutions for Nile management, and 

rather hope that the methods demonstrated herein can prove useful to river stakeholders in 

managing their own water.   

Key Words: Nile, Remote Sensing, Ungauged Basins, PCR-GLOBWB, AMHG 
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1. Introduction  

Fresh water is arguably the most important resource required by civilizations, and it  

drives industry, agriculture, and ecosystem function the world over. Rivers in particular occupy  

pride of place in providing freshwater resources (despite almost complete dependence on  

groundwater in certain areas), and humans have settled in river valleys since the dawn of  

civilization in the Fertile Crescent.  Approximately two-fifths of total global rainfall eventually  

winds its way through rivers before reaching the sea [Vörösmarty et al., 2000; Oki and Kanae,  

2006], yet despite this vast importance we have a surprisingly poor grasp on how much water is  

flowing through our rivers globally. The prime reason for this difficulty is a decline in  

monitoring infrastructure (i.e., gauging stations). These river gauges have been a mainstay of  

providing flow information to the global community, but are in sharp decline due to expense of  

maintenance [Vörösmarty et al., 2000; Hannah et al., 2011] or are withheld from the public  

knowledge for political reasons [Gleason and Hamdan, 2015] (Figure 1). This decline of gauge  

information has broader impacts beyond the loss of publically available measurements of flow:  

gauges are also a prime driver of hydrologic modelling, where they are used as calibration and  

tuning data to assure that models represent particular watersheds as accurately as possible. In  

addition, calibrated models provide detailed flow information in spatially distributed reaches,  

essentially extending point gauge measurements in space. We often have historical records from  

a less-politically sensitive and better-funded era, and yet many of these records are more than a  

decade old and reflect watersheds that are changed from those we know today. This loss of data  

means that the crucially needed future assessments of water resources that result from well- 

calibrated and validated models used in conjunction with future climate scenarios suffer from  

greater uncertainty.  
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Scientists have recently turned to satellites to search for this needed flow data. The  

GRACE satellites have proved hugely effective at tracking water storage change at large scales  

where changes in water storage like groundwater movement manifest in earth’s gravity field  

[e.g., Syed et al., 2009; Lee et al., 2011], but GRACE cannot provide river discharge at the small  

watershed scale. The most prevalent technique for using satellites to estimate discharge is to  

couple satellite observations directly with field measurements. A common algorithm for doing so  

involves building an empirical relationship between field measurements of discharge and  

satellite observations of stage, width, or some other fluvial observable [e.g. Smith et al., 1996;  

Bjerklie et al., 2003; 2005; Gilvear et al., 2004; Ashmore and Sauks, 2006; Bjerklie, 2007;  

Brakenridge et al., 2007; Smith and Pavelsky, 2008; Nathanson et al., 2012; Tarpanelli et al.,  

2013; Tourian et al., 2013; Pavelsky, 2014; Pan et al., 2016; Sichangi et al., 2016]. In addition  

to these field calibrated approaches, the forthcoming NASA/CNES Surface Water and Ocean  

Topography (SWOT) satellite scheduled for launch in 2021 holds promise for estimating  

discharge without in situ information as demonstrated by using hydraulic model output as a  

proxy for future simultaneous SWOT observations of water surface elevation and width using a  

McFLI (Mass conserved Flow Law Inversion) paradigm [Durand et al., 2008; Durand et al.,  

2010; 2014; Yoon et al., 2012; Garambois and Monnier, 2015; Bonnema et al., 2016; Durand et  

al., 2016; Gleason et al., 2017]. Should SWOT successfully launch and the discharge inversion  

techniques developed for it succeed, it would likely usher in a sea-change in hydrologic studies  

as it could provide (temporally discontinuous) discharge estimates for model calibration and  

tuning worldwide.  
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These previous approaches are successful at estimating discharge from remotely sensed 

observations, yet are unable to reliably estimate flows in ungauged basins either because of the 

mismatch in scale (GRACE), the need for field calibration of an empirical relationship, or 

because SWOT does not yet exist. A fourth method of estimating discharge directly from 

remotely sensed observations is the at-many-stations hydraulic geometry (AMHG) McFLI 

method described by Gleason and Smith [2014] and Gleason et al. [2014]. AMHG is a newly 

discovered geomorphic phenomenon that links river cross sections in space and time, essentially 

extending the traditional at-a-station hydraulic geometry that forms the basis for gauging stations 

in space. AMHG is frequently but not universally observed on natural rivers, and thorough 

discussion of AMHG as a geomorphic concept is given in the SI. Gleason and Smith [2014] first 

demonstrated that knowledge of AMHG (derived from remote sensing via a proxy), coupled with 

multitemporal Landsat imagery and heuristic optimization, could yield discharge estimates with 

less than 30% error from remote sensing alone. Gleason et al [2014] further refined this method 

and revealed that performance of the method was satisfactory for most river morphologies 

(reporting 26-41% error), but also showed the method to be unsuitable for certain river types 

(width-invariant and flashy rivers in particular). Gleason et al [2014] also noted that the proxy 

for the AMHG relationship seemed weak, which was confirmed by Gleason and Wang [2015] 

who concluded it to be spurious in their geomorphological analysis of AMHG. Gleason and 

Wang [2015] showed that AMHG arises from convergence of rating curves- i.e., each individual 

cross section’s AHG power law passes through the same value of width and discharge, and that 

these congruent values of width and discharge define the AMHG relationship [further confirmed 

by Shen et al., 2016]. Please see the SI for further discussion of this concept. As such, some 

estimate of this rating curve convergence point is now needed to estimate discharge via AMHG. 

This article is protected by copyright. All rights reserved.



 
 

6 

 

Gleason and Wang [2015] showed that the width convergence point can be approximated via 

remote sensing, but that the discharge convergence point cannot and needs to be estimated a 

priori from either precipitation (P) and evapotranspiration (ET) estimates or historical data. 

