-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by White Rose Research Online

This is a repository copy of The groups K1(S-n, p) of the algebra of one-sided inverses of
a polynomial algebra.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/124649/

Version: Accepted Version

Article:

Bavula, V.V. (2017) The groups K1(S-n, p) of the algebra of one-sided inverses of a
polynomial algebra. Publicationes Mathematicae Debrecen, 90 (1-2). pp. 55-90. ISSN
0033-3883

https://doi.org/10.5486/PMD.2017.7461

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A

A\ White Rose  uerese aca
. it H eprints@whiterose.ac.u
‘\ /‘.-‘ HRL&;S{:{ L‘iefs?;ilz LL\J,UT https://eprints.whiterose.ac.uk/



https://core.ac.uk/display/132284368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

arXiv:1005.3550v2 [math.KT] 3 May 2013

The group Ki(S,) of the algebra of one-sided inverses of a
polynomial algebra

V. V. Bavula

Abstract

The algebra S,, of one-sided inverses of a polynomial algebra P, in n variables is ob-
tained from P, by adding commuting, left (but not two-sided) inverses of the canonical
generators of the algebra P,. The algebra S,, is a noncommutative, non-Noetherian alge-
bra of classical Krull dimension 2n and of global dimension n and is not a domain. If the
ground field K has characteristic zero then the algebra S,, is canonically isomorphic to the
algebra K(a%l7 e %7 fv e fn> of scalar integro-differential operators. It is proved that
K1(Sn) ~ K*. The main idea is to show that the group GLoo(S») is generated by K*, the
group of elementary matrices Eoo(S,) and (n—2)2" " 41 explicit (tricky) matrices and then
to prove that all the matrices are elementary. For each nonzero idempotent prime ideal p of
height m of the algebra S,,, it is proved that

*

K~
Ki(Sn,p) ~ pICS)

ifm=1,
x K*™ if m > 1.

Key Words: the group Ki, the current groups, the group of automorphisms, group gen-
erators, the group of units, the semi-direct and the exact products of groups, the minimal
primes.

Mathematics subject classification 2000: 19B99, 16 W20, 14H37.

1 Introduction

Throughout, ring means an associative ring with 1; module means a left module; N := {0,1,...}

is the set of natural numbers; K is a field and K* is its group of units; P, := Klx1,...,2,] is a
polynomial algebra over K; 01 := 8%7 ceeyOp = 8% are the usual partial derivatives (K-linear

derivations) of P,,; Endg (P,) is the allgebra of all K-linear maps from P, to P, and Autg(P,) is
its group of units (i.e. the group of all the invertible linear maps from P, to P,); the subalgebra
Ap = K(x1,...,Tp,01,...,0,) of Endg(P,) is called the n’th Weyl algebra.

Definition, [5]. The algebra S,, = S, (K) of one-sided inverses of P, is the algebra generated
over a field (or aring) K of by 2n elements 21, ..., Zp, Yn, - - . , Yn that satisfy the defining relations:

iz =1,...,ynxn =1, [2;,y;] = [zi, 2] = [ys,y,;] =0 foralli+#j,

where [a,b] := ab — ba is the algebra commutator of elements a and b.

By the very definition, the algebra S,, is obtained from the polynomial algebra P, by adding
commuting, left (but not two-sided) inverses of its canonical generators. The algebra S; =
K{z,y|yzr = 1) is a well-known primitive algebra [12], p. 35, Example 2. Over the field C of
complex numbers, the completion of the algebra S; is the Toeplitz algebra which is the C*-algebra
generated by a unilateral shift on the Hilbert space [?(N) (note that y = 2*). The Toeplitz algebra
is the universal C*-algebra generated by a proper isometry. If char(K) = 0 then the algebra S,, is
isomorphic to the algebra K(=2-, ..., %, Ji+---, J) of scalar integro-differential operators (via
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In [7], it is proved that K;(S1) =~ K*. The first aim of the paper is to prove that
e (Theorem BH) Ki(S,) ~ K* for all n > 1.

The algebra S,, was studied in detail in [B]: its Gelfand-Kirillov dimension is 2n, its classical
Krull dimension cl. Kdim(S,) = 2n, and its weak and global dimensions are n. The algebra S,
is neither left nor right Noetherian as was shown by Jacobson [I1I] when n = 1 (see also Baer
[1]). Moreover, it contains infinite direct sums of left and right ideals. It is an experimental fact
that the algebra S,, ~ S?" has properties that are a mixture of properties of the Weyl algebra
A, =~ AP™ (in characteristic zero) and the polynomial algebra Py, ~ Ps°™ which is not surprising
when we look at their defining relations:

Py =K(z,y): yz—xy=0;
A =K(z,y): yx—ay=1;
S1 = K(z,y): yr = 1.
The group G, := Autg_az(S,) of K-algebra automorphisms of S,, and the group S} of units of

the algebra S, were determined in the series of three papers [6], [7] and []], and their explicit
generators were found (both groups are huge). The group G; was found by Gerritzen [10]).

Theorem 1.1 1. [6] G, = S, x T" x Inn(S,,) where S, is the symmetric group, T" ~ K*" is
the n-dimensional algebraic torus and Inn(S,,) is the group of inner automorphisms of S,,.

2. [7], [9] S, = K* x (1+a,)* where a, is the ideal generated by all the height one prime ideals
of Sy,.

3. [8] The centre of the group S, is K* and the centre of the group (1 + a,)* is {1}.
4. [8] The map (1 + a,)* — Inn(S,), u > wy, is a group isomorphism (wy(a) = uau™").

The structure of the proof of Theorem The idea of the proof that K;(S,) ~ K*
(Theorem B.3]) is to use the fact that the group GLoo(S,—1) is canonically isomorphic to the
congruence subgroup (1 + p,)* of S} = K* x (1 4+ a,)*, (14 pn)* C (1 + a,)*, where p,, is an
(arbitrary) height one prime ideal of the algebra S,,. The group S} is huge, e.g.

Sy, D (1+a,)" D GLeo(K) X -+ X GL (K), (1)

27 —1 times

the iterated semi-direct product being a small part of the group S;,. The key ingredients in finding
the groups G, Inn(S,) and S} (and their explicit generators) are the Fredholm operators and
their indices, the current subgroups, and the K;-theory. This explains why it is possible to recover
the group GLoo(S,—1) in S% (this is not straightforward), to find its explicit generators. We prove
in Theorem B3] Lemma B2 and (34)) that

o the group GLoo(Sy) is generated by K*, the group of elementary matrices Ex(S,) and (n —
0i;(J) 0

2)27=1 4 1 matrices ( 0 1) (Lemma [B.6]) where (see (IGl))

HU(J) = (1 =+ (yl — 1) H (1 — :Ekyk)) (1 + ({Ej — 1) H (1 — xlyl)) S (1 + an)*,
keJ\i leJ\j
J is a subset of {1,...,n} with |J| > 2, ¢ is the largest number in J and j € J\s.

The final and the most difficult part of the proof is to show that



e (Theorem B4 all the above matrices (eijéJ) (1)) are elementary, i.e. the units 0;;(J) are

elementary when regarded as matrices via the inclusion GL1(S,,) C GLxo(Sy,). O
We spend all of Section @ to prove this fact.

o (Theorem [B.7) Let p be a nonzero idempotent prime ideal of the algebra S,, and m = ht(p)
be its height. Then
K*, ifm =1,

m

K1(Bnp) = {Z(z) x K*™ if m > 1.

Let ©,5, s = 1,...,n — 1, denote the finitely generated subgroup of the group (1 + a,)*,
generated by the elements 6;;(J) where J is a subset of {1,...,n} with |J| =s+1> 2, and 7 and
j are two distinct elements of the set J. These, the so-called current subgroups, were introduced
in [7] and []], and they are the core (the non-obvious part) of the groups G, Inn(S,,) and S} and
the key for determining the groups GLoo(Sy), K1(Sn), GLoo(Sn,p) and K1 (S,,p), as this paper
demonstrates.

The paper is organized as follows. In Section [2] some necessary results and constructions are
collected for the algebra S,, and the group (1 + a,,)*. In Section Bl the groups Ki(S,,), GLoo(Sy)
and their explicit generators are found. In Section [, Theorem [3.4] is proved. In Section [ the
groups GLoo(Sp,p), K1(Sn,p) and explicit generators for them are found, and Theorem [5.17] is
proved.

