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Abstract

Let Bp be the Latin square given by the addition table for the integers modulo
an odd prime p (i.e. the Cayley table for (Zp,+)). Here we consider the properties
of Latin trades in Bp which preserve orthogonality with one of the p−1 MOLS given
by the finite field construction. We show that for certain choices of the orthogonal
mate, there is a lower bound logarithmic in p for the number of times each symbol
occurs in such a trade, with an overall lower bound of (log p)2/ log log p for the size
of such a trade. Such trades imply the existence of orthomorphisms of the cyclic
group which differ from a linear orthomorphism by a small amount. We also show
that any transversal in Bp hits the main diagonal either p or at most p− log2 p− 1
times. Finally, if p ≡ 1 (mod 6) we show the existence of a Latin square which is
orthogonal to Bp and which contains a 2× 2 subsquare.

Keywords: Orthogonal array, MOLS, trade, orthomorphism, transversal.

1 Introduction and Definitions

Let p be an odd prime. Consider the “complete” set of p−1 MOLS of order p, constructed
via the finite field of order p. (It is conjectured, but not yet proven, that a complete set of
MOLS of order p is unique up to isomorphism.) The problem considered in this paper is
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03 14 2 30 41 5 6
1 2 3 4 5 6 0
2 36 45 53 64 0 1
35 43 54 6 0 1 2
4 5 60 01 16 2 3
50 61 06 15 2 3 4
6 0 1 2 3 4 5

0 1 2 3 4 5 6
3 4 5 6 0 1 2
6 0 1 2 3 4 5
2 3 4 5 6 0 1
5 6 0 1 2 3 4
1 2 3 4 5 6 0
4 5 6 0 1 2 3

Figure 1: An orthogonal trade in B7

how to change a “small” number of entries in one of these Latin squares so that it maintains
orthogonality with at least one other Latin square in the complete set of MOLS.

To this end, for each k, 1 6 k 6 p − 1, define Bp(k) to be the Latin square where
the entry in cell (i, j) of Bp(k) is given by ki + j, for each i, j ∈ Zp. (In the above and
throughout this paper, arithmetic is performed modulo p with residues in Zp whenever
the context makes this clear.) Then it is well-known that

Bp := {Bp(1), Bp(2), . . . , Bp(p− 1)}

is a set of p− 1 MOLS of order p. For convenience we often write Bp instead of Bp(1).
The Latin squares B7 and B7(3) are given in Figure 1. Observe that after each symbol

is replaced by its subscript in B7, the Latin squares remain orthogonal. We will refer to
this change as an orthogonal trade. We are interested in determining general properties
of orthogonal trades; in particular lower bounds for the size of an orthogonal trade.

Considering a Latin square of order n to be a set of ordered (row, column, entry)
triples (in this paper a subset of Zn × Zn × Zn), a Latin trade is a subset T of a Latin
square L such that there exists a partially filled-in Latin square T ′ (called a disjoint mate
of T ) such that for each (i, j, k) ∈ T (respectively, T ′), there exists unique i′ 6= i, j′ 6= j
and k′ 6= k such that (i′, j, k), (i, j′, k) and (i, j, k′) ∈ T ′ (respectively, T ). It follows that
(L \ T ) ∪ T ′ is a Latin square not equal to L. In fact, Latin trades describe differences
between Latin squares of the same order; see [2] for more details.

We define an orthogonal trade (in Bp) of index (ℓ, k) to be a Latin trade T ⊂ Bp(ℓ)
such that there exists a disjoint mate T ′ such that (Bp(ℓ)\T )∪T ′ is orthogonal to Bp(k).
Thus Figure 1 gives an example of an orthogonal trade in Bp of index (1, 3).

Using symmetries of Bp, we may assume certain properties of an orthogonal trade
therein. In this paper, k−1 is always taken to be the least non-negative integer representing
the congruence class of k−1 (mod p).

Lemma 1. Let T be an orthogonal trade in Bp of index (ℓ, k). Then we may assume,
without loss of generality, that ℓ = 1, k 6 k−1 and (0, 0, 0) ∈ T .

Proof. Let 1 6 x 6 p − 1. The mapping φ : (a, b, ax + b) → (a, b/ℓ, (ax + b)/ℓ) maps
Bp(x) onto Bp(x/ℓ) and thus acts as a bijection on the set Bp. We may thus assume
that ℓ = 1. Next, the mapping φ′ : (a, b, ax + b) → (b,−a/x, (b − a)/x) maps Bp(x) to
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Bp(x
−1) (again as part of a bijection on the set Bp), fixing Bp(1) and mapping Bp(k)

to Bp(k
−1). We may thus assume k 6 k−1. Finally, if 0 6 i 6 p − 1, the map φ′′ :

(a, b, ax + b) → (a, b + i, ax + b + i) maps each element of Bp to itself, allowing us to
assume that (0, 0, 0) ∈ T .