Finally, both Bonnema et al. [2016] and Gleason and Hamdan [2015] found that AMHG-based 

discharge estimation improves substantially when flows are estimated separately for wet and dry 

seasons in rivers with distinct two-season flow regimes.  

The AMHG method can provide discharge estimates in the absence of in situ data, but 

still falls short of providing the spatially distributed and temporally rich flow information 

provided by well-calibrated hydrologic models. To that end, we here propose a framework for 

the synergistic use of remote sensing and hydrologic modelling to estimate discharge in one of 

the world’s most iconic ungauged rivers: The Nile. There is tremendous political and ecological 

interest in the water balance of the Nile but there are very few public data available, as gauge 

records end in 1984. We have chosen this important river for demonstration because of its data 

scarcity, geopolitical complexity, uncertain water balance, and general scientific interest. We 

selected the Lower Nile in particular (well below Aswan) for demonstration as we have access to 

a well-developed water balance model for this section. We first review the geopolitical context 

and historical data availability in this basin. We then ask the question: Can we use AMHG to tune 

a hydrologic model for an ungauged basin? To answer this question, we estimate lower Nile 

discharge using Landsat images and an AMHG-based discharge estimation approach. We first 

characterize AMHG using satellite-derived P and ET estimates, use this characterized AMHG to 

estimate discharge from remotely sensed images, and finally tune a water balance model of the 

Nile [PCR-GLOBWB; Wada et al., 2016] for a time period when the Nile is completely 
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ungauged from an international perspective to assess the effectiveness of this hybrid approach. 

This represents the longest temporal period and the greatest spatial extent for which the AMHG 

method has been applied, and as such our modelling is purposefully simple. What results are 

daily modelled estimates of lower Nile discharge for the period 1978 to the present day that are 

among the first streamflow estimates made from remote sensing in the basin. We discuss and 

contextualize these results as they pertain to both the Nile water balance and the utility of this 

remote sensing-model synergy in other ungauged river basins.  

Importantly, Zeitoun and Allan [2008], among others, have warned against the 

ineffectiveness of aloof, data-driven solutions to water management challenges in the Nile posed 

by otherwise well-meaning hydrologists. In this spirit, we do not suggest a solution for Nile 

water allocation nor do we offer any prescriptive prognosis from our tuned, modelled 

hydrograph. We also do not attempt to make any water management decisions; rather, we wish 

to demonstrate the applicability of currently available remotely sensed data for extending 

historical gauge records and tuning models in regions where gauging information is limited or 

not available like the Nile.  

2. Data and Methods 

2.1.1 Historical context and gauge data 

The Nile originates in two different upland areas: the Ethiopian highlands and the Lake 

Victoria region, which give rise to the Blue and White Nile, respectively. 72% of flow in the Nile 

below the confluence of the two upper Nile rivers comes from the Blue Nile and the Atbara river 

(which both arise in Ethiopia), and the Ethiopian highlands alone contribute 86% of the flow in 

the Nile that reaches Egypt [Salman, 2011]. However, climate change is poised to alter the water 
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balance of the Nile, as precipitation in Ethiopia is driven mainly by the inter-tropical  

convergence zone that is strongly tied to global energy circulation and seasonal monsoons  

[Conway, 2000; Swain, 2002; Yohannes, 2009]. This physical geography is set against Africa’s  

territorial legacy of post-colonial successor states. Conway et al. [2009] estimate that 90% of the  

continent’s water resources are transboundary, and the Nile is no exception, as there are 11  

riparian states within the Nile basin (Figure 2). The White Nile basin contains Burundi, Kenya,  

Rwanda, Sudan, South Sudan, Tanzania, Uganda, and The Democratic Republic of the Congo en  

route to its confluence with the Blue Nile at Khartoum. The Blue Nile basin includes Egypt,  

Ethiopia, Sudan, and South Sudan.  These latter four states occupy 85% of the greater Nile basin.    

 The Nile basin’s political and physical geography has led to much contestation for its  

usage given the number of states included in the basin and the basin’s particular imbalance of  

upland and downstream water resources.  Egypt depends almost totally on Nile, and has little  

alternative to acquire water resources: it thus leverages its post-colonial hegemony to enforce  

1959 Nile Waters Agreement to insist on access to well over half of the Nile’s annual flow  

[Dinar, 2012; Luzi, 2010].  This has led to a long history of toxic water politics in the region, and  

thus unsurprisingly, states within the Nile basin do not share flow rate data. There are no  

publically available gauge data for the Ethiopian highlands, public gauge records on the Atbara  

River (the major tributary of the Blue Nile) end in 1982, and there are no flow rate data available  

beyond 2002 at the El Deim station at the border of Ethiopia and Sudan [Conway et al., 2009].  

Egypt resorts to water balance modelling to assess available water resources and plan for water  

allocations, but even very simple water balance models are difficult to build without flow rate  

data [Conway, 1997; Conway et al., 1996], a data deficiency that cannot be overcome by climate  
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data alone [Conway and Hulme, 1993]. Despite these difficulties, it is likely that there are gauges 

within Ethiopia that are currently operational and would provide the data needed to understand 

how precipitation in the Ethiopian highlands is routed into the Blue Nile and Atbara rivers and 

eventually to Egypt.   

 The historical gauge data used in this study were obtained from the Global Runoff Data 

Centre (GRDC; http://www.bafg.de/GRDC/EN/Home/homepage_node.html). Gauged discharge 

data are available at the El Ekhsase station from 1973-1984 (GRDC station ID: 1362100, 29.70º 

N and 31.28º E, Figure 2a). Later information has not been reported to the GRDC, and no other 

publically available flow data exist to the best of our knowledge. We opted to use the furthest 

downstream station possible in order to represent the largest upstream catchment area above the 

station (~3.0 million km
2
) and its associated maximum impact on transboundary water resources. 

2.1.2 Remotely sensed data 

Multi-temporal remote sensing images were acquired to provide repeated width 

observations along our study reach, which extends upstream from El Ekhsase to Samalut (Figure 

2a). This reach has a total distance of ~180 km and does not have any major tributary 

confluences. This large reach was further partitioned into 28 finer mass-conserved reaches (~1–

14 km, Figure 2a) chosen to avoid junctions with irrigation conduits or other artificial 

infrastructure visually identified from high-resolution Google Earth images. 

We selected a total of 91 high quality, cloud-free images acquired from multiple Landsat 

sensors, including 46 images from the Thematic Mapper (TM), 18 from the Enhanced Thematic 

Mapper Plus (ETM+), and 27 from the Operational Land Imager (OLI). All images were located 
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on a single tile of Path 176 and Row 40 (in the Worldwide Reference System 2). The temporal 

coverage of these images spans 1984 to 2015. The 30m spatial resolution of Landsat images was 

generally sufficient to capture width variations along the Lower Nile [Pekel et al., 2016], with a 

reach-average intra-annual width change of ~320 m or ~10 pixels (see accuracy assessment in 

Section 3.2). The original Landsat Multispectral Scanner (MSS) sensor, which would extend our 

image record further into the past, was not used due to its coarser spatial resolution.  

2.2 Methods 

2.2.1 Water surface delineation and river width measurement 

We implemented a highly automated scheme to measure river top widths along the study 

reaches. We first extracted inundation extent from each Landsat image and then calculated top 

widths orthogonal to this centerline within each reach (Figure 2b–f). Accurate inundation extent 

was extracted using an adaptive water mapping algorithm that simulates how a human operator 

optimizes the delineation of waterbodies under varying surface conditions. Interested readers are 

referred to Li and Sheng [2012], Wang et al. [2014], and Sheng et al. [2016] for more detailed 

descriptions of this algorithm. In brief, the Normalized Difference Water Index (NDWI) 

[McFeeters 1996] was first calculated for each Landsat image in order to enhance the presence 

of surface water (values toward +1) while suppressing the presence of soil/vegetation (values 

toward −1): 

𝑁𝐷𝑊𝐼 =  
𝐺−𝑁𝐼𝑅

𝐺+𝑁𝐼𝑅
                                                                                                                         (1) 

where 𝐺 represents the surface reflectance in the green spectrum (520–600 nm for TM/ETM+ 

and 530–590 nm for OLI), and 𝑁𝐼𝑅 the reflectance in the near-infrared spectrum (770–900 nm 
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for TM/ETM+ and 850–880 nm for OLI). Candidate water extents were next flagged by 

segmenting the entire NDWI image using an initial threshold of –0.15. This segmentation was 

aimed to detect potential waterbodies rather than precisely delineate them. The threshold was 

purposely assigned to be slightly less than zero to include surface water with high turbidity or 

aquatic vegetation (thus reducing the initial omission error). Each flagged waterbody was then 

revisited, and its extent was fine-tuned by an updated segmenting threshold, estimated 

automatically from the NDWI histogram using pixels in the waterbody vicinity (i.e., a buffer 

zone). The updated NDWI threshold is, in theory, more adaptive to the local water spectral 

conditions rather than our initial global discriminant of -0.15. This local-level segmentation was 

implemented iteratively until the resultant water extent converged, implying that the optimal 

delineation for this waterbody had been achieved. This algorithm has been shown to be highly 

robust to common disturbing factors such as turbidity, ice, and aquatic vegetation in different 

geographic settings [Lyons et al., 2013, Wang et al., 2014, Song et al., 2016]. A rigorous quality 

assurance was further performed on our automated water extents with assistance of a user-

interactive mapping tool [Wang et al., 2014] in order to eliminate any remaining mapping errors. 

Our extracted water extents (exemplified in Figure 2c and d) were next input to RivWidth 

[v0.4; Pavelsky and Smith, 2008], a commonly applied software tool to automate the calculation 

of river effective widths [Allen et al., 2013; Miller et al., 2014; Allen and Pavelsky, 2015]. In 

general, RivWidth first applies computational geometry to generate a centerline for any linear 

water mask. An orthogonal line is next derived at each centerline pixel representing the location 

of a unique cross section. The total width along each orthogonal is then computed as the 

effective width at this cross section over a reach length of 30 m (a Landsat image pixel) (Figure 
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2e and f), which was tested to be comparable in quality to manual measurement [Pavelsky and 

Smith, 2008] (also see Section 3.2). We used a static river centerline for all acquired Landsat 

images (as shown in Figure 2a, e, and f), in order to ensure that all calculated river widths repeat 

precisely at well-controlled cross sections.  

2.2.2 Discharge estimation via AMHG 

 River widths measured in Section 2.2.1 were used to estimate Nile River discharge 

following the basic method described by Gleason and Smith [2014] and Gleason et al. [2014]. 

Readers are referred to this paper’s companion SI for a thorough discussion of both the theory 

and application of AMHG as it pertains to this work, and we briefly summarize the method here. 

AMHG discharge estimation is based on classic at a station hydraulic geometry (AHG), Equation 

2, where w is width, Q is discharge, and a and b are empirically calibrated parameters: 

𝑤 = 𝑎𝑄𝑏           (2) 

The first stage in an AMHG discharge estimation is to characterize AMHG itself. Rather than 

using the slope and intercept paradigm of Gleason and Smith [2014] to describe AMHG, we use 

the Qc and wc paradigm introduced by Gleason and Wang [2015], which states that when AMHG 

is observed, then 

𝑏 = −
log 𝑎

log 𝑄𝑐
+

log 𝑤𝑐

log 𝑄𝑐
 ,         (3)  

and then by substitution of Equation 2 into Equation 3 we arrive at the AMHG equation for flow 

log 𝑄 =
log 𝑤+𝑏 log 𝑄𝑐−𝑙𝑜𝑔𝑤𝑐

𝑏
 ,         (4) 
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where 1/log Qc= slope and log wc/log Qc =intercept as described by Gleason and Smith [2014]. 

Note that Equations 3 and 4 are special cases of Equation 2 when AMHG is observed, yet they 

hold simultaneously at all stations of a river, not just a single station as in Equation 2. AMHG 

does not always exist: some rivers do not have either a wc or a Qc, making this method 

inappropriate. This is an active area of future research.  

 Gleason and Wang [2015] proposed that Qc and wc are the points of rating curve 

convergence: AMHG’s geomorphological meaning is that all rating curves of a particular reach 

pass through the same values of w and Q. Gleason and Wang [2015] then posited that these can 

be given by the spatial modes of time mean quantities of w and Q, which Shen et al. [2016] noted 

is a sufficient but not a necessary proposition. wc (425m)  was thus calculated directly from the 

Landsat derived widths from all cross sections (rounded to the nearest tenth in log space per 

Gleason and Wang [2015]), but some a priori estimate of Q was needed to characterize Qc. We 

derived Qc from satellite measures of P and ET to test the efficacy of satellite-model synergy. 

Precipitation estimates were derived from the gauge-corrected satellite precipitation data sets 

from the Global Precipitation Climatology Centre (GPCC) 

(http://www.dwd.de/EN/ourservices/gpcc/gpcc.html). Given the large uncertainty in satellite-

based ET estimates, ET was derived from an ensemble of MODIS products for the Nile [Cleugh 

et al., 2007; Mu et al, 2011; Mu et al., 2013]. Thus, Qc was taken as the long term mean of this 

P-ET satellite water balance (3,600 m
3
/s), and to estimate discharge, Equation 4 is used as an 

objective function in a genetic algorithm (GA) that seeks to solve for Qc and Q given observed 

widths. The Nile exhibits a distinct seasonal river flow, but observed flow only varies from 

~1,000 to 2000 m
3
/s at the monthly time scale. Thus, we do not follow a monsoonal separation of 
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wet and dry seasons per previous work on the Ganges River [Bonnema et al., 2016], as the 

Ganges has a much more pronounced seasonal flow variation.  We thus estimate flow across all 

images and all reaches using the GA. The SI details this process for the interested reader. 

2.2.3 Modelling the Nile via PCR-GLOBWB 

 In order to model spatially and temporally explicit discharge in the Nile, the state-of-the-

art hydrological model PCR-GLOBWB was used at a 0.1
o
 by 0.1

o
 spatial resolution (~10km by 

~10km at the equator) covering the entire Nile River drainage basin (5º S to 35º N and 22º E to 

41º E) and at a daily temporal resolution [Wada et al., 2014, 2016]. This is among the finest 

spatial resolutions used over the Lower Nile as compared to previous large-scale water balance 

assessments, and enables us to more precisely depict regional variability in water balance and 

river discharge. The model runs at a daily temporal resolution with input data that have been 

parameterized at a 0.1
o
 grid, and input parameters at this enhanced spatial resolution include 

topography, vegetation, soil properties and lithology [Wada et al., 2016]. Channel characteristics 

for river routing have also been derived from a high-resolution drainage direction map 

[HydroSHEDS, (http://hydrosheds.cr.usgs.gov/index/php/)]. Moreover, human water 

management such as human water use from agriculture (i.e., livestock and irrigation), industry, 

households, and reservoir regulation have been also parameterized at a 0.1
o
 grid, using the latest 

available spatially-explicit data of livestock densities, irrigated areas, population numbers and 

the location of reservoirs [Wada et al., 2016]. For the extensive description of the basic 

hydrologic model structure, global forcing data, and associated water use calculation, we refer to 

Wada et al. [2014, 2016]. We briefly present some of the main features of the model and its 

parameterization at 0.1
o
 in Figure 3 and in SI Section 3.   
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2.2.4 Tuning PCR-GLOBWB with AMHG 

 There are no gauge data available for model calibration for the period 1984-present, 

hence the need for this present work. Thus, in order to improve the accuracy of river discharge 

simulation over the drainage network, we tune the model with AMHG-derived river discharge 

collected over 1984-present instead (see Section 2.2.2, Table 1). The model time domain is from 

1978-present, so we are therefore tuning the model with discrete discharge estimates made across 

the latter end of its time domain. We validate the model for a 6-year period of overlap with the 

gauge where remotely sensed data are not available (1978-1984).  Table 1 shows the temporal 

resolution of key facets of this study, and we remind the reader that there is no temporal overlap 

between the gauge and the AMHG derived flows, nor has the gauge been used to estimate 

discharge or inform AMHG: the gauge remains truly a validation dataset. To tune the model, a 

time-integrated multiplicative correction/tuning factor is calculated for the basin from AMHG 

river discharge estimates. The multiplicative correction factor is simply calculated as the quotient 

of the time mean of AMHG-derived discharge estimates and the time mean of uncalibrated PCR-

GLOBWB discharge simulations for periods where AMHG flows are available: i.e., the mean of 

the remotely sensed discharge on each day an image was acquired in the period 1984-2015. The 

long-term average approach has been chosen due to the limited years of AMHG-derived 

estimates. This multiplicative correction factor is applied to all P and ET values, but is 

proportionally weighted and applied based on the ratio of P and ET to the total P+ET on the basis 

of the daily model simulation in order to force runoff over the basin to correct itself toward the 

AMHG estimates. The tuned runoff (R) is then routed along the river network as described in the 

previous section. Thus, this tuning scheme assumes that any error in modelled runoff is attributed 
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to P and ET given the water balance equation, assuming no major trend in water storage over the 

simulation period. This method has been chosen because it is computationally inexpensive, and 

because we have attributed the errors in the original simulated river discharge to climate forcing 

rather than model parameters (e.g., calibration) given to the large uncertainty of the uncalibrated 

modelled hydrograph. Finally, major dams like Aswan affect the seasonality of flow, but do not 

have large impacts on the mean annual flow of a river by conservation of mass. Thus, without 

detailed operation rules that are not available for Aswan (or many other dams), our method is 

likely to produce results that improve flow magnitude but not timing. 

3. Results 

 Figure 4 shows that we were able to successfully tune a hydrologic model of the Nile 

from remotely sensed data without invoking in situ data. Here, temporally sparse and spatially 

variable AMHG flow estimations made at 87 discrete times in 28 sub-reaches of our study area 

were fed into a global hydrologic model (four out of the original 91 images were removed during 

pre-processing for having low-width outliers of 0 or 30 m as a result of mapping and width 

calculation uncertainties, SI Section 1). The model was adjusted to match the scale of runoff in 

our remotely sensed flows, and the resultant hydrograph shows an order of magnitude 

improvement brought about via remotely sensed data alone. The hydrograph is modelled daily, 

which overcomes limitations of the sparse AMHG flows, and exhibits a one to two month flow 

lag and a negative baseflow bias. The RSME of the modelled hydrograph, as validated monthly 

against the only gauge data available from 1978-1984, is 439 m
3
/s, and is 270 m

3
/s when adding 

a two-month lag. Below, we give detailed results as they pertain to the remote sensing and 

modelling portions of this study. 
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3.1 AMHG flow estimation  

Our results indicate that we have made hydrologically useful estimates of flow from  

remotely sensed data without relying on any in situ data. Remotely sensed flow retrievals ranged  

in magnitude from 405 and 3,603 m
3
/s, matching the scale of historical observations despite  

being given an initial estimate of Qc of 3,600 m
3
/s. This is a major improvement over previous  

work, which indicated that the initial choice of Qc plays a large role in determining estimated  

discharges and that some in situ data are needed to estimate Qc  [Gleason et al., 2014, Gleason  

and Wang, 2015]. The updated methodology documented in the SI was responsible for this  

improvement, as employing a previous version of the AMHG method as previously conceived  

did not return correct-magnitude flows (yielding instead flows centered on the P -ET Qc of 3,600  

m
3
/s). The major modifications here include a +/- 70% variation in expected Qc, flow limits of  

100 and 20,000 m
3
/s, and targeted solution selection across the GA Pareto Front. These broad  

ranges for flow indicate that the GA was free to find solutions that do not at all reflect historical  

flows (which range from ~1,000 to 2,000 m
3
/s), yet the GA still found solutions within the  

correct scale. Thus, while AMHG flows were highly variable from reach-to-reach and we lack  

data for a formal validation, the AMHG discharge retrieval here was successful for our purposes.  

Without contemporaneous validation data, we must assume stationarity of gauge flows to assess  

the accuracy of AMHG retrievals, and thus our assessment relies only on matching the scale and  

seasonality of a stationary gauge.   

While highly successful for this study, especially considering the absence of in situ data,  

our AMHG discharge estimations did exhibit broad spatial variability along our 180 km study  

ready. There were 28 estimation reaches in this study, and each one produces a different estimate  
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of flow for every one of the 87 Landsat images. The vertical differences in AMHG retrievals in  

Figures 4-5 indicates the variability of AMHG flow estimation for a given image, which reflects:  

1) true downstream changes in discharge, 2) the different ways that AMHG flow is summarized  

across the Pareto front (see SI), 3) width mapping errors, 4) the problem of equifinality in the  

GA, and 5) unaccounted for withdrawals of water for irrigation. AMHG discharges vary by a  

factor of 3-4 across for our 180 km reach for the same day, despite matching the scale of  

historical observations quite well (Figure 4). The mean standard deviation of AMHG-derived  

flow is 295 m
3
/s (mean coefficient of variation of 0.25) across all reaches: this reflects the  

expected one-sigma variability for any given AMHG discharge. The mean AMHG flow through  

the study reach indicates a peak flow one to two months prior to the tuned model, matching the  

gauge in this respect and indicating no flow lag is observed in AMHG estimates of flow (Figure  

5). This is expected, as AMHG flows are derived from observations of width within the reach  

that reflect true conditions on that day. Our results therefore indicate AMHG may be more  

reliably used as model tuning data to adjust the scale of runoff rather than as discharge retrievals  

in their own right for the Nile, although we cannot make this assertion firmly given the absence  

of validation data.  

To assess the quality of our calculated river widths, we selected five equally spaced cross  

sections through the study reach (Figure 2a), and then randomly sampled 10 acquisition dates for  

each cross section, forming a total sample of 50 width estimations. By comparing these 50  

widths against manual measurements meticulously performed on the source Landsat images, we  

infer that our automated widths have a mean bias of –28.3 (±52.0) meters (or ~1–3 pixels) and a  

~10% disagreement with manual measurements in width variation (r
2
 = 0.89). The minor  
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underestimation in width is consistent with the iterative nature of our applied water mapping 

algorithm which tends to identify only pixels with large water fractions [Lyons et al., 2013, 

Wang et al., 2014], and the errors in width variation reflect the intrinsic constraint of Landsat’s 

spatial resolution and uncertainties in manual measurements. Given these well-informed error 

scales, we assert that our calculated Nile widths are sufficient for estimating discharges via 

AMHG. 

3.2 Hybrid AMHG-PCR GLOBWB Results 

 Tuning the PCR-GLOBWB model with AMHG derived flows decreased modelled flows 

by an order of magnitude from uncalibrated model results to more closely align with the 

historical gauge. Figure 4 shows the tuned hydrograph as compared to an uncalibrated model run 

over the entire study period, where the benefits of AMHG tuning are self-evident. Figure 6 

shows a detailed comparison of the tuned monthly hydrograph against the historical gauge record 

for the period 1978 to 1984, before 30m resolution Landsat images were available. These results 

show that tuned flows have a one- to two-month lag in peak flow estimation, a monthly  Q  

RMSE of 439 m
3
/s (Relative RRMSE 40.8%, computed via summary of a relative residual at 

each time step), and mean and standard deviation of flow residuals of -145 and 417 m
3
/s, 

respectively. Applying a two-month lag yields improved monthly RMSE and RRMSE of 270 

m
3
/s and 25.7%, respectively. Thus, we can attribute roughly half of the error in the hydrograph 

to errors in seasonality/routing, and half to magnitude errors in flow. This lag is perhaps 

exacerbated given our lack of knowledge of operation of the Aswan High Dam and other water 

management decisions (e.g., irrigation), and the lag persists in both the uncalibrated and tuned 

flows, as expected. Figure 6 also indicates a baseflow bias while retaining the ability to match 
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the magnitude of peak flows, and the scale of modelled flows matches the gauge nicely, as 

guaranteed by our tuning procedure and the scale of AMHG retrievals.  This is the only 

validation period available for this study, as after 1984 the Nile can be considered as ungauged. 

 These AMHG-tuned results are in stark contrast to the uncalibrated model hydrograph, 

which has an average mean annual flow (across the entire modelled time domain 1978-present) 

of 1.15 x 10
4
 m

3
/s compared to the historical gauge average mean annual flow (available 1972-

1984) of 1.23 x 10
3 

m
3
/s. The uncalibrated hydrograph was created following the procedure 

described in Wada et al [2016], save we here used the same P and ET data to force the model as 

we used to characterize AMHG, and readers are referred to this previous work for detailed 

description of the modelling procedure. In general, uncalibrated PCR-GLOBWB hydrographs 

have been shown to be comparable to observed discharge for most world basins, where R
2
 (the 

coefficient-of-determination) is generally over 0.9, and NSC (Nash-Sutcliffe model efficiency 

coefficient) is over 0.6 [Wada et al., 2016]. However, for the Nile, our uncalibrated PCR-

GLOBWB R
2
 is <0.8 and NSC is <0 for the mean, maximum, and minimum discharges, and 

simulated mean discharge is an order of magnitude greater than observed mean discharge. 

Uncalibrated minimum and maximum flows in the Nile overestimate the discharge to a lesser 

extent, but the deviations from the observations are still substantial (i.e., larger by a factor of 3-

4). Including human water management, e.g. accounting for best-estimate accounts of the non-

publically available irrigation, industrial, and reservoir withdrawals, has been shown to improve 

overall model performance, but this improvement is limited to about 10% in terms of discharge 

simulation over the Nile [Wada et al., 2016]. Similarly, this same previous work has shown 

using the gauge-based GPCC P and an ensemble ET product over the Nile (as we have done 
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here) does not substantially improve the overall model performance and discharge simulation, 

and our results confirm this [Wada et al., 2016]. Ultimately, our AMHG-model tuning approach 

attributes the errors in simulating the Nile discharge to the prescribed climate forcing (i.e., P and 

ET) rather than model parameters. Therefore, this approach primarily altered the amount of 

runoff in the water balance components, where excessive runoff has been reduced based on the 

information obtained from the AMHG-derived estimate. 

4. Discussion 

4.1 Modelling the Nile 

The results of this study indicate that the synergy between multitemporal remote sensing, 

hydrologic modelling, and the AMHG discharge estimation method can be used to improve 

modelling of the Lower Nile. While it is difficult to validate the tuned model outside of the 

overlapping period with the gauge, Figure 4 clearly indicates that tuning the model with remotely 

sensed flows provided guidance to the model and resulted in more accurate flow estimations. 

What is particularly interesting is that the combination of the model and AMHG produces results 

that are more than the sum of their parts: the uncalibrated model had a large bias, while AMHG 

results are temporally sparse and highly variable reach-to-reach along our study section. Our 

hybrid approach overcame this AMHG sparseness and variability to guide the model to the 

correct hydrologic state, where it has a two-month flow lag and lagged RMSE of 270 m
3
/s 

instead of an order of magnitude greater RMSE for uncalibrated results and the same lag. This 

improvement came solely from remotely sensed data products, thus even though the modelled 

hydrograph is not as accurate as a model calibrated to gauge flows throughout its time domain, 

our technique holds promise for future water resource applications in ungauged basins. 
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We have demonstrated substantial improvement in the hydrograph, yet the overall 

hydrology of the Nile remains poorly understood. Given the lack of available local information 

of hydrological fluxes including P, ET, runoff,  recharge, and irrigation water use, much of our 

hydrological model simulation is not well constrained. Thus, formal model calibration (as 

opposed to the tuning here) may not yield hydrologically sound physical parameters (e.g., crop 

factor, hydraulic conductivity, soil thickness and water storage, and Manning roughness 

coefficient). In addition, due to the limited observation periods of river discharge (i.e., 1972-

1984), model calibration and validation may not even be feasible over the Nile. In general, 

hydrological models are quite sensitive to climate inputs and this tendency is more obvious in 

(semi-) arid regions, where hydrological fluxes are dominated by a large seasonality [Wada et al., 

2014]. For the Nile, hydrological variability caused by seasonal climate is further complicated by 

human water management including irrigation and dam regulation, both of which are included in 

the model simulation with ‘best-guess’ parameterizations. Ultimately, our approach is still 

fundamentally limited by observations (as is all modelling), but we have added one novel 

observation: satellite measurements of width, which we have converted to discharge. The 

addition of remotely sensed information has substantially improved model results and met our 

study objectives, even if we cannot distribute this improvement to particular water balance 

components in the overall hydrology of the basin.  

Our tuning approach is simplistic but still shows promise for improved water balance 

estimates using only publicly accessible data, however, some obvious errors have been noted. 

The approach primarily reduces excessive runoff and attributes these errors to climate forcing, 

and does not essentially adjust any model hydrological parameters. Thus, for example, the model 
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errors in routing still persist, which yielded the 1-2 month lag between the tuned and observed  

discharge. Indeed, the tuned hydrograph exhibited an error of 439 m
3
/s, roughly half of which  

can be attributed to errors in seasonality that persist from forcing to simulation. This error may  

be reduced by implementing another temporal tuning parameter in the AMHG-model hybrid  

approach or applying a sinuosity correction [Wu et al., 2012] but given the limited observation  

periods (~ 3 images per year), this needs further consideration. The error in lag time may well be  

affected by the reservoir regulation at the Aswan dam, which involves human water management  

factors that are extremely difficult to capture without published management decisions. Errors in  

hydrograph seasonality are also likely affected by similar concerns, and these need further  

consideration as to how to improve the current AMHG-model approach. In other words, we  

expect our current approach to work well in basins where the uncalibrated model hydrograph  

matches observed seasonality. PCR-GLOBWB, e.g., has been shown to accurately model  

seasonality for many other major river basins that are in (semi-)arid and (sub-) tropical climates.  

Furthermore, since our approach is simplistic and easily implemented in the modeling  

framework, a multi-model ensemble approach can be introduced to reduce the ensuing errors that  

are associated with the model used in this study. Our approach is easily replicable with other  

hydrological models, which we feel is a strong advantage. In this study, one of our aims has been  

to provide a simple yet reasonable approach to integrate satellite estimates with model simulation  

with potential for global coverage, as tested in the Nile. We believe that our simplistic approach  

is essential to achieve this objective at the global scale.  

4.2 The role of historic and remotely sensed data  
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All of the above analysis assumes that the historic gauge record used in this study  

accurately represents flows, as we use this gauge record as our validation standard. This could be  

problematic for several reasons. First, gauge records can often contain considerable error,  

especially at higher flows. Thus, the peak flows as reported by the gauge may misrepresent  

actual flow for those months. Second, we have no means of assessing AMHG or model  

performance for the 30-year period after the gauge record ends, and are left assuming stationarity  

of discharge to perform a qualitative assessment of flows for this period. This assumption seems  

reasonable in this case, as the modelled hydrographs (both tuned and uncalibrated) and the gauge  

record itself show stable mean annual flow over time. Despite these limitations, our paradigm for  

this study seeks to answer the question: Can we use AMHG to tune a hydrologic model for an  

ungauged basin? We can answer this in the affirmative, albeit with caveats, and propose that the  

techniques demonstrated here could potentially be applied for the numerous basins worldwide  

where only historical data are available to the international community (Figure 1).  

Our use of remotely sensed data is unique in this study. We employ satellite P and ET  

estimates in conjunction with width measurements made from Landsat to estimate discharge  

without calibration from any gauge data. This is especially significant in light of the most  

common means of employing remote sensing to estimate river discharge: empirically combining  

remotely sensed data and in situ estimates of discharge. This traditional use of satellite-derived  

rating curves has been shown to be as accurate as in situ flow measurement when using high  

resolution imagery [Pavelsky, 2014], and it is this approach that should be adopted whenever  

data are available. However, in cases like the Nile, the historical gauge record does not overlap  

the satellite era (or at least the modern Landsat era), and this technique cannot be used. In  
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contrast, the AMHG approach does not require contemporaneous data, but it has an expected 

error of at least 26% and has been shown to be susceptible to much larger discharge estimation 

errors in some cases [Gleason et al., 2014; Durand et al., 2016]. These large errors arise from 

equifinality in an exponential system (Equation 2). Small changes in estimated b values can 

manifest as order of magnitude changes in flow, and as such the method ‘jumps’ into different 

mass conserved solution spaces and has difficulty returning from them. We have overcome this 

limitation to some degree via methodological improvements as noted in the SI, yet the 

underconstrained nature of the problem leads to large uncertainties in AMHG estimation, 

especially as Qc increases. These uncertainties are evident in the spread of discharges estimated 

from AMHG, which are all of the same scale but vary widely reach to reach. It is impossible to 

ascertain whether or not these are errors or reflect true conditions.  

AMHG discharges were necessary for this study, as using the P -ET water balance to tune 

the model would not have resulted in as accurate of a hydrograph. Our tuning procedure 

guarantees that the tuned flows have a long-term mean equivalent to the long-term mean of the 

tuning data. Thus, tuned flows had a MAF of 1,180m
3
/s vs the mean AMHG flow estimate of 

1,170m
3
/s, both of which match mean gauge flow of 1,250 m

3
/s.  By contrast, using the P- ET 

water balance to tune the model would have resulted in tuned flows larger than gauge flows by 

an approximate factor of three (mean P-ET is 3,600 m
3
/s). Therefore, the AMHG method 

showed ability to take this P-ET estimate of mean flow and refine it to match the scale of the 

gauge without invoking any in situ data. This indicates that while the AMHG method produced 

highly variable discharge estimates reach to reach and while there are only 87 total discharge 

estimates for a 30-year period, the tuned model hydrograph that results from their use offer 
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substantial improvement over state of the art modelling of the Nile that would not be possible 

with standard remote sensing techniques. 

Our results also highlight the main utility of remotely sensed discharge estimates, which 

are frequently characterized (erroneously) as an attempt to replace both gauges and hydrologic 

models. Indeed, the variability and sparseness of AMHG results herein indicate they are likely 

not useful for management decisions on their own. These remotely sensed results would improve 

tremendously if calibrated to a contemporaneous gauge, likely to the point where they may have 

more use in a management setting.  Previously, the AMHG method has only been applied to at 

most 20 images (although Durand et al [2016] applied the method to over 300 modelled 

observations of width), and even extending this to 87 images here leaves large gaps in the 

hydrograph that render hydrologic analysis of the Nile nearly impossible from this technique 

alone. By using these AMHG flows as an intermediate product in model tuning, we have filled in 

these temporal gaps and reduced the uncertainty of flow estimation for the study area, which 

points the way forward for use of remotely sensed flow estimates from AMHG and future 

SWOT mission flow estimates. Only through remote sensing, gauge, and model synergy can a 

complete picture of global water resources emerge.  

4.3 Potential for broader applications 

This method might be reasonably applied to any basin, but can only be validated where 

there are data available. Figure 1 shows the extent of the GRDC’s gauge records- each dot on the 

map shows a gauge with at least some historical data where there is potential to verify the 

techniques of this paper. With declining gauging infrastructure worldwide, hydrological 
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modeling and discharge simulation can provide only limited accuracy of regional water 

availability in semi-ungauged basins like the Nile. Satellite observations open a new path to 

monitor water extent and height from space, however, it is imperative to have an efficient 

algorithm to translate the satellite data for hydrological applications. Our remote sensing-model 

hybrid approach combined with the AMHG algorithm could reduce the errors that are inherent to 

each approach substantially with inexpensive computational usage, which may be favorable for 

local regional water planners with limited computational capacity, particularly in developing 

countries. Remotely sensed data assimilation into models may provide another approach, but this 

needs careful consideration as it has a much higher computational cost and may not work well 

when only limited satellite imagery is available. Our simple but effective way to combine remote 

sensing and hydrological modeling is a first exploration, and needs further improvement, but it is 

easily applicable to any ungauged basin where almost no discharge information is available. 

5. Conclusions 

 The results presented herein indicate that remote sensing can substantially improve 

modelled hydrographs, even in the absence of gauges. The technique demonstrated here relies on 

a satellite water balance to parameterize AMHG, and then follows an AMHG methodology to 

estimate discharge for each of 87 Landsat images. This discharge is then used to tune the PCR-

GLOBWB model of the Nile for an ungauged time period. Results herein are promising, and 

modelled flows improved by an order of magnitude. However, results also indicate that further 

testing and validation are required (although validation is difficult in ungauged basins), and more 

sophisticated techniques are needed to better understand resultant changes to hydrological 

components of the water cycle resulting from this tuning, rather than changes in discharge alone. 
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In addition, the problem is complex: frozen rivers, channelized or canyon rivers with little to no  

width variations, narrow rivers that are beyond the detection limits of Landsat, cloudiness during  

a rainy season that may preclude good Landsat coverage, and undetected flow regulation will all  

render this method less effective or even completely ineffective. The resolution and cloudiness  

improvements expected from SWOT should address some but not all of these issues.  

Nevertheless, our results are encouraging for the hydrological community, and hold promise to  

improve discharge simulation worldwide, regardless of the availability of observation records.  

Discharge simulations that result from future improved version of this method could then be used  

for more accurately estimating regional water supply. Finally, our results also point the way  

forward for use of remote sensing of river discharge, which is often wrongly thought of as an  

attempt to replace gauges and models as a primary means of assessing water resources. In  

contrast, our results show that only through synergy of these components can the fullest picture  

of water resources emerge.  
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8. Figures and Tables   

Table 1.  Time domains  
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Gauge Monthly 1972-1984 

Model Daily 1978-present 

  

  

Figure 1. Map of historical gauge data. This map illustrates the rivers with at least some  

historical data of the kind needed to implement the methods here. The map shows every gauge in  

the GRDC database as of December 2016, made by querying their gauge catalogue. The gauges  

displayed here have varying degrees of temporal coverage: some (like those provided by the  

USGS) have decades of history that continue to the present. Others, like those in Russia and in  

the Nile, have only a limited record. This map also highlights issues of data latency, as very few  

gauges are provided to the GRDC in near real time.  
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Figure 2. Study reach and width measurements. True and false color composites show our  

study area and remote sensing process. (a) Studied Lower Nile River (~180 km) from El Ekhsase  

station (29.70º N, 31.28º E, red circle) upstream to Samalut (28.28º N, 30.74º E). Widths were  

calculated in 28 mass-conserved reaches (1–14 km in length) shown as red and blue segments.  

The five width validation points are marked in green (b) Mapped inundation frequency along a  

selected segment during 07/18/2013. (c) & (d) Examples of inundation extent. (e) & (f) Widths  

along reach centerlines using mapped inundation extent in (c) and (d), respectively (legend in (f)  

applied to (e)).   
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Figure 3. Schematic diagram of the hydrological modeling framework of the PCR-

GLOBWB model [Reprinted with permission from Wada et al., 2016].  

This box diagram represents the vertical structure for the soil hydrology representing the canopy, 

soil column (stores 1 and 2) and the groundwater reservoir (store 3).  Snowmelt is temperature 

controlled, and potential evapotranspiration is broken down into canopy evaporation, bare soil 

evaporation and transpiration that are reduced on the basis of the moisture content of the soil.  

Drainage from the soil column to the river network occurs via direct runoff, interflow, or 

subsurface storm flow and baseflow. Drainage accumulates as discharge along the drainage 

network and is subject to a direct gain or loss depending on the precipitation and potential 

evaporation acting on the freshwater surface. Human water management includes water use from 

surface water and groundwater, and reservoir regulation is integrated with hydrology at a daily 

time step. 
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Figure 4. Tuning PCR-GLOBWB with AMHG. This figure shows the substantial  

improvement gained when using remotely sensed discharge estimates (blue x) to tune a water  

balance model of the Nile. The uncalibrated model results (green), which have previously been  

shown to be accurate for most world basins, are an order of magnitude greater than historical  

flows (black). After model turning from remote sensing, the new (red) hydrograph shows  

substantial improvement and agreement with historical gauge flows.  
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Figure 5. AMHG variability. Each of the 28 blue dots represents an AMHG discharge estimate  

for a separate reach on a given day with a Landsat image for this subset of the temporal record.  

The reach-to-reach variability of AMHG is evident, yet the blue lines connecting mean flow  

through the entire reach indicates that AMHG has a peak flow 2 months before the model, which  

would suggest they do not have a lag in flow.   
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Figure 6. Validation of tuned hydrograph. The monthly comparison shown here indicates that  

the modelled hydrograph has a one to two-month seasonal time lag for peak flows and has an  

RMSE of 449 m
3
/s and mean and standard deviation of residuals of -145 and 417 m

3
/s,  

respectively. Lagging the model by two months reduces the RMSE to 270 m
3
/s. This contrasts  

sharply with uncalibrated model results that were an order of magnitude larger than gauge flows.   
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