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Generalized Weyl algebras and diskew polynomial rings

V. V. Bavula

Abstract

The aim of the paper is to extend the class of generalized Weyl algebras to a larger class
of rings (they are also called generalized Weyl algebras) that are determined by two ring
endomorphisms rather than one as in the case of ‘old’ GWAs. A new class of rings, the diskew
polynomial rings, is introduced that is closely related to GWAs (they are GWAs under a mild
condition). The, so-called, ambiskew polynomial rings are a small subclass of the class of
diskew polynomial rings. Semisimplicity criteria are given for generalized Weyl algebras and
diskew polynomial rings.

Mathematics subject classification 2010: 16D30, 16P40, 16D25, 16P50, 16S85.
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1 Introduction

Generalized Weyl algebras D(σ, a) with central element a.
Definition, [1]-[8]. Let D be a ring, σ be a ring automorphism of D, a is a central element of

D. The generalized Weyl algebra of rank 1 (GWA, for short) D(σ, a) = D[x, y;σ, a] is a ring
generated by the ring D and two elements x and y that are subject to the defining relations:

xd = σ(d)x and yd = σ−1(d)y for all d ∈ D, yx = a and xy = σ(a). (1)

The ring D is called the base ring of the GWA. The automorphism σ and the element a are called
the defining automorphism and the defining element of the GWA, respectively.

This is an experimental fact that many popular algebras of small Gelfand-Kirillov dimension
are GWAs (see Section 2): the first Weyl algebra A1 and its quantum analogue, the quantum
plane, the quantum sphere, Usl(2), Uqsl(2), the Heizenberg algebra and its quantum analogues,
the 2 × 2 quantum matrices, the Witten’s and Woronowic’s deformations, Noetherian down-up
algebras, etc.

The generalized Weyl algebras were introduced by myself in 1987 when I was an algebra
postgradute student at the Kyiv University, the Department of Mathematics, and they were the
subject of my PhD “Generalized Weyl algebras and their representations” submitted at the end
of 1990 (defended at the beginning of 1991).

The aim of the paper is to introduce a generalization of GWAs where the elements x and y act
on the ring D by two non-commuting (in general) ring endomorphisms σ and τ and the element
a is not central but a left normal.

Generalized Weyl algebras with two endomorphisms and a left normal element a.
Definition. Let D be a ring, σ and τ be ring endomorphisms of D, and an element a ∈ D be

such that
τσ(a) = a, ad = τσ(d)a and σ(a)d = στ(d)σ(a) for all d ∈ D. (2)
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The generalized Weyl algebra (GWA) of rank 1, A = D(σ, τ, a) = D[x, y;σ, τ, a], is a ring
generated by D, x and y subject to the defining relations:

xd = σ(d)x and yd = τ(d)y for all d ∈ D, yx = a and xy = σ(a). (3)

The ring D is called the base ring of the GWA A. The endomorphisms σ, τ and the element a
are called the defining endomorphisms and the defining element of the GWA A, respectively. By
(2), the elements a and σ(a) are left normal in D. An element d of a ring D is called left normal
(resp., normal) if dD ⊆ Dd (resp., Dd = dD). See Section 2 for more information about left/right
normal elements. To distinguish ‘old’ GWAs from the ‘new’ ones the former are called the classical
GWAs. Every classical GWA is a GWA as the conditions in (2) trivially hold if a is central and
τ = σ−1.

The construction of GWAs with two endomorphisms existed in 1987 but there were no natural
examples at the time which is not surprising in view of the conditions (2) the defining element a
must satisfy. ‘Artificial’ examples of GWAs with two endomorphisms can be easily constructed
from a GWA A = D[x, y;σ, a] with a single automorphism where a ∈ Z(D) by replacing the
elements x and y by x′ = ux and y′ = vy where u and v are noncentral units or left normal
elements of D.

Simplicity criteria for generalized Weyl algebras. Theorem 2.2 shows existence of gen-
eralized Weyl algebras. Let D be a ring and σ be its ring endomorphism. An ideal I of D is called
σ-stable if σ(I) ⊆ I. The ring D is called a σ-simple ring iff 0 and D are the only σ-stable ideals
of the ring D. An endomorphism σ is inner if σ = ωu for some unit u ∈ D (σ(d) = udu−1 for
all d ∈ D). Then necessarily σ an automorphism of D. The results of Section 2 are used in the
proofs of simplicity criteria for generalized Weyl algebras in Section 3 (Theorem 1.1 and Theorem
3.2). Theorem 3.2 is a simplicity criterion for an arbitrary GWA and Theorem 1.1 is a simplicity
criterion for a GWA with a mild restriction (the elements a and σ(a) are normal), its proof is given
in Section 3. Theorem 1.1 generalizes a simplicity criterion for the (classical) GWAs [9, Theorem
4.2].

Theorem 1.1 Let A = D[x, y;σ, τ, a] be a GWA such that the elements a and σ(a) are right
normal in D (they are normal, by (2)). Then the following statement are equivalent.

1. A is a simple ring.

2. (a) The elements a and σ(a) are regular in D,

(b) D is a σ-simple ring,

(c) for all i ≥ 1, σi is not an inner automorphism of the ring D, and

(d) for all i ≥ 1, Da+Dσi(a) = D.

3. (a) The elements a and σ(a) are regular in D,

(b) D is a τ-simple ring,

(c) for all i ≥ 1, τ i is not an inner automorphism of the ring D, and

(d) for all i ≥ 1, Dσ(a) +Dτ iσ(a) = D.

If one of the equivalent conditions holds then σ and τ are automorphisms of D.

At the end of Section 3, natural classes of involutions on GWAs are introduced (Lemma 3.3).
Generalized Weyl algebras of arbitrary rank. In Section 4, a more general definition

of generalized Weyl algebras of arbitrary rank is given. The classical generalized Weyl algebras
of rank n are determined by n commuting automorphisms and n central elements of the base
ring, [1]-[8], see Section 4. The ‘new’ GWAs are determined by 2n not necessarily commuting
ring endomorphisms and n left normal elements of the base ring. A large class of examples are
considered (Proposition 4.3).

Diskew polynomial rings. Let us introduce a new class of rings – the diskew polynomial
rings (DPR).
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Definition. Let D be a ring, σ and τ be its ring endomorphisms, ρ and b be elements of D
such that, for all d ∈ D,

στ(d)ρ = ρτσ(d) and στ(d)b = bd, (4)

The diskew polynomial ring (DPR) E := D(σ, τ, b, ρ) := D[x, y;σ, τ, b, ρ] is a ring generated by
D, x and y subject to the defining relations:

xd = σ(d)x and yd = τ(d)y for all d ∈ D, xy − ρyx = b. (5)

By (4), b is a left normal element of D. If τσ (resp., στ) is an epimorphism then ρ is a left (resp.,
tight) normal element of D. Theorem 5.1 shows existence of diskew polynomial rings. The diskew
polynomial rings are a generalization of the following class of rings which is a part of the class of
diskew polynomial rings.

Definition, [10]. Let D be an ring and σ be its automorphism. Suppose that elements b and
ρ belong to the centre of the ring D, ρ is invertible and σ(ρ) = ρ. Then E := D〈σ; b, ρ〉 :=
D〈X,Y ;σ, b, ρ〉 is a ring generated by D, X and Y subject to the defining relations:

Xα = σ(α)X and Y α = σ−1(α)Y for all α ∈ D, and XY − ρY X = b. (6)

Clearly, E = D[X,Y ;σ, σ−1, b, ρ] is a diskew polynomial ring. The origin of this construction
stems from the universal enveloping algebra Usl(2) of the Lie algebra sl(2). When we rewrite the
defining relations of Usl(2) (where [a, b] = ab − ba): [H,X ] = X , [H,Y ] = −Y and [X,Y ] = 2H
in the equivalent form: XH = (H − 1)X , Y H = (H + 1)Y and XY − Y X = 2H and notice
that XH = σ(H)X and Y H = σ−1(H)Y where σ is an automorphism of the polynomial algebra
K[H ] given by σ(H) = H − 1 we come to Usl(2) = K[H ]〈X,Y ;σ, 2H, 1〉, [2, 1]. The next natural
step was to replace the polynomial 2H by an arbitrary polynomial a(H) ∈ K[H ]. This was done
independently in [1] and [17]. That is how the, so-called, algebras similar to Usl(2) appeared. It
is the algebra K〈X,Y,H〉 that satisfies the defining relations:

XH = (H − 1)X, Y H = (H + 1)Y and XY − Y X = a(H) where a(H) ∈ K[H ].

In 90s, there were many examples like this, various ‘quantum deformations’ of Usl(2), with a ring
D which is a ‘small’ commutative ring, eg, Uq(sl2), Oq2(so(K, 3)), the quantum Weyl algebra, the
quantum plane, etc (see Section 2).

If D is commutative domain, ρ = 1 and b = u − σ(u) for some u ∈ D (resp., if D is a
commutative finitely generated domain over a field K and ρ ∈ K∗) the algebras E were considered
in [13] (resp., [14]).

The ring E = D〈σ; b, ρ〉 is the iterated skew polynomial ring E = D[Y ;σ−1][X ;σ, ∂] where ∂
is the σ−derivation of D[Y ;σ−1] such that ∂(D) = 0 and ∂(Y ) = b (here the automorphism σ is
extended from D to D[Y ;σ−1] by the rule σ(Y ) = ρY ).

Diskew polynomial rings are GWAs when ρ is a unit. If the element ρ is a unit in D
then every diskew polynomial ring is a generalized Weyl algebra, Theorem 1.2 (a proof is given in
Section 5).

Theorem 1.2 Let E = D[x, y;σ, τ, b, ρ] be a diskew polynomial ring. Suppose that ρ is a unit in
D. Then x and y are left regular elements of E and the ring E = D[x, y;σ, τ, a = h] is a GWA
with base ring D := D[h; τσ] which is a skew polynomial ring, σ and τ are ring endomorphisms
of D that are extensions of the ring endomorphisms σ and τ of D, respectively, defined by the
rule σ(h) = ρh+ b and τ(h) = τ(ρ−1)(h − τ(b)). In particular, τσ(h) = h and στ(h) = ωρ(h) =
ρτσ(ρ−1)h. Furthermore, στ = ωρτσ in D.

Theorem 1.2 is a generalization of a similar result for rings D〈σ; b, ρ〉, [10, Lemma 1.2, Corollary
1.4].

Simplicity criterion for diskew polynomial rings when ρ is a unit. If ρ is a unit, a
simplicity criterion Theorem 1.3 for diskew polynomial rings is a relatively easy corollary of the
simplicity criterion for generalized Weyl algebras (Theorem 1.1) because of Theorem 1.2.
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Theorem 1.3 Let E = D[x, y;σ, τ, b, ρ] be a diskew polynomial ring such that ρ is a unit in D
and ν := τσ is an epimorphism. The following statements are equivalent.

1. The ring E is a simple ring.

2. (a) The endomorphisms σ and τ of D are automorphisms,

(b) the ring D is a σ-simple ring,

(c) for each natural number n ≥ 1 there is no element p = hn +
∑n−1

i=0 dih
i ∈ D, where

di ∈ D, such that

i. for all elements d ∈ D, pd = νn(d)p, i.e., did = νn−i(d)di for i = 0, 1, . . . , n− 1,

ii. σ(p) = ρνnp where ρνn = ρν(ρ) · · · νn−1(ρ), and

iii. [h, p] = 0, i.e, ν(di) = di for i = 0, 1, . . . , n− 1, and

(d) the elements bi ∈ D (see (34)), where i ≥ 1, are units in D. In particular, b = b1 ∈ D
is a unit.

3. (a) The endomorphisms σ and τ of D are automorphisms,

(b) the ring D is a τ-simple ring,

(c) for each number n ≥ 1 there is no element p′ = h′n+
∑n−1

i=0 d′ih
′i ∈ D = D[h′, µ := στ ],

where d′i ∈ D and h′ = σ(h), such that

i. for all elements d ∈ D, p′d = µn(d)p′, i.e., d′id = µn−i(d)d′i for i = 0, 1, . . . , n− 1,

ii. τ(p′) = (ρ−1)µnp where (ρ−1)µn := ρ−1µ(ρ−1) · · ·µn−1(ρ−1), and

iii. [h′, p′] = 0, i.e, µ(d′i) = di for i = 0, 1, . . . , n− 1, and

(d) the elements b′i ∈ D (see (35)), where i ≥ 1, are units in D. In particular, b = b1 ∈ D
is a unit.

Remarks. 1. The conditions (a), (i) and (iii) in statement 2 imply that the element p is a
normal, regular element of D. So, the ideal (p) = pD = Dp is a proper, σ-invariant ideal of
the ring D generated by the normal, regular element p of D. The condition (ii) implies that
xp = σ(p)x = ρνnpx and yp = τ(ρνn)

−1py, see (45). So, the element p is a normal, regular element
of the ring E.

2. In statement 2, the condition (ii) can be written as explicit equations on unknowns
d0, d1, . . . , dn−1, see (42).

3. Similar remarks can be made for the element p′ in statement 3 (by using the (x, y)-symmetry
of GWAs, see Section 2).

Every simple ring is necessarily an algebra. Theorem 1.4 and Theorem 1.5 are refined versions
of Theorem 1.3 in zero and prime characteristic, respectively.

Simplicity criterion for DPRs in characteristic zero. If the ring D is a Q-algebra the
condition (c) in Theorem 1.3 can be replaced by condition 4 of Theorem 1.6.

Theorem 1.4 Let E = D[x, y;σ, τ, b, ρ] be a diskew polynomial ring such that ρ is a unit in D,
ν = τσ is an epimorphism and D is a Q-algebra. The following statements are equivalent.

1. The ring E is a simple ring.

2. (a) The endomorphisms σ and τ of D are automorphisms,

(b) the ring D is a σ-simple ring,

(c) there is no element α ∈ D such that ρα − σ(α) = b and αd = ν(d)α for all elements
d ∈ D.

(d) the elements bi ∈ D (see (34)), where i ≥ 1, are units in D. In particular, b = b1 ∈ D
is a unit.
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Simplicity criterion for DPRs in prime characteristic p. If the ring D is a Fp-algebra
the condition (c) in Theorem 1.3 can be replaced by more explicit conditions (where Fp = Z/pZ).

Theorem 1.5 Let E = D[x, y;σ, τ, b, ρ] be a diskew polynomial ring such that ρ is a unit in D,
ν = τσ is an epimorphism and D is a Fp-algebra. The following statements are equivalent.

1. The ring E is a simple ring.

2. (a) The endomorphisms σ and τ of D are automorphisms,

(b) the ring D is a σ-simple ring,

(c) for each natural number n ≥ 0 there is no element p′ = hpn

+
∑n−1

i=0 αih
pi

+ α, where
α, αi ∈ D, such that

i. for all d ∈ D, pd = νp
n

(d)p, i.e. αd = νp
n

(d)α and αid = νp
n−pi

(d)αi for
i = 0, 1, . . . , n− 1,

ii. σ(p′) = ρνpnp′,

iii. [h, p′] = 0, i.e. ν(α) = α and ν(αi) = αi for i = 0, 1, . . . , n− 1.

(d) the elements bi ∈ D (see (34)), where i ≥ 1, are units in D. In particular, b = b1 ∈ D
is a unit.

3. (a) The endomorphisms σ and τ of D are automorphisms,

(b) the ring D is a σ-simple ring,

(c) there is no element α ∈ D such that ρα − σ(α) = b, ν(α) = α and αd = ν(d)α for all
elements d ∈ D, and for each natural number n ≥ 1 there are no elements α, α0, . . . , αn

such that

i. for all d ∈ D, αd = νp
n

(d)α and αid = νp
n−pi

(d)αi for i = 0, 1, . . . , n− 1,

ii. σ(αi) = ρνpn−piαi for i = 0, 1, . . . , n− 1, and ρνpnα− σ(α) = bp
n

+
∑n−1

i=0 σ(αi)b
pi

,

iii. ν(α) = α and ν(αi) = αi for i = 0, 1, . . . , n− 1.

