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Abstract:  Temperature is a crucial factor in determining the rates of ecosystem processes, e.g. leaf 26 

respiration (R) − the flux of plant respired CO2 from leaves to the atmosphere.  Generally, R increases 27 

exponentially with temperature and formulations such as the Arrhenius equation are widely used in earth 28 

system models.  However, experimental observations have shown a consequential and consistent 29 

departure from an exponential increase in R.  What are the principles that underlie these observed 30 

patterns?  Here, we demonstrate that macromolecular rate theory (MMRT), based on transition state 31 

theory for enzyme-catalyzed kinetics, provides a thermodynamic explanation for the observed departure 32 

and the convergent temperature response of R using a global database.  Three meaningful parameters 33 

emerge from MMRT analysis: the temperature at which the rate of respiration would theoretically reach a 34 

maximum (the optimum temperature, Topt), the temperature at which the respiration rate is most sensitive 35 

to changes in temperature (the inflection temperature, Tinf) and the overall curvature of the log(rate) 36 

versus temperature plot (the change in heat capacity for the system, ∆𝐶𝑃
‡).  On average the highest 37 

potential enzyme-catalyzed rates of respiratory enzymes for R is predicted to occur at 67.0±1.2 °C and the 38 

maximum temperature sensitivity at 41.4±0.7 °C from MMRT.  The average curvature (average 39 

negative ∆𝐶𝑃
‡) was -1.2±0.1 kJ.mol-1K-1.  Interestingly, Topt, Tinf and ∆𝐶𝑃

‡ appear insignificantly different 40 

across biomes and plant functional types (PFTs), suggesting that thermal response of respiratory enzymes 41 

in leaves could be conserved.  The derived parameters from MMRT can serve as thermal traits for plant 42 

leaves that represents the collective temperature response of metabolic respiratory enzymes and could be 43 

useful to understand regulations of R under a warmer climate.  MMRT extends the classic transition state 44 

theory to enzyme-catalyzed reactions and provides an accurate and mechanistic model for the short-term 45 

temperature response of R around the globe.  46 
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Introduction 47 

Leaf respiration (R) contributes c.30 Pg (30 billion metric tons) carbon per year to the atmosphere 48 

(Prentice et al., 2001; Canadell et al., 2007; IPCC, 2013), about 4 times higher than the industrial CO2 49 

emissions (~8 Pg C yr-1) between 2002 to 2011 (IPCC the fifth assessment report Table 6.1, chapter 6 50 

(Ciais et al., 2013)).  Consequently, small changes in R have the potential to make a huge impact on the 51 

atmospheric CO2 concentrations.  It is generally predicted that R will increase with the increasing mean 52 

global temperature from the current earth system model projections.  Increases in R are not linear with 53 

temperature but rather exponential as modelled by the Arrhenius equation.  However, departures from 54 

Arrhenius behaviour are well known for many biologically driven reactions such as leaf respiration, 55 

photosynthesis and soil carbon decomposition (Lloyd & Taylor, 1994; Tjoelker et al., 2001; Alster et al., 56 

2016; Ma et al., 2017; Robinson et al., 2017).  57 

    In a recent study, Heskel et al. (2016b) reported a universal convergence in temperature response of R 58 

across different biomes and plant functional types (PFTs) using a global dataset of plant leaf respiration 59 

measurements.  They demonstrated a consistent curvature in log-transformed R vs temperature plots that 60 

was best fit using a second-order log-polynomial model (LP model) for a large number of R versus 61 

temperature datasets.  They compared the LP model to four other conventional models (exponential fixed-62 

Q10, Arrhenius, Lloyd & Taylor and variable-Q10) and showed improved predictive power in estimating 63 

the carbon release from vegetation.  An modified Arrhenius model with 3 components, which describes 64 

the temperature dependence of activation energy in Arrhenius model as a second-order polynomial 65 

function, also provides equivalent fits as the LP model (Kruse & Adams, 2008; Kruse et al., 2011; Adams 66 

et al., 2016; Heskel et al., 2016a).  Since respiratory metabolism in a leaf involves a series of enzyme-67 

catalyzed reactions, via the tricarboxylic acid (TCA) cycle or cytochrome pathways (Buchanan et al., 68 

2015), a mechanistic underpinning of the temperature response of R may be found in the temperature 69 

dependence of enzyme-catalyzed reaction rates.  70 

    We have recently developed macromolecular rate theory (MMRT), which extends the classic transition 71 

state theory for the temperature dependence of chemical reactions to those reactions catalyzed by 72 
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enzymes (large macromolecules, hence the MMRT name) (Hobbs et al., 2013; Arcus et al., 2016).  We 73 

have also applied MMRT to complex biological systems such as soil processes to describe their 74 

temperature dependence, e.g., soil carbon decomposition, nitrification, denitrification, methanogenesis 75 

and soil respiration (Schipper et al., 2014; Robinson et al., 2017).  MMRT has recently been applied by 76 

other groups to soil enzymes and microbial processes in soil (Alster et al., 2016) and has been used to 77 

distinguish between nitrifying archaea and bacteria (Taylor et al., 2016).  In all of these studies, MMRT 78 

captures the curvature in the log(rate) versus temperature plots without invoking enzymatic denaturation.  79 