It is possible, of course, to consider Latin trades which preserve orthogonality within
pairs of MOLS that do not necessarily belong to Bp. The spectrum of possible sizes of
such Latin trades is explored in [7]. However for the rest of the paper we assume that any
orthogonal trade is always in Bp with the assumptions of the previous lemma.

2 The theory of Latin trades in Bp

In this section we give relevant known results and theory of Latin trades in Bp - that
is, the operation table for the integers modulo p, also known as the back circulant Latin
square. Since an orthogonal trade necessarily is also a Latin trade in Bp, this theory will
be useful in later sections.

A trade matrix A = [aij] is an m × m matrix with integer entries such that for all
1 6 i, j 6 m: (1) aii > 0; (2) aij 6 0 whenever i 6= j and (3)

∑m
j=1

aij > 0.

Lemma 2. (Lemma 7 of [3]): If A = [aij] is an m×m trade matrix, det(A) 6 Πm
i=1aii.

The following lemmas are implied by the theory in [3]. The results therein are ex-
pressed in terms of symbols rather than rows; however statements about rows, columns
and symbols are equivalent due to equivalences of Bp.

Lemma 3. Let x1, x2, . . . , xm, xm+1 be the non-empty rows of a Latin trade T in Bp.
Then there exists an (m + 1) × (m + 1) trade matrix A such that AX = B, where X =
(x1, x2, . . . , xm, xm+1)

T , aii gives the number of entries in row xi of T and B is an (m+
1)× 1 vector of integers, each a multiple of p. Moreover, the row and column sums of A
are each equal to 0.

Lemma 4. Let A be an m×m trade matrix such that det(A) 6= 0 and there exist m× 1
vectors X and B such that AX = B, where each entry of B is divisble by p but each entry
of X is not divisible by p. Then det(A) is divisible by p.

Lemma 5. If T is a Latin trade in Bp, then |T | > mp1/m + 2.

We will also need the following corollary from the theory in [3].

Lemma 6. There does not exist a row i of a trade matrix A such that aii = 2 and aij = −2
where j 6= i.

Proof. If such a row exists, Equation (1) of [3] becomes 2xi ≡ 2xj (mod p), which implies
xi = xj since p is odd, a contradiction to the rows being distinct.

Those readers who refer back to the detail in paper [3] may notice that the step of
proving that a trade matrix has a non-zero determinant is omitted. However Theorem 8
in the next section addresses the original oversight from that paper.
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3 Smallest orthogonal trade

In this section we give a lower bound on the number of times each symbol occurs in an
orthogonal trade (Theorem 10) and an overall lower bound for the size of an orthogonal
trade (Theorem 11).

Suppose that k 6= 1 and symbol s occurs in the rows in the set R = {r1, r2, . . . , rm} of
an orthogonal trade T of index (1, k). Then clearly the set of columns of T which include
s is equal to {s− r1, s− r2, . . . , s− rm}. Let φ be the devolution on R such that s occurs
in the set of cells

{(ri, s− φ(ri)) | ri ∈ R}

in T ′. Note that if φ(ri) = ri for some i, T and T ′ are not disjoint, contradicting the
definition of a Latin trade; therefore φ is indeed a devolution. Observe that (k − 1)ri + s
occurs in cell (ri, s− ri) of Bp(k). Thus, considering orthogonality, the set of orthogonal
ordered pairs {(s, (k − 1)ri + s) | ri ∈ R} must be covered after T is replaced by T ′; it
follows that

{(k − 1)ri + s | ri ∈ R} = {kri + s− φ(ri) | ri ∈ R}. (1)

Thus we may define another permutation φ′ on R such that φ′(ri) = (kri − φ(ri))/(k− 1)
for each ri ∈ R. If φ′(ri) = ri for some ri ∈ R, φ is not a devolution, a contradiction.
Similarly, φ′(ri) 6= φ(ri) for each ri ∈ R. This gives a linear system of the form Au = 0

(mod p), where u = (r1, r2, . . . , rm)
T and A is a square matrix of dimensions m×m with

the following properties:

(P1) Each entry of the main diagonal of A is k.

(P2) Each off-diagonal entry of A is either 0, −1 or 1− k.

(P3) The sum of each row and column of A is 0.

In the example in Figure 1 with s = 0, we have R = {0, 4, 5}, φ = (045), φ′ = (054),
u = (0, 4, 5)T and

A =





3 −1 −2
−2 3 −1
−1 −2 3



 .

The following lemma is immediate.