The structure of the proof of Theorem [5.7 The line of proof of Theorem .7 follows
that of Theorem (but there are new moments): first, we prove that the group GLy (S, p) is
generated by the group Foo(S,, p) of p-elementary matrices, some explicit ‘diagonal’ matrices, and
0:;,(J) 0

0 1
E(Sy,p) of GLoo(Sy, p) is introduced and we prove that

some of the matrices ( ) (Theorem 5.2 Lemma [5.4). Then an ‘obvious’ normal subgroup

GLow (S p)/E(Sn.p) K~ ifm=1,

B PIEBPI =5 (0) « em i s 1,
This gives the inclusion E(Sp,p) € E(Sp,p). The key moment in proving that the opposite
inclusion holds is (surprisingly) the fact that K;(S,) ~ K*. The new moment is that not all the
0;;(J) 0

‘diagonal’ matrices and not all the matrices ( 0 1

) that form a part of the generating set for

the group GLoo(Sy,p) are p-elementary. O

A canonical form is found (Theorem [B.7) for each element a € GLuo(S,,p). Using it, an
effective criterion (Corollary BI0) is given for an element a € GLy(S,,p) to be a product of
p-elementary matrices, i.e. a € Eoo(Sy, p).

2 The groups S; and (1 + a,)* and their subgroups

In this section, we collect some results without proofs on the algebras S,, from [5] and [§] that will
be used in this paper, their proofs can be found in [5] and [§]. Several important subgroups of
the group (1 + a,,)* are considered. The most interesting of these are the current subgroups 0,, s,
s=1,...,n— 1. They encapsulate the most difficult parts of the groups S}, and G,,.

The algebra of one-sided inverses of a polynomial algebra. Clearly, S, = S;(1) ®
- ®@S1(n) ~ SP" where S1(i) = K(v;,yi|yivi = 1) ~ Sy and S,, = D.. senn Kaxy® where

{0}

@ =2t o= (o, 0n), YP o= yfl -ybnoand B = (B1,...,Bn). In particular, the
algebra S,, contains two polynomial subalgebras P, and @, := Kl[yi,...,yn] and is equal, as a
vector space, to their tensor product P, ® Q.



When n = 1, we usually drop the subscript ‘1’ if this does not lead to confusion. So, §; =
K(z,y|yx = 1) = @, ;50 K='y’. For each natural number d > 1, let My(K) := @?;:10 KE;; be
the algebra of d-dimensional matrices where {E;;} are the matrix units, and

Moo (K) :=lim My(K) = €D KEj
i,jEN
is the algebra (without 1) of infinite dimensional matrices. The algebra S; contains the ideal
F =, jen KEij, where
Eyj =aly? — 2™ yi g 5> 0. (2)
For all natural numbers ¢, j, k, and [, E;;Ey; = 6,5, E; where 6,1, is the Kronecker delta function.

The ideal F is an algebra (without 1) isomorphic to the algebra (without 1) My (K) via E;; — E;;.
For all 4,5 > 0,

zEi; =Fip1j, yEijy=Ei_1; (E-1;:=0), (3)
Eijw = Ei7j_1, Eijy = Ei7j+1 (Ei7_1 = 0) (4)

The algebra
Si1=K®zK[z] ®yKly|® F (5)

is a direct sum of vector spaces. Then
Si/F~Klx,o Y=L, vz, y—ra (6)
since yr =1, xzy =1 — FEyp and Ey € F.
The algebra S,, = @, S1(i) contains the ideal
F, = F®" = @ KE.3, where E,g:= HE%,@. (1), Egap (1) = xf”yf - ;v?”lyfiﬂ.
a,BEN" i=1

Note that EqgFE,, = dgyEqa, for all elements o, 8,7, p € N* where g, is the Kronecker delta

function; F, = @;—, F(i) and F(i) := @, ;cy K Est (i)

o The algebra S,, is central, prime and catenary. Every nonzero ideal of Sy, is an essential left
and right submodule of S,,.

o The ideals of S,, commute (IJ = JI); and the set of ideals of S, satisfy the a.c.c..
e aNb=ab for all idempotent ideals a and b of the algebra S,;
o The classical Krull dimension cl. Kdim(S,) of S, is 2n.

o Let I be an ideal of S,,. Then the factor algebra S, /I is left (or right) Noetherian iff the
ideal I contains all the height one prime ideals of the algebra S,.

The set of height one prime ideals of S,,. Consider the ideals of the algebra S,:
P i=F®S—1, P2 =S1®F®Sp—2,...,0n :=S—-1 ®F.

Then S, /p; ~ Sp—1® (S1/F) ~S,_1 ® K[xi,xfl] and N, p; = [[ey pi = F®" = F,. Clearly,
p; € p; for all i # 3.

o The set Hy of height one prime ideals of the algebra S, is {p1,...,pn}-



Let a, :=p1 + -+ + p,,. Then the factor algebra
Sn/an =~ (S1/F)® ®le, x; Ky, o7t e, 2] = Ly (7)

is a skew Laurent polynomial algebra in n variables, and so a, is a prime ideal of height and
co-height n of the algebra S,,.

Proposition 2.1 [B] The polynomial algebra P, is the only (up to isomorphism) faithful simple
S, -module.

In more detail, 5, P, ~ S, /(37 Sn¥i) = Buenn K21, 1:= 1+ 371" | Spy;; and the action
of the canonical generators of the algebra S,, on the polynomial algebra P, is given by the rule:

@ % if a; >0,

0 if a; =0, and Egy * 2% = 5vax'@7

Xy x2S = 2Ty ke a” :{

where the set e; := (1,0,...,0),...,e, :=(0,...,0,1) is the canonical basis for the free Z-module
= @, _, Ze;. We identify the algebra S,, with its image in the algebra Endg (P,) of all the
K-linear maps from the vector space P, to itself, i.e. S,, C Endg(FP,).

For each non-empty subset I of the set {1,...,n}, let S; := @,;S1(i) ~ S|;; where [I| is
the number of elements in the set I, 1 := @);c; F (i) ~ Mo (K), ar is the ideal of the algebra
S; generated by the vector space P,.; F'(i), i.e. ar := > ,.; F(i) ® Sp;. The factor algebra
Ly :=Si/a; ~ Kz, x; Yier is a Laurent polynomial algebra. For elements o = (;)icr, 8 =
(Bi)ier € N let Eog(I) :=[I,c; Ba,p, (7). Then Eqp(I)Ee,(I) = dgeEap(I) for all a, 8,&, p € N1

The G,-invariant normal subgroups (1 + a, ¢)* of (1 + a,)*. Let G, := Autx_a1g(Sn).
We will use often the following obvious lemma.

Lemma 2.2 [6] Let R be a ring and I,...,I, be ideals of the ring R such that I;I; = 0 for all
i1#£7j. Leta=14a1+---+a, € Rwhereay € I1,...,a, € I,. The element a is a unit of the ring
R iff all the elements 1+ a; are units; and, in this case, a=' = (14+a;) ' (14+a2)"t---(14+a,)"?!

Let R be a ring, R* be its group of units, I be an ideal of R such that I # R, and let (14 I)*
be the group of units of the multiplicative monoid 1+ 1. Then R*N(1+1) = (1+1)* and (14 1)*
is a normal subgroup of R*.

For each subset I of the set {1,...,n}, let p; := [;c; pi, and py := S,,. Each p; is an ideal
of the algebra S, and p; = [],c; pi. The complement to the subset I is denoted by CI. For a
one-element subset {i}, we write C'i rather than C{i}. In particular, pc; := pogiy = ﬂ#i pj.

For each number s = 1,...,n, let a, , = Zm:s pr. By the very definition, the ideals a, s
are Gp-invariant ideals (since the set H; of all the height one prime ideals of the algebra S, is
{p1,...,pn}, [6], and H; is a G,-orbit). We have a strictly descending chain of G),-invariant ideals
of the algebra S,,:

Up =0p1 D0p2 D " Dlps D Dlpny=F, Daypgrr :=0.