(d) the elements bi ∈ D (see (34)), where i ≥ 1, are units in D. In particular, b = b1 ∈ D
is a unit.

The canonical left normal element C of a diskew polynomial ring. Theorem 1.6 is a
criterion for an element C = h + α (where α ∈ D) to be a left normal element in E, it is a key
moment in the proof of Theorem 1.4 and Theorem 1.5 (together with “Meeting the p-neighbour
method’, see the proof of Theorem 1.5). Theorem 1.6 is a generalization of [10, Lemma 1.3].

Theorem 1.6 Let E = D[x, y;σ, τ, b, ρ] be a diskew polynomial ring such that ρ is a unit, D =
D[h; ν = τσ] and C = h+ α where h = yx and α ∈ D. The following statements are equivalent.

1. The element C is left normal in E.

2. ρα− σ(α) = b, ν(α) = α and αd = ν(d)α for all elements d ∈ D.

If one of the equivalent conditions holds then [h,C] = 0 and

(a) C = ρ−1(xy + σ(α)), xC = ρCx and yC = τ(ρ−1)Cy.

(b) E ≃ D[C; ν][x, y;σ, τ, a := C − α] is a GWA where σ(C) = ρC and τ(C) = τ(ρ−1)C.

(c) The element C is a left normal, left regular element of E and E/(C) ≃ D[x, y;σ, τ,−α]
is a GWA.

(d) The element C is a normal element in E iff im(ν) = D.

(e) The element C is regular iff C is right regular iff ker(ν) = 0.

(f) The element C is a normal, regular element iff ν is an automorphism of D.
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2 Generalized Weyl algebras

At the beginning of the section we consider examples of generalized Weyl algebras. We show that
each GWA A is a Z-graded ring which is a free left D-module (Theorem 2.2) but not a free right
D-module, in general. Certain important left denominator sets of A are considered in Proposition
2.3 and Proposition 2.4. Results of this section are used throughout the paper.

Left and right normal elements. Let D be a ring. An element a ∈ D is called a left (resp.,
right) normal element of D if aD ⊆ Da (resp., Da ⊆ aD). If a is a left normal element in D
then the left ideal Da is an ideal of D. Similarly, if a is a right normal element in D then the
right ideal aD is an ideal of D. An element a ∈ D is normal if aD = Da, i.e., a is left and right
normal. Let ·a := ·aD : D → D, d 7→ da, and a := ker(·a). In particular, aa = 0. Similarly, let
a· := aD· : D → D, d 7→ ad, and b := ker(a·). In particular, ab = 0. If the element a is left normal
then b is an ideal of the ring D: a ·DbD ⊆ DabD = 0. If the element a is right normal then a is
an ideal of the ring D: DaD · a ⊆ DaaD = 0. The sets La := {d ∈ D | da = ad′ for some d′ ∈ D}
and Ra := {d ∈ D | ad = d′a for some d′ ∈ D} are subrings of D such that a ⊆ La and b ⊆ Ra.
Furthermore, a is an ideal of La (LaaLa · a ⊆ Laa aD = 0, and so LaaLa ⊆ a) and b is an ideal
of Ra (a · RabRa ⊆ DabRa = 0). If a is a left (resp., right) normal element of D then Laa = aD
(resp., Da = aRa).

Suppose that a ∈ D is a left normal element. Then, for each element d ∈ D, ad = dla for some
element dl ∈ La which is unique up to adding a (dla = (dl + a)a). Hence, the map

ωa : D/b → La/a, d+ b 7→ dl + a, (7)

is a ring isomorphism and we can write ad = ωa(d)d for all d ∈ D. A left normal element a
is normal iff La = D. If a is a normal element then La = D and the map ωa : D/b → D/a,
d+ b 7→ dl + a, is a ring isomorphism.

Similarly, suppose that a ∈ D is a right normal element. Then, for each element d ∈ D,
da = adr for some element dr ∈ Ra which is unique up to adding b (adr = a(dr + b)). Hence, the
map

ω′
a : D/a → Ra/b, d+ a 7→ dr + b, (8)

is a ring isomorphism and we can write da = aω′
a(d) for all d ∈ D.

A right normal element a is normal iff Ra = D. If a is a normal element then Ra = D and the
map ω′

a : R/a → R/b, d+ a 7→ dr + b, is a ring isomorphism. So, for a normal element a of D,

ad = ωa(d)a and da = aω′
a(d) for all d ∈ D. (9)

Lemma 2.1 If a ∈ D is a normal element then the maps ωa : D/b → D/a and ω′
a : D/a → D/b

are ring isomorphisms such that ω′
a = ω−1

a . If, in addition, a is a regular element then the maps
ωa, ω

′
a : D → D are ring isomorphisms such that ω′

a = ω−1
a .

Proof. The lemma follows from (9): For all d ∈ D, ad = ωa(d)a = aω′
aωa(d) and da = aω′

a(d) =
ωaω

′
a(d)a. �
Examples of generalized Weyl algebras where a is central, [1]-[8]. 1. The (first) Weyl

algebra A1 = K〈x, ∂ | ∂x− x∂ = 1〉 over a ring K is the GWA K[h][x, y := ∂;σ, a = h] with base
ring K[h] and its K-automorphism σ defined by the rule σ(h) = h− 1.

2. The quantum plane Λ = K〈x, y |xy = qyx〉 where q is a central unit of K is the GWA
K[h][x, y;σ, a = h] where σ(h) = qh.

3. For q, h = q − q−1 ∈ K = C, the algebra Uq = Uqsl(2) is generated by X,Y,H− and H+

subject to the defining relations:

H+H− = H−H+ = 1, XH± = q±1H±X, Y H± = q∓1H±Y, [X,Y ] =
H2

+ −H2
−

h
.

It follows that the algebra Uq is a GWA,

Uq ≃ K[C,H,H−1](σ, a = C +
(
H2/(q2 − 1)−H−2/(q−2 − 1)

)
/2h),
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where σ(H) = qH, σ(C) = C.
4. Woronowicz’s deformation V is an algebra generated by elements V0, V− and V+ subject to

the defining relations, [19]:

[V0, V+]s2 := s2V0V+ − s−2V+V0 = V+, [V−, V0]s2 = V−, [V+, V−]1/s := s−1V+V− − sV−V+ = V0.

The algebra V is a GWA,

V ≃ K[u, v](σ, a = v), V+ ↔ x, V− ↔ y, V0 ↔ u, V−V+ ↔ v,

where σ : u → s2(s2u − 1), v → s2v + su, is the automorphism of the polynomial ring K[u, v] in
two variables u and v. Let

H = u+ s2/(1− s4) and Z = v + u/s(1− s2) + s3/(1− s2)(1− s4).

Then σ(H) = s4H , σ(Z) = s2Z and K[u, v] = K[H,Z]. So,

V ≃ K[H,Z](σ, a = Z + αH + β), V+ ↔ x, V− ↔ y, V0 ↔ H − s2/(1− s4),

where σ : H → s4H , Z → s2Z; α = −1/s(1− s2) and β = s/(1− s4).
5. Witten’s first deformation E is an algebra generated by elements E0, E− and E+ subject

to the defining relations, [19]:

[E0, E+]p := pE0E+ − p−1E+E0 = E+, [E−, E0]p = E−, [E+, E−] = E0 − (p− 1/p)E2
0 ,

where p 6= 0,±1,±i ∈ K. The element C = E−E+ + E0(E0+p)
p(p2+1) is central in E. Witten’s first

deformation is a GWA,

E ≃ K[C,H ](σ, a = C −H(H + 1)/(p+ p−1)), E+ ↔ x, E− ↔ y, E0 ↔ pH,

where σ : C → C, H → p2(H − 1).
6. The quantum group Oq2(so(K, 3)) = K[H ]〈σ; b = (q − q−1)H, ρ = 1〉, σ(H) = q2H , q ∈ K,

[18], is isomorphic to the GWA of degree 1:

Oq2(so(k, 3)) = K[H,C](σ, a = C +H2/q(1 + q2)), σ(H) = q2H, σ(C) = C.

Generalized Weyl algebras with 2 endomorphisms and a left normal element a. Let
A = D[x, y;σ, τ, a] be a generalized Weyl algebra.

Remarks. 1. If either σ or τ is an automorphism then the last two conditions in (2) are
equivalent provided τσ(a) = a. In more detail, if σ is an automorphism then the third condition in
(2) is obtained from the second one by applying σ and replacing d by σ(d). If τ is an automorphism
then the second condition in (2) is obtained from the third by applying τ , using the equality
τσ(a) = a and replacing τ(d) by d.

2. If σ and τ are automorphisms and τ = σ−1 then (2) is equivalent to the fact that the
element a belongs to the centre of D and we obtain the usual definition of GWA.

3. Let a be a normal element of D (da = aD) which is also a regular element of D (a is a
non-zero-divisor). Then for all elements d ∈ D, ad = ωa(d)a for an automorphism ωa of D. Let
τ = ωaσ

−1. Then A = D[x, y;σ, τ, a] is a GWA.
Examples of generalized Weyl algebras where a is left normal. 1. Let K be a field

and λ ∈ K∗ := K\{0}. Let D be the quantum plane Λ := K〈p, q | pq = λqp〉. If λ is not a root
of unity then the set of all nonzero normal elements in Λ is {K∗piqj | i, j ≥ 0} and the centre Z
of Λ is K. If λ is a primitive n’th root of unity (n ≥ 2) then the centre Z of Λ is the polynomial
algebra K[pn, qn] in two variables pn and qn, and the set of all nonzero normal elements in Λ is
{Z∗piqj | 0 ≤ i, j < n} where Z∗ := Z\{0}. Each pair (α, β) ∈ K2 of nonzero scalars determines
the K-automorphism σ = σα,β of the algebra Λ: p 7→ αp, q 7→ βq. Let a = zpiqj where z ∈ Z∗

and i, j ≥ 0, if λ is not a root of unity; or 0 ≤ i, j < n, if λ is an n’th primitive root of unity. The
element a is a normal regular element and ωa(p) = λ−jp, ωa(q) = λiq. Then ωaσ

−1(p) = α−1λ−jp

7



and ωaσ
−1(q) = β−1λiq. Then the GWA A = Λ[x, y;σ, τ = ωaσ

−1, a] is a K-algebra generated by
Λ, x and y that are subject to the defining relations:

xp = αpx, xq = βqx, yp = α−1λ−jpy, yq = β−1λiqy,

yx = zpiqj , xy = αiβjσ(z)piqj .

The algebra A is a domain of Gelfand-Kirillov dimension 3.
2. Let D = C[t1, . . . , tn; ν1, . . . , νn] be a skew polynomial ring in variables t1, . . . , tn (titj = tjti,

tic = νi(c)ti for all c ∈ C) over a ring C, ν1, . . . , νn are commuting automorphisms of the ring C.
Suppose that an element u ∈ C is such that νi(u) = uiu for some unit ui of D for i = 1, . . . , n (eg,
u = u1 = · · · = un = 1). Then for each element α = (α1, . . . , αn) ∈ Nn, the element a = utα is a
regular, normal element of D where tα = tα1

1 · · · tαn
n . Then A = D[x, y;σ, ωaσ

−1, a] is a GWA.
The right generalized Weyl algebras. Let A be a ring. The opposite ring Aop of A is

a ring that is equal to A as an abelian group but the multiplication in Aop is given by the rule
a · b = ba. The definition of GWA is not left-right symmetric. By taking the opposite ring of a
GWA we obtain the definition of a right generalized Weyl algebra.

Definition. Let D be a ring, σ and τ be ring endomorphisms of the ring D, and an element
a ∈ D be such that

τσ(a) = a, da = aτσ(d) and dσ(a) = σ(a)στ(d) for all d ∈ D. (10)

The right generalized Weyl algebra (rGWA) A′ = D(σ, τ, a)r = D[x, y;σ, τ, a]r is a ring
generated by D, x and y subject to the defining relations:

dx = xσ(d) and dy = yτ(d) for all d ∈ D, xy = a and yx = σ(a). (11)

The ring D is called the base ring of the rGWA A. The endomorphisms σ, τ and the element a
are called the defining endomorphisms and the defining element of the rGWA A, respectively. By
(10), the elements a and σ(a) are right normal in D.

Example. Let A = D[x, y;σ, τ, a] be a GWA. Then Aop = Dop[x, y;σ, τ, a]r is a rGWA. Simi-
larly, if A′ = D[x, y;σ, τ, a]r is a rGWA. Then Aop = Dop[x, y;σ, τ, a] is a GWA. In this paper, we
study GWAs. Analogous properties of rGWAs are obtained by applying the functor A → Aop. In
the obvious way, iterated rGWAs are defined.

A Z-grading of a GWA. The next theorem proves existence of GWAs and introduces a
Z-grading.

Theorem 2.2 The GWA A = D[x, y;σ, τ, a] exists. It is a Z-graded ring A = ⊕i∈ZAivi where
Ai = Dvi ≃ DD, v0 = 1, vi = xi and v−i = yi for i ≥ 1. In particular, the module DA is free.

Proof. Consider a free left D-module A′ := ⊕i∈ZDv′i (it is a prototype of A) where elements
v′i are free left D-module generators. The aim is to define an action of the elements x and y on
A′ such that the relations (3) hold and therefore to realize the ring A as a subring of EndZ(A

′).
This proves existence of the ring A. Then using the A-module A′ we show that the ring A is a
Z-graded ring (in fact, AA ≃ AA

′).
The action is given by the rule: For d′ ∈ D and i ∈ Z,

x · d′v′i :=

{
σ(d′)v′i+1 if i ≥ 0,

σ(d′)σ(a)v′i+1 if i < 0,
y · d′v′i :=

{
τ(d′)v′i−1 if i ≤ 0,

τ(d′)av′i−1 if i > 0.

Let us check that the relations (3) hold.

(i) xd = σ(d)x: xd · d′v′i = σ(d)σ(d′) ·

{
v′i+1 if i ≥ 0,

σ(a)v′i+1 if i < 0,
= σ(d)x · d′v′i.

(ii) yd = τ(d)x: yd · d′v′i = τ(d)τ(d′) ·

{
v′i−1 if i ≤ 0,

av′i−1 if i > 0,
= τ(d)y · d′v′i.
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(iii) yx = a: yx · d′v′i = y · σ(d′) ·

{
v′i+1 if i ≥ 0,

σ(a)v′i+1 if i < 0,
= τσ(d′) ·

{
av′i if i ≥ 0,

τσ(a)v′i if i < 0,
=

τσ(d′)av′i = a · d′v′i (since τσ(a) = a and ad′ = τσ(d′)a).

(iv) xy = σ(a): xy · d′v′i = x · τ(d′) ·

{
v′i−1 if i ≤ 0,

av′i−1 if i > 0,
= στ(d′) ·

{
σ(a)v′i if i ≤ 0,

σ(a)v′i if i > 0,
=

στ(d′)σ(a)v′i = σ(a) · d′v′i (since σ(a)d′ = στ(d′)σ(a)). So, the ring A exists.
By (3), the ring A is equal to the sum

∑
i∈Z

Ai where Ai = Dvi. Since Ai · v′0 = Dv′i ≃ DD,
we have A · v′0 = ⊕i∈ZAiv

′
0. Therefore, A = ⊕i∈ZAi and Ai = Dvi ≃ DD for all i ∈ Z. So, the left

D-module A is free. �
For all n,m ∈ Z,

vnvm = (n,m)vn+m (12)

for some elements (n,m) ∈ D where, for all n > 0 and m > 0,

n ≥ m : (n,−m) = σn(a) · · ·σn−m+1(a), (−n,m) = τn−1(a) · · · τn−m(a),

n ≤ m : (n,−m) = σn(a) · · ·σ(a), (−n,m) = τn−1(a) · · · τ(a)a.