Lemma 7. Any symbol in an orthogonal trade occurs at least 3 times.

Next, property (P3) above implies that det(A) = 0. From Lemma 1, we may assume
without loss of generality that r1 = 0. Let A′ be the (m−1)× (m−1) matrix obtained by
deleting the first row and column of A and let u′ = (r2, . . . , rm)

T . Then A′u′ = 0, where
A′ satisfies (P1), (P2) and the following properties:

(P4) The sum of each row of A is 0 except for at least two rows which have a positive
sum.
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(P5) The sum of each column of A is 0 except for at least two columns which have a
positive sum.

An m×m matrix A = (aij) is said to be diagonally dominant if

2|aii| >

m
∑

j=1

|aij|

for each i ∈ [m]. Clearly A′ above is diagonally dominant.

Theorem 8. ([10, 12]) If A is diagonally dominant and irreducible and there is an integer
k ∈ [m] such that

2|akk| >

m
∑

j=1

|akj|, (2)

then A is non-singular.

If A′ is irreducible, we have from the previous theorem, det(A′) 6= 0. However the case
when A′ is reducible can be dealt with in the following lemma, which is easy to prove.

Lemma 9. Let A′ be a diagonally dominant matrix satisfying (P1), (P2), (P4) and (P5)
above. Then there exists an irreducible, diagonally dominant m′ × m′ matrix A′′ with
m′ 6 m satisfying (P1), (P2) and Equation (2).

Thus there exists an m′×m′ matrix A′′, satisfying (P1), (P2) and Equation (2) above,
with non-zero determinant, where m′ 6 m. Moreover, A′′ is a type of trade matrix as
defined in the previous section. From Lemma 2, the determinant of A′′ is bounded above
by km−1 and from Lemma 4, p < km−1, so we have shown the following.

Theorem 10. Let K = min{k, k−1}. The number of times each symbol occurs in an
orthogonal trade is greater than logK p+ 1.

We next find a lower bound on the size of T .

Theorem 11. If T is an orthogonal trade of index (1, k), then

|T | >
log p logK p

log logK p
.

where K = min{k, k−1}.

Proof. Let T contain m distinct symbols and let si be the the number of times symbol
i occurs in T , where 1 6 i 6 m. From Lemma 5, for any Latin trade in Bp,

∑m
i=1

si =
|T | > mp1/m. Let x = |T |/m = (

∑m
i=1

si)/m. From Lemma 7, x > 3. Also, from above,
x > p1/m which implies that m > (log p)/(log x). Thus |T | > (x/ log x) log p. But the
function x/ log x is strictly increasing for x > e; thus the result follows from the previous
theorem.
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04 15 26 30 41 52 63
1 2 3 4 5 6 0
2 3 4 5 6 0 1
3 4 5 6 0 1 2
45 56 60 01 12 23 34
50 61 02 13 24 35 46
6 0 1 2 3 4 5

0 1 2 3 4 5 6
3 4 5 6 0 1 2
6 0 1 2 3 4 5
2 3 4 5 6 0 1
5 6 0 1 2 3 4
1 2 3 4 5 6 0
4 5 6 0 1 2 3

Figure 2: An orthogonal trade derived from Figure 1 as in Theorem 12.

4 Orthogonal trades permuting entire rows

In this section we consider the case when T and T ′ are constructed taking complete rows
of Bp and permuting them. It turns out that such orthogonal trades arise from considering
a symbol from an arbitrary orthogonal trade.

Theorem 12. Let T be an orthogonal trade in Bp. Let R be the set of rows that contain
a particular symbol s in T . Then there exists an orthogonal trade of size p|R| constructed
by permuting the rows of R.

Proof. Fix s ∈ Zp. Equation 1 implies that

{(k − 1)ri + s+ j | ri ∈ R, j ∈ Zp} = {kri + s− φ(ri) + j | ri ∈ R, j ∈ Zp}.

Thus if we replace row ri with row φ(ri) for each ri ∈ R we obtain an orthogonal trade.

In fact, the existence of an orthogonal trade permuting entire rows is equivalent to the
existence of any matrix A satisfying properties from Section 2.

Corollary 13. Let A be an m×m matrix satisfying properties (P1), (P2) and (P3) from
Section 2. Suppose furthermore there is a solution to Au = 0 where u = (r1, r2, . . . , rm)

T

and r1, r2, . . . , rm are distinct residues in Zp. Then there exists an orthogonal trade T of
index (1, k) whose disjoint mate T ′ is formed by permuting the rows r1, r2, . . . , rm of T .