These are also ideals of the subalgebra K + a, of S,,. Each set a, s is an ideal of the algebra
K +a,, for all t < s, and the group of units of the algebra K + a, s is the direct product of its
two subgroups

(K4+a,:)" =K"x(1+a,5)" s=1,...,n.

The groups (K + a,)* and (1 + a,5)* are Gy-invariant. There is the descending chain of G,,-
invariant (hence normal) subgroups of (1 + a,,)*:

(I+a)" =(1+an1)" D D(+ans) D D(I+ann) =1+F) D1 +annt1)" ={1}.



For each number s = 1,...,n, the factor algebra

(K+an5/ans+1 K@@pl

[1]=s

contains the idempotent ideals p; := (pr + Gy 5+1)/0n s+1 such that p;p; = 0 for all T # J such
that |I| = |J| = s.
Recall that for a Laurent polynomial algebra L = K[z, ...z, K1 (L) ~ L*, [14], [2], [13],

GLoo(L) = U(L) x Es(L) (8)

where E (L) is the subgroup of GLs (L) generated by all the elementary matrices {1+ aE;j |a €
L,i,j € Nyi# 4}, and U(L) := {p(u) := uEp + 1 — Ego|u € L*} ~ L*, u(u) +> u. The group
E~ (L) is a normal subgroup of GLs (L). This is true for an arbitrary coefficient ring.

By Lemma 22l and (®]), the group of units of the algebra (K + ay 5)/0n 11 =: K + p s/ s41
is the direct product of groups,

(K +ans/anss1)” = K*x [] @+5)" ~ K* x [ GLac(Ler) ~ K* x [ U(Ler) x Es(Lex)
|1]=5 |1]=5 |1]=5

since (1 +p;)* ~ (1 + Mw(Lcr1))* = GLoo(Lcr) where Lor == Scr/act = Q,cer Klzi,x; '] is
the Laurent polynomial algebra. In more detail, for each non-empty subset I of {1,...,n}, let
=@,c; Ze;. 1t is a subgroup of Z" = @', Ze;. Similarly, N’ := @, ., Ne;. By @),

(14+p7)" = U(Leor) X Ex(Ler) = (Un(K) x Xer) X Eso(Lor) (9)
where
U(Lcr) = {ur(u):=uEop()+1—Eop(I)|ue L}~ L, pr(u) ¢ u,
Lir = {Da® A e K a ez},
U](K) = {ILL[(/\) = )\Eoo(j)—Fl—Eoo(IH)\GK*}ZK*, ,LL]()\)H)\,
Xer = {pr(x®) :=2%Eoo(I) + 1 — Eoo(I) |a € 297} =~ 2T ~ 72" ur(2) & «a,
Eox(Lcr) = (1+aE.s(I)|a€ Ler,a,3 €N a# B).

The algebra epimorphism ¢, s : K 4+ aps = (K 4 ay5)/0n 541, @ — a + 6, o411, yields the
group homomorphism of their groups of units (K +a,, s)* — (K 4 a,, s/, s4+1)* and whose kernel
is (1 + ap,s+1)*. As a result we have an exact sequence of group homomorphisms:

Lo (L4 aper)” = (L a0 [ 4+50)" = [] CLoo(Ler) = 2 — 1. (10)
11=s 11=s

For s = n, the map ), , is the identity map, and so Z,, = {1}. Intuitively, the group Z, s
represents ‘relations’ that determine the image im(, ;) as a subgroup of H|I|:s(1 +P;)*. The
group 2, s is a free abelian group of rank (Sil), [8]. So, the image of the map v, s is large. Note
that a, s+1 and p; (where |I| = s) are ideals of the algebra K + a, s. The groups (1 + a5 s+1)*
and (14 py)* (where |I| = s) are normal subgroups of (1 + a,_)*. Thus the subgroup T, s of
(14 a,,s)* generated by these normal subgroups is a normal subgroup of (1 + a, s)*. As a subset
of (1+ay,,s)*, the group T, s is equal to the product of the groups (1+ a, s41)*, (L+p1)*, |I| = s,
in arbitrary order (by their normality), i.e

Yoo = [0 +p0" (14 ansn) (1)
|[I|=s

By Theorem [[T] the group Y, s is a G,-invariant (hence, normal) subgroup of S¥. The factor

group (1 + ay 5)*/Th s is a free abelian group of rank (S+1) 8.



By (@), the direct product of groups H|I|:s(1 +P;)" = X, X [, ¢ is the semi-direct product
of its two subgroups

Xns = [[ Xer =209 and Ty = [] Ur(K) x Exe(Ler). (12)
|[Il=s [I|l=s

For each subset I of {1,...,n} such that |I| = s, Ur(K) X Ex(Scr) is a subgroup of (1 + pr)*

where
Ur(K) = {pr(N) |\ € K"} = K*, Ex(Scr) = (1+aBag(I)|a € Scr,a# f eN'),  (13)
where pr(A) := AEgo(I) + 1 — Ego(I). Clearly,

Un,slu; (i) Ur(K) ~ Ur(K), pr(X) = pr(A),

and ¥y, s(Ur(K) X Ex(Scr)) = Ur(K) x Ex(Lcr) for all subsets I with |I| = s. The subgroup of
(1+ans)*,

Ts = U s(Tnys) = * T (U1(K) x Ex(Scr)) - (14 ane41)", (14)

[|=s
is a normal subgroup as it is the pre-image of a normal subgroup. We added the upper script ‘set’
to indicate that this is a product of subgroups but not a direct product, in general. It is obvious
that ¥, s(Tps) =Tns and IT'y s € T 5. In fact, Ty s = Ths, [B]. Let Ay s i= (1 4+ an5)*/Th s
The group homomorphism ), 5 (see (I0)) induces the group monomorphism
Pns i Bns = [[A+P)) /T ~ X o 7,(2)(n=s)
[I|l=s

This means that the group A, 5 is a free abelian group of rank < (Z) (n — ). In fact, the rank is
equal to (Szl)s, 8.

For each subset I with |I| = s, consider the free abelian group Xt := @, Z(j, 1) =~ Z"°
where {(j,1)|j € CI} is its free basis. Let

X, .= P KXo =@ Pz 1=z,

[I|=s |I|=sjECT
For each subset I, consider the isomorphism of abelian groups
Xer = Xep, pr(zy) == 2;Eo(I) + 1 — Ego(I) — (4, ).
These isomorphisms yield the group isomorphism
Xn,s = X;z,w /U(xj) = (4, 1) (15)

Each element a of the group X, s is a unique product a = [],;_; I L;ecr 1 ()00 where n(j, I) €
Z. Each element a’ of the group XJ, | is a unique sum a’ = }7,;_, > ;ccrn(d, I) - (4, ) where
n(j,I) € Z. The map (IT) sends a to a’. To make computations more readable we set ey := Ego([).

Then ejey = ejyJg-

The current groups O, s, s =1,...,n—1. The current groups 0, s are the most important
subgroups of the group (1 + a,)*. They are finitely generated groups and generators are given
explicitly. The generators of the groups ©, , are units of the algebra S,, but they are defined as
a product of two non-units. As a result the groups ©,, s capture the most delicate phenomena
regarding the structure and properties of the groups S} and G,

For each non-empty subset I of {1,...,n} with s := |[I| < n and an element 7 € CI, let

X(’L,I) = ,LL](Il) = IlEoo(I) —+ 1-— Eoo(I) and Y(’L,I) = ,uj(yl) = yZEO()(I) + 1-— Eoo(I)



Then Y (i, 1) X (i,1) = 1, ker Y (i, I) = Pc(1ui), and P, = im X (i, I) @ Po(ruiy where Po(ruiy =
K[zj]jec(ruiy- Recall that S,, C Endg(P,). As an element of the algebra Endg (P, ), the map
X (i, 1) is injective (but not bijective), and the map Y (i, I) is surjective (but not bijective).

Definition. For each subset J of {1,...,n} with |J| = s+ 1 > 2 and for two distinct elements
7 and j of the set J, let

0:5(J) ==Y (i, J\ND)X (4, J\j) € (L +ppi+pry)" € (L+ans)" (16)

The current group 0, , is the subgroup of (1 + a,, s)* generated by all the elements 6;;(J) (for
all the possible choices of J, i, and j).