For all other values of n and m, (n,m) = 1. By Theorem 2.2, each element r of the ring A
is a unique (finite) sum r =

∑
i∈Z

rivi where ri ∈ D. If the element r is nonzero then the
natural number l(r) := n − m is called the length of r where n = max{i ∈ Z | ri 6= 0} and
m = min{i ∈ Z | ri 6= 0}. The multiplication in the ring A is given by the rule: for all d, d′ ∈ D
and i, j ∈ Z,

dvi · d
′vj =

{
dσi(d′)(i, j)vi+j if i ≥ 0,

dτ i(d′)(i, j)vi+j if i < 0.
(13)

For all i ≥ 1,
(i,−i) = σi((−i, i)) and (−i, i) = τ i((i,−i)). (14)

Proof. The equalities (i,−i)xi = xiyixi = xi(−i, i) = σi((−i, i))xi imply that (i,−i) = σi((−i, i))
(by Theorem 2.2). Similarly, the equalities (−i, i)yi = yixiyi = yi(i,−i) = τ i((i,−i))yi imply that
(−i, i) = τ i((i,−i)) (by Theorem 2.2). �

Clearly, the equalities (14) hold in the ring D. So, they must follow from the equalities
(2). It is not that straightforward to prove them in this way. For example, for i = 2 we have
τ2((2,−2)) = (−2, 2), that is τ2(σ2(a)σ(a)) = τ(a)a. To prove this equality using (2) we proceeds
as follows:

τ2(σ2(a)σ(a)) = τ(τσ2(a)τσ(a))
(2)
= τ(τσ2(a)a)

(2)
= τ(aσ(a)) = τ(a)τσ(a)

(2)
= τ(a)a.

For a natural number i ≥ 1, let σi := σi and σ−i := τ i, and σ0 := idD, the identity automor-
phism of D. For all m,n ∈ Z and d ∈ D,

σnσm(d)(n,m) = (n,m)σn+m(d). (15)

This follows from (12) and Theorem 2.2. By (15), the elements (−i, i) and (i,−i) are left normal
in D (since σ0 = idD).

The (x, y)-symmetry of a GWA. By applying the endomorphism σ to the equality τσ(a) = a
and then interchanging the last two equalities in (2), we obtain that (since τσ(a) = a)

στσ(a) = σ(a), σ(a)d = στ(d)σ(a) and τσ(a)d = τσ(d)τσ(a) for all d ∈ D.

So, we have the GWA D[x′, y′; τ, σ, σ(a)]. Clearly,

D[x, y;σ, τ, a] = D[y, x; τ, σ, σ(a)]. (16)

The ‘identity’ isomorphism (o : u 7→ uo)

o : D[x, y;σ, τ, a] → D[x′, y′; τ, σ, σ(a)], x 7→ y′, y 7→ x′, d 7→ d (d ∈ D), (17)
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is called the (canonical) (x, y)-symmetry isomorphism or the symmetry isomorphism, for short.
Clearly, roo = r for all r ∈ A. The symmetry isomorphism is a D-isomorphism that reverses the
Z-grading: Ao

i = A−i for all i ∈ Z.
Ore and denominator sets. Let S be a nonempty subset of a ring R. Let assl(S) := {r ∈

R | sr = 0 for some s = s(r) ∈ S} and assr(S) := {r ∈ R | rs = 0 for some s = s(r) ∈ S}. A
nonempty subset S of R\{0} is called a multiplicative set if SS ⊆ S and 1 ∈ S. A multiplicative set
S is called a left Ore set (resp., a right Ore set) if for given elements s ∈ S and r ∈ R, Sr∩Rs 6= ∅
(resp., rS ∩ sR 6= ∅). If S is a left (resp., right) Ore set of R then assl(S) (resp., assr(S)) is an
ideal of the ring R. The sets of left and right Ore sets of R are denoted by Orel(R) and Orer(R),
respectively. Their intersection Ore(R) = Orel(R) ∩Orer(R) is the set of Ore sets of R.

A left Ore set S of R is called a left denominator set of R if assl(S) ⊇ assr(S). Similarly, a
right Ore set S of R is called a right denominator set of R if assl(S) ⊆ assr(S). The sets of left
and right denominator sets are denoted Denl(R) and Denr(R), respectively. Their intersection
Den(R) = Denl(R) ∩ Denr(R) is the set of denominator sets. For an ideal a of R, Denl(R, a) :=
{S ∈ Denl(R) | assl(R) = a} and Denr(R, a) := {S ∈ Denr(R) | assr(R) = a}. For each S ∈
Denl(R), the ring S−1R = {s−1r | s ∈ S, r ∈ R} is called the left quotient ring of R at S or the left
localization of R at S. For each S ∈ Denr(R), the ring RS−1 = {rs−1 | s ∈ S, r ∈ R} is called the
right quotient ring of R at S or the right localization of R at S. Let Den(R) := Denl(R)∩Denr(R)
and S ∈ Den(R). Then assl(S) = assr(S) and S−1R ≃ RS−1.

The sets Sx and Sy are left denominator sets. Let R be a ring and σ : R → R be
a ring endomorphism. Then ker(σ) ⊆ ker(σ2) ⊆ · · · ⊆ ker(σi) ⊆ · · · is an ascending chain of
ideals of R. Their union K(σ) :=

⋃
i≥1 ker(σ

i) is an ideal of R such that σ(K(σ)) ⊆ K(σ). Let
R(σ) := R/K(σ). The map

σ : R(σ) → R(σ), r +K(σ) 7→ σ(r) +K(σ), (18)

is a ring monomorphism. Let R be either a free algebra K〈x0, x1, . . .〉 or a polynomial algebra
K[x0, x1, . . .] in countably many variables over a ring K and σ an K-endomorphism of R given by
the rule σ(x0) = 0 and σ(xi) = xi−1 for all i ≥ 1. Then K(σ) is the ideal (x) := (x0, x1, . . .) of R,
R(σ) ≃ K and σ : K → K is the identity map.

Let I be a nonempty subset of R, r ∈ R and (I : r) := {u ∈ R |ur ∈ I}. If I is a left ideal
of the ring R then so is (I : r). If M (resp., N) is a left (resp., right) R-module we also write

RM (resp., NR) to indicate this fact. For r ∈ R, let rM · : M → M , m 7→ rm, and ·rN : N → N ,
n 7→ ur. Let D be a ring. An element d ∈ D is called left (resp., right ) regular if ker(·dD) = 0
(resp., ker(dD·) = 0). A left and right regular element is called regular. Let ′CD, C′

D and CD
be the sets of left, right and regular elements of D, respectively. For a subset C of D, the set
σ−i(C) := {d ∈ D |σi(d) ∈ C} is the pre-image of the set C under the map σi : D → D. For
simplicity reason, we use the notation σ−i(C) rather than (σi)−1(C) = σ−1 · · ·σ−1

︸ ︷︷ ︸
i times

(C) to denote

the pre-image of C.

Proposition 2.3 Let A = D[x, y;σ, τ, a] be a GWA and Sx = {xi | i ≥ 0}. Then

1. Sx ∈ Denl(A, a) where a :=
⊕

i≥1 σ
−i(K(σ) : (i,−i))yi ⊕

⊕
i≥0 K(σ)xi and the set

σ−i(K(σ) : (i,−i)) is equal to {d ∈ D |σi(d)(i,−i) ∈ K(σ)}.

2. A/a ≃
⊕

i≥1 D/(σ−i(K(σ) : (i,−i)))yi ⊕
⊕

i≥0 D(σ)xi where D(σ) := D/K(σ).

3. assr(Sx) =
⊕

i≥1 ker(·(−i, i)D)yi ⊆ a.

4. Ax := S−1
x A = Ax,0[x

±1;σ] is a skew polynomial ring where Ax,0 :=
⋃

i≥0 x
−iD(σ)xi and

σ(x−i(d+K(σ))xi) := x−i(σ(d)+K(σ))xi. The addition and multiplication in the ring Ax,0

are given in (20).

5. (a) kerA(x·) =
⊕

i≥1(ker(σ) : a)yi ⊕
⊕

i≥0 ker(σ)x
i; x ∈ C′

A iff σ a monomorphism and
a ∈ ′CD.
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(b) kerA(·x) =
⊕

i≥1(kerD(·τ i−1(a))yi; x ∈ ′CA iff τ i(a) ∈ ′CD for all i ≥ 0.

(c) x ∈ CA iff x ∈ C′
A iff σ is a monomorphism and a ∈ ′CD.

6. assl(Sx) = assr(Sx) iff σ is a monomorphism.

7. Sx ∈ Den(R) iff σ is an automorphism. If Sx ∈ Den(R) then ass(Sx) =
⊕

i≥1 ker(·(−i, i)D)y
i.

Proof. 3. The element x is a homogeneous element of the Z-graded ringA = ⊕i∈ZAi. Therefore,
b := assr(Sx) = ⊕i∈Zbi where bi := b∩Ai. By Theorem 2.2, for i ≥ 0, bi = 0, since for all j ≥ 1 the
map ·xj : Dxi → Dxi+j is an injection. Now, b−i = ker(·(−i, i)D) since ·xi+j : A−i = Dyi → Dxj ,
dyi 7→ d(−i, i)xj . The inclusion b ⊆ a is proven in the proof of statement 1 (see (iii)).

1. (i) Sx ∈ Orel(A) (since xjAi ⊆ Dxi+j for all j ≥ 0 such that i+ j ≥ 0).
(ii) assl(Sx) = a: The element x is a homogeneous element of the Z-graded ring A. Therefore,

a′ := assl(Sx) = ⊕i∈Za
′
i where a′i := a′ ∩ Ai. For i ≥ 0, a′i = K(σ)xi since xj · : Dxi → Dxi+j ,

dxi 7→ σj(d)xi+j . Finally, a′−i = σ−i(K(σ) : (i,−i))yi for i ≥ 1 since, for all j ≥ 1,

xi+j · : Dyi → Dxj , dyi 7→ σi+j(d)(i + j,−i)xj = σi+j(d)σj((i,−i))xi = σj(σi(d)(i,−i))xj .

Therefore, a′ = a.
(iii) Sx ∈ Denl(R, a): We have to show that b ⊆ a, or equivalently, bi ⊆ a for all i ≥ 1, by

statement 3. If b ∈ b−i then b(−i, i) = 0. By applying σi, we get 0 = σi(b)σi((−i, i)) = σi(b)(i,−i),
by (14). Therefore, b ∈ σ−i(0 : (i,−i)) ⊆ σ−i(K(σ) : (i,−i)) ⊆ a.

2. Statement 2 follows from statement 1.
4. The ring A = ⊕i∈ZAi is Z-graded and the element x ∈ A1 is homogeneous, hence all the

elements of the set Sx are homogeneous. Therefore, the ring Ax = ⊕i∈ZAx,i is automatically the
Z-graded ring where Ax,0 = ∪i≥0x

−iD(σ)xi is the zero component of the ring Ax and Ax,i =
Ax,0x

i = xiAx,0 for all i ∈ Z. By (18), the map σ : D(σ) → D(σ), d := d+K(σ) 7→ σ(d) +K(σ),
is a ring monomorphism. Every element x−idxi of the ring Ax,0 where i ≥ 0 and d ∈ D(σ), can
be written also as follows

x−idxi = x−i−jxjdxi = x−i−jσj(d)xi+j for j ≥ 0. (19)

So, the addition and multiplication in the ring Ax,0 are given by the rule:

x−idxi + x−jexj = x−i−j
(
σj(d) + σi(e)

)
xi+j and x−idxi · x−jexj = x−i−jσj(d) · σi(e)xi+j .

(20)
Since x·x−idxi = x−iσ(d)xi ·x = σ(x−idxi)x, the ring Ax is the skew polynomial ring Ax,0[x

±1;σ].
5(a) The equality in the statement (a) follows from the fact that the ring A is a Z-graded ring

and the following equalities: For all d ∈ D, x · dxi = σ(d)xi+1 (i ≥ 0) and x · dyi = σ(da)yi−1

(i ≥ 1). Using the equality in the statement (a), we see that x ∈ C′
A iff σ is a monomorphism and

0 = (ker(σ) : a) = (0 : a) = {d ∈ D | da = 0} iff σ is a monomorphism and a ∈ ′CD.
(b) The equality in the statement (b) follows from the fact that the ring A is a Z-graded ring

and the following equalities: For all d ∈ D, dxi · x = dxi+1 (i ≥ 0) and dyi · x = dτ i−1(a)yi−1

(i ≥ 1).Hence, x ∈ ′CA iff τ i(a) ∈ ′CD for all i ≥ 0.
(c) By statement 3, x ∈ CA iff x ∈ C′

A iff σ is a monomorphism and a ∈ ′CD.
6. If assl(Sx) = assr(Sx) then, by statements 1 and 3, K(σ) = 0. Clearly, K(σ) = 0 iff σ

is a monomorphism. Conversely, suppose that σ is a monomorphism. Then K(σ) = 0. Then,
by statements 1 and 3, assl(Sx) = assr(Sx) iff σ is a monomorphism and σ−i(0 : (i,−i)D) =
ker(·(i,−i)D). An element d ∈ D belongs to the set σ−i(0 : (i,−i)D) iff 0 = σi(d)(i,−i) =
σi(d)σi((−i, i)) = σi(d(−i, i)) iff d(−i, i) = 0 (since σ is a monomorphism) iff x ∈ ker(·(−i, i)D).

7. By statement 1, Sx ∈ Den(A) iff Sx ∈ Denr(Sx) (by statement 3) iff Sx is a right Ore set
of A and σ is monomorphism (by statement 6) iff σ is an automorphism. In more detail, if σ is
automorphism then Sx is a right Ore set of A and σ is a monomorphism. Conversely, since Sx

is a right Ore set of A then for given elements d ∈ D and x ∈ Sx, dx
i = xr for some xi ∈ Sx

and r ∈ A. Without loss of generality we may assume that i ≥ 1 (if i = 0 then dx = xrx = xr′
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where r′ = rx ∈ A). Then dxi = x · xi−1d′ = σi(d′)xi for some d′ ∈ D (the ring A is a Z-graded
ring). Then d = σ(σi−1(d′)), i.e., σ is an epimorphism. Therefore, σ is an isomorphism (since σ
is a monomorphism). �

Proposition 2.3 is a source of natural examples of ‘exotic’ situations:
(i) A left denominator set which is not a right denominator set: Sx is a left denominator set

of A which is not a right denominator set iff σ is not an automorphism, by statement 7.
(ii) A left denominator set S such that assl(S) ' assr(S): assl(S) ' assr(S) iff σ is not a

monomorphism, by statement 6.
Using (16) or (17), the next proposition follows from Proposition 2.3.

Proposition 2.4 Let A = D[x, y;σ, τ, a] be a GWA and Sy = {yi | i ≥ 0}. Then

1. Sy ∈ Denl(A, a
o) where ao :=

⊕
i≥1 K(τ)yi ⊕

⊕
i≥0 τ

−i(K(τ) : (−i, i))xi and D(τ) :=
D/K(τ) (recall that o is the symmetry isomorphism of A).

2. A/ao ≃
⊕

i≥1 D(τ)yi ⊕
⊕

i≥0 D/τ−i(K(τ) : (−i, i))xi and the map A/a → A/ao, u + a 7→
uo + ao, is a ring isomorphism.

3. assl(Sy) =
⊕

i≥1 ker(·(i,−i)D)xi ⊆ ao.

4. Ay := S−1
y A = Ay,0[y

±1; τ ] is a skew polynomial ring where Ay,0 :=
⋃

i≥1 y
−iD(τ)yi and

τ(y−i(d+K(τ))yi) := y−1(τ(d) +K(τ))yi. The addition and multiplication in the ring Ay,0

is given in a similar fashion as in (20).

5. (a) kerA(y·) =
⊕

i≥0 ker(τ)y
i ⊕

⊕
i≥1(ker(τ) : σ(a))x

i; y ∈ C′
A iff τ a monomorphism and

σ(a) ∈ ′CD.

(b) kerA(·y) =
⊕

i≥1(kerD(·σi(a))xi; y ∈ ′CA iff σi(a) ∈ ′CD for all i ≥ 1.

(c) y ∈ CA iff y ∈ C′
A iff τ is a monomorphism and σ(a) ∈ ′CD.

6. assl(Sy) = assr(Sy) iff τ is a monomorphism.

7. Sy ∈ Den(R) iff τ is an automorphism. If Sy ∈ Den(R) then ass(Sy) =
⊕

i≥1 ker(·(i,−i)D)xi.

A regularity criterion for the elements x and y of a GWA. Such a criterion is the
following proposition which is used in the proof of a simplicity criterion for GWAs (Theorem 3.2).

Proposition 2.5 The following statements are equivalent.

1. x, y ∈ CA.

2. σ and τ are monomorphisms and a, σ(a) ∈ ′CA.

3. a, σ(a) ∈ CD.

Proof. (1 ⇔ 2) The equivalence follows from Proposition 2.3.(5c) and Proposition 2.4.(5c).
(1 ⇒ 3) If x, y ∈ CA then a = yx ∈ CA and σ(a) = xy ∈ CA. Hence, a, σ(a) ∈ CD.
(3 ⇒ 1) If a, σ(a) ∈ CD then a, σ(a) ∈ ′CD and σ, τ are monomorphisms since ad = τσ(d)a

and σ(a)d = στ(d)σ(a) for all d ∈ D. �
A criterion for a GWA to be a domain.

Proposition 2.6 Let A = D(σ, τ, a) be a GWA. Then A is a domain iff D is a domain, σ and τ
are monomorphisms of D and a 6= 0.

Proof. (⇒) If A is a domain then D is a domain and a 6= 0 (since a = yx). By Proposition
2.3.(5) and Proposition 2.4.(6), σ and τ are monomorphisms of D.

(⇐) Since a 6= 0, all the elements (n,m) (where n,m ∈ Z) are nonzero. Since D is a domain
and σ and τ are monomorphisms of D, the ring A is a domain, by (13). �

The ideals (xn) and (yn) of GWAs. For a ring R and an element r ∈ R, (r) := RrR is
the ideal of R generated by the element r. The next lemma describes the ideals (vn) of a GWA
A = ⊕i∈ZDvi where n ∈ Z. Clearly, (v0) = (1) = A.
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Lemma 2.7 Let A = D(σ, τ, a) be a GWA. Then, (vn) = ⊕m∈Z(vn)m where (vn)m := (vn)∩Dvm
For all n ≥ 1,

(xn)m =

{
Dxm if m ≥ n,∑n−m

i=0 Dyixnyn−m−i =
∑n−m

i=0 D(−i, n)(n− i,m− n+ i)vm if m < n,

(yn)m =

{
Dy−m if m ≤ −n,∑n+m

i=0 Dxiynxn+m−i =
∑n+m

i=0 D(i,−n)(−n+ i,m+ n− i)vm if m > −n.

Proof. The GWA A = ⊕i∈ZAi is a Z-graded ring and the element vn is a homogeneous element
of A. Hence, (vn) = ⊕m∈Z(vn)m is a homogeneous ideal of A, i.e., (vn)m = (vn) ∩ Am. Now,
(vn)m =

∑
i+j+n=m AivnAj =

∑
i+j+n=m DvivnDvj =

∑
i+j+n=m Dvivnvj . Let n ≥ 1, that is

vn = xn. Then (vn)m = Dxm for all m ≥ n. Let m < n. Then ∆ = n − m > 0. The product
vix

nv−∆−i is equal to

i > 0 : xixny∆+i = xn(xiyi)y∆ = σn((i,−i))xny∆,

−∆ ≤ i ≤ 0 : y−ixny∆+i = (i, n)(n+ i,m− n− i)vm,

i < −∆ : y−ixnx−∆−i = y∆(y−∆−ix−∆−i)xn = τ−∆((∆ + i,−∆− i))y∆xn.

Therefore, (xn)m =
∑

−∆≤j≤0 Dy−jxny−∆−j =
∑n−m

i=0 Dyixnyn−m−i =
∑n−m

i=0 D(−i, n)(n −

i,m− n+ i)vm. By the canonical (x, y)-symmetry isomorphism, for n ≥ 1, (yn)m = Dy−m for all
m ≤ −n, and, for m > −n, (yn)m =

∑m+n
i=0 Dxiynxm+n−i =

∑m+n
i=0 D(i,−n)(−n+i,m+n−i)vm.

�

The next corollary is used in the proof of a simplicity criterion for GWAs (Theorem 1.1).

Corollary 2.8 Let A = D[x, y;σ, τ, a] be a GWA and n ≥ 1 a natural number. Then

1. (xi) = A for i = 1, . . . , n iff Da+Dσi(a) = D for i = 1, . . . , n. In particular, (xi) = A for
all i ≥ 1 iff Da+Dσi(a) = D for all i ≥ 1.

2. (yi) = A for i = 1, . . . , n iff Dσ(a) +Dτ iσ(a) = D for i = 1, . . . , n. In particular, (yi) = A
for all i ≥ 1 iff Dσ(a) +Dτ iσ(a) = D for all i ≥ 1.

Proof. 1. (⇒) Let ai := Da + Dσi(a). By Lemma 2.7, for all i ≥ 1, (xi)i−1 = (D(i,−1) +
D(−1, i))xi−1 = (Dσi(a) +Da)xi−1 = aix

i−1. If (xi) = A then ai = D.
(⇐) Suppose that ai = D for all i = 1, . . . , n. We use induction on n to show that (xi) = A

for all i = 1, . . . , n. For n = 1, (x) = A since (x)0 = a1 = D. Suppose that n > 1 and
(x) = · · · = (xn) = A. Since (xn+1)n = an+1x

n = Dxn, we have the inclusion (xn+1) ⊇ (xn) = A,
i.e., (xn+1) = A.

2. Statement 2 follows from statement 1 by the (x, y)-symmetry. �
Example. Let A = D[x, y;σ, σ−1, a = h(h − n)] where D = K[h], σ(h) = h − 1 and n ≥ 1

is a natural number. By Corollary 2.8.(1), (x) = (x2) = · · · = (xn−1) = A and (y) = (y2) =
· · · = (yn−1) = A (since Da +Dσi(a) = D and Dσ(a) +Dσ−iσ(a) = σ−i+1(Da +Dσi(a)) = D
for i = 1, . . . , n − 1) and (xn) 6= A and (yn) 6= A since Da + Dσn(a) = Dσn(h) 6= D and
Dσ(a) +Dσ−nσ(a) = σ−n+1(Dσn(h)) = Dσ(h) 6= D.

In case when the elements a and σ(a) are normal and regular, the conditions (2) can be
simplified, as the following lemma shows. It also gives a criterion for the endomorphisms σ and τ
to commute.

Lemma 2.9 Let A = D(σ, τ, a) be a GWA. Suppose that a and σ(a) are normal, regular elements
in D. Then

1. The conditions (2) are equivalent to the equalities τσ = ωa and στ = ωσ(a).
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2. σ and τ are automorphisms of the ring D and τ = ωaσ
−1.

3. στ = τσ iff ωa = ωσ(a) iff there is a normal regular element b ∈ D such that ab = ba,
aiσ(a) = ab and ωb = ωai for some i ≥ 0.

Proof. 1. Statement 1 is obvious.
2. Statement 2 follows from statement 1 since ωa and ωσ(a) are automorphisms, by Lemma

5.2 (as the elements a and σ(a) are normal and regular).
3. By statement 1, στ = τσ iff ωa = ωσ(a).
Suppose that ωa = ωσ(a). The element a of D is normal and regular. Then the ring D is

a subring of the localization Da of D at the powers of the element a. Since ωa(a) = a, the
automorphism ωa of D is extended in a unique way to an automorphism of Da: ωa(a

−id) =
a−iωa(d) where i ≥ 0 and d ∈ D. Then the equality ωa = ωσ(a) implies ωa−1σ(a) = idDa

, and so
a−1σ(a) = z for some central regular element z ∈ Da. So, z = a−ib for some i ≥ 0 and b ∈ D or,
equivalently, b = aiz. Then ab = ba. The element b ∈ D is normal and regular and ωb = ωai . The
equality z = a−ib can be written as aiσ(a) = ab (by using z = a−1σ(a)).

Conversely, if ab = ba, aiσ(a) = ab and ωb = ωai for some normal regular element b ∈ D
and i ≥ 0. Then the equality aiσ(a) = ba implies the equality ωaiωσ(a) = ωbωa = ωaiωa, hence
ωσ(a) = ωa. �

3 Simplicity criteria for Generalized Weyl algebras

The aim of this section is to give two simplicity criteria for GWAs (Theorem 1.1 and Theorem
3.2). The first one (Theorem 1.1) is a simplicity criterion for a GWA A = D[x, y;σ, τ, a] where the
elements a and σ(a) are normal in D. This is a mild restriction on the elements a and σ(a) that
often occurs in applications. The second one (Theorem 3.2) is a simplicity criterion for GWAs in
general case (no restrictions on a and σ(a)). Their proofs are quite different.

Simplicity criteria via denominator sets. Let R be a ring, S ∈ Denl(R) and T ∈ Denr(R).
Let I be an ideal of R. In general, neither the left ideal S−1I of S−1R nor the right ideal IT−1

of RT−1 is an ideal. But if the ring R is commutative or Noetherian then one-sided ideals S−1I
and IT−1 are ideals of the localized rings. So, in general, ideals of a ring and its localization are
not much related. Suppose that the rings S−1R and RT−1 are R-isomorphic, i.e., there is a ring
isomorphism f : S−1R → RT−1 such that f(rα) = rf(α) for all elements r ∈ R and α ∈ S−1R.
In particular, assl(S) = assr(T ). We identify the rings S−1R and RT−1.

Example. Let S be a left and right denominator set of a ring R. Then the rings S−1R and
RS−1 are R-isomorphic.

The third statement of the following proposition is a useful simplicity criterion for a ring
via its localization at a left and right denominator set. This criterion is used in the proof of a
simplicity criterion (Theorem 1.1). The fourth statement is a simplicity criterion for a ring via its
localizations at a left denominator set and a right denominator set.

Proposition 3.1 Let R be a ring, S ∈ Denl(R) and T ∈ Denr(R) be such that the rings S−1R and
RT−1 are R-isomorphic and I := assl(S) = assr(T ). Let a be an ideal of R and S−1RaRT−1 =
S−1aT−1 be the ideal of S−1R = RT−1 generated by a. Then

1. S−1aT−1 = S−1R iff a ∩ ST 6= ∅ where ST := {st | s ∈ S, t ∈ T }.

2. If S ∈ Den(R) then S−1aS−1 = S−1R iff a ∩ S 6= ∅.

3. If S ∈ Den(R) then R is a simple ring iff S−1R is a simple ring, ass(S) = 0 and RsR = R
for all s ∈ S.

4. The ring R is simple iff S−1R = RT−1 is a simple ring, I = 0 and RstR = R for all
elements s ∈ S and t ∈ T .
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Proof. 1. S−1aT−1 = S−1R iff 1 =
∑n

i=1 s
−1
i ait

−1
i for some elements si ∈ S and ti ∈ T .

Choose elements s ∈ S and t ∈ T such that ss−1
i = ri

1 and t−1
i t =

r′i
1 for some elements ri, r

′
i ∈ R.

Then st =
∑n

i=1
ri
1 ai

r′i
1 = a

1 where a =
∑n

i=1 riairi ∈ a, Hence, s′st = s′a ∈ ST ∩ a for some
element s′ ∈ S.

2. Statement 2 follows from statement 1.
3. Statement 3 follows from statement 2.
4. Statement 4 follows from statement 1. �
Simplicity criteria for generalized Weyl algebras.Proof of Theorem 1.1. (1 ⇒ 2)

Suppose that A is a simple ring. By Proposition 2.3 and Proposition 2.4, assl(Sx) = 0 and
assl(Sy) = 0, i.e., the elements x and y are regular in A. Then the elements a = yx and σ(a) = xy
are regular in A. In particular, they are regular in D, and so that the statement (a) holds.

The elements a and σ(a) are normal and regular. By Lemma 2.9, σ and τ are automorphisms
of D. Hence, Sx (and Sy) is a left and right Ore set in A. By Proposition 3.1.(3), the ring A is
simple iff the ring S−1

x A is simple and (xi) = A for all i ≥ 1. It is a classical result that the ring
S−1
x A = D[x±1;σ] is simple iff the conditions (b) and (c) hold. By Corollary 2.8.(1), (xi) = A for

all i ≥ 1 iff the condition (d) holds.
(2 ⇒ 1) Suppose that the conditions (a)-(d) of statement 2 hold. By the assumption, the

elements a and σ(a) are normal, and they are regular, by the statement (a). By Lemma 2.9, σ and
τ are automorphisms of the ring D. Therefore, the elements (n,m) (where n,m ∈ Z) are regular,
see (12). Then the elements x and y are regular. Hence, Sx (and Sy) is a left and right Ore set in
A. Then repeating the arguments at the end of the proof of the implication (1 ⇒ 2), which are of
‘iff’-nature, we see that A is a simple ring (By Proposition 3.1.(3), the ring A is simple iff the ring
S−1
x A is simple and (xi) = A for all i ≥ 1. It is a classical result that the ring S−1

x A = D[x±1;σ]
is simple iff the conditions (b) and (c) hold. By Corollary 2.8.(1), (xi) = A for all i ≥ 1 iff the
condition (d) holds.).

(1 ⇔ 3) In view of the (x, y)-symmetry isomorphism of the GWA A, the equivalence (1 ⇔ 3)
follows from the equivalence (1 ⇔ 2). �

Example. Let A = Λ[x, y;σ = σα,β , τ = ωaσ
−1, a = zpiqj ] be the GWA considered in Section

2. If i + j > 0 then a, σi(a) ∈ (piqj) 6= D for all i ≥ 1, and so the condition (2d) of Theorem 1.1
does not hold and the algebra A is not simple.

For a ring D and its ring endomorphism σ, the subring of D, Dσ = {d ∈ D |σ(d) = d}, is
called the ring of σ-invariants, and each element of Dσ is called a σ-invariant. Every left normal,
left regular element d of D, determines a ring endomorphism of D:

ωd : D → D, d′ → ωd(d
′), where dd′ = ωd(d

′)d. (21)

The next theorem is a simplicity criterion for GWAs.

Theorem 3.2 Let A = D[x, y;σ, τ, a] be a GWA. Then the following statements are equivalent.

1. A is a simple ring.

2. (a) The elements a and σ(a) are regular in D,

(b) For all nonzero ideals I of D, I ′ = D where I ′ := I+
∑

i≥1

(
Dσi(I)(i,−i)+Dτ i(I)(−i, i)

)
.

(c) None of the ring endomorphisms σn (n ≥ 1) of D is equal to the ring endomorphism
ωd (see (21)) where d is a σ-invariant, regular, left normal element of D.

3. (a) The elements a and σ(a) are regular in D,

(b) For all nonzero ideals I of D, I ′ = D where I ′ := I+
∑

i≥1

(
Dσi(I)(i,−i)+Dτ i(I)(−i, i)

)
.

(c) None of the ring endomorphisms τn (n ≥ 1) of D is equal to the ring endomorphism
ωd (see (21)) where d is a τ-invariant, regular, left normal element of D.

If one of the equivalent conditions holds then σ and τ are monomorphisms of D.
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Proof. (1 ⇒ 2) Suppose that A is a simple ring. By Proposition 2.3 and Proposition 2.4,
assl(Sx) = 0 and assl(Sy) = 0, i.e., the elements x and y are regular in A. Then the elements
a = yx and σ(a) = xy are regular in A. In particular, they are regular in D, and so that the
statement (a) holds.

Let I be a nonzero ideal of D. The zero component (I)0 of the ideal

(I) = AIA =
∑

i,j∈Z

DviIDvj =
∑

i,j∈Z

Dσi(I)vivj =
∑

i,j∈Z

Dσi(I)(i, j)vi+j

is equal to I ′ =
∑

i∈Z
Dσi(I)(i,−i). This is the LHS of the equality in the statement (b). The

algebra A is simple and the ideal (I) is a nonzero homogeneous ideal of A. Therefore, (I)0 = D,
i.e., the statement (b) holds.

Finally, suppose that the statement (c) is false, i.e., σn = ωd for some σ-invariant, regular,
left normal element of D. Then dd′ = σn(d′)d for all elements d′ ∈ D. We claim that the
ideal of A generated by the element u = xn + d is not equal to A. Notice that ux = xu (since
σ(d) = d) and ud′ = σn(d′)u for all d′ ∈ D (since σn = ωd). This means that the element
u ∈ A+ := ⊕i≥0Dxi is a left normal element of the ring A+. In particular, A+uA+ = A+u is
an ideal of A+. Suppose that AuA = A, i.e., 1 ∈

∑
−l≤i,j≤l AiuAj for some l ∈ N, we seek a

contradiction. Then x2l = xl1xl ∈ A+uA+ = A+u, and so x2l = vu for some element v ∈ A+.
Then v = x2l−n + · · · + dmxm where dm ∈ D\{0} and dmxm is the least term of v (w.r.t. the
Z-grading of A). Then 0 = dmxmd = dmσm(d)xm = dmdxm (since σ(d) = d), i.e., dmd = 0. This
contradicts to regularity of d. This means that 0 6= (u) 6= A, as claimed. Therefore, the statement
(c) holds.

(2 ⇒ 1) Suppose that the conditions (a) - (c) hold. By the statement (a), the elements a
and σ(a) are regular in D. By Proposition 2.5, x, y ∈ CA and σ, τ are monomorphisms. Hence,
xi, yi ∈ CA for all i ≥ 1.

Let J be a nonzero ideal of A. We have to show that J = A. The ideal J contains a nonzero
element, say u, of least possible length, say l. If l = 0 then J contains a nonzero element,
say d, from D (since xi and yi are regular element of A for all i ≥ 1). Let I = DdD. Then
J ⊇ I +

∑
i≥1(DxiIyi +DyiIxi) = I ′ = D, by the statement (b), and so J = A, sa required.

Suppose that l > 1. Replacing the element u by xsu or ysu for some s ≥ 0, we may assume
that u = u0 + u1y + · · · + uly

l for some elements ui ∈ D such that u0 6= 0 and ul 6= 0 (since xi

and yi are regular elements in A). Let I = Du0D, a nonzero ideal of D. Then

J ⊇ DuD+
∑

i≥1

(DxiDuDyi+DyiDuDxi) = I+
∑

i≥1

(Dσi(I)(i,−i)+Dτ i(I)(−i, i))+ · · · = I ′+ · · ·

where the three dots means smaller terms, i.e., elements of the set ⊕i≥1Dyi. By the statement
(b), the ideal J contains an element of the form v = 1 + · · · . Then 0 6= w := vxl = d0 + d1x +
· · · + dl−1x

l−1 + xl ∈ J where di ∈ D and d0 6= 0. By the minimality of l, the element [x,w] =∑l−1
i=0(σ(di) − di)x

i+1 ∈ J must be zero, i.e., xw = wx and σ(di) = di for all i = 0, 1, . . . , l − 1.

Similarly, σl(d)w−wd =
∑l−1

i=0(σ
l(d)di−diσ

i(d))xi ∈ J for all d ∈ D. Therefore, σl(d)w = wd and
σl(d)di = diσ

i(d) for all i = 0, 1, . . . , l− 1. In particular, σl(d)d0 = d0d for all d ∈ D. The element
d0 is a regular element of D. Since otherwise we would have either d′d0 = 0 or d0d

′ = 0 for some
d′ ∈ D. Then either 0 6= d′w =

∑l−1
i=1 d

′dix
i+d′xl ∈ J or 0 6= wd′ =

∑l−1
i=1 diσ

i(d′)xi+σl(d′)xl ∈ J .
In both cases, this would contradict the minimality of l. Therefore, J = A, as required.

(1 ⇔ 3) This equivalence follows from the equivalence (1 ⇔ 2) by the (x, y)-symmetry. �
Involutions on GWAs. An anti-isomorphism ∗ of a ring R ((ab)∗ = b∗a∗ for all a, b ∈ R) is

called an involution if a∗∗ = a for all elements a ∈ R.
The Weyl algebra A1 admits the canonical involution ∗: x∗ = ∂ and ∂∗ = x. Recall that the

Weyl algebra A1 is the GWA K[h][x, ∂;σ, σ−1, a = h] and the involution ∗ respects the subalgebra
K[h]: K[h]∗ = K[h] since h∗ = h. So, the involution ∗ on A1 can be seen as an extension of the
(trivial) involution on the commutative algebra K[h] to A1. The following lemma and its corollary
explore further this fact/idea.
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Lemma 3.3 Let A = D[x, y;σ, τ, a] be a GWA. Suppose that ∗ is an involution of the ring D such
that σ ∗ τ = ∗, τ ∗ σ = ∗, a∗ = a and σ(a)∗ = σ(a). Then the involution ∗ can be extended to an
involution ∗ of A by the rule x∗ = y and y∗ = x.

Proof. Let us show that ∗ respects the conditions (2) of the GWA A: Let d ∈ D.
(a) ad = τσ(d)a: (τσ(d)a)∗ = a∗ · ∗τσ(d) = a · ∗τσ(d) = τ(σ ∗ τ)σ(d)a = τ ∗ σ(d)a = d∗a∗ =

(ad)∗.
(b) σ(a)d = στ(d)σ(a): (στ(d)σ(a))∗ = σ(a)∗ · ∗στ(d) = σ(a) · ∗στ(d) = σ(τ ∗ σ)τ(d)σ(a) =

σ ∗ τ(d)σ(a) = d∗σ(a)∗ = (σ(a)d)∗.
Let us show that ∗ respects the defining relations (3) of the GWA A: Let d ∈ D.
(i) xd = σ(d)x: (σ(d)x)∗ = yσ(d)∗ = τ ∗ σ(d)y = d∗y = (xd)∗.
(ii) yd = τ(d)y: (τ(d)y)∗ = xτ(d)∗ = σ ∗ τ(d)x = d∗x = (yd)∗.
(iii) yx = a: (yx)∗ = yx = a = a∗.
(iv) xy = σ(a): (xy)∗ = xy = σ(a) = σ(a)∗. �
For a commutative ring D, the identity map of D is an involution on D which is called the

trivial involution on D.

Corollary 3.4 Let A = D[x, y;σ, τ, a] be a GWA where D is a commutative ring, σ and τ are
automorphisms of D such that τ = σ−1. Then the trivial involution on D can be extended to an
involution ∗ of D by the rule x∗ = y and y∗ = x.

Proof. The result follows from Lemma 3.3. �
Example. The universal enveloping algebra of the Lie algebra sl2 over a field K of characteristic

0, U = U(sl2) = K〈X,Y,H | [H,X ] = X, [H,Y ] = −Y, [X,Y ] = 2H〉, is isomorphic to the
classical GWA K[H,C][X,Y ;σ, a = C − H(H + 1)], where σ : H → H − 1, C → C, and C =
Y X −H(H + 1) is the Casimir element of the algebra U . As a universal enveloping algebra, the
algebra U admits the canonical involution given by the rule X 7→ −X , Y 7→ −Y , H 7→ −H .
Notice that C 7→ C.

By Corollary 3.4, the identity involution on the commutative algebra K[H,C] can be extended
to the involution ∗ on U given by the rule X∗ = Y , Y ∗ = X and H∗ = H . This is not the
canonical involution on U .

4 Generalized Weyl algebras of rank n

The aim of this section is to introduce a new class of rings which is more general that the class of
generalized Weyl algebras. The rings of the new class are also called generalized Weyl algebras.
In order to distinguish these new rings from the old ones the latter are called classical GWAs.

Iterated generalized Weyl algebras. The next corollary follows from Theorem 2.2 by
induction on the rank n.

Corollary 4.1 Let A = D[x1, y1;σ1, τ1, a1] . . . [xn, yn;σn, τn, an] be an iterated GWA of rank n.
Then A = ⊕α∈ZnDvα is a direct sum of the free left D-modules DDvα ≃ D where for α =

(α1, . . . , αn), vα = vα1
(1) · · · vαn

(n) and vαi
(i) =

{
xαi

i if αi ≥ 0,

y−αi

i if αi < 0.

Classical generalized Weyl algebras, [1]-[8]. Let D be a ring, σ = (σ1, ..., σn) an n-tuple
of commuting automorphisms of D, a = (a1, ..., an) an n-tuple of elements of the centre Z(D) of D
such that σi(aj) = aj for all i 6= j. The (classical) generalized Weyl algebra A = D(σ, a) =
D[x, y;σ, a] of rank n is a ring generated by D and 2n indeterminates x1, ..., xn, y1, ..., yn subject
to the defining relations:

yixi = ai, xiyi = σi(ai), xid = σi(d)xi, and yid = σ−1
i (d)yi for all d ∈ D,

[xi, xj ] = [xi, yj ] = [yi, yj ] = 0, for all i 6= j,
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where [x, y] = xy− yx. We say that a and σ are the sets of defining elements and automorphisms
of the GWA A, respectively.

Example. The n’th Weyl algebra, An = An(K) over a field (a ring) K is an associative K-
algebra generated by 2n elements x1, ..., xn, y1, ..., yn, subject to the defining relations:

[yi, xi] = δij and [xi, xj ] = [yi, yj] = 0 for all i, j,

where δij is the Kronecker delta function. The Weyl algebra An is a generalized Weyl algebra
A = D[x, y;σ; a] of rank n where D = K[H1, ..., Hn] is a polynomial ring in n variables with
coefficients in K, σ = (σ1, . . . , σn) where σi(Hj) = Hj − δij and a = (H1, . . . , Hn). The map

An → A, xi 7→ xi, yi 7→ yi, i = 1, . . . , n,

is an algebra isomorphism (notice that yixi 7→ Hi). This was the reason why I called the algebras
A above GWAs.

Generalized Weyl algebras. Let A be a ring and σ its endomorphism. A subring B of A is
called σ-invariant if σ(B) ⊆ B.

Definition. An iterated generalized Weyl algebra A = D[x1, y1;σ1, τ1, a1] . . . [xn, yn;σn, τn, an]
is called a generalized Weyl algebra of rank n if a1, . . . , an ∈ D, the ring D is σi- and τi-
invariant for all i = 1, . . . , n; and for all integers i, j = 1, . . . , n such that i > j:

σi(xj) = λijxj , σi(yj) = λ′
ijyj , τi(xj) = µijxj , τi(yj) = µ′

ijyj ,

for some elements λij , λ
′
ij , µij and µ′

ij of the ring D. The elements Λ = (λij), Λ′ = (λ′
ij),

M = (µij) and M ′ = (µ′
ij) are called the defining coefficients of A. The n-tuples of endomorphisms

σ = (σ1, . . . , σn) and τ = (τ1, . . . , τn) are called the defining endomorphisms of A, and the n-tuple
of elements a = (a1, . . . , an) is called the defining elements of A. The GWA A of rank n is denoted
by A = D[x, y;σ, τ,Λ,Λ′,M,M ′] where x = (x1, . . . , xn) and y = (y1, . . . , yn).

We denote by σi and τi the restrictions σi|D and τi|D, respectively.
An element Λ = (λij) (where 1 ≤ j < i ≤ n) is called a lower triangular half-matrix with

coefficients in D. The set of all such elements is denoted by Ln(D). The next proposition describes
GWAs of rank n via generators and defining relations.

Proposition 4.2 Let D be a ring, σ = (σi) and τ = (τi) be n-tuples of ring endomorphisms of
D, a = (ai) ∈ Dn, and Λ = (λij),Λ

′ = (λ′
ij),M = (µij),M

′ = (µ′
ij) ∈ Ln(D) be such that the

following conditions hold: For all i = 1, . . . , n and d ∈ D,

τiσi(ai) = ai, aid = τiσi(d)ai and σi(ai)d = σiτi(d)σi(ai); (22)

for all i > j,
ai = τi(λij)µijσj(ai) = τi(λ

′
ij)µ

′
ijτj(ai), (23)

σi(ai) = σi(µij)λijσjσi(ai) = σi(µ
′
ij)λ

′
ijτjσi(ai); (24)

for all i > j and d ∈ D,

λijσjσi(d) = σiσj(d)λij and µijσjτi(d) = τiσj(d)µij , (25)

λ′
ijτjσi(d) = σiτj(d)λ

′
ij and µ′

ijτjτi(d) = τiτj(d)µ
′
ij , (26)

σi(aj) = λ′
ijτj(λij)aj and τi(aj) = µ′

ijτj(µij)aj , (27)

σiσj(aj) = λijσj(λ
′
ij)σj(aj) and τiσj(aj) = µijσj(µ

′
ij)σj(aj). (28)

The GWA of rank n, A = D[x, y;σ, τ, a,Λ,Λ′,M,M ′], is a ring generated by D, x1, . . . , xn and
y1, . . . , yn subject to the defining relations: For all i = 1, . . . , n and d ∈ D,

xid = σi(d)xi, yid = τi(d)yi, yixi = ai and xiyi = σi(ai); (29)

for all i > j,

xixj = λijxjxi, xiyj = λ′
ijyjxi, yixj = µijxjyi and yiyj = µ′

ijyjyi. (30)
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Proof. The proof is routine and the result follows from the fact that a GWA of rank n is a
special type of the iterated GWA of rank n and Theorem 2.2.

Let A = D[x, y;σ, τ, a,Λ,Λ′,M,M ′] be a GWA of rank n. Then the ring A is generated by D,
x1, . . . , xn and y1, . . . , yn subject to the defining relations (29) and (30) (by the very definition of
A). The remaining equations (22), . . ., (28) follow from (2) and (3) bearing in mind the iterated
nature of the GWA A and the definition of the endomorphisms σ1, . . . , τn. In more detail, the ring
A contains the obvious chain of iterated GWAs of rank 1, 2, . . . , n: A1 ⊂ A2 ⊂ · · · ⊂ Ai ⊂ · · · ⊂
An = A where A1 = D[x1, y1; . . .], . . . , Ai = Ai−1[xi, yi; . . .], . . . , A = An = An−1[xn, yn; . . .]. The
relations (22) follow from (2). The relations (23) follow from the relations aidi−1 = τiσi(di−1)ai
in Ai where di−1 = xj and di−1 = yj (i > j), respectively (and using Theorem 2.2 for the iterated
GWA Ai = Ai−1[xi, yi; . . .]):

di−1 = xj : aixj = τiσi(xj)ai = τi(λij)µijσj(ai)xj ,

di−1 = yj : aiyj = τiσi(yj)ai = τi(λ
′
ij)µ

′
ijτj(ai)yj .

By Theorem 2.2, we obtain the relations (23). Similarly, the relations (24) follow from the relations
σi(ai)di−1 = σiτi(di−1)σi(ai) in Ai where di−1 = xj and di−1 = yj (i > j), respectively:

di−1 = xj : σi(ai)xj = σiτi(xj)σi(ai) = σi(µij)λijσjσi(ai)xj ,

di−1 = yj : σi(a)iyj = σiτi(yj)σi(ai) = σi(µ
′
ij)λ

′
ijτjσi(ai)yj .

By Theorem 2.2, we obtain the relations (24).
The relations (25) follow from the relations xjd = σj(d)xj (for all d ∈ D) in Ai (i > j) by

applying the endomorphisms σi and τi of the ring Ai−1, respectively (and using Theorem 2.2 for
the iterated GWA Aj = Aj−1[xj , yj ; . . .]:

σi : λijσjσi(d)xj = σi(xjd) = σi(σj(d)xj) = σiσj(d)λijxj ,

τi : µijσjτi(d)xj = τi(xjd) = τi(σj(d)xj) = τiσj(d)µijxj .

By Theorem 2.2, we obtain the relations (25).
Similarly, the relations (26) follow from the relations yjd = τj(d)yj (for all d ∈ D) in Ai (i > j)

by applying the endomorphisms σi and τi of the ring Ai−1, respectively:

σi : λ′
ijτjσi(d)yj = σi(yjd) = σi(τj(d)yj) = σiτj(d)λ

′
ijyj ,

τi : µ′
ijτjτi(d)yj = τi(yjd) = τi(τj(d)yj) = τiτj(d)µ

′
ijyj .

By Theorem 2.2, we obtain (26).
The relations (27) follow from the relations aj = yjxj in Ai (i > j) by applying the endomor-

phisms σi and τi of the ring Ai−1, respectively:

σi : σi(aj) = σi(yj)σi(xj) = λ′
ijyjλijxj = λ′

ijτj(λij)aj ,

τi : τi(aj) = τi(yj)τi(xj) = µ′
ijyjµijxj = µ′

ijτj(µij)aj .

Similarly, the relations (28) are obtained from the relations σj(aj) = xjyj in Ai (i > j) by applying
the endomorphisms σi and τi, respectively:

σi : σiσj(aj) = σi(xj)σi(yj) = λijxjλ
′
ijyj = λijσj(λ

′
ij)σj(aj),

τi : τiσj(aj) = τi(xj)τi(yj) = µijxjµ
′
ijyj = µijσj(µ

′
ij)σj(aj).

Conversely, suppose that the conditions of the theorem hold. Then using induction on n we see
that the ring A, which is generated byD, x1, . . . , xn, y1, . . . , yn and subject to the defining relations
(29) and (30), admits the chain of GWAs of rank 1, 2, . . . , n, respectively: A1 ⊂ A2 ⊂ · · · ⊂ An = A
(the relations (25), . . . , (28) are equivalent to the fact that the endomorphisms σ2, . . . , σn of the
ring D can be lifted to the endomorphisms of the GWAs A1, . . . , An−1, respectively). �
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Example. If σ = (σ1, . . . , σn) ∈ Aut(D)n is an n-tuple of commuting automorphisms of the
ring D, τ := σ−1 = (σ−1

1 , . . . , σ−1
n ), a = (a1, . . . , an) ∈ Z(D) and σi(aj) = aj for all i 6= j; and

λij = λ′
ij = µij = µ′

ij = 1 for all i > j, then the GWA A of rank n is a classical GWA of rank n,
that is A = D[x, y;σ, a].

Recall that each normal, regular element α of a ring D determines the automorphism ωα of D
by the rule αd = ωα(d)α for all d ∈ D. The next proposition gives plenty of examples of GWAs
of rank n.

Proposition 4.3 Let D be a ring, θ1, . . . , θn commuting automorphisms of the ring D, α1, . . . , αn,
β1, . . . , βn regular, normal elements of D. Then A = D[x, y;σ, τ, a,Λ,Λ′,M,M ′] be a GWA of rank
n where

σi = θiωβi
, τi = ωαi

θ−1
i , ai = αiβi,

λij = θi(βi)θiθj(βjβ
−1
i )θj(β

−1
j ), λ′

ij = θi(βiαj) · θ
−1
j θi(β

−1
i )α−1

j ,

µij = αiθ
−1
i θj(βj)θj(α

−1
i β−1

j ), µ′
ij = αiθ

−1
i (αj)θ

−1
j (α−1

i )α−1
j ,

provided λij , λ
′
ij , µij , µij ∈ D.

Proof. It is routine to verify that the equalities (22), . . ., (28) hold. Let us show that the first
two equalities in (22) hold.

τiσi(ai) = ωαi
θ−1
i θiωβi

(ai) = ωαiβi
(ai) = ωai

(ai) = ai and aid = ωai
(d)d = τiσi(d)d.

The third equality in (22) follows from the second by applying the automorphism σi of the ring
D.

Let us show that the first equality in (23) holds:

τi(λij)µijσj(ai) = αi(βiθj(βjβ
−1
i )θ−1

i θj(β
−1
j ))α−1

i ·αiθ
−1
i θj(βj)θj(α

−1
i β−1

j )·θj(βjαiβiβ
−1
j ) = αiβi = ai.

In a similar fashion, the rest of the equalities are verified. �
A Zn-grading of a GWA of rank n. By Theorem 2.2, every GWA of rank n, A =

D[x, y;σ, τ, a,Λ,Λ′,M,M ′], is a Zn-graded algebra A = ⊕α∈ZnDvα (DvαDvβ ⊆ Dvα+β for
all elements α, β ∈ Zn) where for α = (α1, . . . , αn) ∈ Zn, vα = vα1

(1)vα2
(2) · · · vαn

(n) and

vαi
(i) :=

{
xαi

i if αi ≥ 0,

y−αi

i if αi < 0.
Notice that the order in the product for vα is important and, in

general, cannot be changed. Moreover, the left D-module Dvα is free of rank 1. For all elements
α, β ∈ Zn,

vαvβ = (α, β)vα+β

for some (explicit) elements (α, β) ∈ D. For all elements α ∈ Zn and d ∈ D, vαd = σα(d)vα where

σα := σ(1, α1) · · ·σ(n, αn) and σ(i, αi) :=

{
σαi

i if αi ≥ 0,

τ−αi

i if αi < 0.

5 Diskew polynomial rings

The aim of this section is to show that diskew polynomial rings are generalized Weyl algebras under
a mild restriction (Theorem 1.2), and to give proofs of simplicity criteria for them (Theorem 1.3,
Theorem 1.4 and Theorem 1.5).

Diskew polynomial rings. Let E = D[x, y;σ, τ, b, ρ] be a diskew polynomial ring.
Remarks. 1. If ρ is a left normal element the two equalities in (4) can be written respectively

as follows: for all d ∈ D,

(στ(d) − ωρτσ(d))ρ = 0 and (στ(d) − ωb(d))b = 0, (31)

where ωρ and ωb are defined in (7). So, in general, the elements ρ and b are not left regular in D.
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2. If, in addition, the elements ρ and b are left regular in D then the conditions (31) can be
written as

στ = ωρτσ = ωb (32)

where ωρ and ωb are ring endomorphisms of D such that ρd = ωρ(d)ρ and bd = ωb(d)b for all
d ∈ D.

3. A particular case of diskew polynomial rings are the ambiskew polynomial rings: Let F be a
field, A be an F-algebra, ρ ∈ F\{0} and let ν be a γ-normal element of A for some F-automorphism
γ of A. Let α ∈ AutF(A) be such that αγ = γα and let β := α−1γ = γα−1, so that αβ = γ = βα.
Extend β to an F-automorphism of A[y;α] by setting β(y) = ρy. By [12, Exercise 2ZC], there
is a β-derivation δ of A[y;α] such that δ(A) = 0 and δ(y) = ν. The ambiskew polynomial ring
R(A,α, ν, ρ) is the iterated polynomial ring A[y;α][x;β, δ], see the paper of Jordan and Wells [15]
for details.

Example. Let D = C[t1, . . . , tn; ν1, . . . , νn] be a skew polynomial ring over a ring C, ν1, . . . , νn
commuting monomorphisms of the ring C. For all α ∈ Nn, να = να1

1 · · · ναn
n is a monomorphism

of C and the element tα = tα1

1 · · · tαn
n is a left normal, left regular element of the ring D with

ωα = να. Each monomorphism νi of the ring C can be extended to a monomorphism of the ring
D by the rule νi(tj) = tj for all j. Let ρ be a central, ν-invariant unit of D (‘ν-invariant’ means
ν1(ρ) = · · · = νn(ρ) = ρ). Let η be a central, ν-invariant, regular element of D and b = ηtα+β .
Let σ = να and τ = νβ where α, β ∈ Nn. Then the conditions (32) hold since ωρ = idD and
να+β = στ = τσ = ωb. So, E = D[x, y; να, νβ , ηtα+β , ρ] is a diskew polynomial ring.

Example. The quantum plane Λ = K〈p, q | pq = λqp〉 (over a field K where λ ∈ K∗) is a skew
polynomial ring Λ = K[q][p; ν] where ν(q) = λq. Then E = Λ[x, y; να, νβ , ηtα+β , ρ] is a diskew
polynomial ring where η, ρ ∈ K∗ and α, β ∈ N (see the previous example).

Theorem 5.1 The diskew polynomial ring E = D[x, y;σ, τ, b, ρ] is an iterated skew polynomial
ring E = D[y; τ ][x;σ, ∂] where σ(y) = ρy, ∂(D) = 0 and ∂(y) = b. It is a free left D-module
E = ⊕i,j∈NDyixj and the element x is a left regular element.

Proof. Using (4), we have to show that σ and ∂ respect the defining relation yd − τ(d)y = 0
(for d ∈ D) of the skew polynomial ring D[y; τ ]:

σ(yd− τ(d)y) = ρyσ(d)− στ(d)ρy = (ρτσ(d) − στ(d)ρ)y = 0, by (4),

∂(yd− τ(d)y) = bd− στ(d)b = 0, by (4). �

The (x, y)-symmetry of diskew polynomial rings. If ρ ∈ D is a unit then the equality
xy − ρyx = b is equivalent to the equality yx− ρ−1xy = −ρ−1b. Therefore,

E = D[x, y;σ, τ, b, ρ] = D[y, x; τ, σ,−ρ−1b, ρ−1]. (33)

When we say the (x, y)-symmetry of diskew polynomial rings we mean the second equality in (33).
So, when ρ is a unit the properties of diskew polynomial rings are more symmetrical.

Proof of Theorem 1.2. By the assumption, ρ is a unit. Then the elements x and y are left
regular element of E, by Theorem 5.1 and (33). Therefore, the subring of E generated by D and
the left regular element h = yx is the skew polynomial ring D := D[h; τσ]. Since ρ is a unit, the
first condition in (31) can be written as στ = ωρτσ. This equality is used in the proof.

(i) σ, τ ∈ End(D): We have to show that σ and τ respect the defining relations, hd = τσ(d)h
(d ∈ D), of the ring D:

σ(hd−τσ(d)h) = (ρh+b)σ(d)−στσ(d)(ρh+b) = (ωρτσσ(d)−στσ(d))ρh+(ωbσ(d)−στσ(d))b
(31)
= 0.

τ(hd− τσ(d)h) = τ(ρ−1)(h− τ(b))τ(d) − τ2σ(d)τ(ρ−1)(h− τ(b)) = τ(ρ−1στ(d) − τσ(d)ρ−1)h

−τ(ρ−1bd− τσ(d)ρ−1b) = τ(ρ−1(στ(d) − ρτσ(d)ρ−1))h− τ(ρ−1(ωb(d) − ρτσ(d)ρ−1)b)

= τ(ρ−1(στ(d) − ωρτσ(d)))h − τ(ρ−1(ωb(d)− ωρτσ(d))b)

= −τ(ρ−1(ωb(d)− στ(d))b) = 0, (by (31)).
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(ii) The conditions in (2) hold: Recall that a = h. The first condition in (2), τσ(a) = a, holds:

τσ(h) = τ(ρh+ b) = τ(ρ)τ(ρ−1)(h− τ(b)) + τ(b) = h.

The second condition in (2), ad = τσ(d)a, holds since it means that hd = τσ(d)h. The third
condition in (2), σ(a)d = στ(d)σ(a), holds:

σ(h)d = (ρh+ b)d = ωρτσ(d)ρ · h+ ωb(d)b
(31)
= στ(d)ρ · h+ στ(d)b = στ(d)(ρh + b) = στ(d)σ(h).

(iii) The defining relations (3) of the GWA hold: The first two equalities in (3) are given. Now,
yx = h and xy = ρyx+ b = σ(h).

(iv) E = D[x, y;σ, τ, a = h] is a GWA: By (i)-(iii), the ring E is an epimorphic image of
the GWA A := D[x, y;σ, τ, a = h]. Since E =

⊕
i≥1 Dyi ⊕

⊕
i≥1 Dxi (as ρ is a unit) and

A = ⊕i≥1Dyi ⊕
⊕

i≥1 Dxi, the epimorphic image is, in fact, an isomorphic image, i.e., E ≃ A.

(v) Since ρ ∈ D is a unit, by (31), στ = ωρτσ, and so στ(h) = ωρ(h) = ρhρ−1 = ρτσ(ρ−1)h.
(vi) Since ρ ∈ D is a unit, στ = ωρτσ, by (31). This is an equality of endomorphisms of the

ring D. This is also an equality of endomorphisms of the ring D: στ(h) = ωρ(h) and τσ(h) = h
imply στ(h) = ωρτσ(h). �

Corollary 5.2 Let E = D[x, y;σ, τ, b, ρ] be a diskew polynomial ring. Suppose that ρ is a unit in
D. Then E = D[y, x; τ, σ, h′ := σ(h) = ρh+ b] is a GWA with base ring D := D[h; τσ] = D[h′, στ ]
which is a skew polynomial ring, σ and τ are ring endomorphism of D that are extensions of the
ring endomorphisms σ and τ of D, respectively, defined in Theorem 1.2; τ(h′) = ρ−1(h′ − b) and
σ(h′) = σ(ρ)h′ + σ(b). In particular, στ(h′) = h′ and τσ(h′) = ωρ−1(h′) = ρ−1στ(ρ)h′.

Proof. By Theorem 1.2, E = D[x, y;σ, τ, h] where D = D[h; τσ], σ(h) = ρh + b and τ(h) =
τ(ρ−1)(h− τ(b)). By the (x, y)-symmetry for GWAs, D[x, y;σ, τ, h] = D[y, x; τ, σ, σ(h) = ρh+ b].
By the (x, y)-symmetry for DPRs, E = D[y, x; τ, σ,−ρ−1b, ρ−1]. Then, by Theorem 5.2, E =
D[y, x; τ, σ,−ρ−1b, ρ−1] = D′[y, x; τ, σ, σ(h)] where D′ = D[σ(h), στ ] = D[h, τσ] = D. Now,

τ(h′) = τσ(h)
Th1.2
= h = ρ−1(ρh+ b− b) = ρ−1(σ(h) − b) = ρ−1(h′ − b) and σ(h′) = σ(ρh+ b) =

σ(ρ)σ(h) + σ(b) = σ(ρ)h′ + σ(b). Furthermore, στ(h′) = στσ(h) = σ(h) = h′ (since τσ(h) = h,
by Theorem 1.2) and τσ(h′) = ωρ−1στ(h′) = ωρ−1στσ(h) = ωρ−1σ(h) = ωρ−1(h′) = ρ−1h′ρ =
ρ−1στ(ρ)h′. �

Under mild conditions, the next corollary produces a series of diskew polynomial rings from a
given one. The construction is based on Corollary 5.2.

Corollary 5.3 Let E = D[x, y;σ, τ, b, ρ] be a diskew polynomial ring such that ρ is a unit in D.

1. Let D1 = D[h1; ν := τσ] be a skew polynomial ring where h1 is a variable. The endo-
morphisms σ and τ of the ring D can be extended to endomorphisms of the ring D by
the rule σ(h1) = ρh1 + b and τ(h1) = τ(ρ−1)(h1 − τ(b)). In particular, τσ(h1) = h1,
στ(h1) = ωρ(h1) = ρτσ(ρ−1)h1 and στ = ωρτσ in D. The endomorphisms σ and τ of D
satisfy (4) iff the element ρ−1b is τσ-invariant.

2. Let Dn = D[h1, . . . , hn; τσ, . . . , τσ] be a skew polynomial ring such that the element ρ−1b
is τσ-invariant. Then En = Dn[x, y;σ, τ, b, ρ] is a diskew polynomial ring where σ(hi) =
ρhi + b and τ(hi) = τ(ρ−1)(hi − τ(b)) for i = 1, . . . , n, and, by Theorem 1.2, the ring
En = Dn+1[x, y;σ, τ, hn+1] is a GWA.

Proof. 1. Repeating word for word the proof of Theorem 1.2, we obtain all the statements
in statement 1 but the last sentence. The endomorphisms σ and τ satisfy (4) iff στ(h1)b = bh1.
Since the element h1 is left regular, this equality holds iff the element ρ−1b is τσ-invariant since
στ(h1)b = ρτσ(ρ−1)h1b = ρτσ(ρ−1)τσ(b)h1 = ρτσ(ρ−1b)h1.

2. Using repeatedly statement 1, we obtain the iterated skew polynomial ring Dn = D[h1; τσ]
· · · [hn; τσ] = D[h1, . . . , hn; τσ, . . . , τσ] (since hi+1hi = τσ(hi)hi+1 = hihi+1) such that the exten-
sion of the endomorphisms σ and τ from D to Dn ( as in statement 2) satisfy (4). Now, statement
2 is obvious. �
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By Theorem 1.2, if ρ ∈ D is a unit then the ring endomorphisms σ and τ of D can be extended
to the ring D = D[h; τσ] by the rule σ(h) = ρh+ b and τ(h) = τ(ρ−1)(h− τ(b)). By induction on
i ≥ 1, we have the equalities where

σi(h) = aih+ bi, ai = σi−1(ρ) · · ·σ(ρ)ρ and bi =

i−1∑

j=1

σj(ai−j)σ
j−1(b) + σi−1(b), (34)

τ i(h) = a′ih+ b′i, a′i = τ i−1(ρ−1) · · · τ2(ρ−1)τ(ρ−1) and b′i = −
i−1∑

j=1

τ j(a′i−j)τ
j(ρ−1b)− τ i(ρ−1b).

(35)
In particular, for all i ≥ 1,

ai+1 = σ(ai)ρ and bi+1 = σ(ai)b+ σ(bi), (36)

a′i+1 = τ(a′i)τ(ρ
−1) and b′i+1 = −τ(a′i)τ(ρ

−1b) + τ(b′i). (37)

For example, (36) follows from ai+1h + bi+1 = σ(σi(h)) = σ(aih+ bi) = σ(ai)(ρh + b) + σ(bi) =
σ(ai)ρh+ σ(ai)b+ σ(bi). For two elements s and t of a ring, [s, t] := st− ts is its commutator.

Suppose that ρ is a unit. Then, by (31), στ = ωρν where ν = τσ, or, equivalently, ωρ−1στ = ν.
Let β := ρ−1b. It follows that for all d ∈ D,

βd = ν(d)β and (h+ β)d = ν(d)(h+ β) (38)

(βd = ρ−1bd
(4)
= ρ−1στ(d)b = ωρ−1στ(d)β = ν(d)β). If, in addition, we assume that the element

b is a left regular element D. Then, by (31), στ = ωρν = ωb and the element β ∈ D is also left
regular in D. By (38), ββ = ν(β)β and (h+ β)β = ν(β)(h+ β). Hence,

ν(β) = β, hβ = βh, σ(hi) = ρνi

i∑

j=0

βijh
j (i ≥ 1) where ρνi := ρν(ρ) · · · νi−1(ρ), βij =

(
i

j

)
βi−j .

(39)

In more detail, σ(hi) = (ρ(h+ β))i = ρνi (h+ β)i = ρνi
∑i

j=0 βijh
j . For all natural numbers i and

j such that 1 ≤ j ≤ i, (ρνj )
−1ρνi = νj(ρνi−j).

Simplicity criterion for diskew polynomial rings where ρ is a unit. Theorem 1.3 is a
simplicity criterion for a diskew polynomial ring E = D[x, y;σ, τ, b, ρ] where ρ is a unit and τσ is
an epimorphism. By Theorem 1.2, the ring E is a GWA that satisfies the assumptions of Theorem
1.1, a simplicity criterion for GWAs, and Theorem 1.3 is rather a straightforward corollary of
Theorem 1.1.

Proof of Theorem 1.3. (1 ⇔ 2) Since ρ is a unit, E = D[x, y;σ, τ, a = h] is a GWA (by
Theorem 1.2) where D = D[h; τσ]. Since τσ is an epimorphism, the element a = h is a normal
element of the ring D. By Corollary 5.2, E = D[y, x; τ, σ, σ(a)] and D = D[σ(h);στ ]. By Theorem
1.2, στ = ωρτσ in D. Hence, στ is an epimorphism of the ring D, and so the element σ(a) = σ(h) is
a normal element of D. This means that the GWA E = D[x, y;σ, τ, a = h] satisfies the assumptions
of Theorem 1.1. In particular, the ring E is a simple ring iff the conditions (a)-(d) of Theorem 1.1
hold for the GWA E. We aim to show that the conditions (a)-(d) of statement 2 of the theorem
are equivalent to the conditions (a)-(d) of Theorem 1.1.

(a) ⇔ (a) : Since τσ and στ are epimorphisms of the ring D = D[h; τσ] = D[σ(h);στ ], the
conditions that the elements a and σ(a) are regular in D are equivalent to the conditions that
τσ and στ are automorphisms of D or, equivalently, σ and τ are automorphisms of D (since
σ(h) = ρh+ b and τ(h) = τ(ρ−1)(h− τ(b)), by Theorem 1.2).

(a, d) ⇔ (a, d) : Since D = D[h; τσ], the condition Dh + Dσi(h) = D (where i ≥ 1) holds iff
Dbi = D (by (34)) iff Dbi = D iff b∗i bi = 1 for some element b∗i ∈ D.

Since τσ is an automorphism of the ring D (as σ and τ are automorphisms), the element h of D
is a normal, regular element. Hence, so is the element σi(h) of D (since σ is an automorphism of the
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ring D). Then the condition Dh+Dσi(h) = D can be rewritten as the condition hD+σi(h)D = D
which is equivalent to the equality biD = D, i.e., bib

o
i = 1 for some element b0i ∈ D. Therefore,

the condition Dh+Dσi(h) = D is equivalent to the conditions that the element bi of D is a unit
(since (a) ⇔ (a)).

(a, c, d) ⇔ (a, d) : In view of the equivalence ‘(a, d) ⇔ (a, d)’, it suffices to show that the
implication (c) ⇐ (a, d) holds, i.e., that the automorphism σn of D is not inner for all n ≥ 1.
Suppose that this is not the case for some n ≥ 1, that is ud = σn(d)u for all d ∈ D where
u =

∑m
i=0 uih

i is a unit of D and ui ∈ D. Then necessarily the element u0 is a unit of D (since
D/(h) ≃ D). Taking the equality uh = σn(h)u = (anh + bn)u modulo the ideal (h) of the ring
D we have that bnu0 = 0 in D (since D/(h) ≃ D), hence u0 = 0 (since bn is a unit of D), a
contradiction.

(a, b, c, d) ⇔ (a, b, c, d) : We know already that (a, c, d) ⇔ (a, d). Suppose that the ring D is a
σ-simple ring. Then necessarily the ring D is a σ-simple ring: If p is a nonzero, σ-invariant ideal
of the ring D then DpD is a nonzero, σ-invariant ideal of the ring D. Therefore, DpD = D. By
taking this equality modulo the ideal (h) of the ring D, we have the equality p = D, as required.

Suppose that D is a σ-simple ring. Let I be a nonzero, σ-invariant ideal of the ring D. Let
p =

∑n
i=0 dih

i (where di ∈ D) be a nonzero element of I of least possible degree n with respect to
h. In particular, dn 6= 0 and n ≥ 1 (since D is a σ-simple ring). Then,

I ⊇
∑

i≥0

Dσi(p)D =
∑

i≥0

Dσi(dn)aih
nD + · · · =

(∑

i≥0

Dσi(dn)aiν
n(D)

)
hn + · · ·

=
(∑

i≥0

Dσi(dn)D
)
hn + · · · = Dhn + · · ·

since the elements ai are units of D (see (34)), ν is an automorphism of D and
∑

i≥0 Dσi(dn)D is a
nonzero, σ-invariant ideal of the ring D which is equal to D (by the σ-simplicity of D). Therefore,

without loss of generality we may assume that bn = 1, i.e., p = hn +
∑n−1

i=0 dih
i.

(i) For all elements d ∈ D, pd = νn(d)p, i.e., did = νn−i(d)di for i = 0, 1, . . . , n − 1: The
element of the ideal I,

νn(d)p− pd =

n−1∑

i=0

(νn(d)di − diν
i(d))hi,

has degree < n, hence it is equal to zero, by the minimality of n, and the statement (i) follows
(since ν is an automorphism of D, the element h is regular in D).

(ii) σ(p) = ρνnp : The element of the ideal I,

σ(p) − ρνnp = (ρνnh
n + · · · )− (ρνnh

n + · · · )

has degree < n, hence it is equal to zero, by the minimality of n, and the statement (ii) follows.
(iii) [h, p] = 0: For i = 0, 1, . . . , n− 1, diβ = νn−i(β)di = βdi since ν(β) = β, by (39). By (39),

βh = hβ. Hence, pβ = βp. The element β = ρ−1b is a unit since ρ and b are so (see the statement
(d)). Then, by (38), diβ = βdi = ν(di)β, and so di = ν(di). In summary,

pβ = βp, ν(di) = di and diβ = βdi for i = 0, 1, . . . , n− 1. (40)

Now, hp = (hn +
∑n−1

i=0 ν(di)h
i)h = (hn +

∑n−1
i=0 dih

i)h = ph.
The statements (i) and (ii) mean that the element p is a regular, normal element of the ring D.

Hence, DpD = Dp = pD. The condition (ii) implies that the ideal Dp of D is a proper, σ-invariant
ideal of D. Now, it is obvious that the ring D is a σ-simple ring iff the conditions (b) and (c) hold.

(1 ⇔ 3) In view of Corollary 5.2, this equivalence follows from the equivalence (1 ⇔ 2) by
the (x, y)-symmetry, the fact that the conditions that ρ is a unit and τσ is an epimorphism are
equivalent to the conditions that ρ−1 is a unit and στ is an epimorphism of the ring D since
στ = ωρτσ, by (31). �
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We keep the notation and assumptions of Theorem 1.3. Let p = hn +
∑n−1

i=0 dih
i ∈ D. Since

ρ is a unit, then, by (39), the condition that σ(p) = ρνnp is equivalent to the equalities (since
σ(p) = ρνnh

n + · · · )

ρνnβnj +
∑

j≤i≤n−1

σ(di)ρ
ν
i βij = ρνndj for j = 0, 1, . . . , n− 1. (41)

For each j, by multiplying the equality (41) by the unit (ρνj )
−1 on the left we have the equality

ρνn−jdj − σ(dj) = ρνn−jβnj +
∑

j<i≤n−1

σ(di)ρ
ν
i−jβij for j = 0, 1, . . . , n− 1,

since ρνndj(ρ
ν
j )

−1 = ρνnν
n−j(ρνj )

−1dj = ρνn−jdj and ρνi βij(ρ
ν
j )

−1 = ρνi (ωρ−1ωb)
i−j((ρνj )

−1)βij =

ρνi ν
i−j(ρνj )

−1βij = ρνi−jβij . Since bi = ρνi β
i for all i ≥ 1, the equalities above can be written as

follows

ρνn−jdj − σ(dj) =

(
n

j

)
bn−j +

∑

j<i≤n−1

(
i

j

)
σ(di)b

i−j for j = 0, 1, . . . , n− 1. (42)

In particular, for j = n− 1 and j = 0 we have, respectively, the equalities

ρdn−1 − σ(dn−1) = nb, (43)

ρνnd0 − σ(d0) = bn +
∑

1≤i≤n−1

σ(di)b
i. (44)

Let p = hn +
∑n−1

i=0 dih
i ∈ D be as in Theorem 1.3. Notice that the element β is a unit, ν =

ωρ−1b = ωβ and pβ = βp (see (40). Then, p = ωβ(p) = ν(p) = τσ(p) = τ(ρνnp), and so

τ(p) = τ(ρνn)
−1p. (45)

Rings with enough normal elements. We say that a ring has enough normal elements
if each nonzero ideal contains a normal element. All commutative rings have enough normal
elements. In a similar way, a ring that has enough left/right normal elements is defined. The next
corollary provides examples of DPRs/GWAs that have enough regular normal elements.

Corollary 5.4 Let E = D[x, y;σ, τ, b, ρ] be a diskew polynomial ring such that ρ is a unit in D
and ν = τσ is an epimorphism. Suppose that the ring D is σ-simple (resp., τ-simple); σ (resp.,
τ) is an automorphism of D and the elements bi (resp., b

′
i) are units in D for all i ≥ 1. Then

1. every proper ideal of E contains an element p (resp., p′) that satisfies the conditions 2(c)
(resp., 3(c)) of Theorem 1.3. In particular, the element p (resp., p′) is a regular, normal
element. The element p (resp., p′) is unique provided its h-degree (resp., h′-degree) is the
least possible.

2. The ring E has enough regular normal elements.

3. The multiplicative monoid P (resp., P ′) generated by all the elements p (resp., p′) is a regular
Ore set in E such that the ring P−1E (resp., P ′−1E) is a simple ring.

Proof. The assumptions of the corollary are precisely the conditions (a), (b), (d) in statements
2 and 3 of Theorem 1.3. Now, statement 1 of the corollary follows, see the proof of (a, b, c, d) ⇔
(a, b, c, d) of Theorem 1.3. Statements 2 and 3 follow from directly from statement 1. �

The next theorems shed light on the elements p and p′ in Theorem 1.3. Theorem 5.5 describes
the element p in Theorem 1.3 where n = 1.

Theorem 5.5 Let E = D[x, y;σ, τ, b, ρ] be a diskew polynomial ring such that ρ is a unit and
D = D[h; ν = τσ] where h = yx. The following statements are equivalent.
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1. There exists an element C = h+α ∈ D, where α ∈ D, such that Cd = ν(d)C for all elements
d ∈ D and σ(C) = ρC.

2. There is an element α ∈ D such that ρα− σ(α) = b and αd = ν(d)α for all elements d ∈ D.

If one of the equivalent conditions holds then [h,C] = (ν(α) − α)C and

(a) C = ρ−1(xy + σ(α)), xC = ρCx and yC = τ(ρ−1)(C + ν(α) − α)y.

(b) E ≃ D[C; ν][x, y;σ, τ, a := C−α] is a GWA where σ(C) = ρC and τ(C) = τ(ρ−1)(C+
ν(α)−α). Furthermore, τσ(C) = C+ν(α)−α and στ(C) = στ(ρ−1)(ρC+σ(ν(α)−α)).

Proof. (1 ⇔ 2) The equality Cd = ν(d)C is equivalent to the equality αd = ν(d)d. The
equality σ(C) = ρC, i.e., ρh + b + σ(α) = ρh + ρα is equivalent to the equality ρα − σ(α) = b.
Now, [h,C] = (h+ ν(α) − C)h = (ν(α) − α)h = (ν(α) − α)C − (ν(α) − α)α = (ν(α) − α)C since
α · α = ν(α) · α.

(a) C = ρ−1(xy+σ(α)): C = yx+α = ρ−1(xy− b)+α = ρ−1(xy+σ(α)) since ρα−σ(α) = b.
xC = x(yx + α) = (xy + σ(α))x = ρCx and yC = yρ−1(xy + σ(α)) = τ(ρ−1)(yx+ τσ(α))y =

τ(ρ−1)(C + ν(α) − α)y.
(b) By Theorem 1.2, E = D[x, y;σ, τ, h] is a GWA. Now, the statement (b) follows from the

statement (a). In particular, τσ(C) = τ(ρ)τ(C) = τ(ρ)τ(ρ−1)(C + ν(α)− α) = C + ν(α)− α and
στ(C) = στ(ρ−1)(ρC + σ(ν(α) − α)). �

Proof of Theorem 1.6. By Theorem 1.2, E = D[x, y;σ, τ, h] is a GWA and the element h is
a left regular element of E. Hence, the element C = h+ α is a left regular element of E.

(1 ⇔ 2) The equivalence follows at once from Theorem 5.5. �.
The canonical central element C of a diskew polynomial ring (under certain con-

ditions). The next corollary is a criterion for an element C + α (where α ∈ D) to be a central
element in E. It follows straightaway from Theorem 1.6. This is a generalization of a similar
result for the rings D〈σ, b, ρ〉, and [10, Lemma 1.5].

Corollary 5.6 Let E = D[x, y;σ, τ, b, ρ] be a diskew polynomial ring such that ρ is a unit, D =
D[h; ν = τσ] and C = h+ α where h = yx and α ∈ D. The following statements are equivalent.

1. The element C is a central element of E.

2. ρ = 1, ν = 1, α− σ(α) = b, and the element α belongs to the centre of D.

If one of the equivalent conditions holds then

(a) C = xy + σ(α).

(b) E ≃ D[C][x, y;σ, τ, a := C − α] is a GWA where σ(C) = C and τ(C) = C.

(c) The element C is a regular element of E.

Every simple ring is, in fact, an algebra either over the field of rational numbers Q or over the
finite prime field Fp that contains p elements (p is a prime number).

Simplicity criterion for DPRs in characteristic zero. Proof of Theorem 1.4. (1 ⇒ 2)
This implication follows from Theorem 1.3 and Theorem 1.6.

(2 ⇐ 1) We have to show that the case (c) of Theorem 1.3 holds. Suppose that this is
not the case and p is an element that satisfies the conditions (i)–(iii) in the condition (c) of
Theorem 1.3, we seek a contradiction. Since D is a Q-algebra, the equality (43) can be written as
ρn−1dn−1 − σ(n−1dn−1) = b. Recall that dn−1d = ν(d)dn−1 for all d ∈ D and ν(dn−1) = dn−1.
Now, by Theorem 1.6, the element C is a left normal element of E which is not a unit, and so the
ring E is not a simple ring, a contradiction. �

Simplicity criterion for DPRs in prime characteristic. Let p be a prime number and
Fp = Z/pZ. Each natural number n can be written uniquely as a finite sum n =

∑
nip

i where
0 ≤ ni < p, the p-adic form of n. For a natural number n 6= 0, let vp(n) = min{i |ni 6= 0}. Then

26



n = n′pvp(n) for some natural number n′ such that p ∤ n′. Let m =
∑

mip
i be the p-adic form of

a natural number m. If n ≥ m then

(
n

m

)
=

∏

i

(
ni

mi

)
in Fp, (46)

see [11, Eqn. (7)] (where
(
ni

mi

)
= 0 if ni < mi). For all i, j such that 0 ≤ j ≤ i < p,

(
ni

mi

)
6= 0 in

Fp. In particular, (for n ≥ m),
1.

(
n
m

)
= 0 iff there is i ≥ 0 such that

(
ni

mi

)
= 0; equivalently,

(
n
m

)
6= 0 iff mi ≤ ni for all i ≥ 0.

2.
(
npi

mpi

)
=

(
n
m

)
for all i ≥ 0.

Definition. For a nonzero natural number n such that p | n, a unique number ñ such that
0 ≤ ñ < n,

(
n
ñ

)
6= 0 and

(
n
i

)
= 0 (in Fp) for all ñ < i < n is called the p-adic neighbour of n. If

n = nip
i+ni−1p

i−1+ · · ·+njp
j is the p-adic form of n then ñ = nip

i+ni−1p
i−1+ · · ·+(nj − 1)pj

is the p-adic form of ñ. In particular, p | ñ.

Let P = {pi | i ≥ 0}. For all natural numbers i ≥ 1, p̃i = 0, that is
(
pi

j

)
= 0 for all numbers j

such that 0 < j < pi.

Proof of Theorem 1.5. (2 ⇔ 3) This follows from (42) and the equalities
(
pi

j

)
= 0 in Fp for

all numbers 0 < j < pi. Let (2′) be statement 2 of Theorem 1.3.
(1 ⇔ 2′) Theorem 1.3.
(1 ⇒ 2) Clearly, (2′ ⇒ 2). Then (1 ⇒ 2) since (1 ⇔ 2′).
(3 ⇒ 2′) Suppose that the implication (3 ⇒ 2′) is wrong, we seek a contradiction. Then,

by Theorem 1.3, there is an element p′ = hn +
∑n−1

i=0 dih
i that satisfies the conditions (i)-(iii) of

statement 2′.
(S1) p | n: By (43), ρdn−1−σ(dn−1) = nb, and so n = 0 in Fp (by the condition (c)), i.e. p | n.
Let dn = 1 and Supp(p′) := {i | di 6= 0}, the support of the element p′. Notice that n ∈ Supp(p′)

and Supp(p′) 6= {n} since otherwise, p′ = hn, and so β = ρ−1b = 0 (by the condition (ii) of
Theorem 1.3.(2)) but b 6= 0 (the condition (d)), a contradiction.

Recall that P = {pi | i ≥ 0}. Then Supp(p′) = S
∐

T where S = Supp(p′)\P and T =
Supp(p′) ∩ P .

(S2) S 6= ∅: Since otherwise p′ = hpi

+
∑i−1

j=0 αjh
pj

+ α, a contradiction.

Let S = {n1 > n2 > · · · > nt}. Notice that
(
t
i

)
= 0 for all t ∈ T and 0 < i < t. So, for all j

such that 0 < j < n we can ignore the terms in (42) corresponding to the elements t ∈ T (since
the corresponding binomials are equal to zero).

(S3) If n > n1 then σ(dn1
) = ρνn−n1

dn1
and dn1

is a unit in D: By (42), for j = n1, ρ
ν
n−n1

dn1
−

σ(dn1
) = 0 (all the binomials are equal to zero by the choice of dn1

). Since the ring D is a σ-simple
ring and dn1

6= 0, then the element dn1
must be a unit.

(S4) n1 = n′
1p

m for some m ≥ 1 and a positive integer n′
1 not divisible by p: If n = n1 then

the result follows from the statement (S1). Suppose that n > n1. Then for j = n1 − 1 the equal-
ity (42) takes the form ρνn−n1+1dn1−1 − σ(dn1−1) = n1σ(dn1

)b. Then σ(dn1
)−1ρνn−n1+1dn1−1 =

(ρνn−n1
dn1

)−1ρνn−n1+1dn1−1 = d−1
n1

(ρνn−n1
)−1ρνn−n1+1dn1−1 = d−1

n1
νn−n1(ρ)dn1−1 = ν−(n−n1)νn−n1(ρ)

d−1
n−1dn1−1 = ρd−1

n1
dn1−1. Suppose that p ∤ n1, i.e. n1 6= 0 in Fp. Then multiplying the equal-

ity above by the element n−1
1 σ(dn1

)−1 on the left we have the equality ρα − σ(α) = b where
α = n−1

1 σ(d−1
n1

dn1−1) ∈ D, ν(α) = α and αd = ν−(n−n1)+n−n1+1(d)α = ν(d)α, a contradiction.
Therefore, p | n1 and the statement (S4) follows.

(S5) ñ1 ≥ p and p | ñ1: Since p | n1, we must have p | ñ1. Since n1 6∈ P , we must have ñ1 ≥ p.
The following claim is the essence of the proof.

Claim (‘Meeting the p-neighbour method’)): For the element p′, either n1 > n2 = ñ1

or, otherwise, there is an index i ≥ 2 such that n1 > n2 > · · · > ni > ni+1 = ñi ≥ ñi−1 ≥ · · · ≥ ñ1

(where ñi is the p-neighbour of ni).
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Using the Claim we can get a required contradiction. Suppose that n1 > n2 = ñ1. Then,
by (S4), n1 − ñ1 = pm (recall that m ≥ 1). Suppose that n = n1. By (42), for j = ñ1,

ρνpmdñ1
− σ(dñ1

) =
(
n1

ñ1

)
bp

m

. Notice that
(
n1

ñ1

)
6= 0 in Fp. Let α =

(
n1

ñ1

)−1
dñ. Then ρνpmα− σ(α) =

bp
m

, ν(α) = α and αd = νp
m

(d)α for all d ∈ D, a contradiction.
Suppose that n > n1. By (42), for j = n1, ρ

ν
n−n1

dn1
− σ(dn1

) = 0, that is σ(dn1
) = ρνn−n1

dn1
.

The ring D is σ-simple and dn1
6= 0, so the element dn1

is a unit of D. By (42), for j = ñ1(= n2),

ρνn−ñ1
dñ1

− σ(dñ1
) =

(
n1

ñ1

)
σ(dn1

)bp
m

. By multiplying the equality by the element
(
n1

ñ1

)−1
σ(dn1

)−1

on the left we have the equality ρνpmα − σ(α) = bp
m

where α =
(
n1

ñ1

)−1
σ(d−1

n1
dñ1

). We have

used the following fact: σ(dn1
)−1ρνn−ñ1

dñ1
= (ρνn−n1

dn1
)−1ρνn−ñ1

dñ1
= d−1

n1
(ρνn−n1

)−1ρνn−ñ1
dñ1

=

d−1
n1

νn−n1(ρνn1−ñ1
)dñ1

= ν−(n−n1)νn−n1(ρνpm)d−1
n1

dñ1
= ρνpmd−1

n1
dñ1

since n1 − ñ1 = pm. Notice

that ν(α) = α (since ν(dn1
) = dn1

and ν(dñ1
) = dñ1

as ñ1 = n2) and αd = νp
m

(d)α for all
elements d ∈ D (since d−1

n1
dñ1

d = ν−(n−n1)+n−ñ1(d)d−1
n1

dñ1
= νp

m

(d)d−1
n1

dñ1
). So, we obtain a

contradiction.
Suppose that the second case of the Claim holds. For j = ni, the equality (42) takes the

form ρνn−ni
dni

− σ(dni
) =

(
n
ni

)
bn−ni +

∑i−1
j=1

(
nj

ni

)
σ(dnj

)bnj−ni = 0, i.e. σ(dn1
) = ρνn−ni

dni
, since

all the binomials in the equality above are equal to zero as n1 > n2 > · · · > ni > ni+1 =
ñi ≥ ñi−1 ≥ · · · ≥ ñ1. The algebra D is σ-simple and dni

6= 0, hence the element dn1
is a

unit in D. For j = ni+1 = ñi, the equality (42) can be written as follows ρνn−ñi
dñi

− σ(dñi
) =

∑i−1
j=1

(
nj

ni+1

)
σ(dnj

)bnj−ni+1 +
(
ni

ñi

)
σ(dni

)bni−ñi =
(
ni

ñi

)
σ(dni

)bni−ñi since all the binomials but the

last one are equal to zero as n1 > n2 > · · · > ni > ni+1 = ñi ≥ ñi−1 ≥ · · · ≥ ñ1. By

multiplying the equality above by the element
(
ni

ñi

)−1
σ(dni

)−1 on the left we have the equality

ρνpviα − σ(α) = bp
vi

where vi = vp(ni) ≥ 1 (since p | ni) and α =
(
ni

ñi

)−1
σ(d−1

ni
dñi

). We have

used the following fact: σ(dni
)−1ρνn−ñi

dñi
= (ρνn−ni

dni
)−1ρνn−ñi

dñi
= d−1

ni
(ρνn−ni

)−1ρνn−ñi
dñi

=

d−1
ni

νn−ni(ρνni−ñi
)dñi

= ν−(n−ni)νn−ni(ρνpm)d−1
n1

dñ1
= ρνpvid

−1
ni

dñi
since ni − ñi = pvi . Notice that

ν(α) = α (since ν(dni
) = dni

and ν(dñi
) = dñi

) and αd = νp
vi
(d)α for all elements d ∈ D (since

d−1
ni

dñi
d = ν−(n−ni)+n−ñi(d)d−1

ni
dñi

= νp
vi
(d)d−1

ni
dñi

). So, we obtain a contradiction.
Proof of the Claim. (S6) S 6= {n1}: Since otherwise, by the equality (42) for j = n1 we

would have ρνn−n1
dn1

− σ(dn1
) = 0, and so dn1

is a unit, and for j = ñ1, ρ
ν
n−ñ1

dñ1
− σ(dñ1

) =
(
n1

ñ1

)
σ(dn1

)bp
n1−ñ1

6= 0. Hence, dñ1
6= 0, i.e., ñ1 ∈ T , and we get a contradiction by repeating the

same arguments as above.
So, either, n1 > n2 = ñ1 or not. In the second case we must have n2 > ñ1, since otherwise

by repeating the arguments of the proof of (S6) for j = n1, ñ1, we would have a contradiction.
Hence,

(
n1

n2

)
= 0 in Fp, and so ρνn−n2

dn2
− σ(dn2

) = 0, by (42) for j = n2, i.e. σ(dn2
) = ρνn−n2

d2.
Therefore, dn2

is a unit of D since dn2
6= 0 and D is a σ-simple ring.

(S7) p | n2: By (42), for j = n2 − 1, ρνn−n2+1dn2−1 − σ(dn2−1) =
(

n2

n2−1

)
σ(dn2

)b = n2σ(dn2
)b.

If p 6 |n2 then repeating the argument of the proof of (S4) we get a contradiction, So, we must
have n2 = 0 in Fp, i.e. p | n2.

Let n1 = alp
l + al−1p

l−1 + · · · + ampm be the p-adic form of n1 where al 6= 0 and am 6= 0.
Then ñ1 = alp

l + al−1p
l−1 + · · · + (am − 1)pm. The inequalities n1 > n2 > ñ1 imply that

pm = n1 − ñ1 > n2 − ñ1 > 0. Hence, n2 = alp
l + · · ·+ (am − 1)pm + am−1p

m−1 + · · ·+ am2
pm2 is

the p-adic form of n2 where am2
6= 0 and m2 ≥ 1 (since p | n2). Then ñ2 = alp

l+· · ·+(am2
−1)pm2

and ñ2 ≥ ñ1.
Suppose that we have already constructed elements n1 > n2 > · · · > ni > ñi ≥ ñi−1 ≥ · · · ≥ ñ1

such that p | nj for j = 1, . . . , i.
(S8) S 6= {n1, . . . , ni}: Otherwise, by (42), for j = ni, ñi, we get a contradiction by the same

arguments as above. Then either ni+1 = ñi and we are done or, otherwise, ni > ni+1 > ñi. Then
repeating the same argument for ni+1 as in the case n2 we have that p | ni+1 and ni > ni+1 >
ñi+1 ≥ ñi. This process must stop, say on j’th step, that is n1 > n2 > · · · > nj > nj+1 = ñj >
ñj−1 ≥ · · · ≥ ñ1. The proof of the Claim is complete. �

Simplicity criteria for ambiskew polynomial rings are given in [15].
Iterated di-skew polynomial rings.
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Definition. A ring of the type E = D[x1, y1;σ1, τ1, b1, ρ1] · · · [xn, yn;σn, τn, bn, ρn] is called an
iterated di-skew polynomial ring of rank n.

Corollary 5.7 Let E = D[x1, y1;σ1, τ1, b1, ρ1] · · · [xn, yn;σn, τn, bn, ρn] be an iterated di-skew poly-
nomial ring of rank n. Then E = ⊕α,β∈NnD(yx)α,β is a free left D-module where (yx)α,β :=

yα1

1 xβ1

1 yα2

2 xβ2

2 · · · yαn
n xβn

n , α = (α1, . . . , αn) and β = (β1, . . . , βn).

Proof. The corollary follows from Theorem 5.1. �
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