Proof. Define φ(ri) = rj if and only if Aij = −1 and define φ′(ri) = rj if and only if
Aij = −(k − 1). Then φ and φ′ are disjoint devolutions on the set {r1, r2, . . . , rm} and
φ′(ri)(k − 1) = kri − φ(ri) for each i, 1 6 i 6 m. In turn, Equation 1 is satisfied. The
proof then follows by Theorem 12.

From the previous theorem and Theorem 10, we have the following.

Corollary 14. Let T be an orthogonal trade of index (1, k) consisting of m entire rows of
Bp which are permuted to create the disjoint mate T ′. Then m > logK p+ 1, where K =
min{k, k−1}.

Theorem 15. There exists an orthogonal trade T consisting of 3 entire rows of Bp which
are permuted to create the disjoint mate T ′ if and only if p ≡ 1 (mod 6).
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Proof. From the theory in the previous section, the determinant of A′ must be equal to
k2 − k + 1. However k2 − k + 1 = 0 has a solution mod p if and only if −3 is a square
mod p. Elementary number theory can be used to show that −3 is a square mod p if and
only if p ≡ 1 (mod 6). Finally, if p ≡ 1 (mod 6), replacing row 0 with row 1, row 1 with
row k and row k with row 0 in Bp creates a Latin square which remains orthogonal to
Bp(k).

It is an open problem to determine whether there exists an orthogonal trade permuting
a bounded number of rows for any odd prime p.

5 Orthogonal trades via Latin trades in Bp

Our aim in this section is to construct an orthogonal trade T with index (1, 2) with
disjoint mate T ′ such that T ′ permutes O(log p) entire rows of T . We do this by showing
the existence of orthogonal Latin trades in Bp with size O(log p).

Theorem 16. For each prime p there exists a Latin trade T of size O(log p) within Bp

such that each symbol occurs either twice in T or not at all.

Theorem 17. For each prime p there exists an orthogonal trade of index (1, 2) permuting
O(log p) rows.

Proof. From Section 2, the trade matrix A corresponding to the trade T given by the
previous theorem has the following properties. Firstly, the number of rows (and the
number of columns of A) is O(log p). Secondly, each entry of the main diagonal is 2, every
other entry is either −2, −1 or 0 and the row and column sums are at least 0. From
Lemma 6, there are no entries −2. Moreover, from Lemma 5, Au = 0 has a solution in
Zp where the entries of u are distinct. The result follows by Corollary 13.

In order to prove Theorem 16 we modify a construction given by Szabados [11] which
proved the following.

Theorem 18. (Szabados, [11]) For each prime p there exists a Latin trade of size at most
5 log2 p within Bp.

Since our proof is a modification of that given in [11] (which was in turn inspired by
classic results on dissections of squares by Brooks, Smith, Stone and Tutte [1, 14] and
Trustum [13]) we borrow from the notation given in [11].

A dissection of order k of a rectangle R with integer sides is a set of k squares of
integral side which partition the area of the rectangle (i.e. they cover the rectangle and
overlap at most on their boundaries). A dissection is said to be ⊕-free if no four of them
share a common point.

For the following definition we position our rectangle R with a corner at the origin,
its longest side along the positive x-axis and another side along the negative y-axis.

We say that a dissection is good if it is:

the electronic journal of combinatorics 24(3) (2017), #P3.15 7



(G1) ⊕-free;

(G2) the square with the origin as a corner point has side at least 3;

(G3) there is no line of gradient −1 intersecting corner points of more than one square;
and

(G4) the lines y = 1− x and y = 2− x do not intersect corner points of any square.

We wish to construct a good dissection of a rectangle of dimensions n × (n + 3) for
any n > 3. We first deal with small values of n.

Lemma 19. There exists a good dissection of the rectangle n × (n + 3) for 3 6 n 6 14
with at most 8 squares.

Proof. In every case, make one of the squares an n× n square with the origin as a corner
point and another 3×3 subsquare with (n+3,−n) as a corner point. Then (G2) and (G4)
are satisifed. It is then easy to find a dissection of the remaining (n − 3) × 3 rectangle
satisfying (G1) and (G3), using at most 6 squares for each case (one can simply use a
greedy algorithm, cutting off a largest possible square at each step).

Figure 3 displays a good dissection of the 5× 8 rectangle into 5 squares.

5

3

2

1

Figure 3: An example of a good dissection into squares

For n of the form 4k + z with k > 3, z ∈ {3, 4, 5, 6} we may dissect an n × (n + 3)
rectangle into at most 5 squares and a rectangle of size 2k× 2(k+ 3), as shown in Figure
4.

Lemma 20. For each n > 3, there exists a good dissection of an n × (n + 3) rectangle
using at most 3 + 5 log4 (n+ 1) squares.
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2k + 3

2k × 2(k + 3)

2k + 6

2k + 3

2k × 2(k + 3)2k + 1

2k + 3
2k + 4

2k + 3

2k

2k + 3

2k + 3
2k + 5

2k × 2(k + 3)
2k + 2

(4k + 5)× (4k + 8) (4k + 6)× (4k + 9)

(4k + 3)× (4k + 6) (4k + 4)× (4k + 7)

2k × 2(k + 3)

Figure 4: Dissecting a rectangle of size n× (n+ 3) (Figure 1. from [11])

Proof. From the previous lemma, the result holds for 3 6 n 6 14. If n > 15, write
n = 4k+z where k > 3 and z ∈ {3, 4, 5, 6} and use a dissection as in Figure 4, recursively
using a good dissection of the k×(k+3) rectangle with the length of each square doubled.
Property (G2) of the smaller rectangle ensures that (G1) holds for the larger rectangle.
Property (G2) clearly holds for the larger rectangle as k > 3 > 0. Next, property (G4)
(avoiding the line y = 1−x) for the smaller rectangle ensures that (G3) holds for the larger
rectangle. Finally, property (G4)(avoiding the line y = 2 − x) for the smaller rectangle
ensures than (G4) holds for the larger rectangle. Note in the previous that y = 2−x with
respect to the larger rectangle cannot hit any corner of squares in the smaller rectangle
because each square has even length side.

Suppose such a recursion occurs α times to an intial rectangle of order m × (m + 3)
where 3 6 m 6 14. Then n > gα(m), where g(m) = 4m + 3 and gα is the function g
composed with itself α times. Observe that gα(m) = 4αm+4α−1. Thus (n−4α+1)/4α > 3
and α 6 log4 (n+ 1)− 1. Each recursive step gives at most 5 extra squares; with at most
8 squares in the initial step, the result follows by Lemma 20.

The proof of Theorem 16 now follows from the following theorem, which is outlined
in [11] and first established in [8].
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Theorem 21. Suppose there exists a good dissection of order k of an n × m rectangle.
Then there exists a Latin trade T in the addition table for the integers modulo m+n (i.e.
Bm+n if m + n is prime) such that each entry of T appears exactly twice and T has size
2k + 2.

Proof. The proof follows from the construction, first given in [8], showing that a dissection
of a right-angled isoceles triangle (with two sides of length p) into smaller, integer-sided
right-angled isoceles triangles gives rise to a Latin trade T in Bp, provided that no point
is the vertex of 6 of the smaller triangles. In such a construction, the number of smaller
triangles gives the size of the Latin trade. Reposition the triangle on the Euclidean plane
so that its vertices have positions (0, 0), (0, p) and (p, 0). Then the coordinates of the
vertices of the smaller triangles give precisely the cells of Bp which T occupies.

Next, reposition the n×m rectangle so that its vertices have coordinates (0, 0), (0, m),
(n, 0) and (m,n). Embed this rectangle into an isocoles right-angled triangle as above
(with two equal sides of length n+m). Dissect each square in the good dissection into two
triangles so that the sides of each triangle are parallel to the larger triangle. This gives a
dissection of the right-angled triangle into 2k + 2 smaller right-angled isoceles triangles.
Reposition the triangle as above.

Then in our construction, the line segements of gradient −1 contain the same symbol
in Bp. Each such line segment intersects only two corners of squares and thus only two
vertices of triangles. Together with condition (G3), this ensures that each symbol occurs
exactly twice in the Latin trade.

Apply the process in the above theorem to the example in Figure 3. This results in
the following Latin trade T in B13 (with a unique disjoint mate T ′):

T := {(0, 0, 0), (0, 5, 5), (5, 0, 5), (5, 3, 8), (8, 0, 8), (5, 5, 10), (7, 3, 10),
(7, 4, 11), (8, 3, 11), (7, 5, 12), (8, 4, 12), (8, 5, 0)}.
T ′ := {(0, 0, 5), (0, 5, 0), (5, 0, 8), (5, 3, 10), (8, 0, 0), (5, 5, 5), (7, 3, 11),
(7, 4, 12), (8, 3, 8), (7, 5, 10), (8, 4, 11), (8, 5, 12)}.

Note that each symbol occurs twice. For a general proof of why this construction gives a
Latin trade, see [8].

6 Orthomorphisms of cyclic groups and transversals in Bp

As in previous sections we assume that p is prime. An orthomorphism of the cyclic group
Zp is a permutation φ of the elements of Zp such that x 7→ φ(x)−x is also a permutation.
Orthomorphisms may be defined for arbitrary groups; however in this section we assume
that orthomorphisms are of the cyclic group only. Trivial examples of orthomorphisms
are given by φ(x) = kx for any k, 2 6 k 6 p− 1. Given any orthomorphism φ, construct
a Latin square Lφ by placing φ(r) + c in cell (r, c). Then by definition Lφ is orthogonal
to Bp.
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Given two orthomorphisms φ and φ′, the distance between φ and φ′ is defined to be
the number of values x for which φ(x) 6= φ′(x). Corollary 14 implies the following result
about orthomorphisms.