The unit 6;;(I) is the product in Endg (P,) of an injective map and a surjective map, none of
which is a bijection.
0i;(J) = 0;(J) " (17)
Suppose that i, j, and k are distinct elements of the set J (hence |J| > 3). Then
0i5()05k (J) = Our(J)- (18)

For each number s = 1,.. — 1, the free abelian group an admits the decomposition
Xhs = D) yj=si1 Pjur=s Z(, I), and using it we define a character (a homomorphism) x/;, for
each subset J with |J| = s+ 1:

/]ZX;LS%Z, Z Z nj71(j,I)'—> Z nj; 1.

|J/|=s+14UI=J" Jul=J
Let max(.J) be the largest number in the set J. The group X], , is the direct sum
=K, PV, (19)

of its free abelian subgroups,

Ko, = [) k)= @ @D  Z-(max()), J\max(J)) + (. J\5) = Z(F)*,

|J]=s+1 |J|=s+1j€J\ max(J)
Yne = @ Z(max(J), J\ max(J)) ~ 7(:) |
[J|=s+1

The same decompositions hold if instead of max(.J), we choose any element of the set .J. Consider
the group homomorphism v, , : (1 +a,)* — X, | defined as the composition of the following
group homomorphisms:

1/’;,5 P+ ans)" = (Lt ans) /Ths = H (L 4+P7)"/Tys = X s X/

[I|=s
Then
Vs (0i(T) = — (i, J\i) + (4, J\J)- (20)
It follows that
U5 (On,s) = K, o, (21)

since, by (20, 1/);15((9"15) ) K;lﬁ (as the free basis for Kn <, introduced above, belongs to the set
;1,5(67175)); again, by (20), w;,s( n,S) < ﬂ|J|_s+1 ker(x(]) K;z,s

Let H, Hy, ..., H,, be subsets (usually subgroups) of a group H. We say that H is the product

of Hy,...,Hy,, and write H = *'[[!" | H; = Hy---Hp, if each element h of H is a product

h = hy--hy, where h; € H;. We add the subscript ‘set’ (sometime) in order to distinguish it



from the direct product of groups. We say that H is the exact product of Hy,..., H,,, and write
H =eract T H; = Hy Xeg +++ Xep Hp, if each element h of H is a unique product h = hy -+ hy,
where h; € H;. The order in the definition of the exact product is important. A semi-direct
product of groups Hy, ..., H,, is denoted by

Hy o (Hy X (- % Hp)) = Hy % Hy % -+ x Hy, =" ][ H,.
=1

The subgroup of (1 + a,5)* generated by the groups ©, s and T’ 5 is equal to their product
Oy, s s, by the normality of I';, ;. The subgroup I',, s of the group ©,, ;I'y, s is a normal subgroup,
hence the intersection ©,, s NI, s is a normal subgroup of ©,, ;.

Lemma 2.3 [§] For each number s =1,...,n — 1, the group O, ', s is the semi-direct product

Gn,srn,s — semi H H <9max(,]),j(‘])> X Fn,sa
|J|=s4+1j€J\ max(J)

where the order in the double product is arbitrary. Fach element a € O, sI'y, s is a unique product
a= H\J\:sﬂ HjeJ\ max(J) emaX(J),j(J)n(J’J) -y where n(j, J) € Z and v € T'n .

For each number s = 1,...,n — 1, consider the subset of (1 + a, 5)*,

6;,5 ._ ezact H H <0max(J),j(J>>a (22)

|J|=s+1j€J\ max(J)

which is the exact product of cyclic groups (each of them is isomorphic to Z), since each element
u of © . is a unique product u = H‘J‘:SJr1 HjEJ\max(J) Hmax(J)7j(J)”(j*‘]) where n(j,J) € Z

(Lemma 23).

By Lemma 23] ©,,5/0,,s N Ty s ~ O oIy /T s 2 K, o =~ Z(sil)'S’ and so the commutant of
the current group ©,, ; belongs to the group I'y, s, i.e.

[677,,57 Gn,s] c Fn,s- (23)

Recall that the commutant [G, G| of a group G is the subgroup of G generated by all group
commutators [a,b] := aba~1b~! where a,b € G. The commutant is a normal subgroup. The next
theorem is the key point in finding explicit generators for the groups S} and G,,.

Theorem 2.4 [§] ¢y, (1 +a,5)") =9, ((Ons) fors=1,....,n—1.

For each number s = 1,...,n — 1, consider the following subsets of the group (1 + a, 5)*,
Ens:= ] Ur(K) x Ex(Scr) and Ppo:= J] (149" (24)
|[I|=s [I|=s

These are products of subgroups (1 + a,, 5)* in arbitrary order, but which is fixed for each s.
Theorem 2.5 [§/

1. (14a,)* =0,1T01 =051En 10, 2B, 2+ - - Op 1By n—1. Moreover, for s=1,...,n—1,
(1 + an,s)* = @n,an,s = en,sEn,s@n,erlEn,erl to en,nflEn,nfl-

2. (1 + an)* = @n,lTn,l = en,lpn,16n72pn,2 to ®n,n71Pn,n71~ Moreover, fOT s=1,...,n—1,
(1 + an,s)* = @n,sTn,s = ®n,sPn,s@n,s+1Pn,s+1 te ®n,n71]P)n,n71-

Theorem 2.6 [§/

1. (14+a,)* =0, E,10], 3En 207, Ey 1. Moreover, fors=1,....,n—1, (14+ans)* =
G;I,SEW75®’/II,S+1E"A;S+1 T Gg,n—lEn,n—l'

2. (1+a,)" =0, 1Py 107, 5Ppo--- 0], Py 1. Moreover, fors=1,...,n—1, (14+ans)" =
6’/!1,5]}»”756;1,8-’-1]}»”75“”1 e 6%7n_1pn,n71-



3 The groups K;(S,) and GL.(S,) and their generators

In this section, explicit generators are found for the group GLoo(S,) (Theorem B3], Theorem
BE (1)) and it is proved that Ki(S,) ~ K* (Theorem B3l(2)) modulo Theorem B4 which is
proved in Section [

The subgroup (14 p,)* of the group S} is canonically isomorphic to the group GLoo(S,—1) via
the isomorphism 1+ a;;E;j(n) — 14> a;;E;; where a;; € S,,—1 = ®?;11 S1(7). It is convenient
to identify the groups (1 + p,)* and GLoo(S,—1) and to identify the matrix units E;;(n) and E;;,
ie. (1+pn)* = GLo(Sp—1) and E;j(n) = E;;. The group (14 p,)* contains the descending chain
of normal subgroups

(1+pn)*:(1+pn)f3"'3(1+pn)z3"'3(1+pn):;:(1+Fn)*3(1+pn);+1:{1}

where (14 pp)% = (1 +pn)* N (1 +a,s)*. The following lemma describes the normal subgroups
(14 pn)s-

Lemma 3.1
(1+Z|I|:Sﬂl61p1)* iszl,...,TL—l,
(14 F,)* if s =n.

(L+pn)s = {

Proof. As the case s = n is obvious, we assume that s # n. The ideal a,, s = EIIIZS pr of the

algebra S, is the sum of idempotent ideals p;. Therefore, a2 , = a,,s. By Corollary 7.4.(3), [A],
aNb = ab for all idempotent ideals a and b of the algebra S,,. Since the ideals p,, and a,, s of the
algebra S,, are idempotent,

pr N An,s = Pnln,s = Z pnpr = Z pr. (25)

[I|l=s [I|=s,nel
Thus (14pn); =1 +pn)" N1+ ans)" =1+ paNans)" = (1+ E|I|:S,n61 pr)*. O

For each number s =1,...,n — 1, consider the following subset of E,, s,

Ens= [] Ur&)x Ex(Sci),
|[I|=s,nel

where the groups Uy = Uj(K) and Eo(Scy) are defined in ([I3). This is the product of the

subgroups Uj(K) X Eoo(Scy) of (1 4+ p,)% in arbitrary order but which is assumed to be fixed.
Notice that B 1 = Uy (K) % Exo(Sy—1) where Un(K) = {n(X) = Aea+1—u = (1) [A€ K7}

and Fo(S,—1) is the subgroup of GLy (S, —1) generated by all the elementary matrices.
Consider the element p7(A) = Aey +1 — ey € Uy where |I| = s and n € I. Then

piN) = en(1+ (= Dep) +1-e = (T Y cans,. o

Lemma 3.2 E(S,-1) 2 En)s foralls=2,...,n—1.

Proof. Tt is sufficient to show that the group E(S,—_1) of elementary matrices contains the
groups E(Scr) and Ur(K) where |I| = s and n € I. The group E(Scr) is generated by the
elementary matrices u = 1 + aE,g(I) where a € Scr, a = (a;)icr, 8 = (Bi)ier € NI and « # B.
If oy # B then w =14 (a]licrizn Eaipi(i))Ea,p,(n) € Exo(Sp-1). If an = B, then choose an
element v € NI such that 7, # oy, and so v # «a and v # 3. Since the elements 1 + E,~ and
1+ aFE, 3 belong to the group E(S,—1) (by the previous case), so does their group commutator

Ew(Sn-1)3[1+ Eqy,1 +aE 5| =1+ aE.s = u.
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Therefore, Eo(Scr) C Eoo(Sp—1).

It remains to show that Ur(K) C Ex(Sp—1), i.e. pr(A) =1+ AEy(I) € Eoo(Sn—1) for all
scalars A € K\{—1}. Notice that n € I and |I| = s > 2. Choose an element, say m € I, distinct
from n. In the subgroup GLoo(S1(m)) of GLoo(Sp—1), we have for all scalars A € K\{—1} the
equality:

AEgo(m)

Cow DG TG, DG =00 D D en

This can be checked by direct multiplication using the equalities Y, Zm = 1 and zp, Y = 1—FEgo(m)
that hold in the algebra S;(m). The first five matrices in the equality belong to the group

_ )\Eoo(m)
Eo(S1(m)). Therefore, the last matrix ¢ = (1 01+A (1)) belongs to the group E.(Si(m)).
, Ego(i) if |I| > 2,
The idempotent e := {{Ile]\{"’m} 00(?) lf :I: ~ 9 determines the group monomorphism
1 =
Te : GLoo(S1(m)) = (14 Y S1(m)Eij(m))* = GLoo(Sn-1) = (1 +pn)*, urseu+1—e, (28)
i,jEN

that maps the group E(S1(m)) into the group E(S,—_1). Therefore,

re(©) = elFoo(n)(1 ~ 1oy Boo(m)) + 1 eBoo(n)) +1 ¢
_ - 1iAE00(1) (= H/\_)\)EE (S_1) N Uk (D).

Since the map ¢ : K\{-1} - K\{-1}, A — _H-LA’ is a bijection (p~1 = ¢), all the elements

wr(A) belong to the group E(Sp—1). The proof of the lemma is complete. O

By (I0)), there is the group monomorphism

1+ n: 1+ans = \* = \*
PRPRR I IR S Jla+m = I a+80x [I (+F)

ES
tpn)ip (T4 ansp) 1I|=s [I|=s,nel |I'|=s,ngl'

which is the composition of two group monomorphisms. By Lemma B3]

m(ens) © [ (145" (29)

|I|=s,nel

Recall that (1 +5;)* = (Xor x Ur)  Es(Ler). Since op o(Bp o1+ pn)iy) = [1jj—amer Ur X
Ex(Lcr), we see that

‘Pgls(fHS) = <p;115(im(g0n75) NT, ) Sﬁn s( H Ur x Exo(Ler)) = En,S(l + p")z+la
|I|=s,nel

and so there is the group monomorphism

Pnys (1+pn):/ﬁn75(1+pn)z+1 = (I4an,s)"/Thns 2 Xp s X;L,s = H Xer % H Xep-
|I|=s,nel |I"|=s,ngI’

Notice that the group E, (1 + Pn)ii1 is a normal subgroup of (1 + p,)i. For each number
s=2,...,n—1,in the set @;75 consider the exact product of cyclic groups (the order is arbitrary)

(:jn,s = H H <9m(J)7J(‘])> (30)

|J|=s+1,neJ jeJ\{n,m(J)}

11



where m(J) is the largest element of the set J\n. Instead of the element m(J) we can choose an

arbitrary element of the set J\n. By @9), im(,, ) € [I;/=ner Xcy- Recall that im(¢y,

n,s

key moment in the proof of Theorem [B.3]
m(U);,s) ﬂ H Xer = ﬂ ker(x/;) ﬂ H Xer
|I|=s,nel [J|=s+1 |[I|=s,nel

0 if s =1,

N

m(p,, ;)

H\J\—s-ﬁ-l neJ HJEJ\{n m(J)} Z(—(m(J), J\m(J)) + (5, J\j)) ifs=2,...

@

Ons) ifs=2...,n—-1,

0 ifs=1,
(1+pn)s+1) lfSZQ,,TL—l

{
o @ {0 its =1,
- e

It follows that

Epi(L+pn)s if s =1,
en,sxemEns(1+pn)s+l ifS:2,...,n—1.

(L+pn)s = {

) =
n,s(Ons) = Kns = 712541 ker(x;), by Theorem 2.4l and (IZ]) The following argument is the

(31)

Theorem 3.3 The group GLoo(Sn—1) = (1 + pn)* is equal to En,lénﬂﬁn,?'"én,n—lﬁn,n—l-

Moreover,
En10n9En2-Onp1Ep,1 ifs=1,
(14pn) =4 0nEnsOnn1Epn ifs=2,...,n—1
(14 F,)* if s =n.

Proof. By Proposition 3.10, [8], we have the inclusion (1 +p,)% = (1+ F,)* C Enn_1. Now,

- )

the theorem follows from 3I)). O

For each subset J of the set {1,...,n} such that n € J and |J| > 3, and for each pair of

distinct elements ¢ and j of the set J\n, the unit 6;;(J) € S} can be written as follows

0i;(J) = (yiepien +1—en+en(l —enq))(zjen en +1—en+en(l—en;))
= en(yiesi+1—eni)(zjen; +1—en;)+1—en
= enbij(J\n)+1—e,

where ey, := Eoo(n), e\; := [[e i Eoo(k) and e\; == [[1.c 5\ ; Eoo(k). Therefore, the unit 6;;(J),

as an element of the group GLy(S,—1), is the matrix

J\n) 0

0 () = ("IN 0y € GL(s,0)

where 0;;(J\n) € S¥_;

The determinant det on GL,(S,_1). The algebra epimorphism S, 1 — S,_1/an_1

(32)

L,_1,a—a:=a+ a,_1, yields the group homomorphisms GLy(S,,—1) = GLoo(Lp—1), u — T,

det 14

and E : GLoo(Sn—l) — GLoo(Ln—l) — n—1-

Clearly, det(Easo(Sp_1)) = 1, det(©,,,) = 1 for

all s = 2,...,n — 1, and det(U,(K)) = K* since det(u,()\)) = X for all A\ € K*. By Theorem
B3 and Lemma B2 GLoo(Sp—1) = Un(K)Op 2 Opnn—1F (Sn—1), since Eo(Sp—1) is a normal
subgroup of GLo(S,,—1). It follows that the image of the map det is K™, i.e. we have the group

epimorphism o
det : GLoo(Sp—1) = K™, u+— det(u),

12
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and

GLoo(Sn_1) = Un(K) x ker(det), SLoo(Sp_1) :=ker(det) = Oz Onn-1Eo(Su_1). (34)

Theorem 3.4 én,s C Ex(Sp-1) foralls=2,...,n—1.
The proof of Theorem [34]is not easy and is given in Section [l

Theorem 3.5 1. GLoo(Sn—1) = Un(K) X Ex(Sp-1) and SLoo(Sp—1) = Ex(Sn—1) where
Un(K) = {pn(A) = 1+ (A = 1)Eg(n) |\ € K*}. So, each element a € GLx(Sy-1) is
the unique product a = p,(\)e where A = det(a) and e := p,(det(a))"'a € Ex(Sp_1).

2. Ki(S,) ~ K* for alln > 1.

Proof. The theorem follows from Theorem B4 and (B4]). O

The number of generators 6,,.x(.),; (/) in the block én+172 e én_l,_l)n for the group GL(S,) =
Unt1(K)XOpni1,2 Ong1nEoo(Sp) is Y on_y (7;) (s—1) = (n—2)2" 141 as the next lemma shows.

Lemma 3.6 For each natural number n >2, 3", (7)(s — 1) = (n —2)2" 1 + 1.

S

n

Proof. Taking the derivative of the polynomial (1 + )™ = Y. ("), we have the equality
n(l4+z)" =", (Z) sx*~!. Then taking the difference of both equalities at x = 1, we obtain

the result: Y., (7)(s—1) —1=n2""!1=2" = (n—2)2""1. O

4 Proof of Theorem [3.4]

The whole section is a proof of Theorem B4l The proof is constructive (but slightly technical)
and split into a series of lemmas that produce more and more sophisticated elementary matrices
in Eso(Sp—1). These elementary matrices are used to show that the elements of the sets ©,, s are
elementary matrices (Propositions and ).

Lemma 4.1 Let D be a division ring and let A = D @ De be a ring over D such that € = e and
de = ed for all d € D. Then

1. the group of units A* of the ring A is the semi-direct product D* x T of the group of units
D* of the ring D and the subgroup I := {14+ Ae |\ € D\{—1}} of A*.

2. (1+Xe)t=1- H%e for all elements A € D\{—1}.

3. The map ¢ : D\{—1} — D\{-1}, A\ — —1%\, is a bijection with ¢~ = ¢.

4. (1—=2e)"t=1-2e.

Proof. Straightforward. O

We are interested in the rings A and their groups of units, since the algebra K + Mo (S,—1)
of infinite dimensional matrices over the algebra S,,_; contains plenty of them and as a result the
group GLy (S, —1) contains their groups of units.

Lemma 4.2 Let S1(A) = Az, y|yxz = 1) be the algebra S1 over the ring A from Lemma [{.1]
Then, for each element A € D\{—1},

1 0, 1 Xex, 1 0,,1 —2¢g 14+ Xe 0 1- X R 0
Co D0 DG DG =00 )0 ) 69)

where Eog := 1 — xy (the element 1+ Xe is a unit of the algebra Si(A), by Lemma [{-1]).
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Proof. The RHS of the equality (B3] is the product of four matrices, say Aj --- Ay.

1 Aex 10 1+ Xexy ez 1+ dex 0
Adeds=(_ 5 )( =07 0™ 20 A A=Y ),
1+Xe 1+Xe Y 1+ e 14+Xe
since (1 + exy)(— 11‘;\61) + dex = — 1J)‘r‘§\e (14 Xe)z + dex = 0. Now,
1 _ Qe
A Ay = ( —B/\e (1) ) (1 1+>\8E00 0) (36)
1+Xe 0 1

since (14 Ae)(1 — ﬁEoo) =14 Xe(l — Ego) = 1+ Aexy. Finally, the equality ([B5) follows from

Lemma E11(2), 2% = de(l — 25e) = A1 — 35)e = t2xe. O

For each ring R and a natural number m > 1, E,,(R) is the subgroup of GL,,(R) generated by
all elementary matrices.

Lemma 4.3 1. (ég 2) € E5(S1) where Egg :=1— xy.
00

z E 0,-1
2. (0 ;O):(E%O I) € Ex(Sy).

Proof. 1. Using the equalities yz = 1 and Egpox = 0, we can easily check that

G D6 D61, DG, D6 DE D=Cg™ D e

By 7)), the RHS is an element of the group F»(S;) since ﬁ = 2, and so statement 1 holds.
2. Tt is obvious. O

Let R be a ring and u be its unit. The 2 x 2 matrix ( 4 0) € M3(S1(R)) is invertible
UEOQ x
where Ey := 1 — xy. Moreover,
y O\-1 @ u 1 Ey
(wEyw o =G 4, ) (38)

Lemma 4.4 Let the ring A be as in Lemmal[{.1l Then, for each element A € D\{—-1},

v (14 2e) " Eoo) y g)*l € Ex(S1(0))

( y g) € Ex(S1(A)) and (; ; = (1 4 2e)Eoo

1+ )\e)Eoo

where (1 + Xe)™t =1 — H%\e (by Lemma[{1](2)).

Proof. 1t suffices to prove the first inclusion since then the equality and the second inclusion
follow from (B8)). Using the equalities yz = 1 and Eggx = 0 we can check that

G D6 D6 Daatm 96 D, D=5 B e

1—(2+)\€)E00 0 1—2E00 0 1+)\6E00 0
( 0 V=09 A 1)

By (31, (1720E°° ?) € FE5(S1), and then by (B3, (HASE““ ?) € FE5(S1(A)) since A € D\{-1}.
Therefore, ((1+>\yB)E00 2) € E>(S1(A)), by 39). O

1+ (y2 N 1)I1y1 0) S EQ(SQ) where €g = E00(2) =1- T2Y2.

Lemma 4.5 ( esy N
2Y1 2
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Proof. The statement follows from the equality

( 1 0) (1 (yg - 1){E1) ( 1 O) (1 —(yg - 1){E1) (1 (y2 - 1)(1 - IQ).Il) _ (1 + (y2 - 1)I1y1 0)

—X2Y1 1 0 1 Y1 1 0 1 0 1 €2Y1 T2
(40)

which can be checked directly using the equalities y;x; = 1, z;y; = 1 — ¢4, y;e; = 0 and e;x; =0

where e; := Ego (7). The RHS of the equality (@0]) is the product of five matrices A; - - As.

1 (y2 — 1)a1 1 0 1+ (e —Driyr (y2—
A1 A5 A3 = =
e (—1‘2241 1—x2(y2 — 1)) (yl D)= €291 1—22(y2 — 1))
since —xay1 + (1 — Z2y2)y1 + v2y1 = e2y1. Now,
L+ (y2 — Dy —(y2 — 1)%1
Ao Ay —
! 1= eay1 1— (22 +e2)(y2 — 1))

. . 1+ — 1)z a
since —y1z1e2(y2—1)+1—z2(y2—1) = 1—(z2+e€2)(y2—1). Finally, A; --- A5 = ( (y2e2y1 )T1y1 b)

where

a = (14 (y2— Daayn)(y2 — (1 — z2)z1 — (y2 — 1)’
= (@14 (g2 — D) (y2 — D1 —22) — (12 — 1)°m
= zi(ya—1)(y2—1) = (y2 — 1)’z =0,
b = 1—(22+e2)(y2—1)+ean(y2 — (1 —z2)a1
= l1-a(y2— 1) —ea(y2 — 1) +e2(y2 — 1) —ea(l — 2)
1—zoys + 12 —ea =1z9. O

9(1)2 (1)) € FE5(S2) where 012 = 012({1,2}) = (1 4+ (y1 — D)e2)(1 + (x2 — L)eq),

€1 = Eoo(l) and €9 = E00(2).

Proposition 4.6 (

Proof. By Lemma [£.3] (%2 ;2) € FE5(S1(2)) C Ea(S2). Then, by Lemma [L.5]
2
To €9y 1+ (yg — 1)$1y1 0 012 O
E>(S2) 3 = . 41
2(S2) (0 y2) ( €21 £C2) ( 0 1) (41)
Indeed, let a be the (1, 1)-entry of the product, then

a = wo(1+ (y2 — Dw1yr) + e3y1 = 22 + (w22 — 22)21Y1 + €2yt
= To€1 —+ (1 — 62)(1 — 61) —+ €2Y1 = 1 —+ (IQ — 1)61 + (yl — 1)62 —+ €1€2
= (1 + (y1 — 1)62)(1 + ($2 — 1)61) = 6‘12
since (y1 — 1)es - (w2 — 1)er = (y1 — L)eg - ea(xa — 1) = (—e1) - (—e2) = ereq. O

Lemma 4.7 Let J ={1,...,m} where m >3, and let I = J\{1,2}. Then

1+ (y2 — Dayer 0
O e 14 (3 — 1)e,) € P2(S2(K @ Ken)

where ey := Eoo(2) and ey := [[;.c; Eoo(k).
Proof. The statement follows from the equality

(caaer §) (5 227070) (i 1) (§ 7o) (§ DO pmadmer) = (HH0 D0 e, )

(42)
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The equality can be written shortly as A; --- A5 = A.
1+ (y2 — Dawyrer  (y2 — Dayy (1 —(y2 — Dy L+ (y2 — Daiyrier  —(y2 — 1)%zres
As AsAy = =
24344 = ( €1 1 ) (O 1 )= Y€1 1—(y2—1)61)
where we have used the fact that y1x1 = 1.
1+ (y2 — Dxryrer —(y2 — 1)2x1€1
Ay Ay = .
! 1= exyi1er 1— (22 +e2)(y2 — 1)61)
In more detail, let (o, 3) be the second row of the product. Using the fact that y;2; = 1 and
e? = ey, we see that
a = —zyier(1+4 (y2 — Dzryier) + yrer = (—x2(y1 + (y2 — L)yn) +y1)er
= (1 —z2y2)y1er = eayrer,

B = mayrer(y2 —1)°zier +1— (y2 — Deg =1+ (zay2 — w2 — 1)(y2 — Deg
= 1—(z2+e2)(y2 — er.
_ ’
Finally, A1 - Ay = (1 + (y2 — Dz1yrer a

eayier b
see the proof of Lemma 1)

) where (below, we use the fact that a = 0 and b = x5,

ad = (14 (yo—Dayyrer)(yo — D(z2 — Darer — (y2 — 1)%z1er
= (4 (g2 = Daryn)(y2 — V(w2 — D1 — (y2 — D?z1)er =a-ey =0-er =0,
B = 1—(x2+e2)(y2 —Der+eayi(y2 — 1)(1 — x2)w1e]

1+ (—1 +1—(za4e)(ya—1)+eay1(y2 — (1 — arg)arl)e]
= 14+ (-1+b)e; =14 (x2—1ey.

The proof of the lemma is complete. [J

Let J = {1,2,...,m} and m > 3. By multiplying out, the element 612(J) = (1 + (y1 —
Dent)(1+ (z2 —1)es2) €S, can be written as the sum

012(J) = xaerer + (1 — erer)(1 — ezer) + yreser (43)
where I := J\{1, 2}.
.. B 612(J) 0
Proposition 4.8 Let J ={1,2,...,m} and m > 3. Then ( 0 1) € E2(Si).

Proof. We keep the notation of Lemma .71 By Lemma A3 (2) and Lemma [T, the product
of the following two elementary matrices is also an elementary matrix,

T2 ey A+ (y2 — D)zryrer 0 012(J) + (z2 — 1)(1 —er) ea(l —ey)
E5(S3) 2 = .
2(S2) ( 0 yg) ( esyier 14+ (z2 — 1)61) ( 0 er+(1-— 6])y2)
(44)
. . a v
Indeed, the LHS is a matrix of type (0 ﬁ) (since yoe2 = 0) where
a = w1+ (y2— Driyier) +eayrer = v2+ (1 —e2 — 22)(1 — er)er + eayrer

= 29 —x2(l—er)er + (1 —e1)(1 —e2)er + yreser
22(1 —er) + (zaerer + (1 — ezer)(1 — erer) + yrezer) + (1 —e1)(1 — ea)er — (1 — ever)(1 — ezey)

by@) x2(l —er)+612(J)+er—erer —eser+e;—1+ejef +eser —ey
= O12(J) + (2 — 1)(1 —ep),
B = yp(l+(x2—1er)=y2+ (1 —y2)er =er+ (1 -er)ys,
~y = ea(l+ (z2 — 1)er) = ea(1 —ey),
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since exzy = 0. By {@3),
O12(J)(1 —ey) =1 —ey. (45)

Using (@3], the RHS of (@) is equal to the product of two matrices
(912(J)—|—(I2—1)(1—6[) 62(1—6]) ) _ (912(J) O) (1—|—($2—1)(1—6[) 62(1—6[) )
0 er+ (1 —er)ys 0 1 0 er + (1 —en)y’’

In order to finish the proof of the proposition, it suffices to show that the last matrix is elementary.
This follows from the next two equalities, as the last two matrices in the equality (@) belong to
the group Fs(S,,), by Lemma B2

((1J —(m2—1+362)(1—61)) (1+(I2*é)(1781) eIe-E((ll:eBII))yz) (112 (IJ) (é (1_y2)1(1_61)) (—1—(m12—1)61 (1)) = (1_262(51_61) ?)’
(46)
(1728251%,) (1)) _ (1—ge2 (1)) (1725281 (1)) (47)

The equality (T is obvious, and the equality ([#6]) can be written in the form A;---A; = A.
Using the identities eaxs = 0, yoz2 =1, e? = ¢y and (1 —e7)? =1 — e, we see that

_ (14(z2—1)(1—er) e2(l—er) — _e _ (14(z2—1)(1—e1) (z2—1+2e2)(1—e1)
A2A3A4 - ( 1+2(I271)€[I quLz(lfeII)yp) (é @ y2)1(1 I)) - ( 1+2(I271)€[I ’ 12 ! )

In more detail, let (u,v)" be the second column of the product of the two matrices in the middle.
Then

u = (14 (@2-1)1—er))d—y2)(1—er) +e2(l —er) = (w2(1 — y2) + e2)(1 —er)
= (x2—(1—e2)+e)(l—er)=(x2—1+42e3)(1 —ey),
v = 1+ (@e—1Den)A—y2)(l—er)+er+(1—er)y
= (I-wyp)(l-e)+er+(1—en)y2=1
Finally,

1—2ex(1—er) (z2—1+2e)(1— 61))
0 1

since 1+ (xo—1)(1—ey)— (x2—142e2)(1—e)(1+(z2—1)e;) = 14+ (za—1—a2+1—2e9)(1—e5) =
1 —2e3(1 —er). Now, [{f) is obvious. The proof of the proposition is complete. [J

A2-~-A5:(

Proof of Theorem [3.4] Notice that S,_1 ~ S?("_l) and the symmetric group S,_1 is a
subgroup of the group of automorphisms of the algebra S, _; (it acts by permuting the tensor
eijéj) (1)) (where J C {1,...,n—1} with |J]| > 2) is elementary
by Proposition (when |J| = 2) and Proposition .8 (when |J| > 2). Now, Theorem B4 is
obvious. O

components). Then, the matrix (

5 The groups K;(S,,p) and GL.(S,,p) and their generators

In this section, explicit generators are found for the group GLoo(S,—1,p) where p is an arbitrary
nonzero idempotent prime ideal of the algebra S,,_; and it is proved that Ky (S,—1,p) ~ 7(3) x Form
(Theorem [5.7]) where m is the height of the ideal p.

For a ring A and an ideal a of A, the normal subgroup of GLo(A),
GL (A, a) := ker(GLy (A) = GLx(A/a)),

is called the congruence group of level a. The normal subgroup Fo(A,a) of Es(A) which is
generated by all the a-elementary matrices (1 + aE;j, a € a, i # j) is a normal subgroup of
GLs(A). Moreover, [GLoo(A), GLx (4, a)] = Ex (A4, a) [2], and so the K;-group

Ki(A, a) := GLoo (A, )/ Ex (A, a)
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is abelian. Let E’_(A,a) be the subgroup of E.(A) generated by all the a-elementary matrices.
Then E/_(A,a) C Ex(4,a) C Ex(A).

We keep the notation of the previous sections. Recall that we identified the groups (1 4 p,,)*
and GLu (S,,—1). Each nonzero idempotent prime ideal p of the algebra S,,_; is a unique sum (up
to order) of distinct height one prime ideals p = p;; + -+ + p;,, and ht(p) = m where ht stands
for the height of an ideal, Corollary 4.8, [5]. The set supp(p) := {i1,...,4m} is called the support
of the idempotent prime ideal p. The group GLoo(S,—1,p) can be identified with the subgroup
(1 4+ ppn)* of the group (1 + a,)*. The group (1 + pp,)* contains the descending chain of normal
subgroups

(L 4ppn) = +ppn)i DD (L +ppn)s DD (1 +ppn)y, = 1+ Fo)* D (1 +ppn)pyr = {1}

where (1+ppp)% := (14+ppn)*N(1+a, )*. Moreover, the groups (1+pp,,)% are normal subgroups
of the group (1 + a,)*. The following lemma describes the normal subgroups (1 + pp,)*.

Lemma 5.1 Let p = p;, + -+ p;,, where i,... 4, are distinct elements of the set {1,...,n}.
Then

(1+Z|I|:57I€j(p)p1)* ifS:2,...,TL—17

where J(p) :={J C{1,...,n}|n € J,JNsupp(p) # 0}. In particular (1 + pp,)T = (14 ppn)s =
(1+ppn)”

(1 + ppn): = {

Proof. The case s = n is obvious. So, we assume that s # n. Since the ideals pp,, and a,, 5 of
the algebra S,, are idempotent ideals,

ppn N An,s = PPnlpn,s = Zpiypnan,s = Z pr.
v=1 [I|=s,1€J (p)
Therefore, (1 + ppn); = (14 pps)" N (14 ans)" = (1 +ppn Nans)* = (14 EIIIZS,IEJ(P) pr)”. O
By (0, there is a group monomorphism

: (14 ppn); _ (1+a,s)"
(1+ ppn)z—i-l (1 + an,s41)*

- H (I+p))" = H (1+p)* H (1+pp)"

[I|=s [I|=s5,I€T (p) [T"|=s,I"&J (p)

n,s

which is the composition of two group monomorphisms. By Lemma [5.1]

im(pn,s) € H (L+pp)" (48)
|[I|=s,I€J(p)

For each number s = 2,...,n — 1, consider the following subset of the group (1 + pp,,)*,

Ens(p) =[] UrxEx(Scr)
|I|=s,I1€T(p)

*

It is a product of subgroups of (1 + pp,, )% in arbitrary order, but which is assumed to be fixed for
each s.

Recall that (149;)" = (XcrxUr)x Exo(Ler). Since on,s(En s (0) (14+ppn) i) = 7125 re 7o) Ur
E-(Lcy), we see that there is the group monomorphism

1 n . 1 n,s *
n,s * = ( PP )S N - ( —;a : ) = Xms = X;z,s = H ICI x H /CI"
En,s () (14 pPn)iia e |T|=5,.T€T (p) [1'|=5,I'€T (»)
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Notice that the group IEnys(p)(l + ppn)iyy is a normal subgroup of (1 4 pp,,);. For each number
5§ =2,...,n—1,in the set ©], ; consider the exact product of cyclic groups (the order is arbitrary)

On.s(p) = O (p) xcx O, (p), (49)

el = =t ] 11 II Oy, (T))s

i€supp(p) |J'|=s+1,n€J’,J'Nsupp(p)={i} j'€J\{n,i,m'(J")}

O (p) = cmact II I GOm0,

|J|=s+1,neJ,JNsupp(p)>2 jeJ\{n,m(J)}

where m/(J') is the largest element of the set J'\{n,i} and m(J) is the largest element of the set
J\n. Notice that ©,,2(p) = o (p) as the set 657]2(13) is an empty set.

n,2

By @8), im(®,, ;) € [1)71=s,7e 7(p) Xc1 and

11 cr = I IJ]z6n= II 11 Z(j,7\j)

[I|=s,I€T(p) [I|=s,I€T(p) i€CI |J|=s+1,n€J,JNsupp(p)#0 j€J\n,(J\n)Nsupp(p)#0
1T 1T I zu.7\)

i€supp(p) |J'|=s+1,n€J’,J'Nsupp(p)={i} j'€J'\{n,i}

x II IT zG 7).

|J|=s+1,n€J,|JNsupp(p)|>2 jET\n

Recall that im(¢y, ;) = ¥, ((On,s) = Kns = [ jj=s41 ker(x)y), by Theorem 2.4 and (2I). The

following argument is the kéy moment in the proof of Theorem[5.2l For each number s =2,...,n—
L
im(@n,s) g lm(wiz,s) ﬂ H /CI = ﬂ ker(X{]) ﬂ H /CI
|I|=s,1€T(p) [I|=5+1 |I|=s,1€T(p)
= 11 I1 I1 Z(—(m/(J"), J\m'(J") + (', J\j"))
i€supp(p) |J'|=s+1,n€J’,J' Nsupp(p)={i} j'€J\{n,i,m’(J')}
X 11 II  Z=m(), \m) + (G, J\5)
|J|=s+1,neJ,|JNsupp(p)|>2 jeJ\{n,m(J)}
by 20) I P

= ¢n,s(@n75(p)) = @%,s(en,S(p)IEnys(p)(l + ppn):Jrl)-

The first equality above follows from the decomposition of the abelian group H| I|=s,1€7(p) X
above and the definition of the homomorphisms x’;. It follows that

(1+ppn)s = én,s(p) Xex En,s(p)(l + ppn);—lv $§=2,...,n—1 (50)
Theorem 5.2 Let p be a nonzero idempotent prime ideal of the algebra S,_1. Then the group
GLoo(Sp—1,p) = (1 4+ pp,)* is equal to O 2(p)Epa(p) -+ Onn_1(p)Enn—1(p). Moreover,

én,Z(p)En,Z(p) T @nynfl(p)I:En,nfl(p) if s=1,

(1 + ppn): = én,s(p)ﬁnﬁ(p) e @nynfl(p)En,nfl(p) ifs=2,...,n—1,
(1+F,)* if s =n.

Proof. By Proposition 3.10, [8], we have the inclusion (1 + pp,)s = (1 + F,)* C INEnyn,l(p).
Now, the theorem follows from (G0). O

Lemma 5.3 Let S1(A) be the algebra S1 over the ring A from Lemmal[{d} Then, for each element
A e D\{-1},

1 0, 1 dexy 1 0y ,1 —2g 14X 0 «1— 2 ¢Ew 0
(—13 Do G DG ) =0 ﬁ)( ) 6y

where Eyy :==1—zy and lee =1- 1_%\6, by Lemma[{-1} (2).
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Proof. The RHS of the equality (BI)) is the product of four matrices, say Aj --- Ay.

1 ey, 1 0 14 dexy Jdex
)y 1) = ),

14+ 0
AAsAs = (4 +Aery ),

Ay Ay = (

1 = 1 1
“Thae T €Y 1 0 THie 0 T+ xe
since (1 + dexy)(— 1J)‘r§\e x) + dex = — h’tie (1 + Xe)x + dex = 0. The product Ay --- A4 coincides

with the product ‘A; - - - A’ in the proof of Lemma[£2] and so the equality (&) follows from (B6]).
O

Lemma 5.4 E/_(S,-1,p) 2 INEmS foralls=3,....n—1and E. (Sp—-1,p) 2 Ex(Scr) for all sets
I € J(p) such that |I| = 2.

Proof. We have to show that the group E’ (S,—1,p) contains the groups Fo(Scy) for all
subsets I € J(p) such that |I| =2,...,n—1, and the groups U; for all subsets I € J(p) such that
[I| = 3,...,n — 1. By Lemma [5.3] the groups U; belong to the group E’_ (S,—1,p). Indeed, by
1+ HE\n

0
Since I € J(p) and |I| > 3, we can choose a number j € I'\n such that (I\{j,n}) Nsupp(p) # 0.
Then ep,, = e Eno(j) where e = ey} € p. By Lemma 53] the matrix u belongs to the group
Eo(Sn-1,p), since the map ¢ : K\{—-1} = K\{-1}, A — —1%\, is a bijection.

The group E (Scr) is generated by the elementary matrices uw = 1 + aEq3(I) where a € S¢y,
a = (a;)ier, B= (Bi)ier € Nl and a # 3. If o, # B thenu = 1+(a [icr,izn Eaipi (i) Ea,p,(n) €
E! (Sn—1,p), since I € J(p). If a, = By, then choose an element v € N’ such that v,, # a,,, and
so v # c and v # . Since the elements 1 + E,, and 1 + aE, 3 belong to the group E. (S,—_1,p)
(by the previous case), so does their group commutator

(26), each element of the group U; is a matrix u = ( (1)) for some scalar p € K\{—1}.

Eoo(Sn—lup) > [1 + Ea’Y’ 1 + G’E’YB] = 1 + G’EO‘B = u.
Therefore, Eoo (Scr) € EL (Sn—1,p). O

Lemma 5.5 Let J = {i,j,n} where the numbers i, j and n are distinct. Let I = {k,n} where
k#mn, and A € K*. Then

1 if k#ik#3j,
05 (1), (N = 1+ (A1 = Dey = ps(\) T if k=1,
1+ A =1)E(j)eien if k= j.

Proof. Let ¢ be the group commutator, J' = {45}, 6i; = 0;;(J) and 0;; = 0;;(J'). Since
Hz-j;len = en9f§1 = Hