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The group K1(Sn) of the algebra of one-sided inverses of a

polynomial algebra

V. V. Bavula

Abstract

The algebra Sn of one-sided inverses of a polynomial algebra Pn in n variables is ob-
tained from Pn by adding commuting, left (but not two-sided) inverses of the canonical
generators of the algebra Pn. The algebra Sn is a noncommutative, non-Noetherian alge-
bra of classical Krull dimension 2n and of global dimension n and is not a domain. If the
ground field K has characteristic zero then the algebra Sn is canonically isomorphic to the
algebra K〈 ∂

∂x1
, . . . , ∂

∂xn
,
∫

1
, . . . ,

∫

n
〉 of scalar integro-differential operators. It is proved that

K1(Sn) ≃ K∗. The main idea is to show that the group GL∞(Sn) is generated by K∗, the
group of elementary matrices E∞(Sn) and (n− 2)2n−1 +1 explicit (tricky) matrices and then
to prove that all the matrices are elementary. For each nonzero idempotent prime ideal p of
height m of the algebra Sn, it is proved that

K1(Sn, p) ≃

{

K∗, if m = 1,

Z
m(m−1)

2 ×K∗m if m > 1.

Key Words: the group K1, the current groups, the group of automorphisms, group gen-

erators, the group of units, the semi-direct and the exact products of groups, the minimal

primes.

Mathematics subject classification 2000: 19B99, 16W20, 14H37.

1 Introduction

Throughout, ring means an associative ring with 1; module means a left module; N := {0, 1, . . .}
is the set of natural numbers; K is a field and K∗ is its group of units; Pn := K[x1, . . . , xn] is a
polynomial algebra over K; ∂1 := ∂

∂x1
, . . . , ∂n := ∂

∂xn
are the usual partial derivatives (K-linear

derivations) of Pn; EndK(Pn) is the algebra of all K-linear maps from Pn to Pn and AutK(Pn) is
its group of units (i.e. the group of all the invertible linear maps from Pn to Pn); the subalgebra
An := K〈x1, . . . , xn, ∂1, . . . , ∂n〉 of EndK(Pn) is called the n’th Weyl algebra.

Definition, [5]. The algebra Sn = Sn(K) of one-sided inverses of Pn is the algebra generated
over a field (or a ring) K of by 2n elements x1, . . . , xn, yn, . . . , yn that satisfy the defining relations:

y1x1 = 1, . . . , ynxn = 1, [xi, yj] = [xi, xj ] = [yi, yj] = 0 for all i 6= j,

where [a, b] := ab− ba is the algebra commutator of elements a and b.

By the very definition, the algebra Sn is obtained from the polynomial algebra Pn by adding
commuting, left (but not two-sided) inverses of its canonical generators. The algebra S1 =
K〈x, y | yx = 1〉 is a well-known primitive algebra [12], p. 35, Example 2. Over the field C of
complex numbers, the completion of the algebra S1 is the Toeplitz algebra which is the C∗-algebra
generated by a unilateral shift on the Hilbert space l2(N) (note that y = x∗). The Toeplitz algebra
is the universal C∗-algebra generated by a proper isometry. If char(K) = 0 then the algebra Sn is
isomorphic to the algebra K〈 ∂

∂x1
, . . . , ∂

∂xn
,
∫
1
, . . . ,

∫
n
〉 of scalar integro-differential operators (via

xi 7→
∫
i
, yi 7→

∂
∂xi

).
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In [7], it is proved that K1(S1) ≃ K∗. The first aim of the paper is to prove that

• (Theorem 3.5) K1(Sn) ≃ K∗ for all n ≥ 1.

The algebra Sn was studied in detail in [5]: its Gelfand-Kirillov dimension is 2n, its classical
Krull dimension cl.Kdim(Sn) = 2n, and its weak and global dimensions are n. The algebra Sn

is neither left nor right Noetherian as was shown by Jacobson [11] when n = 1 (see also Baer
[1]). Moreover, it contains infinite direct sums of left and right ideals. It is an experimental fact
that the algebra Sn ≃ S

⊗n
1 has properties that are a mixture of properties of the Weyl algebra

An ≃ A⊗n
1 (in characteristic zero) and the polynomial algebra P2n ≃ P⊗n

2 which is not surprising
when we look at their defining relations:

P2 = K〈x, y〉 : yx− xy = 0;

A1 = K〈x, y〉 : yx− xy = 1;

S1 = K〈x, y〉 : yx = 1.

The group Gn := AutK−alg(Sn) of K-algebra automorphisms of Sn and the group S∗n of units of
the algebra Sn were determined in the series of three papers [6], [7] and [8], and their explicit
generators were found (both groups are huge). The group G1 was found by Gerritzen [10]).

Theorem 1.1 1. [6] Gn = Sn ⋉Tn ⋉ Inn(Sn) where Sn is the symmetric group, Tn ≃ K∗n is
the n-dimensional algebraic torus and Inn(Sn) is the group of inner automorphisms of Sn.

2. [7], [9] S∗n = K∗× (1+an)
∗ where an is the ideal generated by all the height one prime ideals

of Sn.

3. [8] The centre of the group S∗n is K∗ and the centre of the group (1 + an)
∗ is {1}.

4. [8] The map (1 + an)
∗ → Inn(Sn), u 7→ ωu, is a group isomorphism (ωu(a) = uau−1).

The structure of the proof of Theorem 3.5. The idea of the proof that K1(Sn) ≃ K∗

(Theorem 3.5) is to use the fact that the group GL∞(Sn−1) is canonically isomorphic to the
congruence subgroup (1 + pn)

∗ of S∗n = K∗ × (1 + an)
∗, (1 + pn)

∗ ⊆ (1 + an)
∗, where pn is an

(arbitrary) height one prime ideal of the algebra Sn. The group S∗n is huge, e.g.

S
∗
n ⊃ (1 + an)

∗ ⊃ GL∞(K)⋉ · · ·⋉GL∞(K)︸ ︷︷ ︸
2n−1 times

, (1)

the iterated semi-direct product being a small part of the group S∗n. The key ingredients in finding
the groups Gn, Inn(Sn) and S∗n (and their explicit generators) are the Fredholm operators and
their indices, the current subgroups, and the K1-theory. This explains why it is possible to recover
the group GL∞(Sn−1) in S∗n (this is not straightforward), to find its explicit generators. We prove
in Theorem 3.3, Lemma 3.2, and (34)) that

• the group GL∞(Sn) is generated by K∗, the group of elementary matrices E∞(Sn) and (n−

2)2n−1 + 1 matrices
(θij(J) 0

0 1

)
(Lemma 3.6) where (see (16))

θij(J) :=
(
1 + (yi − 1)

∏

k∈J\i

(1− xkyk)
)(
1 + (xj − 1)

∏

l∈J\j

(1− xlyl)
)
∈ (1 + an)

∗,

J is a subset of {1, . . . , n} with |J | ≥ 2, i is the largest number in J and j ∈ J\i.

The final and the most difficult part of the proof is to show that

2



• (Theorem 3.4) all the above matrices
(θij(J) 0

0 1

)
are elementary, i.e. the units θij(J) are

elementary when regarded as matrices via the inclusion GL1(Sn) ⊆ GL∞(Sn). �

We spend all of Section 4 to prove this fact.

• (Theorem 5.7) Let p be a nonzero idempotent prime ideal of the algebra Sn and m = ht(p)
be its height. Then

K1(Sn, p) ≃

{
K∗, if m = 1,

Z(
m

2 ) ×K∗m if m > 1.

Let Θn,s, s = 1, . . . , n − 1, denote the finitely generated subgroup of the group (1 + an)
∗,

generated by the elements θij(J) where J is a subset of {1, . . . , n} with |J | = s+1 ≥ 2, and i and
j are two distinct elements of the set J . These, the so-called current subgroups, were introduced
in [7] and [8], and they are the core (the non-obvious part) of the groups Gn, Inn(Sn) and S∗n and
the key for determining the groups GL∞(Sn), K1(Sn), GL∞(Sn, p) and K1(Sn, p), as this paper
demonstrates.

The paper is organized as follows. In Section 2, some necessary results and constructions are
collected for the algebra Sn and the group (1 + an)

∗. In Section 3, the groups K1(Sn), GL∞(Sn)
and their explicit generators are found. In Section 4, Theorem 3.4 is proved. In Section 5, the
groups GL∞(Sn, p), K1(Sn, p) and explicit generators for them are found, and Theorem 5.7 is
proved.

The structure of the proof of Theorem 5.7. The line of proof of Theorem 5.7 follows
that of Theorem 3.5 (but there are new moments): first, we prove that the group GL∞(Sn, p) is
generated by the group E∞(Sn, p) of p-elementary matrices, some explicit ‘diagonal’ matrices, and

some of the matrices
(θij(J) 0

0 1

)
(Theorem 5.2, Lemma 5.4). Then an ‘obvious’ normal subgroup

E(Sn, p) of GL∞(Sn, p) is introduced and we prove that

GL∞(Sn, p)/E(Sn, p) ≃

{
K∗, if m = 1,

Z(
m

2 ) ×K∗m if m > 1.

This gives the inclusion E∞(Sn, p) ⊆ E(Sn, p). The key moment in proving that the opposite
inclusion holds is (surprisingly) the fact that K1(Sn) ≃ K∗. The new moment is that not all the

‘diagonal’ matrices and not all the matrices
(θij(J) 0

0 1

)
that form a part of the generating set for

the group GL∞(Sn, p) are p-elementary. �
A canonical form is found (Theorem 5.7) for each element a ∈ GL∞(Sn, p). Using it, an

effective criterion (Corollary 5.10) is given for an element a ∈ GL∞(Sn, p) to be a product of
p-elementary matrices, i.e. a ∈ E∞(Sn, p).

2 The groups S
∗
n and (1 + an)

∗ and their subgroups

In this section, we collect some results without proofs on the algebras Sn from [5] and [8] that will
be used in this paper, their proofs can be found in [5] and [8]. Several important subgroups of
the group (1+ an)

∗ are considered. The most interesting of these are the current subgroups Θn,s,
s = 1, . . . , n− 1. They encapsulate the most difficult parts of the groups S∗n and Gn.

The algebra of one-sided inverses of a polynomial algebra. Clearly, Sn = S1(1) ⊗
· · · ⊗ S1(n) ≃ S

⊗n
1 where S1(i) := K〈xi, yi | yixi = 1〉 ≃ S1 and Sn =

⊕
α,β∈Nn Kxαyβ where

xα := xα1
1 · · ·xαn

n , α = (α1, . . . , αn), y
β := yβ1

1 · · · yβn
n and β = (β1, . . . , βn). In particular, the

algebra Sn contains two polynomial subalgebras Pn and Qn := K[y1, . . . , yn] and is equal, as a
vector space, to their tensor product Pn ⊗Qn.

3



When n = 1, we usually drop the subscript ‘1’ if this does not lead to confusion. So, S1 =
K〈x, y | yx = 1〉 =

⊕
i,j≥0Kx

iyj. For each natural number d ≥ 1, let Md(K) :=
⊕d−1

i,j=0KEij be
the algebra of d-dimensional matrices where {Eij} are the matrix units, and

M∞(K) := lim
−→

Md(K) =
⊕

i,j∈N

KEij

is the algebra (without 1) of infinite dimensional matrices. The algebra S1 contains the ideal
F :=

⊕
i,j∈N

KEij , where

Eij := xiyj − xi+1yj+1, i, j ≥ 0. (2)

For all natural numbers i, j, k, and l, EijEkl = δjkEil where δjk is the Kronecker delta function.
The ideal F is an algebra (without 1) isomorphic to the algebra (without 1)M∞(K) via Eij 7→ Eij .
For all i, j ≥ 0,

xEij = Ei+1,j , yEij = Ei−1,j (E−1,j := 0), (3)

Eijx = Ei,j−1, Eijy = Ei,j+1 (Ei,−1 := 0). (4)

The algebra
S1 = K ⊕ xK[x]⊕ yK[y]⊕ F (5)

is a direct sum of vector spaces. Then

S1/F ≃ K[x, x−1] =: L1, x 7→ x, y 7→ x−1, (6)

since yx = 1, xy = 1− E00 and E00 ∈ F .

The algebra Sn =
⊗n

i=1 S1(i) contains the ideal

Fn := F⊗n =
⊕

α,β∈Nn

KEαβ , where Eαβ :=
n∏

i=1

Eαiβi
(i), Eαiβi

(i) := xαi

i y
βi

i − xαi+1
i yβi+1

i .

Note that EαβEγρ = δβγEαρ for all elements α, β, γ, ρ ∈ Nn where δβγ is the Kronecker delta
function; Fn =

⊗n
i=1 F (i) and F (i) :=

⊕
s,t∈N

KEst(i).

• The algebra Sn is central, prime and catenary. Every nonzero ideal of Sn is an essential left
and right submodule of Sn.

• The ideals of Sn commute (IJ = JI); and the set of ideals of Sn satisfy the a.c.c..

• a ∩ b = ab for all idempotent ideals a and b of the algebra Sn;

• The classical Krull dimension cl.Kdim(Sn) of Sn is 2n.

• Let I be an ideal of Sn. Then the factor algebra Sn/I is left (or right) Noetherian iff the
ideal I contains all the height one prime ideals of the algebra Sn.

The set of height one prime ideals of Sn. Consider the ideals of the algebra Sn:

p1 := F ⊗ Sn−1, p2 := S1 ⊗ F ⊗ Sn−2, . . . , pn := Sn−1 ⊗ F.

Then Sn/pi ≃ Sn−1 ⊗ (S1/F ) ≃ Sn−1 ⊗K[xi, x
−1
i ] and

⋂n
i=1 pi =

∏n
i=1 pi = F⊗n = Fn. Clearly,

pi 6⊆ pj for all i 6= j.

• The set H1 of height one prime ideals of the algebra Sn is {p1, . . . , pn}.

4



Let an := p1 + · · ·+ pn. Then the factor algebra

Sn/an ≃ (S1/F )
⊗n ≃

n⊗

i=1

K[xi, x
−1
i ] = K[x1, x

−1
1 , . . . , xn, x

−1
n ] =: Ln (7)

is a skew Laurent polynomial algebra in n variables, and so an is a prime ideal of height and
co-height n of the algebra Sn.

Proposition 2.1 [5] The polynomial algebra Pn is the only (up to isomorphism) faithful simple
Sn-module.

In more detail, SnPn ≃ Sn/(
∑n
i=0 Snyi) =

⊕
α∈Nn Kxα1, 1 := 1 +

∑n
i=1 Snyi; and the action

of the canonical generators of the algebra Sn on the polynomial algebra Pn is given by the rule:

xi ∗ x
α = xα+ei , yi ∗ x

α =

{
xα−ei if αi > 0,

0 if αi = 0,
and Eβγ ∗ x

α = δγαx
β ,

where the set e1 := (1, 0, . . . , 0), . . . , en := (0, . . . , 0, 1) is the canonical basis for the free Z-module
Zn =

⊕n
i=1 Zei. We identify the algebra Sn with its image in the algebra EndK(Pn) of all the

K-linear maps from the vector space Pn to itself, i.e. Sn ⊂ EndK(Pn).
For each non-empty subset I of the set {1, . . . , n}, let SI :=

⊗
i∈I S1(i) ≃ S|I| where |I| is

the number of elements in the set I, FI :=
⊗

i∈I F (i) ≃ M∞(K), aI is the ideal of the algebra
SI generated by the vector space

⊕
i∈I F (i), i.e. aI :=

∑
i∈I F (i) ⊗ SI\i. The factor algebra

LI := SI/aI ≃ K[xi, x
−1
i ]i∈I is a Laurent polynomial algebra. For elements α = (αi)i∈I , β =

(βi)i∈I ∈ NI , let Eαβ(I) :=
∏
i∈I Eαiβi

(i). Then Eαβ(I)Eξρ(I) = δβξEαρ(I) for all α, β, ξ, ρ ∈ NI .

The Gn-invariant normal subgroups (1 + an,s)
∗ of (1 + an)

∗. Let Gn := AutK−alg(Sn).
We will use often the following obvious lemma.

Lemma 2.2 [6] Let R be a ring and I1, . . . , In be ideals of the ring R such that IiIj = 0 for all
i 6= j. Let a = 1+a1+ · · ·+an ∈ R where a1 ∈ I1, . . . , an ∈ In. The element a is a unit of the ring
R iff all the elements 1+ ai are units; and, in this case, a−1 = (1+ ai)

−1(1+ a2)
−1 · · · (1+ an)

−1.

Let R be a ring, R∗ be its group of units, I be an ideal of R such that I 6= R, and let (1 + I)∗

be the group of units of the multiplicative monoid 1+ I. Then R∗∩ (1+ I) = (1+ I)∗ and (1+ I)∗

is a normal subgroup of R∗.
For each subset I of the set {1, . . . , n}, let pI :=

⋂
i∈I pi, and p∅ := Sn. Each pI is an ideal

of the algebra Sn and pI =
∏
i∈I pi. The complement to the subset I is denoted by CI. For a

one-element subset {i}, we write Ci rather than C{i}. In particular, pCi := pC{i} =
⋂
j 6=i pj .

For each number s = 1, . . . , n, let an,s :=
∑

|I|=s pI . By the very definition, the ideals an,s

are Gn-invariant ideals (since the set H1 of all the height one prime ideals of the algebra Sn is
{p1, . . . , pn}, [6], and H1 is a Gn-orbit). We have a strictly descending chain of Gn-invariant ideals
of the algebra Sn:

an = an,1 ⊃ an,2 ⊃ · · · ⊃ an,s ⊃ · · · ⊃ an,n = Fn ⊃ an,n+1 := 0.

These are also ideals of the subalgebra K + an of Sn. Each set an,s is an ideal of the algebra
K + an,t for all t ≤ s, and the group of units of the algebra K + an,s is the direct product of its
two subgroups

(K + an,s)
∗ = K∗ × (1 + an,s)

∗, s = 1, . . . , n.

The groups (K + an,s)
∗ and (1 + an,s)

∗ are Gn-invariant. There is the descending chain of Gn-
invariant (hence normal) subgroups of (1 + an)

∗:

(1 + an)
∗ = (1 + an,1)

∗ ⊃ · · · ⊃ (1 + an,s)
∗ ⊃ · · · ⊃ (1 + an,n)

∗ = (1 + Fn)
∗ ⊃ (1 + an,n+1)

∗ = {1}.
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For each number s = 1, . . . , n, the factor algebra

(K + an,s)/an,s+1 = K
⊕ ⊕

|I|=s

pI

contains the idempotent ideals pI := (pI + an,s+1)/an,s+1 such that pIpJ = 0 for all I 6= J such
that |I| = |J | = s.

Recall that for a Laurent polynomial algebra L = K[x±1
1 , . . . , x±1

n ], K1(L) ≃ L∗, [14], [2], [13],

GL∞(L) = U(L)⋉ E∞(L) (8)

where E∞(L) is the subgroup of GL∞(L) generated by all the elementary matrices {1+ aEij | a ∈
L, i, j ∈ N, i 6= j}, and U(L) := {µ(u) := uE00 + 1 − E00 |u ∈ L∗} ≃ L∗, µ(u) ↔ u. The group
E∞(L) is a normal subgroup of GL∞(L). This is true for an arbitrary coefficient ring.

By Lemma 2.2 and (8), the group of units of the algebra (K + an,s)/an,s+1 =: K + an,s/an,s+1

is the direct product of groups,

(K+ an,s/an,s+1)
∗ = K∗×

∏

|I|=s

(1+ pI)
∗ ≃ K∗×

∏

|I|=s

GL∞(LCI) ≃ K∗×
∏

|I|=s

U(LCI)⋉E∞(LCI)

since (1 + pI)
∗ ≃ (1 +M∞(LCI))

∗ = GL∞(LCI) where LCI := SCI/aCI =
⊗

i∈CI K[xi, x
−1
i ] is

the Laurent polynomial algebra. In more detail, for each non-empty subset I of {1, . . . , n}, let
Z
I :=

⊕
i∈I Zei. It is a subgroup of Zn =

⊕n
i=1 Zei. Similarly, NI :=

⊕
i∈I Nei. By (8),

(1 + pI)
∗ = U(LCI)⋉ E∞(LCI) = (UI(K)× XCI)⋉ E∞(LCI) (9)

where

U(LCI) := {µI(u) := uE00(I) + 1− E00(I) |u ∈ L∗
CI} ≃ L∗

CI , µI(u) ↔ u,

L∗
CI = {λxα |λ ∈ K∗, α ∈ Z

CI},

UI(K) := {µI(λ) := λE00(I) + 1− E00(I) |λ ∈ K∗} ≃ K∗, µI(λ) ↔ λ,

XCI := {µI(x
α) := xαE00(I) + 1− E00(I) |α ∈ Z

CI} ≃ Z
CI ≃ Z

n−s, µI(x
α) ↔ α,

E∞(LCI) := 〈1 + aEαβ(I) | a ∈ LCI , α, β ∈ N
I , α 6= β〉.

The algebra epimorphism ψn,s : K + an,s → (K + an,s)/an,s+1, a 7→ a + an,s+1, yields the
group homomorphism of their groups of units (K + an,s)

∗ → (K + an,s/an,s+1)
∗ and whose kernel

is (1 + an,s+1)
∗. As a result we have an exact sequence of group homomorphisms:

1 → (1 + an,s+1)
∗ → (1 + an,s)

∗ ψn,s

→
∏

|I|=s

(1 + pI)
∗ ≃

∏

|I|=s

GL∞(LCI) → Zn,s → 1. (10)

For s = n, the map ψn,n is the identity map, and so Zn,n = {1}. Intuitively, the group Zn,s
represents ‘relations’ that determine the image im(ψn,s) as a subgroup of

∏
|I|=s(1 + pI)

∗. The

group Zn,s is a free abelian group of rank
(
n
s+1

)
, [8]. So, the image of the map ψn,s is large. Note

that an,s+1 and pI (where |I| = s) are ideals of the algebra K + an,s. The groups (1 + an,s+1)
∗

and (1 + pI)
∗ (where |I| = s) are normal subgroups of (1 + an,s)

∗. Thus the subgroup Υn,s of
(1 + an,s)

∗ generated by these normal subgroups is a normal subgroup of (1 + an,s)
∗. As a subset

of (1+ an,s)
∗, the group Υn,s is equal to the product of the groups (1+ an,s+1)

∗, (1+ pI)
∗, |I| = s,

in arbitrary order (by their normality), i.e.

Υn,s =
∏

|I|=s

(1 + pI)
∗ · (1 + an,s+1)

∗. (11)

By Theorem 1.1, the group Υn,s is a Gn-invariant (hence, normal) subgroup of S∗n. The factor
group (1 + an,s)

∗/Υn,s is a free abelian group of rank
(
n
s+1

)
s, [8].
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By (9), the direct product of groups
∏

|I|=s(1 + pI)
∗ = Xn,s ⋉ Γn,s is the semi-direct product

of its two subgroups

Xn,s :=
∏

|I|=s

XCI ≃ Z(
n

s)(n−s) and Γn,s :=
∏

|I|=s

UI(K)⋉ E∞(LCI). (12)

For each subset I of {1, . . . , n} such that |I| = s, UI(K) ⋉ E∞(SCI) is a subgroup of (1 + pI)
∗

where

UI(K) := {µI(λ) |λ ∈ K∗} ≃ K∗, E∞(SCI) := 〈1 + aEαβ(I) | a ∈ SCI , α 6= β ∈ N
I〉, (13)

where µI(λ) := λE00(I) + 1− E00(I). Clearly,

ψn,s|UI (K) : UI(K) ≃ UI(K), µI(λ) 7→ µI(λ),

and ψn,s(UI(K)⋉E∞(SCI)) = UI(K)⋉E∞(LCI) for all subsets I with |I| = s. The subgroup of
(1 + an,s)

∗,

Γn,s := ψ−1
n,s(Γn,s) =

set
∏

|I|=s

(UI(K)⋉ E∞(SCI)) · (1 + an,s+1)
∗, (14)

is a normal subgroup as it is the pre-image of a normal subgroup. We added the upper script ‘set’
to indicate that this is a product of subgroups but not a direct product, in general. It is obvious
that ψn,s(Γn,s) = Γn,s and Γn,s ⊆ Υn,s. In fact, Γn,s = Υn,s, [8]. Let ∆n,s := (1 + an,s)

∗/Γn,s.
The group homomorphism ψn,s (see (10)) induces the group monomorphism

ψn,s : ∆n,s →
∏

|I|=s

(1 + pI)
∗)/Γn,s ≃ Xn,s ≃ Z(

n

s)(n−s).

This means that the group ∆n,s is a free abelian group of rank ≤
(
n
s

)
(n− s). In fact, the rank is

equal to
(
n
s+1

)
s, [8].

For each subset I with |I| = s, consider the free abelian group X′
CI :=

⊕
j∈CI Z(j, I) ≃ Zn−s

where {(j, I) | j ∈ CI} is its free basis. Let

X
′
n,s :=

⊕

|I|=s

X
′
CI =

⊕

|I|=s

⊕

j∈CI

Z(j, I) ≃ Z(
n

s)(n−s).

For each subset I, consider the isomorphism of abelian groups

XCI → X
′
CI , µI(xj) := xjE00(I) + 1− E00(I) 7→ (j, I).

These isomorphisms yield the group isomorphism

Xn,s → X
′
n,s, µI(xj) 7→ (j, I). (15)

Each element a of the groupXn,s is a unique product a =
∏

|I|=s

∏
j∈CI µI(xj)

n(j,I) where n(j, I) ∈

Z. Each element a′ of the group X
′
n,s is a unique sum a′ =

∑
|I|=s

∑
j∈CI n(j, I) · (j, I) where

n(j, I) ∈ Z. The map (15) sends a to a′. To make computations more readable we set eI := E00(I).
Then eIeJ = eI∪J .

The current groups Θn,s, s = 1, . . . , n−1. The current groups Θn,s are the most important
subgroups of the group (1 + an)

∗. They are finitely generated groups and generators are given
explicitly. The generators of the groups Θn,s are units of the algebra Sn but they are defined as
a product of two non-units. As a result the groups Θn,s capture the most delicate phenomena
regarding the structure and properties of the groups S∗n and Gn.

For each non-empty subset I of {1, . . . , n} with s := |I| < n and an element i ∈ CI, let

X(i, I) := µI(xi) = xiE00(I) + 1− E00(I) and Y (i, I) := µI(yi) = yiE00(I) + 1− E00(I).
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Then Y (i, I)X(i, I) = 1, kerY (i, I) = PC(I∪i), and Pn = imX(i, I)
⊕
PC(I∪i) where PC(I∪i) :=

K[xj ]j∈C(I∪i). Recall that Sn ⊂ EndK(Pn). As an element of the algebra EndK(Pn), the map
X(i, I) is injective (but not bijective), and the map Y (i, I) is surjective (but not bijective).

Definition. For each subset J of {1, . . . , n} with |J | = s+ 1 ≥ 2 and for two distinct elements
i and j of the set J , let

θij(J) := Y (i, J\i)X(j, J\j) ∈ (1 + pJ\i + pJ\j)
∗ ⊆ (1 + an,s)

∗. (16)

The current group Θn,s is the subgroup of (1 + an,s)
∗ generated by all the elements θij(J) (for

all the possible choices of J , i, and j).

The unit θij(I) is the product in EndK(Pn) of an injective map and a surjective map, none of
which is a bijection.

θij(J) = θji(J)
−1. (17)

Suppose that i, j, and k are distinct elements of the set J (hence |J | ≥ 3). Then

θij(J)θjk(J) = θik(J). (18)

For each number s = 1, . . . , n − 1, the free abelian group X′
n,s admits the decomposition

X′
n,s =

⊕
|J|=s+1

⊕
j∪I=J Z(j, I), and using it we define a character (a homomorphism) χ′

J , for

each subset J with |J | = s+ 1:

χ′
J : X′

n,s → Z,
∑

|J′|=s+1

∑

j∪I=J′

nj,I(j, I) 7→
∑

j∪I=J

nj,I .

Let max(J) be the largest number in the set J . The group X′
n,s is the direct sum

X
′
n,s = K

′
n,s

⊕
Y

′
n,s (19)

of its free abelian subgroups,

K
′
n,s =

⋂

|J|=s+1

ker(χ′
J) =

⊕

|J|=s+1

⊕

j∈J\max(J)

Z(−(max(J), J\max(J)) + (j, J\j)) ≃ Z(
n

s+1)s,

Y
′
n,s =

⊕

|J|=s+1

Z(max(J), J\max(J)) ≃ Z(
n

s+1).

The same decompositions hold if instead of max(J), we choose any element of the set J . Consider
the group homomorphism ψ′

n,s : (1 + an,s)
∗ → X′

n,s defined as the composition of the following
group homomorphisms:

ψ′
n,s : (1 + an,s)

∗ → (1 + an,s)
∗/Γn,s

ψn,s

→
∏

|I|=s

(1 + pI)
∗/Γn,s ≃ Xn,s ≃ X

′
n,s.

Then
ψ′
n,s(θij(J)) = −(i, J\i) + (j, J\j). (20)

It follows that
ψ′
n,s(Θn,s) = K

′
n,s, (21)

since, by (20), ψ′
n,s(Θn,s) ⊇ K

′
n,s (as the free basis for K′

n,s, introduced above, belongs to the set
ψ′
n,s(Θn,s)); again, by (20), ψ′

n,s(Θn,s) ⊆
⋂

|J|=s+1 ker(χ
′
J ) = K′

n,s.

Let H,H1, . . . , Hm be subsets (usually subgroups) of a group H . We say that H is the product
of H1, . . . , Hm, and write H = set

∏m
i=1Hi = H1 · · ·Hm, if each element h of H is a product

h = h1 · · ·hm where hi ∈ Hi. We add the subscript ‘set’ (sometime) in order to distinguish it
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from the direct product of groups. We say that H is the exact product of H1, . . . , Hm, and write
H = exact

∏m
i=1Hi = H1 ×ex · · · ×exHm, if each element h of H is a unique product h = h1 · · ·hm

where hi ∈ Hi. The order in the definition of the exact product is important. A semi-direct
product of groups H1, . . . , Hm is denoted by

H1 ⋉ (H2 ⋉ (· · ·⋉Hm)) = H1 ⋉H2 ⋉ · · ·⋉Hm = semi

m∏

i=1

Hi.

The subgroup of (1 + an,s)
∗ generated by the groups Θn,s and Γn,s is equal to their product

Θn,sΓn,s, by the normality of Γn,s. The subgroup Γn,s of the group Θn,sΓn,s is a normal subgroup,
hence the intersection Θn,s ∩ Γn,s is a normal subgroup of Θn,s.

Lemma 2.3 [8] For each number s = 1, . . . , n− 1, the group Θn,sΓn,s is the semi-direct product

Θn,sΓn,s =
semi

∏

|J|=s+1

∏

j∈J\max(J)

〈θmax(J),j(J)〉 ⋉ Γn,s,

where the order in the double product is arbitrary. Each element a ∈ Θn,sΓn,s is a unique product
a =

∏
|J|=s+1

∏
j∈J\max(J) θmax(J),j(J)

n(j,J) · γ where n(j, J) ∈ Z and γ ∈ Γn,s.

For each number s = 1, . . . , n− 1, consider the subset of (1 + an,s)
∗,

Θ′
n,s :=

exact
∏

|J|=s+1

∏

j∈J\max(J)

〈θmax(J),j(J)〉, (22)

which is the exact product of cyclic groups (each of them is isomorphic to Z), since each element
u of Θ′

n,s is a unique product u =
∏

|J|=s+1

∏
j∈J\max(J) θmax(J),j(J)

n(j,J) where n(j, J) ∈ Z

(Lemma 2.3).

By Lemma 2.3, Θn,s/Θn,s ∩ Γn,s ≃ Θn,sΓn,s/Γn,s ≃ K′
n,s ≃ Z(

n

s+1)s, and so the commutant of
the current group Θn,s belongs to the group Γn,s, i.e.

[Θn,s,Θn,s] ⊆ Γn,s. (23)

Recall that the commutant [G,G] of a group G is the subgroup of G generated by all group
commutators [a, b] := aba−1b−1 where a, b ∈ G. The commutant is a normal subgroup. The next
theorem is the key point in finding explicit generators for the groups S∗n and Gn.

Theorem 2.4 [8] ψ′
n,s((1 + an,s)

∗) = ψ′
n,s(Θn,s) for s = 1, . . . , n− 1.

For each number s = 1, . . . , n− 1, consider the following subsets of the group (1 + an,s)
∗,

En,s :=
∏

|I|=s

UI(K)⋉ E∞(SCI) and Pn,s :=
∏

|I|=s

(1 + pi)
∗. (24)

These are products of subgroups (1 + an,s)
∗ in arbitrary order, but which is fixed for each s.

Theorem 2.5 [8]

1. (1 + an)
∗ = Θn,1Γn,1 = Θn,1En,1Θn,2En,2 · · ·Θn,n−1En,n−1. Moreover, for s = 1, . . . , n− 1,

(1 + an,s)
∗ = Θn,sΓn,s = Θn,sEn,sΘn,s+1En,s+1 · · ·Θn,n−1En,n−1.

2. (1 + an)
∗ = Θn,1Υn,1 = Θn,1Pn,1Θn,2Pn,2 · · ·Θn,n−1Pn,n−1. Moreover, for s = 1, . . . , n− 1,

(1 + an,s)
∗ = Θn,sΥn,s = Θn,sPn,sΘn,s+1Pn,s+1 · · ·Θn,n−1Pn,n−1.

Theorem 2.6 [8]

1. (1+an)
∗ = Θ′

n,1En,1Θ
′
n,2En,2 · · ·Θ

′
n,n−1En,n−1. Moreover, for s = 1, . . . , n−1, (1+an,s)

∗ =
Θ′
n,sEn,sΘ

′
n,s+1En,s+1 · · ·Θ′

n,n−1En,n−1.

2. (1+an)
∗ = Θ′

n,1Pn,1Θ
′
n,2Pn,2 · · ·Θ

′
n,n−1Pn,n−1. Moreover, for s = 1, . . . , n−1, (1+an,s)

∗ =
Θ′
n,sPn,sΘ

′
n,s+1Pn,s+1 · · ·Θ′

n,n−1Pn,n−1.
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3 The groups K1(Sn) and GL∞(Sn) and their generators

In this section, explicit generators are found for the group GL∞(Sn) (Theorem 3.3, Theorem
3.5.(1)) and it is proved that K1(Sn) ≃ K∗ (Theorem 3.5.(2)) modulo Theorem 3.4 which is
proved in Section 4.

The subgroup (1+ pn)
∗ of the group S

∗
n is canonically isomorphic to the group GL∞(Sn−1) via

the isomorphism 1+
∑
aijEij(n) 7→ 1+

∑
aijEij where aij ∈ Sn−1 =

⊗n−1
i=1 S1(i). It is convenient

to identify the groups (1 + pn)
∗ and GL∞(Sn−1) and to identify the matrix units Eij(n) and Eij ,

i.e. (1+ pn)
∗ = GL∞(Sn−1) and Eij(n) = Eij . The group (1+ pn)

∗ contains the descending chain
of normal subgroups

(1 + pn)
∗ = (1 + pn)

∗
1 ⊃ · · · ⊃ (1 + pn)

∗
s ⊃ · · · ⊃ (1 + pn)

∗
n = (1 + Fn)

∗ ⊃ (1 + pn)
∗
n+1 = {1}

where (1 + pn)
∗
s := (1 + pn)

∗ ∩ (1 + an,s)
∗. The following lemma describes the normal subgroups

(1 + pn)
∗
s.

Lemma 3.1

(1 + pn)
∗
s =

{
(1 +

∑
|I|=s,n∈I pI)

∗ if s = 1, . . . , n− 1,

(1 + Fn)
∗ if s = n.

Proof. As the case s = n is obvious, we assume that s 6= n. The ideal an,s =
∑

|I|=s pI of the

algebra Sn is the sum of idempotent ideals pI . Therefore, a2n,s = an,s. By Corollary 7.4.(3), [5],
a ∩ b = ab for all idempotent ideals a and b of the algebra Sn. Since the ideals pn and an,s of the
algebra Sn are idempotent,

pn ∩ an,s = pnan,s =
∑

|I|=s

pnpI =
∑

|I|=s,n∈I

pI . (25)

Thus (1 + pn)
∗
s = (1 + pn)

∗ ∩ (1 + an,s)
∗ = (1 + pn ∩ an,s)

∗ = (1 +
∑

|I|=s,n∈I pI)
∗. �

For each number s = 1, . . . , n− 1, consider the following subset of En,s,

Ẽn,s =
∏

|I|=s,n∈I

UI(K)⋉ E∞(SCI),

where the groups UI = UI(K) and E∞(SCI) are defined in (13). This is the product of the
subgroups UI(K) ⋉ E∞(SCI) of (1 + pn)

∗
s in arbitrary order but which is assumed to be fixed.

Notice that Ẽn,1 = Un(K)⋉E∞(Sn−1) where Un(K) = {µn(λ) = λen+1− en =
(λ 0
0 1

)
|λ ∈ K∗}

and E∞(Sn−1) is the subgroup of GL∞(Sn−1) generated by all the elementary matrices.
Consider the element µI(λ) = λeI + 1− eI ∈ UI where |I| = s and n ∈ I. Then

µI(λ) = en(1 + (λ − 1)eI\n) + 1− en =
(1 + (λ − 1)eI\n 0

0 1

)
∈ GL∞(Sn−1). (26)

Lemma 3.2 E∞(Sn−1) ⊇ Ẽn,s for all s = 2, . . . , n− 1.

Proof. It is sufficient to show that the group E∞(Sn−1) of elementary matrices contains the
groups E∞(SCI) and UI(K) where |I| = s and n ∈ I. The group E∞(SCI) is generated by the
elementary matrices u = 1 + aEαβ(I) where a ∈ SCI , α = (αi)i∈I , β = (βi)i∈I ∈ NI and α 6= β.
If αn 6= βn then u = 1 + (a

∏
i∈I,i6=n Eαiβi

(i))Eαnβn
(n) ∈ E∞(Sn−1). If αn = βn then choose an

element γ ∈ NI such that γn 6= αn, and so γ 6= α and γ 6= β. Since the elements 1 + Eαγ and
1 + aEγβ belong to the group E∞(Sn−1) (by the previous case), so does their group commutator

E∞(Sn−1) ∋ [1 + Eαγ , 1 + aEγβ ] = 1 + aEαβ = u.
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Therefore, E∞(SCI) ⊆ E∞(Sn−1).
It remains to show that UI(K) ⊆ E∞(Sn−1), i.e. µI(λ) = 1 + λE00(I) ∈ E∞(Sn−1) for all

scalars λ ∈ K\{−1}. Notice that n ∈ I and |I| = s ≥ 2. Choose an element, say m ∈ I, distinct
from n. In the subgroup GL∞(S1(m)) of GL∞(Sn−1), we have for all scalars λ ∈ K\{−1} the
equality:

( 1 0
− ym

1+λ 1

) (1 λxm
0 1

) ( 1 0
ym 1

) (1 − λ
1+λxm

0 1

)
=

(1 + λ 0
0 1

1+λ

) (1− λE00(m)
1+λ 0

0 1

)
. (27)

This can be checked by direct multiplication using the equalities ymxm = 1 and xmym = 1−E00(m)
that hold in the algebra S1(m). The first five matrices in the equality belong to the group

E∞(S1(m)). Therefore, the last matrix c =
(1− λE00(m)

1+λ 0

0 1

)
belongs to the group E∞(S1(m)).

The idempotent e :=

{∏
i∈I\{n,m}E00(i) if |I| > 2,

1 if |I| = 2,
determines the group monomorphism

τe : GL∞(S1(m)) = (1 +
∑

i,j∈N

S1(m)Eij(m))∗ → GL∞(Sn−1) = (1 + pn)
∗, u 7→ eu+ 1− e, (28)

that maps the group E∞(S1(m)) into the group E∞(Sn−1). Therefore,

τe(c) = e(E00(n)(1 −
λ

1 + λ
E00(m)) + 1− eE00(n)) + 1− e

= 1−
λ

1 + λ
E00(I) = µI(−

λ

1 + λ
) ∈ E∞(Sn−1) ∩ UK(I).

Since the map ϕ : K\{−1} → K\{−1}, λ 7→ − λ
1+λ , is a bijection (ϕ−1 = ϕ), all the elements

µI(λ) belong to the group E∞(Sn−1). The proof of the lemma is complete. �

By (10), there is the group monomorphism

ϕn,s :
(1 + pn)

∗
s

(1 + pn)∗s+1

→
(1 + an,s)

∗

(1 + an,s+1)∗
→

∏

|I|=s

(1 + pI)
∗ =

∏

|I|=s,n∈I

(1 + pI)
∗ ×

∏

|I′|=s,n6∈I′

(1 + pI′)
∗

which is the composition of two group monomorphisms. By Lemma 3.1,

im(ϕn,s) ⊆
∏

|I|=s,n∈I

(1 + pI)
∗. (29)

Recall that (1 + pI)
∗ = (XCI × UI) ⋉ E∞(LCI). Since ϕn,s(Ẽn,s(1 + pn)

∗
s+1) =

∏
|I|=s,n∈I UI ⋉

E∞(LCI), we see that

ϕ−1
n,s(Γn,s) = ϕ−1

n,s(im(ϕn,s) ∩ Γn,s) = ϕ−1
n,s(

∏

|I|=s,n∈I

UI ⋉ E∞(LCI)) = Ẽn,s(1 + pn)
∗
s+1,

and so there is the group monomorphism

ϕn,s : (1+pn)
∗
s/Ẽn,s(1+pn)

∗
s+1 → (1+an,s)

∗/Γn,s ≃ Xn,s ≃ X
′
n,s =

∏

|I|=s,n∈I

X
′
CI×

∏

|I′|=s,n6∈I′

X
′
CI′ .

Notice that the group Ẽn,s(1 + pn)
∗
s+1 is a normal subgroup of (1 + pn)

∗
s. For each number

s = 2, . . . , n−1, in the set Θ′
n,s consider the exact product of cyclic groups (the order is arbitrary)

Θ̃n,s :=
∏

|J|=s+1,n∈J

∏

j∈J\{n,m(J)}

〈θm(J),j(J)〉 (30)
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where m(J) is the largest element of the set J\n. Instead of the element m(J) we can choose an
arbitrary element of the set J\n. By (29), im(ϕn,s) ⊆

∏
|I|=s,n∈I X

′
CI . Recall that im(ψ′

n,s) =

ψ′
n,s(Θn,s) = Kn,s =

⋂
|J|=s+1 ker(χ

′
J), by Theorem 2.4 and (21). The following argument is the

key moment in the proof of Theorem 3.3,

im(ϕn,s) ⊆ im(ψ′
n,s)

⋂ ∏

|I|=s,n∈I

X
′
CI =

⋂

|J|=s+1

ker(χ′
J )

⋂ ∏

|I|=s,n∈I

X
′
CI

=

{
0 if s = 1,∏

|J|=s+1,n∈J

∏
j∈J\{n,m(J)} Z(−(m(J), J\m(J)) + (j, J\j)) if s = 2, . . . , n− 1,

by (20)
=

{
0 if s = 1,

ψ′
n,s(Θ̃n,s) if s = 2, . . . , n− 1,

=

{
0 if s = 1,

ϕ′
n,s(Θ̃n,sẼn,s(1 + pn)

∗
s+1) if s = 2, . . . , n− 1.

It follows that

(1 + pn)
∗
s =

{
Ẽn,1(1 + pn)

∗
2 if s = 1,

Θ̃n,s ×ex Ẽn,s(1 + pn)
∗
s+1 if s = 2, . . . , n− 1.

(31)

Theorem 3.3 The group GL∞(Sn−1) = (1 + pn)
∗ is equal to Ẽn,1Θ̃n,2Ẽn,2 · · · Θ̃n,n−1Ẽn,n−1.

Moreover,

(1 + pn)
∗
s =





Ẽn,1Θ̃n,2Ẽn,2 · · · Θ̃n,n−1Ẽn,n−1 if s = 1,

Θ̃n,sẼn,s · · · Θ̃n,n−1Ẽn,n−1 if s = 2, . . . , n− 1,

(1 + Fn)
∗ if s = n.

Proof. By Proposition 3.10, [8], we have the inclusion (1 + pn)
∗
n = (1 + Fn)

∗ ⊆ Ẽn,n−1. Now,
the theorem follows from (31). �

For each subset J of the set {1, . . . , n} such that n ∈ J and |J | ≥ 3, and for each pair of
distinct elements i and j of the set J\n, the unit θij(J) ∈ S∗n can be written as follows

θij(J) = (yieJ\ien + 1− en + en(1− eJ\i))(xjeJ\jen + 1− en + en(1− eJ\j))

= en(yieJ\i + 1− eJ\i)(xjeJ\j + 1− eJ\j) + 1− en

= enθij(J\n) + 1− en

where en := E00(n), eJ\i :=
∏
k∈J\i E00(k) and eJ\j :=

∏
k∈J\j E00(k). Therefore, the unit θij(J),

as an element of the group GL∞(Sn−1), is the matrix

θij(J) =
(θij(J\n) 0

0 1

)
∈ GL∞(Sn−1) (32)

where θij(J\n) ∈ S∗n−1.

The determinant det on GL∞(Sn−1). The algebra epimorphism Sn−1 → Sn−1/an−1 =
Ln−1, a 7→ a := a+ an−1, yields the group homomorphisms GL∞(Sn−1) → GL∞(Ln−1), u 7→ u,

and det : GL∞(Sn−1) → GL∞(Ln−1)
det
→ L∗

n−1. Clearly, det(E∞(Sn−1)) = 1, det(Θ̃n,s) = 1 for

all s = 2, . . . , n − 1, and det(Un(K)) = K∗ since det(µn(λ)) = λ for all λ ∈ K∗. By Theorem

3.3 and Lemma 3.2, GL∞(Sn−1) = Un(K)Θ̃n,2 · · · Θ̃n,n−1E∞(Sn−1), since E∞(Sn−1) is a normal
subgroup of GL∞(Sn−1). It follows that the image of the map det is K∗, i.e. we have the group
epimorphism

det : GL∞(Sn−1) → K∗, u 7→ det(u), (33)
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and

GL∞(Sn−1) = Un(K)⋉ ker(det), SL∞(Sn−1) := ker(det) = Θ̃n,2 · · · Θ̃n,n−1E∞(Sn−1). (34)

Theorem 3.4 Θ̃n,s ⊆ E∞(Sn−1) for all s = 2, . . . , n− 1.

The proof of Theorem 3.4 is not easy and is given in Section 4.

Theorem 3.5 1. GL∞(Sn−1) = Un(K) ⋉ E∞(Sn−1) and SL∞(Sn−1) = E∞(Sn−1) where
Un(K) = {µn(λ) := 1 + (λ − 1)E00(n) |λ ∈ K∗}. So, each element a ∈ GL∞(Sn−1) is
the unique product a = µn(λ)e where λ = det(a) and e := µn(det(a))

−1a ∈ E∞(Sn−1).

2. K1(Sn) ≃ K∗ for all n ≥ 1.

Proof. The theorem follows from Theorem 3.4 and (34). �

The number of generators θmax(J),j(J) in the block Θ̃n+1,2 · · · Θ̃n+1,n for the group GL∞(Sn) =

Un+1(K)⋉Θ̃n+1,2 · · · Θ̃n+1,nE∞(Sn) is
∑n

s=2

(
n
s

)
(s−1) = (n−2)2n−1+1 as the next lemma shows.

Lemma 3.6 For each natural number n ≥ 2,
∑n

s=2

(
n
s

)
(s− 1) = (n− 2)2n−1 + 1.

Proof. Taking the derivative of the polynomial (1 + x)n =
∑n
s=0

(
n
s

)
xs, we have the equality

n(1 + x)n−1 =
∑n

s=1

(
n
s

)
sxs−1. Then taking the difference of both equalities at x = 1, we obtain

the result:
∑n
s=2

(
n
s

)
(s− 1)− 1 = n2n−1 − 2n = (n− 2)2n−1. �

4 Proof of Theorem 3.4

The whole section is a proof of Theorem 3.4. The proof is constructive (but slightly technical)
and split into a series of lemmas that produce more and more sophisticated elementary matrices
in E∞(Sn−1). These elementary matrices are used to show that the elements of the sets Θ̃n,s are
elementary matrices (Propositions 4.6 and 4.8).

Lemma 4.1 Let D be a division ring and let Λ = D⊕De be a ring over D such that e2 = e and
de = ed for all d ∈ D. Then

1. the group of units Λ∗ of the ring Λ is the semi-direct product D∗ ⋉ Γ of the group of units
D∗ of the ring D and the subgroup Γ := {1 + λe |λ ∈ D\{−1}} of Λ∗.

2. (1 + λe)−1 = 1− λ
1+λe for all elements λ ∈ D\{−1}.

3. The map φ : D\{−1} → D\{−1}, λ 7→ − λ
1+λ , is a bijection with φ−1 = φ.

4. (1− 2e)−1 = 1− 2e.

Proof. Straightforward. �
We are interested in the rings Λ and their groups of units, since the algebra K +M∞(Sn−1)

of infinite dimensional matrices over the algebra Sn−1 contains plenty of them and as a result the
group GL∞(Sn−1) contains their groups of units.

Lemma 4.2 Let S1(Λ) = Λ〈x, y | yx = 1〉 be the algebra S1 over the ring Λ from Lemma 4.1.
Then, for each element λ ∈ D\{−1},

( 1 0
− y

1+λe 1

) (1 λex
0 1

) (1 0
y 1

) (1 − λe
1+λex

0 1

)
=

(1 + λe 0
0 1

1+λe

) (1− λ
1+λeE00 0

0 1

)
. (35)

where E00 := 1− xy (the element 1 + λe is a unit of the algebra S1(Λ), by Lemma 4.1).
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Proof. The RHS of the equality (35) is the product of four matrices, say A1 · · ·A4.

A1A2A3 =
( 1 λex
− y

1+λe 1− λe
1+λe

) (1 0
y 1

)
=

(1 + λexy λex
0 1

1+λe

)
, A1 · · ·A4 =

(1 + λexy 0
0 1

1+λe

)
,

since (1 + λexy)(− λe
1+λex) + λex = − λe

1+λe (1 + λe)x+ λex = 0. Now,

A1 · · ·A4 =
(1 + λe 0

0 1
1+λe

) (1− λe
1+λeE00 0

0 1

)
(36)

since (1 + λe)(1− λe
1+λeE00) = 1 + λe(1−E00) = 1 + λexy. Finally, the equality (35) follows from

Lemma 4.1.(2), λe
1+λe = λe(1− λ

1+λe) = λ(1 − λ
1+λ)e =

λ
1+λe. �

For each ring R and a natural number m ≥ 1, En(R) is the subgroup of GLn(R) generated by
all elementary matrices.

Lemma 4.3 1.
( y 0
E00 x

)
∈ E2(S1) where E00 := 1− xy.

2.
(x E00

0 y

)
=

( y 0
E00 x

)−1
∈ E2(S1).

Proof. 1. Using the equalities yx = 1 and E00x = 0, we can easily check that

(1 0
1 1

) (1 −1
0 1

) ( 1 0
1− x 1

) ( y 0
E00 x

) (1 x
0 1

) ( 1 0
−y 1

)
=

(1− 2E00 0
0 1

)
. (37)

By (27), the RHS is an element of the group E2(S1) since
−2

1+(−2) = 2, and so statement 1 holds.

2. It is obvious. �

Let R be a ring and u be its unit. The 2 × 2 matrix
( y 0
uE00 x

)
∈ M2(S1(R)) is invertible

where E00 := 1− xy. Moreover,

( y 0
uE00 x

)−1
=

(x u−1E00

0 y

)
. (38)

Lemma 4.4 Let the ring Λ be as in Lemma 4.1. Then, for each element λ ∈ D\{−1},

( y 0
(1 + λe)E00 x

)
∈ E2(S1(Λ)) and

(x (1 + λe)−1E00

0 y

)
=

( y 0
(1 + λe)E00 x

)−1
∈ E2(S1(Λ))

where (1 + λe)−1 = 1− λ
1+λe (by Lemma 4.1.(2)).

Proof. It suffices to prove the first inclusion since then the equality and the second inclusion
follow from (38). Using the equalities yx = 1 and E00x = 0 we can check that

(1 0
1 1

) (1 −1
0 1

) ( 1 0
1− x 1

) ( y 0
(1 + λe)E00 x

) (1 x
0 1

) ( 1 0
−y 1

)
=

(1− (2 + λe)E00 0
0 1

)
, (39)

(1− (2 + λe)E00 0
0 1

)
=

(1− 2E00 0
0 1

) (1 + λeE00 0
0 1

)
.

By (37),
(
1−2E00 0

0 1

)
∈ E2(S1), and then by (35),

(
1+λeE00 0

0 1

)
∈ E2(S1(Λ)) since λ ∈ D\{−1}.

Therefore,
( y 0
(1+λe)E00 x

)
∈ E2(S1(Λ)), by (39). �

Lemma 4.5
(1 + (y2 − 1)x1y1 0

e2y1 x2

)
∈ E2(S2) where e2 := E00(2) = 1− x2y2.
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Proof. The statement follows from the equality

( 1 0
−x2y1 1

) (1 (y2 − 1)x1
0 1

) ( 1 0
y1 1

) (1 −(y2 − 1)x1
0 1

) (1 (y2 − 1)(1− x2)x1
0 1

)
=

(1 + (y2 − 1)x1y1 0
e2y1 x2

)

(40)
which can be checked directly using the equalities yixi = 1, xiyi = 1 − ei, yiei = 0 and eixi = 0
where ei := E00(i). The RHS of the equality (40) is the product of five matrices A1 · · ·A5.

A1A2A3 =
( 1 (y2 − 1)x1
−x2y1 1− x2(y2 − 1)

) ( 1 0
y1 1

)
=

(1 + (y2 − 1)x1y1 (y2 − 1)x1
e2y1 1− x2(y2 − 1)

)

since −x2y1 + (1− x2y2)y1 + x2y1 = e2y1. Now,

A1 · · ·A4 =
(1 + (y2 − 1)x1y1 −(y2 − 1)2x1

e2y1 1− (x2 + e2)(y2 − 1)

)

since−y1x1e2(y2−1)+1−x2(y2−1) = 1−(x2+e2)(y2−1). Finally, A1 · · ·A5 =
(1 + (y2 − 1)x1y1 a

e2y1 b

)

where

a = (1 + (y2 − 1)x1y1)(y2 − 1)(1− x2)x1 − (y2 − 1)2x1

= (x1 + (y2 − 1)x1)(y2 − 1)(1− x2)− (y2 − 1)2x1

= x1(y2 − 1)(y2 − 1)− (y2 − 1)2x1 = 0,

b = 1− (x2 + e2)(y2 − 1) + e2y1(y2 − 1)(1− x2)x1

= 1− x2(y2 − 1)− e2(y2 − 1) + e2(y2 − 1)− e2(1− x2)

= 1− x2y2 + x2 − e2 = x2. �

Proposition 4.6
(θ12 0
0 1

)
∈ E2(S2) where θ12 = θ12({1, 2}) = (1 + (y1 − 1)e2)(1 + (x2 − 1)e1),

e1 = E00(1) and e2 = E00(2).

Proof. By Lemma 4.3,
(x2 e2
0 y2

)
∈ E2(S1(2)) ⊆ E2(S2). Then, by Lemma 4.5,

E2(S2) ∋
(x2 e2
0 y2

) (1 + (y2 − 1)x1y1 0
e2y1 x2

)
=

(θ12 0
0 1

)
. (41)

Indeed, let a be the (1, 1)-entry of the product, then

a = x2(1 + (y2 − 1)x1y1) + e22y1 = x2 + (x2y2 − x2)x1y1 + e2y1

= x2e1 + (1− e2)(1− e1) + e2y1 = 1 + (x2 − 1)e1 + (y1 − 1)e2 + e1e2

= (1 + (y1 − 1)e2)(1 + (x2 − 1)e1) = θ12

since (y1 − 1)e2 · (x2 − 1)e1 = (y1 − 1)e1 · e2(x2 − 1) = (−e1) · (−e2) = e1e2. �

Lemma 4.7 Let J = {1, . . . ,m} where m ≥ 3, and let I = J\{1, 2}. Then

(1 + (y2 − 1)x1y1eI 0
e2y1eI 1 + (x2 − 1)eI

)
∈ E2(S2(K ⊕KeI))

where e2 := E00(2) and eI :=
∏
k∈I E00(k).

Proof. The statement follows from the equality

(
1 0

−x2y2eI 1

) (
1 (y2−1)x1

0 1

) (
1 0

y1eI 1

) (
1 −(y2−1)x1

0 1

) (
1 (y2−1)(1−x2)x1eI
0 1

)
=

( 1+(y2−1)x1y1eI 0
e2y1eI 1+(x2−1)eI

)
.

(42)
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The equality can be written shortly as A1 · · ·A5 = A.

A2A3A4 =
(1 + (y2 − 1)x1y1eI (y2 − 1)x1

y1eI 1

) (1 −(y2 − 1)x1
0 1

)
=

(1 + (y2 − 1)x1y1eI −(y2 − 1)2x1eI
y1eI 1− (y2 − 1)eI

)

where we have used the fact that y1x1 = 1.

A1 · · ·A4 =
(1 + (y2 − 1)x1y1eI −(y2 − 1)2x1eI

e2y1eI 1− (x2 + e2)(y2 − 1)eI

)
.

In more detail, let (α, β) be the second row of the product. Using the fact that y1x1 = 1 and
e2I = eI , we see that

α = −x2y1eI(1 + (y2 − 1)x1y1eI) + y1eI = (−x2(y1 + (y2 − 1)y1) + y1)eI

= (1− x2y2)y1eI = e2y1eI ,

β = x2y1eI(y2 − 1)2x1eI + 1− (y2 − 1)eI = 1 + (x2y2 − x2 − 1)(y2 − 1)eI

= 1− (x2 + e2)(y2 − 1)eI .

Finally, A1 · · ·A5 =
(1 + (y2 − 1)x1y1eI a′

e2y1eI b′
)
where (below, we use the fact that a = 0 and b = x2,

see the proof of Lemma 4.5)

a′ = (1 + (y2 − 1)x1y1eI)(y2 − 1)(x2 − 1)x1eI − (y2 − 1)2x1eI

=
(
(1 + (y2 − 1)x1y1)(y2 − 1)(x2 − 1)x1 − (y2 − 1)2x1

)
eI = a · eI = 0 · eI = 0,

β = 1− (x2 + e2)(y2 − 1)eI + e2y1(y2 − 1)(1− x2)x1eI

= 1 +
(
−1 + 1− (x2 + e2)(y2 − 1) + e2y1(y2 − 1)(1− x2)x1

)
eI

= 1 + (−1 + b)eI = 1 + (x2 − 1)eI .

The proof of the lemma is complete. �

Let J = {1, 2, . . . ,m} and m ≥ 3. By multiplying out, the element θ12(J) = (1 + (y1 −
1)eJ\1)(1 + (x2 − 1)eJ\2) ∈ S∗m can be written as the sum

θ12(J) = x2e1eI + (1− e1eI)(1− e2eI) + y1e2eI (43)

where I := J\{1, 2}.

Proposition 4.8 Let J = {1, 2, . . . ,m} and m ≥ 3. Then
(θ12(J) 0

0 1

)
∈ E2(Sm).

Proof. We keep the notation of Lemma 4.7. By Lemma 4.3.(2) and Lemma 4.7, the product
of the following two elementary matrices is also an elementary matrix,

E2(S2) ∋
(x2 e2
0 y2

) (1 + (y2 − 1)x1y1eI 0
e2y1eI 1 + (x2 − 1)eI

)
=

(θ12(J) + (x2 − 1)(1− eI) e2(1 − eI)
0 eI + (1 − eI)y2

)
.

(44)

Indeed, the LHS is a matrix of type
(α γ
0 β

)
(since y2e2 = 0) where

α = x2(1 + (y2 − 1)x1y1eI) + e2y1eI = x2 + (1− e2 − x2)(1 − e1)eI + e2y1eI

= x2 − x2(1− e1)eI + (1 − e1)(1− e2)eI + y1e2eI

= x2(1− eI) +
(
x2e1eI + (1 − e2eI)(1 − e1eI) + y1e2eI

)
+ (1 − e1)(1 − e2)eI − (1 − e1eI)(1 − e2eI)

by (43)
= x2(1− eI) + θ12(J) + eI − e1eI − e2eI + eJ − 1 + e1eI + e2eI − eJ

= θ12(J) + (x2 − 1)(1− eI),

β = y2(1 + (x2 − 1)eI) = y2 + (1− y2)eI = eI + (1− eI)y2,

γ = e2(1 + (x2 − 1)eI) = e2(1− eI),
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since e2x2 = 0. By (43),
θ12(J)(1 − eI) = 1− eI . (45)

Using (45), the RHS of (44) is equal to the product of two matrices

(θ12(J) + (x2 − 1)(1− eI) e2(1− eI)
0 eI + (1− eI)y2

)
=

(θ12(J) 0
0 1

) (1 + (x2 − 1)(1− eI) e2(1− eI)
0 eI + (1 − eI)y2

)
.

In order to finish the proof of the proposition, it suffices to show that the last matrix is elementary.
This follows from the next two equalities, as the last two matrices in the equality (47) belong to
the group E2(Sm), by Lemma 3.2.

(
1 −(x2−1+2e2)(1−eI )
0 1

) ( 1+(x2−1)(1−eI ) e2(1−eI )
0 eI+(1−eI )y2

) (
1 0
x2 1

) (
1 (1−y2)(1−eI )
0 1

) ( 1 0
−1−(x2−1)eI 1

)
=

(
1−2e2(1−eI) 0

0 1

)
,

(46)(
1−2e2(1−eI ) 0

0 1

)
=

(
1−2e2 0

0 1

) (
1−2e2eI 0

0 1

)
. (47)

The equality (47) is obvious, and the equality (46) can be written in the form A1 · · ·A5 = A.
Using the identities e2x2 = 0, y2x2 = 1, e2I = eI and (1− eI)

2 = 1− eI , we see that

A2A3A4 =
( 1+(x2−1)(1−eI ) e2(1−eI )

1+(x2−1)eI eI+(1−eI )y2

) (
1 (1−y2)(1−eI )
0 1

)
=

( 1+(x2−1)(1−eI) (x2−1+2e2)(1−eI )
1+(x2−1)eI 1

)
.

In more detail, let (u, v)t be the second column of the product of the two matrices in the middle.
Then

u = (1 + (x2 − 1)(1− eI))(1 − y2)(1− eI) + e2(1 − eI) = (x2(1 − y2) + e2)(1 − eI)

= (x2 − (1− e2) + e2)(1 − eI) = (x2 − 1 + 2e2)(1− eI),

v = (1 + (x2 − 1)eI)(1 − y2)(1 − eI) + eI + (1 − eI)y2

= (1− y2)(1 − eI) + eI + (1− eI)y2 = 1.

Finally,

A2 · · ·A5 =
(1− 2e2(1 − eI) (x2 − 1 + 2e2)(1− eI)

0 1

)

since 1+(x2−1)(1−eI)−(x2−1+2e2)(1−eI)(1+(x2−1)eI) = 1+(x2−1−x2+1−2e2)(1−eI) =
1− 2e2(1 − eI). Now, (46) is obvious. The proof of the proposition is complete. �

Proof of Theorem 3.4. Notice that Sn−1 ≃ S
⊗(n−1)
1 and the symmetric group Sn−1 is a

subgroup of the group of automorphisms of the algebra Sn−1 (it acts by permuting the tensor

components). Then, the matrix
(θij(J) 0

0 1

)
(where J ⊆ {1, . . . , n− 1} with |J | ≥ 2) is elementary

by Proposition 4.6 (when |J | = 2) and Proposition 4.8 (when |J | > 2). Now, Theorem 3.4 is
obvious. �

5 The groups K1(Sn, p) and GL∞(Sn, p) and their generators

In this section, explicit generators are found for the group GL∞(Sn−1, p) where p is an arbitrary

nonzero idempotent prime ideal of the algebra Sn−1 and it is proved that K1(Sn−1, p) ≃ Z(
m

2 )×K∗m

(Theorem 5.7) where m is the height of the ideal p.
For a ring A and an ideal a of A, the normal subgroup of GL∞(A),

GL∞(A, a) := ker(GL∞(A) → GL∞(A/a)),

is called the congruence group of level a. The normal subgroup E∞(A, a) of E∞(A) which is
generated by all the a-elementary matrices (1 + aEij , a ∈ a, i 6= j) is a normal subgroup of
GL∞(A). Moreover, [GL∞(A),GL∞(A, a)] = E∞(A, a) [2], and so the K1-group

K1(A, a) := GL∞(A, a)/E∞(A, a)
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is abelian. Let E′
∞(A, a) be the subgroup of E∞(A) generated by all the a-elementary matrices.

Then E′
∞(A, a) ⊆ E∞(A, a) ⊆ E∞(A).

We keep the notation of the previous sections. Recall that we identified the groups (1 + pn)
∗

and GL∞(Sn−1). Each nonzero idempotent prime ideal p of the algebra Sn−1 is a unique sum (up
to order) of distinct height one prime ideals p = pi1 + · · · + pim and ht(p) = m where ht stands
for the height of an ideal, Corollary 4.8, [5]. The set supp(p) := {i1, . . . , im} is called the support
of the idempotent prime ideal p. The group GL∞(Sn−1, p) can be identified with the subgroup
(1 + ppn)

∗ of the group (1 + an)
∗. The group (1 + ppn)

∗ contains the descending chain of normal
subgroups

(1 + ppn)
∗ = (1 + ppn)

∗
1 ⊃ · · · ⊃ (1 + ppn)

∗
s ⊃ · · · ⊃ (1 + ppn)

∗
n = (1 + Fn)

∗ ⊃ (1 + ppn)
∗
n+1 = {1}

where (1+ppn)
∗
s := (1+ppn)

∗∩ (1+an,s)
∗. Moreover, the groups (1+ppn)

∗
s are normal subgroups

of the group (1 + an)
∗. The following lemma describes the normal subgroups (1 + ppn)

∗
s .

Lemma 5.1 Let p = pi1 + · · · + pim where i1, . . . , im are distinct elements of the set {1, . . . , n}.
Then

(1 + ppn)
∗
s =

{
(1 +

∑
|I|=s,I∈J (p) pI)

∗ if s = 2, . . . , n− 1,

(1 + Fn)
∗ if s = n,

where J (p) := {J ⊆ {1, . . . , n} |n ∈ J, J ∩ supp(p) 6= ∅}. In particular (1 + ppn)
∗
1 = (1 + ppn)

∗
2 =

(1 + ppn)
∗.

Proof. The case s = n is obvious. So, we assume that s 6= n. Since the ideals ppn and an,s of
the algebra Sn are idempotent ideals,

ppn ∩ an,s = ppnan,s =

m∑

ν=1

piνpnan,s =
∑

|I|=s,I∈J (p)

pI .

Therefore, (1 + ppn)
∗
s = (1 + ppn)

∗ ∩ (1 + an,s)
∗ = (1 + ppn ∩ an,s)

∗ = (1 +
∑

|I|=s,I∈J (p) pI)
∗. �

By (10), there is a group monomorphism

ϕn,s :
(1 + ppn)

∗
s

(1 + ppn)∗s+1

→
(1 + an,s)

∗

(1 + an,s+1)∗
→

∏

|I|=s

(1+pI)
∗ =

∏

|I|=s,I∈J (p)

(1+pI)
∗×

∏

|I′|=s,I′ 6∈J (p)

(1+pI′)
∗

which is the composition of two group monomorphisms. By Lemma 5.1,

im(ϕn,s) ⊆
∏

|I|=s,I∈J (p)

(1 + pI)
∗. (48)

For each number s = 2, . . . , n− 1, consider the following subset of the group (1 + ppn)
∗,

Ẽn,s(p) :=
∏

|I|=s,I∈J (p)

UI ⋉ E∞(SCI).

It is a product of subgroups of (1 + ppn)
∗
s in arbitrary order, but which is assumed to be fixed for

each s.
Recall that (1+pI)

∗ = (XCI×UI)⋉E∞(LCI). Since ϕn,s(Ẽn,s(p)(1+ppn)
∗
s+1) =

∏
|I|=s,I∈J (p) UI⋉

E∞(LCI), we see that there is the group monomorphism

ϕn,s :
(1 + ppn)

∗
s

Ẽn,s(p)(1 + ppn)∗s+1

→
(1 + an,s)

∗

Γn,s
≃ Xn,s ≃ X

′
n,s =

∏

|I|=s,I∈J (p)

X
′
CI ×

∏

|I′|=s,I′∈J (p)

X
′
CI′ .
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Notice that the group Ẽn,s(p)(1 + ppn)
∗
s+1 is a normal subgroup of (1 + ppn)

∗
s . For each number

s = 2, . . . , n−1, in the set Θ′
n,s consider the exact product of cyclic groups (the order is arbitrary)

Θ̃n,s(p) = Θ̃[1]
n,s(p)×ex Θ̃

[2]
n,s(p), (49)

Θ̃[1]
n,s(p) := exact

∏

i∈supp(p)

∏

|J′|=s+1,n∈J′,J′∩supp(p)={i}

∏

j′∈J\{n,i,m′(J′)}

〈θm′(J′),j′(J
′)〉,

Θ̃[2]
n,s(p) := exact

∏

|J|=s+1,n∈J,J∩supp(p)≥2

∏

j∈J\{n,m(J)}

〈θm(J),j(J)〉,

where m′(J ′) is the largest element of the set J ′\{n, i} and m(J) is the largest element of the set

J\n. Notice that Θ̃n,2(p) = Θ̃
[2]
n,2(p) as the set Θ̃

[1]
n,2(p) is an empty set.

By (48), im(ϕn,s) ⊆
∏

|I|=s,I∈J (p) X
′
CI and

∏

|I|=s,I∈J (p)

X
′
CI =

∏

|I|=s,I∈J (p)

∏

i∈CI

Z(i, I) =
∏

|J|=s+1,n∈J,J∩supp(p) 6=∅

∏

j∈J\n,(J\n)∩supp(p) 6=∅

Z(j, J\j)

=
∏

i∈supp(p)

∏

|J′|=s+1,n∈J′,J′∩supp(p)={i}

∏

j′∈J′\{n,i}

Z(j′, J ′\j′)

×
∏

|J|=s+1,n∈J,|J∩supp(p)|≥2

∏

j∈J\n

Z(j, J\j).

Recall that im(ψ′
n,s) = ψ′

n,s(Θn,s) = Kn,s =
⋂

|J|=s+1 ker(χ
′
J ), by Theorem 2.4 and (21). The

following argument is the key moment in the proof of Theorem 5.2. For each number s = 2, . . . , n−
1,

im(ϕn,s) ⊆ im(ψ′
n,s)

⋂ ∏

|I|=s,I∈J (p)

X
′
CI =

⋂

|I|=s+1

ker(χ′
J)

⋂ ∏

|I|=s,I∈J (p)

X
′
CI

=
∏

i∈supp(p)

∏

|J′|=s+1,n∈J′,J′∩supp(p)={i}

∏

j′∈J\{n,i,m′(J′)}

Z(−(m′(J ′), J ′\m′(J ′)) + (j′, J\j′))

×
∏

|J|=s+1,n∈J,|J∩supp(p)|≥2

∏

j∈J\{n,m(J)}

Z(−(m(J), J\m(J)) + (j, J\j))

by (20)
= ψ′

n,s(Θ̃n,s(p)) = ϕ′
n,s(Θ̃n,s(p)Ẽn,s(p)(1 + ppn)

∗
s+1).

The first equality above follows from the decomposition of the abelian group
∏

|I|=s,I∈J (p)X
′
CI

above and the definition of the homomorphisms χ′
J . It follows that

(1 + ppn)
∗
s = Θ̃n,s(p)×ex Ẽn,s(p)(1 + ppn)

∗
s+1, s = 2, . . . , n− 1. (50)

Theorem 5.2 Let p be a nonzero idempotent prime ideal of the algebra Sn−1. Then the group

GL∞(Sn−1, p) = (1 + ppn)
∗ is equal to Θ̃n,2(p)Ẽn,2(p) · · · Θ̃n,n−1(p)Ẽn,n−1(p). Moreover,

(1 + ppn)
∗
s =






Θ̃n,2(p)Ẽn,2(p) · · · Θ̃n,n−1(p)Ẽn,n−1(p) if s = 1,

Θ̃n,s(p)Ẽn,s(p) · · · Θ̃n,n−1(p)Ẽn,n−1(p) if s = 2, . . . , n− 1,

(1 + Fn)
∗ if s = n.

Proof. By Proposition 3.10, [8], we have the inclusion (1 + ppn)
∗
n = (1 + Fn)

∗ ⊆ Ẽn,n−1(p).
Now, the theorem follows from (50). �

Lemma 5.3 Let S1(Λ) be the algebra S1 over the ring Λ from Lemma 4.1. Then, for each element
λ ∈ D\{−1},

( 1 0
− ey

1+λe 1

) (1 λex
0 1

) ( 1 0
ey 1

) (1 − λe
1+λex

0 1

)
=

(1 + λe 0
0 1

1+λe

) (1− λ
1+λeE00 0

0 1

)
. (51)

where E00 := 1− xy and 1
1+λe = 1− λ

1+λe, by Lemma 4.1.(2).
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Proof. The RHS of the equality (51) is the product of four matrices, say A1 · · ·A4.

A1A2A3 =
( 1 λex
− ey

1+λe
1

1+λe

) ( 1 0
ey 1

)
=

(1 + λexy λex
0 1

1+λe

)
, A1 · · ·A4 =

(1 + λexy 0
0 1

1+λe

)
,

since (1 + λexy)(− λe
1+λex) + λex = − λe

1+λe (1 + λe)x + λex = 0. The product A1 · · ·A4 coincides
with the product ‘A1 · · ·A4’ in the proof of Lemma 4.2, and so the equality (51) follows from (36).
�

Lemma 5.4 E′
∞(Sn−1, p) ⊇ Ẽn,s for all s = 3, . . . , n− 1 and E′

∞(Sn−1, p) ⊇ E∞(SCI) for all sets
I ∈ J (p) such that |I| = 2.

Proof. We have to show that the group E′
∞(Sn−1, p) contains the groups E∞(SCI) for all

subsets I ∈ J (p) such that |I| = 2, . . . , n−1, and the groups UI for all subsets I ∈ J (p) such that
|I| = 3, . . . , n − 1. By Lemma 5.3, the groups UI belong to the group E′

∞(Sn−1, p). Indeed, by

(26), each element of the group UI is a matrix u =
(1 + µeI\n 0

0 1

)
for some scalar µ ∈ K\{−1}.

Since I ∈ J (p) and |I| ≥ 3, we can choose a number j ∈ I\n such that (I\{j, n}) ∩ supp(p) 6= 0.
Then eI\n = e · E00(j) where e = eI\{j,n} ∈ p. By Lemma 5.3, the matrix u belongs to the group

E∞(Sn−1, p), since the map ϕ : K\{−1} → K\{−1}, λ 7→ − λ
1+λ , is a bijection.

The group E∞(SCI) is generated by the elementary matrices u = 1+ aEαβ(I) where a ∈ SCI ,
α = (αi)i∈I , β = (βi)i∈I ∈ NI and α 6= β. If αn 6= βn then u = 1+(a

∏
i∈I,i6=nEαiβi

(i))Eαnβn
(n) ∈

E′
∞(Sn−1, p), since I ∈ J (p). If αn = βn then choose an element γ ∈ NI such that γn 6= αn, and

so γ 6= α and γ 6= β. Since the elements 1 + Eαγ and 1 + aEγβ belong to the group E′
∞(Sn−1, p)

(by the previous case), so does their group commutator

E∞(Sn−1, p) ∋ [1 + Eαγ , 1 + aEγβ ] = 1 + aEαβ = u.

Therefore, E∞(SCI) ⊆ E′
∞(Sn−1, p). �

Lemma 5.5 Let J = {i, j, n} where the numbers i, j and n are distinct. Let I = {k, n} where
k 6= n, and λ ∈ K∗. Then

[θij(J), µI(λ)] =






1 if k 6= i, k 6= j,

1 + (λ−1 − 1)eJ = µJ(λ)
−1 if k = i,

1 + (λ− 1)E11(j)eien if k = j.

Proof. Let c be the group commutator, J ′ = {i, j}, θij = θij(J) and θ′ij = θij(J
′). Since

θ±1
ij en = enθ

±1
ij = θ′±1

ij en = enθ
′±1
ij and θ′−1

ij = θ′ji, we see that

c = θij(1 + (λ− 1)eken)θ
−1
ij µ

−1
I (λ) = (1 + (λ − 1)θ′ijekθ

′
jien)µ

−1
I (λ).

If k 6= i and k 6= j then the elements θ′ij and ek commute and we get c = µI(λ)µI(λ)
−1 = 1.

If k = i then θ′ijei = xjei and eiθ
′
ji = eiyj , by (43), and so

c = (1 + (λ− 1)xjyjeien)µI(λ)
−1 = (µI(λ) − (λ− 1)eJ)µI(λ)

−1

= 1− (λ− 1)eJ(1 + (λ−1 − 1)eI) = 1−
λ− 1

λ
eJ = 1 + (λ−1 − 1)eJ = µJ(λ)

−1.

If k = j then θ′ijej = yiej + E10(j)ei and ejθ
′
ji = xiej + E01(j)ei, by (43), and so

c = (1 + (λ − 1)(yiej + E10(j)ei)(xiej + E01(j)ei)en)µI(λ)
−1

= (µI(λ) + (λ− 1)E11(j)eien)µI(λ)
−1 = 1 + (λ − 1)E11(j)eien. �

Let A and B be subgroups/subsets of a group G. The commutant [A,B] is the subgroup of G
generated by all the group commutators [a, b] = aba−1b−1 where a ∈ A and b ∈ B. For an element
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g ∈ G, let ωg : x 7→ gxg−1 be the inner automorphism of the group G determined by the element
g. We can easily verify that for all elements a1, a2, b1, b2 ∈ G,

[a1b1, a2b2] = ωa1([b1, a2])ωa1a2([b1, b2])[a1, a2]ωa2([a1, b2]). (52)

The normal subgroup E(Sn−1, p). Consider the subgroup

E(Sn−1, p) :=
∏

|I|=2,I∈J (p)

E∞(SCI) · (1 + ppn)
∗
3

of the group (1 + ppn)
∗ = GL∞(Sn−1, p). By (50), the group (1 + ppn)

∗ is the exact product of
sets,

(1 + ppn)
∗ = Θ̃n,2(p)×ex

exact
∏

|I|=2,I∈J (p)

UI ×ex E(Sn−1, p). (53)

By the very definition, the subgroup E(Sn−1, p) is a normal subgroup of (1 + ppn)
∗ (see the

definition of the map ϕn,s). There is the inclusion

[Θ̃n,2(p), Θ̃n,2(p)] ⊆ (1 + ppn)
∗
3 (54)

which is obvious due to the fact that the image of each element θij(J) (where |J | = 3 and J ∈ J (p))
under the map ϕn,s is the direct product of two ‘diagonal’ matrices with entries in (commutative)
Laurent polynomial algebras, hence all the images commute.

Theorem 5.6 E(Sn−1, p) = E∞(Sn−1, p) = E′
∞(Sn−1, p).

Proof. Recall that GL∞(R, a)/E∞(R, a) is an abelian group for any ring R and ideal a of R, [2].
By (53), Lemma 5.5 and (54), the factor group (1 + ppn)

∗/E(Sn−1, p) is abelian.
Let us show that E′

∞(Sn−1, p) ⊆ E := E(Sn−1, p). We have to show that 1 + pEij(n) ⊆ S for
all i 6= j. Since

1 + pEij(n) = 1 + (pi1 + · · ·+ pim)Eij(n) =

m∏

ν=1

(1 + piνEij(n)),

it suffices to show that 1 + piνEij(n) ⊆ E for all ν = 1, . . . ,m and i 6= j, but this is obvious since

1 + piνEij(n) ⊆ E∞(SCI) ⊆ E

where I = {iν, n} (and so |I| = 2 and I ∈ J (p)), see the definition of E .
To finish the proof of the theorem it suffices to show that E(Sn−1, p) ⊆ E′

∞(Sn−1, p) (since then
the group E′

∞(Sn−1, p) is a normal subgroup of GL∞(Sn−1, p) as GL∞(Sn−1, p)/E is an abelian
group and E ⊆ E′

∞(Sn−1, p); hence E∞(Sn−1, p) = E′
∞(Sn−1, p) and E′

∞(Sn−1, p) = E). By
Theorem 5.2,

E(Sn−1, p) =
∏

|I|=2,I∈J (p)

E∞(SCI) · Θ̃n,3(p)Ẽn,3(p) · · · Θ̃n,n−1(p)Ẽn,n−1(p).

By Lemma 5.4, the inclusion E(Sn−1, p) ⊆ E′
∞(Sn−1, p) holds iff Θ̃n,s(p) ⊆ E′

∞(Sn−1, p) for all

s = 3, . . . , n− 1 iff Θ̃
[1]
n,s(p), Θ̃

[2]
n,s(p) ⊆ E′

∞(Sn−1, p) for all s = 3, . . . , n− 1.

Fix an element θ such that either θ ∈ Θ̃
[1]
n,s(p) or θ ∈ Θ̃

[2]
n,s(p), i.e. either θ = θm′(J′),j′(J

′)
or θ = θm(J),j(J), see (49). In the second case, without less of generality we may assume that
m(J) 6∈ J∩supp(p), by changing, if necessary, the order in the set J (or simply by taking a suitable
element). In both cases, we can choose an element, say k ∈ J∩supp(p), such that k 6∈ {m′(J ′), j′},
in the first case, and k 6∈ {m(J), j}, in the second case. In both cases, we can write θ = θij(J)
where k ∈ J ∩ supp(p) and k 6∈ {i, j}. As we have seen in Section 3,

θij(J) = ekθij(J\k) + 1− ek.
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By Theorem 3.5, θij(J\k) ∈ E∞(
⊗n−1

l=1,l 6=k S1(l)) ⊆ GL∞(
⊗n−1

l=1,l 6=k S1(l)). Under the algebra
monomorphism

GL∞(

n−1⊗

l=1,l 6=k

S1(l)) → GL∞(Sn−1, p), a 7→ eka+ 1− ek,

the group of elementary matrices E∞(
⊗n−1

l=1,l 6=k S1(l)) is mapped into the group of p-elementary
matrices E′

∞(Sn−1, p) since ek ∈ p. Therefore, θ ∈ E′
∞(Sn−1, p). The proof of the theorem is

complete. �

Theorem 5.7 Let p be a nonzero idempotent prime ideal of the algebra Sn−1 and m = ht(p) be
its height. Then (below is the direct product of groups)

K1(Sn−1, p) ≃
∏

{i>j | i,j∈supp(p)}

〈θij({i, j, n})〉 ×
∏

k∈supp(p)

U{k,n} ≃

{
K∗, if m = 1,

Z(
m

2 ) ×K∗m if m > 1.

The group GL∞(Sn−1, p) is generated by the elements θij := θij({i, j, n}) (where i > j and i, j ∈
supp(p)) and the groups E∞(Sn−1, p), U{k,n} where k ∈ supp(p). Moreover, each element a of the
group GL∞(Sn−1, p) is the unique product (the order is arbitrary)

a =
∏

{i>j | i,j∈supp(p)}

θ
nij

ij ·
∏

k∈supp(p)

µ{k,n}(λk) · e (55)

where nij ∈ Z, λk ∈ K∗ and e ∈ E∞(Sn−1, p).

Proof. The theorem follows from the equality (53) and Theorem 5.6. �

We can find effectively (in finitely many steps) the decomposition (55) (Corollary 5.9). For,
we introduce several explicit group homomorphisms.

Definition. For each nonempty subset I of {1, . . . , n} with s = |I| < n and for each element
j ∈ CI, define the group homomorphism detI : (1+ an,s)

∗ → L∗
CI as the composition of the group

homomorphisms (see (10))

(1 + an,s)
∗ ψn,s

→
∏

|J|=s

(1 + pJ)
∗ prI→ (1 + pI)

∗ ≃ GL∞(LCI)
det
→ L∗

CI

where prI is the projection map. Define the group homomorphism degn,I,j : (1+an,s)
∗ → Z as the

composition of the group homomorphisms (1 + an,s)
∗ detI→ L∗

CI

degxj

→ Z where degxj
is the degree

in xj of monomial (degxj
(λ

∏
i∈CI x

αi

i ) = αj where λ ∈ K∗ and αi ∈ Z).

Lemma 5.8 Let n ≥ 3 and s = 1, . . . , n − 1. Then for all subsets I and J of the set {1, . . . , n}
such that |I| = s, |J | = s+ 1 and n ∈ J ,

degn,I,i(θm(J),j(J)) =





−1 if I = J\m(J), i = m(J),

1 if I = J\j, i = j,

0 otherwise.

where i ∈ CI and j ∈ J\m(J).

Proof. The result follows at once from the equality θm(J),j = (1+(ym(J)−1)eJ\m(J))(1+(xj−
1)eJ\j). �
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Corollary 5.9 Given a product decomposition (55) for an element a ∈ GL∞(Sn−1, p), we have

nij = degn,{i,n},j(a),

λk = det{k,n}(a ·
∏

{i>j | i,j∈supp(p)}

θ
−nij

ij ),

e = (
∏

{i>j | i,j∈supp(p)}

θ
nij

ij ·
∏

k∈supp(p)

µ{k,n}(λk))
−1a.

Proof. By Lemma 5.8, degn,{i,n},j(a) = nij degn,{i,n},j(θij) = nij . Similarly,

det{k,n}(a ·
∏

{i>j | i,j∈supp(p)}

θ
−nij

ij ) = det{k,n}(µ{k,n}(λk)) = λk.

The rest is obvious. �

Corollary 5.9 gives an effective criterion of whether an element a ∈ GL∞(Sn−1, p) is a product
of p-elementary matrices.

Corollary 5.10 Let a ∈ GL∞(Sn−1, p). Then a ∈ E∞(Sn−1, p) iff all nij = and λk = 1 iff
degn,{i,n},j(a) = 1 for all i > j such that i, j ∈ supp(p), and det{k,n}(a) = 1 for all k ∈ supp(p).
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