Theorem 22. Let φ′ be an orthomorphism not equal to φ(x) = kx. Then the distance
between φ and φ′ is at least logK p+ 1 where K = min{k, k−1}.

A transversal of a Latin square of order n is a set of ordered triples that include
each row, column and symbol exactly once. Given any orthomorphism φ, the set of
triples (x, φ(x) − x, φ(x)) is a transversal of Bp. For example, if φ(x) = 2x we obtain a
transversal on the main diagonal of Bp. So we have the following corollary.

Corollary 23. Any transversal of Bp not equal to the main diagonal has at least log2 p+1
elements off the main diagonal.

In contrast, for odd n > 5, there exist two transversals in Bn which intersect in k
elements, for each 0 6 k 6 n− 3 (Theorem 5 of [5]). From Theorem 17, we also have the
following.

Theorem 24. There exists a transversal of Bp not equal to the main diagonal which has
O(log p) elements not on the main diagonal.

7 A construction for an orthogonal trade with size not divisible

by p

In this section we construct an orthogonal trade of size not divisible by p whenever p ≡ 1
(mod 6). Figure 1 gives the construction for p = 7. Figure 5 is an example of the
construction for p = 13, where the trademate is shown via subscripts.

Let k > 2; since p ≡ 1 (mod 6) there exists k such that k2 − k + 1 is divisible by p
(since −3 is a square modulo p if and only if p − 1 is divisible by 6). Note that if k is
a solution then 1 − k is also a solution modulo p; thus we assume in this section that
k is an integer such that 2 6 k 6 (p + 1)/2. We remind the reader that all values are
evaluated modulo p with a residue between 0 and p− 1. We define the following subsets
T0, T1, . . . , Tk−1 of Bp:

T0 := {(0, j, j), (0, k + j, k + j) | 0 6 j 6 k − 2}

and if 1 6 i 6 k − 1,

Ti := {(i(k − 1), j, i(k − 1) + j) | i 6 j 6 2(k − 1)}∪

{(i(k − 1) + 1, j, i(k − 1) + j + 1) | 0 6 j 6 k + i− 2}.

We then define T to be the union of all these sets; i.e.

T :=

k−1
⋃

i=0

Ti.
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04 15 26 3 40 51 62 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 0
2 3 4 5 6 7 8 9 10 11 12 0 1
3 48 59 67 74 85 96 10 11 12 0 1 2
47 54 65 76 8 9 10 11 12 0 1 2 3
5 6 7 8 9 10 11 12 0 1 2 3 4
6 7 812 910 1011 118 129 0 1 2 3 4 5
710 811 98 109 117 12 0 1 2 3 4 5 6
8 9 10 11 12 0 1 2 3 4 5 6 7
9 10 11 120 01 12 212 3 4 5 6 7 8
100 111 122 012 110 211 3 4 5 6 7 8 9
11 12 0 1 2 3 4 5 6 7 8 9 10
12 0 1 2 3 4 5 6 7 8 9 10 11

Figure 5: An orthogonal trade of index (1, 4) and size 36 in B13

The condition p > 2k − 2 ensures that the above sets are disjoint. Observe that
|T0| = 2(k − 1) and for each 1 6 i 6 k − 1, |Ti| = 3k − 2. Thus |T | = 3k(k − 1) which is
not divisible by p. In the case where p = k2 − k+1 (where p and k are integers), the size
of T is 3(p− 1), but in general may be larger relative to p.

We will show that T is a Latin trade which preserves orthogonality between the Latin
squares Bp and Bp(k).

With this aim in view, we define a partial Latin square T ′ which we will show is a
disjoint mate of T . Let

T ′

0 := {(0, j, k + j), (0, k + j, j) | 0 6 j 6 k − 2}

and if 1 6 i 6 k − 1,

T ′

i := {(i(k − 1), j, i(k − 1) + j + k) | i 6 j 6 k − 2} ∪

{(i(k − 1), j, i(k − 1) + j + 1) | k − 1 6 j 6 k + i− 2} ∪

{(i(k − 1), j, (i− 1)(k − 1) + j) | k + i− 1 6 j 6 2(k − 1)} ∪

{(i(k − 1) + 1, j, i(k − 1) + j + k) | 0 6 j 6 i− 1} ∪

{(i(k − 1) + 1, j, i(k − 1) + j) | i 6 j 6 k − 1} ∪

{(i(k − 1) + 1, j, i(k − 1) + j − k + 1) | k 6 j 6 k + i− 2}.

Note that for i = k− 1 the first set in T ′

i is empty and for i = 0 the last set is empty. We
define T ′ to be the union of the above sets; i.e.

T ′ :=

k−1
⋃

i=0

T ′

i .

By observation, T and T ′ occupy the same set of cells and are disjoint. We next check
that corresponding rows contain the same set of symbols. This is easy to check for row 0.
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Let 1 6 i 6 k−1. Row i(k−1) of T ′ contains the symbols {i(k−1)+j+k | i 6 j 6 k−2} =
{i(k−1)+j | i+k 6 j 6 2(k−1)}, {i(k−1)+j+1 | k−1 6 j 6 k+i−2} = {i(k−1)+j | k 6

j 6 k+i−1} and {(i−1)(k−1)+j | k+i−1 6 j 6 2(k−1)} = {i(k−1)+j | i 6 j 6 k−1}.
Thus row i(k − 1) of T ′ contains the same set of symbols as the corresponding row of T .

Next, row i(k− 1)+ 1 of T ′ contains the symbols {i(k− 1)+ j+ k) | 0 6 j 6 i− 1} =
{i(k−1)+j+1) | k−1 6 j 6 i+k−2}, {i(k−1)+j) | i 6 j 6 k−1} = {i(k−1)+j+1) |
i− 1 6 j 6 k − 2} and {i(k − 1) + j − k + 1) | k 6 j 6 k + i− 2} = {i(k − 1) + j + 1) |
0 6 j 6 i − 2}. Thus row i(k − 1) + 1 of T ′ contains the same set of symbols as the
corresponding row of T . We have shown that T and T ′ share the same sets of symbols in
correpsonding rows.

We now show this property for the columns. It suffices to show that each symbol in
a column of T ′ occurs within the same column of T . First consider elements of T ′

0. Let
0 6 j 6 k − 2. Then symbol j + k in cell (0, j) of T ′

0 belongs also to cell (k, j) of T1.
Moreover symbol j in cell (0, k+ j) of T ′

0 belongs also to cell ((k−1)2, k+ j) of Tk−1 since
(k − 1)2 + k is divisible by p.

In this paragraph we deal with symbols which occur in row i(k − 1) of T ′

i for some
1 6 i 6 k − 1. Consider symbol i(k − 1) + j + k in column j of T ′

i where i 6 j 6 k − 2.
This symbol also lies in cell ((i+1)(k−1)+1, j) of Ti+1. Consider symbol i(k−1)+ j+1
in column j of T ′

i where k− 1 6 j 6 k+ i− 2. This symbol lies in cell (i(k− 1) + 1, j) of
Ti. Consider symbol (i− 1)(k − 1) + j in column j of T ′

i where k + i− 1 6 j 6 2(k − 1).
This symbol lies in cell ((i− 1)(k − 1), j) of Ti−1.

Finally, to verify that T ′ is indeed a disjoint mate of T , we look at symbols which occur
in row i(k−1)+1 of T ′

i for some 1 6 i 6 k−1. Consider symbol i(k−1)+j+k which occurs
in column j of T ′

i where 0 6 j 6 i− 1. This symbol occurs in cell ((i+1)(k− 1)+1, j) of
Ti+1 (if i < k − 1) or T0 (if i = k − 1). Next consider symbol i(k − 1) + j which occurs in
column j of T ′

i where i 6 j 6 k−1. This symbol occurs in cell (i(k−1), j) of Ti. Thirdly,
consider symbol i(k − 1) + j − k + 1 of T ′

i where k 6 j 6 k + i− 2. This symbol occurs
in cell ((i− 1)(k − 1), j) of Ti−1.

We have shown that T is a Latin trade in Bp with disjoint mate T ′. Next we show
orthogonality. it suffices to show that for each element (r, c, r + c) ∈ T , there is a cell
(r′, c′) ∈ T ′ containing r + c such that (r′, c′) contains rk + c in Bp(k) (equivalently,
r′k + c′ = rk + c).

Firstly, let (0, j, j) ∈ T0 where 0 6 j 6 k − 2. Then (p − k, j + k − 1, j) ∈ T ′

k−1
.

Next let 1 6 i 6 k − 1. Let (i(k − 1), j, i(k − 1) + j) ∈ Ti where i 6 j 6 k − 1
(i 6 j 6 k − 2 when i = 0). Then ((i − 1)(k − 1), j − 1, i(k − 1) + j) ∈ T ′

i−1. Next
let 1 6 i 6 k − 1. Let (i(k − 1), j, i(k − 1) + j) ∈ Ti where k 6 j 6 k + i − 1. Then
(i(k−1)+1, j−k, i(k−1)+ j) ∈ T ′

i . Let 0 6 i 6 k−2. Let (i(k−1), j, i(k−1)+ j) ∈ Ti

where k + i 6 j 6 2(k − 1). Then ((i+ 1)(k − 1) + 1, j − k + 1, i(k − 1) + j) ∈ T ′

i+1.
Next let 1 6 i 6 k−1. Let (i(k−1)+1, j, i(k−1)+1+j) ∈ Ti where i−1 6 j 6 k−2.

Then (i(k − 1), j + k, i(k − 1) + 1 + j) ∈ T ′

i . Let 2 6 i 6 k − 1. Let (i(k − 1) + 1, j, i(k −
1)+1+ j) ∈ Ti where 0 6 j 6 i−2. Then ((i−1)(k−1), j+k−1, i(k−1)+1+ j) ∈ T ′

i−1.
Finally let 1 6 i 6 k−1. Let (i(k−1)+1, j, i(k−1)+1+ j) ∈ Ti where k 6 j 6 k+ i−2.
Then ((i+ 1)(k − 1) + 1, j + 1, i(k − 1) + 1 + j) ∈ T ′

i+1.
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An intercalate in a Latin square is a 2× 2 subsquare. The construction in this section
shows the potential of using trades to construct MOLS with particular properties. We
demonstrate this with the following theorem.

Theorem 25. Let p be a prime such that p ≡ 1 (mod 6). Then there exists a Latin square
L orthogonal to Bp such that L contains an intercalate.

Proof. Let L := (Bp \ T ) ∪ T ′, where T and T ′ are defined as in this section. We have
shown above that L is orthogonal to Bp(k). Observe that (k − 1, 1, 2k), (k − 1, k, k) and
(k, 1, k) are each elements of T ′

1 and thus L. Finally, cell (k, k) is not included in T so
(k, k, 2k) ∈ L.

8 Computational results

In this section, we give some computational results on the spectrum of the possible sizes
of orthogonal trades mentioned in the previous sections. These orthogonal trades can be
found as ancillary files in [4].

Let Sp be the set of sizes so that an orthogonal trade in Bp of index (1, k) exists for
some k. For p = 5, S5 = {0, 10, 15, 20, 25}.

The results for p = 7 and p = 11 are summarised in the following lemma.

Lemma 26. The spectrum of the sizes of orthogonal trades for p = 7 and p = 11 are
S7 = {0, 14, 18, 21, 24, 25, . . . , 49} and S11 = {0, 22, 33, 36, 37, . . . , 121}, respectively.

Note that an orthogonal trade in B7 of size 18 is given in Figure 1.
Our theoretical results only considered orthogonal trades when p is prime. A similar

question can be studied for odd values of p in general. Here Bp(1) is orthogonal to Bp(k)
if and only if k 6≡ 1 (mod p). Then the spectrum of the sizes of orthogonal trades in B9

is the set {0, 6, 9, 12, 15, 16, 18, 19, . . . , 81}.
In Section 4, we considered orthogonal trades in Bp which are constructed by permut-

ing entire rows. These trades preserve orthogonality with one of the p − 1 MOLS. The
possible number of rows needed to be permuted are the elements of sets {4, 5}, {3, 5, 6, 7},
{5, 6, 7, 8, 9, 10, 11} and {3, 4, 6, 7, 8, 9, 10, 11, 12, 13} for p = 5, 7, 11 and 13, respectively.

This idea can be generalised for trades in Bp which preserve orthogonality with more
than one of the p− 1 MOLS. We analyse this question for orders p = 5, 7, 11 and 13.

We start by considering the orthogonal trades in Bp which preserve orthogonality with
two other MOLS from the complete set of size p−1 - but only those formed by permuting
entire rows. So, these orthogonal trades are formed in three MOLS of order p. The
possible number of rows needed to be permuted are the elements of sets {4, 5}, {6, 7},
{5, 6, 8, 9, 10, 11} and {4, 6, 8, 9, 10, 11, 12, 13} for p = 5, 7, 11 and 13, respectively.

Here, the non-trivial cases occur when the number of rows are not p− 1 or p. So, we
continue with only those cases.

Next, we consider the orthogonal trades in Bp which preserve orthogonality with three
other MOLS from the complete set of size p− 1. The possible number of rows needed to
be permuted are the sets {5, 9} and {6, 11} for p = 11 and 13, respectively.
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The orthogonal trades which preserve orthogonality with four of the p− 1 MOLS can
be constructed by permuting 6 or 11 rows for p = 13. Lastly, an orthogonal trade which
preserve orthogonality with five of the p− 1 MOLS cannot be constructed by permuting
entire rows for these orders.
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