Here, we show that MMRT also models the short-term temperature dependence of R with predictive 80 

power equivalent to the LP model defined by Heskel et al. (2016b).  Indeed, we show that the two models 81 

are nearly equivalent mathematically.  Specifically, we use the large R dataset collected by Heskel and 82 

colleagues to compare the performance of Arrhenius, MMRT and LP models in describing the 83 

temperature response of R.  We argue that whilst the LP model provides excellent empirical predictions 84 

with respect to R, the MMRT model goes a step further in determining parameters that have a basis in 85 

thermodynamics and thus, meaningful interpretation when comparing the temperature dependence of 86 

different ecosystem processes at differing scales.  87 

Materials and methods 88 

R measurements 89 

We used the dataset provided by Heskel et al. (2016b), which included 673 individual temperature 90 

response curves of R across 231 species, 18 sites, 7 biomes and 7 plant functional types (PFTs).  Details 91 

of the field sites, species, biomes, PFTs and protocols for measurement of CO2 exchange between leaf 92 

and atmosphere are provided in Heskel et al. (2016b). In the current study, for consistency, we used 93 

respiration data measured up to 45 °C. 94 

Development of MMRT 95 

Chemical, biological and ecological modellers have long used the Arrhenius function to describe the 96 

relationship between temperature and the reaction rate: k=A exp(-Ea/RT), where the k is the rate constant, 97 

A is the pre-exponential factor, Ea is the activation energy, R is the gas constant and T is temperature (K).  98 



5 
 

The central concept invoked by the Arrhenius function is the activation energy (Ea) for a reaction which is 99 

defined as the energy barrier between the ground state and transition state for a given reaction.  Eyring, 100 

Evans, Polanyi and others extended the Arrhenius function to develop Transition State Theory (TST) that 101 

provides a statistical thermodynamic description of the pre-exponential factor (A) and defines Ea as the 102 

difference in Gibbs free energy between the ground state and transition state (∆G‡).  Further, it is 103 

generally assumed that the temperature dependence of ∆G‡ is described by the Gibbs equation, ∆G‡=∆H‡ 104 

− T∆S‡, where ∆H‡ is the change in enthalpy, and ∆S‡ is the change in entropy, between the ground state 105 

and the transition state for the reaction.  Hence, the Eyring equations and their equivalent log forms are: 106 

𝑘 = 𝜅𝑘𝐵𝑇
ℎ 𝑒(−∆𝐺‡

𝑅𝑇 ),     ln (𝑘) = 𝑙𝑛 (𝜅𝑘𝐵𝑇
ℎ ) − ∆𝐺‡

𝑅𝑇      (1) 107 

𝑘 = 𝜅𝑘𝐵𝑇
ℎ 𝑒[−(∆𝐻‡−𝑇∆𝑆‡)

𝑅𝑇 ],    ln (𝑘) = 𝑙𝑛 (𝜅𝑘𝐵𝑇
ℎ ) − [(∆𝐻‡−𝑇∆𝑆‡)

𝑅𝑇 ]   (2) 108 

where κ, kB, h and R refer to the transmission coefficient (here, κ is assumed to be 1 for simplicity), 109 

Boltzmann and Planck’s constants, and the universal gas constant, respectively.  Similarly, it is generally 110 

assumed that ∆H‡ and ∆S‡ are independent of temperature and this assumption holds for the vast majority 111 

of chemical reactions involving small molecules in standard solvents.  However, in biological systems 112 

when enzymes (macromolecules) are involved in the reactions, this assumption no longer holds and we 113 

must consider the change in heat capacity (∆𝐶𝑃
‡) for the reaction (formally, the temperature dependence of 114 

the enthalpy and entropy for the reaction).  The ∆𝐶𝑃
‡  has been shown to be important in enzyme catalysis 115 

(Arcus & Pudney, 2015; Arcus et al., 2016).  This leads to an expansion of equation (2) above to give the 116 

MMRT equation:   117 

ln (𝑘) = 𝑙𝑛 (𝑘𝐵𝑇
ℎ ) −

(∆𝐻𝑇0
‡ +∆𝐶𝑃

‡(𝑇−𝑇0))
𝑅𝑇 +

(∆𝑆𝑇0
‡ +∆𝐶𝑃

‡(𝑙𝑛𝑇−𝑙𝑛𝑇0))
𝑅     (3) 118 

where T0 is a suitable reference temperature and ∆𝐶𝑃
‡ is the change in heat capacity between the ground 119 

state and the transition state for the enzyme-catalyzed reaction.  Although the MMRT function appears 120 

complicated, it is nothing more than a theoretical parameterization of the pre-exponential term (A) and the 121 
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activation energy (Ea) from the familiar Arrhenius function.  If there is no heat capacity change during the 122 

reaction (i.e., ∆𝐶𝑃
‡ = 0), MMRT simply collapses to the Arrhenius and Eyring equations (Hobbs et al., 123 

2013; Arcus et al., 2016).  Notably, the Arrhenius function has two unknowns (A and Ea) and the MMRT 124 

function has three unknowns (∆𝐻𝑇0
‡ , ∆𝑆𝑇0

‡ and ∆𝐶𝑃
‡).  However, ∆𝐻𝑇0

‡ and ∆𝑆𝑇0
‡ are tightly correlated due to 125 

the so called enthalpy-entropy compensation (Fig. S1) and hence, adding a third parameter does not 126 

simply improve the fit to the data ad hoc.  Indeed, the log-polynomial function used by Heskel and 127 

colleagues has three independent unknowns (the coefficients, a, b, and c).  Additionally, the ∆𝑆𝑇0
‡ in 128 

MMRT captures the magnitude change of reaction rate caused by substrate concentrations.  129 

    The temperature dependence of enzyme-catalyzed rates typically shows an exponential rise with 130 

temperature up to an optimum temperature above which the rate declines.  The textbook explanation for 131 

the decline in rate at high temperatures is denaturation of the enzyme leading to its inactivation.  132 

However, it has been demonstrated in very many cases that this does not account for either the optimum 133 

temperature (Topt) or curvature in the log(rate) versus temperature plots for temperatures below Topt 134 

(Thomas & Scopes, 1998; Buchanan et al., 1999; Daniel & Danson, 2010; Hobbs et al., 2013).  We have 135 

shown that enzyme-catalyzed rates proceed with a measurable ∆𝐶𝑃
‡ and that the curvature below Topt and 136 

the position of both Topt and an inflexion point Tinf  can be deduced from MMRT and the important 137 

parameter ∆𝐶𝑃
‡ (Hobbs et al., 2013; Arcus et al., 2016) (see Text S1 for details about the derived 138 

parameters Topt and Tinf from MMRT).  139 

The mathematical connection between MMRT and the LP model  140 

Heskel et al. (2016b) plot the log of the rate versus temperature for leaf respiration and fit a second order 141 

polynomial to the data showing excellent convergence of the polynomial coefficients across ecosystems 142 

and plant functional types (the coefficients b & c converge, the third coefficient, a, determines the 143 

absolute amplitude of the rate at a reference temperature which varies between species and climates).  144 

ln (𝑘) = 𝑎 + 𝑏𝑇 + 𝑐𝑇2        (4) 145 
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We have also fitted the MMRT function to these data and find a similar convergence of the MMRT 146 

parameters (see next section for details). This suggested to us that the LP function and MMRT are 147 

mathematically closely related (Fig. 1) and this turns out to be the case.   148 

    A Taylor expansion for Eq (1) around a suitable reference temperature T0 gives (see Text S2 for the 149 

deduction): 150 

ln (𝑘) = 𝑙𝑛 (𝑘𝐵𝑇0
ℎ ) − ∆𝐺𝑇0

‡

𝑅𝑇0
+ ( 1

𝑇0
+ ∆𝐻𝑇0

‡

𝑅𝑇02
) (𝑇 − 𝑇0) + ( ∆𝐶𝑃

‡

2𝑅𝑇02
) (𝑇 − 𝑇0)2  (5) 151 

The first two terms are a constant and may be combined as coefficient a in Eq (4) above.  Importantly, 152 

these terms define the rate at the reference temperature and encapsulate all of the variables that contribute 153 

to that rate (e.g., substrate availability, activation energy at T0, moisture availability, etc.). This is the 154 

amplitude term and in keeping with Heskel and colleagues, we will call this a(MMRT).  The second two 155 

terms constitute the linear coefficient of T (equivalent to coefficient b in Eq (4) above).  The last term is 156 

the quadratic term (coefficient c in Eq (4) above).  Thus, Eq (4) used by Heskel et al. (2016b) can be 157 

rewritten as:  158 

ln (𝑘) = 𝑎 + 𝑏(𝑇 − 𝑇0) + 𝑐(𝑇 − 𝑇0)2       (6) 159 

Hence the correspondence between MMRT and the LP function is: 160 

𝑎 = 𝑙𝑛 𝑘𝐵𝑇0
ℎ − ∆𝐺𝑇0

‡

𝑅𝑇0
,   𝑏 = 1

𝑇0
+ ∆𝐻𝑇0

‡

𝑅𝑇02
,   𝑐 = ∆𝐶𝑃

‡

2𝑅𝑇02        (7) 161 

Thus, the amplitude term, a is simply Eqs 1&5 at the reference temperature T0. The linear term (b) is a 162 

function of the change in enthalpy for the reaction at the reference temperature (∆𝐻𝑇0
‡ ) and the quadratic 163 

term (c) is a function of the change in heat capacity for the reaction (∆𝐶𝑃
‡) and defines the “curvature” of 164 

the rate versus temperature.  165 

Curve fitting and statistics 166 

In this study, we fitted the leaf respiration rate versus temperature datasets using Arrhenius, MMRT and 167 

LP functions to retrieve the estimated parameters from each model.  Before fitting the data, we checked 168 

each individual lnR-T curve manually by plotting in Matlab (2015a (The MathWorks Inc., Natick, MA, 169 
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USA).  In several cases we identified an unexplained upward rise in respiration rate at low temperatures 170 

(below ~10 °C).  This low temperature hook may be due to the measurement protocols in leaf respiration 171 

where the temperature adjustment period was insufficiently long to fully cool the leaves before 172 

temperature began to increase in the cuvette.  About 7% of the lnR-T dataset curves showed this 173 

phenomenon and to minimize the effects of this artefact on the fitted parameters, we fitted measurements 174 

to data above this low temperature using Arrhenius, LP and MMRT functions. 175 

    For each curve-fitting run, the parameters (Arrhenius pre-exponential factor, A, and activation energy 176 

Ea; MMRT, ∆𝐻𝑇0
‡ , ∆𝑆𝑇0

‡  and ∆𝐶𝑃
‡; LP coefficients, a, b and c) were not constrained.  The T0 was set to 177 

298.15 K (25 °C) as a reference temperature.  The curve was fitted using the nlinfit function of MATLAB 178 

2015a (The MathWorks Inc., Natick, MA, USA).  We conducted 1000-iteration bootstrapping with 179 

sample replacement to retrieve the estimated parameters from three models.  At each bootstrapping run, 180 

we constrained 75% of the data in each lnR-T curve since more data results in higher confidence in 181 

parameter estimates (Robinson et al., 2017).  We use the medians of the 1000-iteration bootstrapped 182 

parameters to represent the best estimates.  For model comparisons among three models, we further 183 

calculated the corrected Akaike Information Criterion (AICc) value to assess the performance of the three 184 

models.  AICc provides a measure for model comparison and suggests that a model showing a smaller 185 

AICc value is better.  We used 3 parameters in MMRT and LP models and 2 parameters for the Arrhenius 186 

function to calculate the AICc.  We applied one-way ANOVA to test the difference of the calculated 187 

AICc among three models across 673 curves. 188 

    Mean parameter values of each species for MMRT, i.e., ∆𝐻𝑇0
‡ , ∆𝑆𝑇0

‡  and ∆𝐶𝑃
‡, were calculated, 189 

including 231 species in 673 individual measurements across the global dataset.  We further calculated 190 

Topt and Tinf only when they were within the biological range (298.15-373.15K, 25-100 °C).  The mean 191 

a(MMRT), ∆𝐻𝑇0
‡ , ∆𝐶𝑃

‡, Topt and Tinf were statistically compared across 7 biomes and 7 plant functional 192 

types (PFTs) using mixed effect model as Heskel et al. (2016b).  The Tukey's honestly significant 193 

difference (HSD) test was used to conduct the post hoc intra-group comparisons. 194 
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Results 195 

Comparisons between fits using Arrhenius, MMRT and LP equations 196 

All three models, Arrhenius (Eq.1), MMRT (Eq.3) and LP (Eq.6) were able to describe the temperature 197 

response of R (Fig. 2a), although it is clear from the residuals that the MMRT and LP models outperform 198 

the Arrhenius function (Fig. 2b).  ANOVA of AICc among 3 models also showed that both MMRT and 199 

LP models were consistently better than the Arrhenius model in predicting the temperature response of R 200 

across 673 individual lnR-T curves, with statistically significant lower AICc (p<0.0001) values from both 201 

MMRT and LP models compared to the Arrhenius function (Fig. 2c).  This conclusion is consistent with 202 

the results of Heskel et al. (2016b), who demonstrated that the LP model better characterized the 203 

temperature response of R when compared to four other Arrhenius-based models.  MMRT provided 204 

equivalent predictive power for the temperature response of R when compared to the empirical LP model 205 

since there was no statistical difference among AICc values (p=0.99) between MMRT and LP models. 206 

This is unsurprising given the near equivalence of the mathematical functions for the MMRT and LP 207 

models or a modified Arrhenius model proposed by Adams et al.(2016).  208 

Bridging MMRT and polynomial models 209 

The parameters derived from fits between the LP and MMRT models are nearly identical (Fig. 3).  The R 210 

value at T0 (298.15K, 25°C), i.e., parameter a in the LP model, is almost the same as that calculated from 211 

MMRT at T0 (Fig. 3a), with an inconsequential difference between a and R at T0 (a-R25) of -0.0011 µmol 212 

CO2 m-2 s-1.  Parameter b in the LP model, is commensurate with that from MMRT (Fig. 3b), with a 213 

difference of 9.1×10-5 µmol CO2 m-2 s-1 K-1.  The curvature term between MMRT and LP is also equivalent 214 

(Fig. 3c).  The difference between c and 2
0

‡ 2/ RTCP'  is -2.2×10-4 µmol CO2 m-2 s-1 K-2, which is equivalent 215 

to a difference of -0.3 kJ mol-1 K-1 in ‡
PC' .  Thus, MMRT and LP functions both model R equally (Fig. 1) 216 

and provide closely comparable parameters, suggesting that we can either use MMRT or the LP function 217 

to characterize the temperature response of R.  218 

MMRT explains the temperature response of R 219 
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MMRT provides three biologically meaningful parameters: the temperature at which the rate of respiration 220 

is predicted to reach maximum rates (the so called optimum temperature, Topt), the temperature at which 221 

the respiration rate is most sensitive to changes in temperature (the inflection temperature, Tinf) and the 222 

overall curvature of the lnR-T curve (the so called change in heat capacity for the system, ∆𝐶𝑃
‡).  The Topt 223 

and Tinf are a function of ∆𝐶𝑃
‡  and ∆𝐻𝑇0

‡ (See Text S1).  ∆𝐺𝑇0
‡  ( ∆𝐺𝑇0

‡ = ∆𝐻𝑇0
‡ − 𝑇0∆𝑆𝑇0

‡ ) reflects the 224 

magnitude of R at the reference temperature.  It must be noted that many variables are rolled into ∆𝐺𝑇0
‡  and 225 

it cannot be considered a true activation energy. To make this point clear, we will refer to the magnitude 226 

term, the first two terms from Eq.7, as a(MMRT).  The convergent MMRT parameters for temperature 227 

response of R are ∆𝐶𝑃
‡ and ∆𝐻𝑇0

‡ , which are the analogues of the parameters c and b from Heskel et al. 228 

(2016b), respectively.  Accordingly, there is no significant difference in ∆𝐻𝑇0
‡  across biomes (p=0.72) and 229 

plant functional types (PFTs) (p=0.60) or in ∆𝐶𝑃
‡ (p=0.22 and p=0.24 in biomes and PFTs, respectively).  230 

The global mean parameters, b and c in Heskel et al. (2016b), 0.1012 µmol m-2 s-1 C-1and -0.0005 µmol m-231 

2 s-1 C-2 , are equivalent to ∆𝐻𝑇0
‡ =53.8 kJ mol-1 and ∆𝐶𝑃

‡=-0.7 kJ mol-1 K-1in MMRT, respectively.  The 232 

results from MMRT agree with the convergent temperature response of R in Heskel et al. (2016) using the 233 

LP model.  The consequence of consistent ∆𝐻𝑇0
‡  and ∆𝐶𝑃

‡ values leads to insignificant differences of Topt 234 

and Tinf of R across global datasets (Table 1).  We found marginal differences in Topt and Tinf across biomes 235 

(p=0.07 and p=0.09) and no statistically difference across PFTs (p=0.32 and p=0.42), with mean Topt and 236 

Tinf of R 67.0 °C and 41.4 °C, respectively.  While we were unable to demonstrate statistically significant 237 

differences in Topt, Tinf within biomes and PFTs, ranges in both were high (Table 1) and further work is 238 

needed to determine the reasons for these large ranges. 239 

    In contrast, the magnitude term, a(MMRT), was significantly different between biomes (p<0.0001) and 240 

PFTs (p<0.0001) (Table 1), with a decreasing trend from tundra (Tu) to tropical rainforest at low 241 

elevation (TrRF_lw) and from C3 herbaceous (C3H) plant to broadleaf evergreen tropical (BlEvTrp) 242 

plants (Table 1).  Regression analysis revealed that both mean annual temperature (MAT) (R2=0.24, 243 
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p=0.037) and mean annual precipitation (MAP) (R2=0.74, p<0.0001) was correlated with a(MMRT) 244 

across 18 sites at global scales(Fig. S2).  Our results also identified a systematic variation in a(MMRT) 245 

with water availability(Fig 4.a), showing a clear negative relationship with aridity index (R2=0.65, 246 

p<0.0001).  Our result agrees with the acclimation pattern of plant respiration that shows a similar R rate 247 

for plants from contrasting environments (Fig. 4b) (Atkin & Tjoelker, 2003; Atkin et al., 2015; 248 

Vanderwel et al., 2015).   249 

Discussion 250 

We have compared the predictive power of MMRT, LP and Arrhenius models for characterizing the 251 

temperature response of plant leaf respiration (R) using the short-term temperature-response data reported 252 

by Heskel and colleagues (Heskel et al., 2016b) across different biomes and plant functional types 253 

(PFTs).  Our results show that both MMRT and LP functions are better than the Arrhenius model in 254 

characterizing the temperature response of R.  These results are consistent with our expectation across 255 

different biomes and PFTs from the global dataset, suggesting a convergence in temperature response of 256 

R as shown by Heskel et al. (2016b) using the LP model.  MMRT and LP models have equivalent 257 

explanatory power for predicting the temperature response of R, and we have shown here the 258 

mathematical equivalence between these two models.  We now explore the differences and utility of the 259 

MMRT and LP models. 260 

    The LP model is straightforward to understand and implement as it has a simple and familiar 261 

mathematical form.  The initial increase and then decline of R with increasing temperature is determined 262 

by the curvature term, i.e., c in Eq (6), and the other 2 parameters, i.e., a and b, help to constrain the 263 

magnitude and changing rate of R with temperature.  From a modelling perspective, this LP model is 264 

sufficient to describe the temperature response of R.  However, the lack of biological meaning of the 265 

fitted parameters of the LP model limits its capability to reveal the regulation of temperature response of 266 

plant R.  As an alternative, MMRT incorporates the central concepts of thermodynamics (activation 267 

energies, enthalpy and heat capacity) which will allow insight into the determinants of respiration 268 

pathways for R and potential comparison to temperature dependence of other biological processes, such 269 
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as photosynthesis and respiration by other groups of organisms, e.g., soil respiration (Robinson et al., 270 

2017), by characterizing their thermal properties using the changed heat capacity, ∆Cp
‡.  This may allow a 271 

unified understanding of the temperature response of biological processes.  For example, the average 272 

curvature (∆Cp
‡ = -1.2±0.1 kJ.mol-1K-1) for plant respiration is significantly less than the average 273 

curvature seen for heterotrophic soil respiration accurately measured in the laboratory (∆Cp
‡ = -2.1±0.1 274 

kJ.mol-1K-1)(Robinson et al., 2017).  275 

    MMRT may appear to have a more complicated form but it is simply the form used to model the 276 

temperature dependence of enzyme-catalyzed rates.  It has its roots in transition state theory (TST) which 277 

is a very robust description of chemical reaction rates.  Biologists and ecologists have observed 278 

decreasing activities of the leaf respiratory enzymes at higher temperatures and modified the Arrhenius 279 

equation to explore the mechanism by introducing a polynomial term to describe the temperature 280 

dependence of activation energy (Kruse & Adams, 2008; O’Sullivan et al., 2013; Noguchi et al., 2015; 281 

Heskel et al., 2016b).  We have shown that MMRT can be rearranged to a form equivalent to the LP 282 

function using a 2nd-order Taylor expansion (Eq.5).  MMRT also collapses to the Arrhenius (and TST) 283 

function when the ∆Cp
‡ =0.  It is well known that the activation energy that describes ecosystem processes 284 

is temperature dependent (Lloyd and Taylor, 1994; Davidson & Janssens, 2006).  MMRT accounts for 285 

this temperature dependence by introducing the concept of ∆Cp
‡, the change in heat capacity between the 286 

ground state and transition state of enzyme-substrate complex (Hobbs et al., 2013; Arcus & Pudney, 287 

2015).  Formally, ∆Cp
‡ is defined as the temperature dependence of the enthalpy and entropy and thus 288 

encapsulates the temperature dependence of the activation energy.  The molecular origins of ∆Cp
‡ have 289 

been discussed elsewhere (Arcus & Pudney, 2015; Arcus et al., 2016).  Briefly, the chemical meaning of 290 

∆Cp
‡ is to indicate the difficulty or the energy barrier needed to be crossed for enzyme-catalyzed reactions 291 

to proceed.  As a reaction gets more difficult, a higher absolute ∆Cp
‡ can be observed.  ∆Cp

‡ values are 292 

generally negative for enzyme-catalyzed reactions and it also can be scaled up to describe enzyme-driven 293 

processes such as metabolism.  Here, we demonstrate that the majority of R curves have negative ∆Cp
‡ 294 

with an average value of -1.2±0.1 kJ.mol-1K-1 for 167 out of 231 species (70%).  The consequence of a 295 
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negative ∆Cp
‡ is that the catalyzed rate will diverge from Arrhenius behaviour and predict an optimum 296 

temperature above which rates will decline (although this predicted optimum is above observed 297 

temperatures in nature).  Similarly improved fits by MMRT to temperature response have also been 298 

demonstrated for enzymes kinetics (Hobbs et al., 2013), soil microbial extracellular enzymes (Alster et 299 

al., 2016), soil nitrification (Taylor et al., 2016) and soil respiration (Schipper et al., 2014; Robinson et 300 

al., 2017).  Heskel et al. (2016b) argued for a universal convergence of temperature response of R using 301 

the same global leaf respiration dataset and the current study shows that MMRT is also able to 302 

characterize the temperature response of R.  From the enzyme kinetic perspective, the constant observed 303 

∆Cp
‡ across the globe for leaf respiration (Table1) suggests that the contributions from metabolic enzyme 304 

rates for leaf respiration across different plant species are similar, supporting the concept of a global 305 

convergence of the short-term temperature response of R (Heskel et al., 2016b). 306 

    Based on the short-term measurements of R, plants across biomes are adapted to their respective 307 

environments and homeostasis of respiration could result in a similar R rate for plants from contrasting 308 

environments (Fig. 4b) (Atkin & Tjoelker, 2003; Ow et al., 2008a, 2008b; Slot & Kitajima, 2015).  For 309 

example, the R rates from tropical forests have values close to those of tundra plants (i.e. respiratory 310 

homeostasis), when each is measured at their respective growth temperature (Fig. 4b).  This would then 311 

correspond to decreasing a(MMRT) from cool/dry to high temperature/humid environment (Fig. 4b).  The 312 

pattern of a(MMRT) calculated from MMRT agrees with previous findings (Atkin et al., 2015; 313 

Vanderwel et al., 2015) which showed a clear negative relationship between R at reference temperature 314 

and aridity index.  When comparisons were made of rates of respiration at the prevailing growth 315 

temperature of each site, we demonstrated a similar R among contrasting environments (Fig. 4b).  316 

Interestingly, site-to-site variations in mean annual precipitation were more strongly correlated with 317 

a(MMRT) than MAT, suggesting a higher a(MMRT) in the arid regions than those in more humid 318 

climates (Fig. S2).  Thus, for a given growth temperature, exposure to dry conditions is associated with 319 

higher basal rates of respiration (i.e. higher a(MMRT)).  Similarly, for a given MAP, R decreases with 320 
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increasing growth temperature.  These patterns are similar to those reported by Atkin et al. (2015) in their 321 

analysis of global variations in leaf respiration at a common measuring temperature of 25qC.  322 

    We found that the Topt derived from MMRT was generally greater than the measured Tmax (the actual 323 

maximum R based on measurements reported by O’Sullivan et al. (2017)) for the same plant species.  324 

Tmax exhibited clear biogeographic patterns with Tmax increasing linearly from polar to equatorial regions 325 

(O’Sullivan et al., 2017).  Similar patterns for Topt were not found and our results suggested a relatively 326 

constant Topt across all the observed species from the globe (Table1).  We hypothesize that the difference 327 

between Topt and Tmax was due to the way these were determined and the underlying physiological 328 

responses these two indices represent.  Topt was mathematically determined from fits of MMRT using 329 

respiration measurements up to 45 oC, whereas, Tmax was determined experimentally with leaves exposed 330 

to temperatures often well above 50 oC (O’Sullivan et al., 2017).  The Topt derived from MMRT depends 331 

on thermodynamic properties of contributing enzymes, particularly the ∆Cp
‡ value of the enzymes 332 

involved in leaf respiration and this parameter was very tightly constrained across biomes.  The Topt 333 

retrieved from MMRT represents the temperature where enzymes reached their theoretical maximum rate 334 

of catalysis in the absence of other biochemical constraints.  The measured Tmax, also includes other 335 

factors that can contribute to reduction in the overall rate of respiration, e.g., change in cell membrane 336 

properties (Schrader et al., 2004), respiration being uncoupled from mitochondrial electron transport 337 

(Skulachev, 1998; Hüve et al., 2011), or increased drought stress (Atkin & Macherel, 2009) at high 338 

temperature.  These factors lead to a ‘burst’ of R around 47oC (O’Sullivan et al., 2013), that varies 339 

between species and is presumably due to variation of other leaf traits, e.g., leaf size(Wright et al., 2017), 340 

than the enzymes involved in respiration.  Hence, we hypothesize that the Topt from MMRT and the 341 

measured Tmax describe the temperature response of R at level of the contributing metabolic enzymes and 342 

at the whole leaf level, respectively.  A higher Topt than Tmax suggests a higher thermal tolerance of 343 

respiratory enzymes than the whole leaf.  If this hypothesis is correct it argues that thermal response of 344 

respiratory enzymes in leaves are highly conserved while leaves adapt to different climates by varying 345 

leaf traits, such as leaf size, which demonstrates a clear consistent latitudinal gradient, e.g., large-leaved 346 
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species predominate in wet, hot, sunny environments (Wright et al., 2017).  This conserved temperature 347 

response of plant leaf respiration across geophysical gradient or evolutionary scale is worth further 348 

exploring.  Nevertheless, MMRT provides a tool to explore the thermodynamic properties of respiratory 349 

enzymes.  The information could be useful to understand regulations of R under a warmer climate and 350 

predict the short-term temperature response of R accurately. 351 
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Table1 The mean values and standard errors of a(MMRT), ‡
0TH' and ‡

PC' , optimum temperature (Topt) and 455 

inflection temperature (Tinf) from MMRT across Biomes and PFTs 456 

Biomes a(MMRT) ‡
0TH'   

(kJ mol-1) 

‡
PC'  

(kJ mol-1 K-1) 
Topt (°C) Tinf (°C) N of fits 

(species/leaf) 
N of Topt/Tinf 
(species/leaf) 

Tu 0.9194±0.1033a 52.3±1.2a -1.3±0.1a 64.0±3.2a 38.4±2.0a 20/79 19/59 

BF 0.0150±0.0819cd 50.2±1.3a -0.4±0.2a 70.1±3.8a 42.6±2.3a 25/96 18/43 

TeDF 0.2806±0.0995de 56.2±2.8a 0.02±0.3a 76.0±5.5a 48.3±3.5a 10/38 4/7 

TeW 0.2931±0.0571bc 56.1±3.0a -0.3±0.3a 64.2±2.2a 40.5±1.2a 67/193 40/81 

TeRF 0.0107±0.1248cd 52.2±2.0a -0.2±0.2a 79.5±4.8a 48.6±2.8a 12/45 7/12 

TrRF_lw -0.5440±0.0716e 53.6±1.3a -0.3±0.1a 65.9±2.0a 40.9±1.2a 81/205 49/75 

TrRF_hi 0.5252±0.0854ab 56.0±3.5a -0.7±0.2a 70.7±4.5a 42.8±3.9a 16/17 10/10 

PFTs        

C3H 0.7453±0.1352a 52.3±1.2a -1.4±0.2a 67.7±3.5a 40.1±2.3a 13/50 13/43 

SEv 0.3130±0.1042ab 50.2±1.3a -0.5±0.4a 61.3±2.6a 38.7±1.3a 35/104 24/47 

NlEv 0.3745±0.1434ab 56.2±2.8a -0.6±0.2a 72.6±3.9a 45.3±2.5a 13/48 8/19 

BlDcTmp -0.0460±0.0819bc 56.1±3.0a -0.5±0.2a 67.7±3.0a 41.7±1.8a 40/150 28/66 

BlEvTmp 0.2907±0.0828bc 52.2±2.0a 0.1±0.4a 70.9±4.3a 44.2±2.5a 34/104 16/28 

BlEvTrp -0.3523±0.0744c 53.6±1.3a -0.4±0.1a 67.2±1.9a 41.4±1.3a 93/207 56/82 

BlDcTrp -0.3299±0.2802bc 56.0±3.5a -0.7±0.5a 59.8±10.0a 39.5±2.9a 3/10 2/2 

Global Mean -0.0008±0.0460 54.0±1.0 -0.4±0.1 67.0±1.2 41.4±0.7   

 457 

Tu: Tundra, BE: Boreal Forest, TeDF: Temperature Deciduous Forest, TeW: Temperature Woodland, 458 

TeRF: Temperature Rainforest, TrRF_lw: Tropical Rainforest at low elevation, TrRF_hi: Tropical 459 

Rainforest at high elevation.  C3H: C3 Herbaceous, SEv: Evergreen Shrubs, NIEv: Needle-leaf evergreen, 460 

BlDcTmp: Broadleaf Deciduous Temperate, BlEvTmp: Broadleaf Evergreen Temperate, BlEvTrp: 461 

Broadleaf Evergreen Tropical, BlDcTrp:  Broadleaf Deciduous Tropical 462 

Within columns, values with the same letter were not significantly different for the pairwise comparison 463 

across Biomes and PFTs. N of fits (species/leaf) is the initial sample size of the data for fitting MMRT, 464 

species/leaf denotes the number of species or leaf samples in each biome and PFT.  N of Topt/Tinf denotes 465 

the number of credible fits in calculating the Topt and Tinf within biological meaningful range. 466 

  467 
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Fig. 1  The correspondence between MMRT and LP function in describing the temperature response of 468 

leaf respiration.  The black and grey squares are the predicted optimum temperature (Topt) from MMRT 469 

(62.32 °C) and LP ( 62.07 °C) functions respectively. The black and grey circles are the inflection 470 

temperature (Tinf), 34.40 and 37.25°C from MMRT and LP, respectively. Topt and Tinf in MMRT and LP 471 

are mainly defined by the curvature terms from MMRT and LP, i.e., ∆𝐶𝑃
‡ and c, respectively.  The Topt 472 

and Tinf could varies between 25 and 100 ºC depending on the magnitude of negative curvature terms.  473 

 474 

Fig. 2  Comparisons of predictive power of MMRT, LP (Log-Polynomial) and Arrhenius models, 475 

showing both MMRT and LP models are equivalent and more powerful than the Arrhenius model in 476 

characterizing the temperature response of R.  (a) shows the capability of three models in characterising 477 

the temperature response of measured leaf respiration using the R-T curve of species Anemone 478 

narcissiflora in tundra (b) shows the corresponding residuals from MMRT (solid circles), LP (open 479 

circles line) and Arrhenius (open squares) models from panel (a).  (c) compares AICc values across the 480 

three models. 481 

 482 

Fig. 3  Comparisons between fitted parameters derived from MMRT and polynomial following Eq.7.  All 483 

the parameters between polynomial and MMRT are very tightly correlated. 484 

 485 

Fig. 4 (a) The relationship between a(MMRT) and aridity index (the ratio between mean annual 486 

precipitation (MAP) and potential evapotranspiration (PET)) across 18 sites covering different climates. 487 

The black dash line is a linear regression fit (y=-0.64x+ 0.59).  The colour demonstrates the mean annual 488 

temperature (MAT) for each of the sites and the symbol size increases with the mean annual precipitation 489 

(MAP). (b) shows the temperature response curve from MMRT at two sites with contrasting environments.  490 

The solid line indicates the temperature response of leaf respiration at Toolik, Alaska, US using the mean 491 

parameters of MMRT retrieved from 79 individual lnR-T curves.  The dash line represents the mean 492 

temperature response of plant leaves at Canberra, Australia using the retrieved parameters from 15 493 
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individual lnR-T curves.  The vertical dish line indicates the reference temperature, T0 (298.15K, 25°C). 494 

The grey bands show the R between MAT and mean temperature in the warmest quarter (TWQ) of the year.  495 

The similar magnitude of R from two sites suggests a homeostasis of respiration in plants that maintains a 496 

comparable R under the growth temperature of their habitats. 497 

 498 
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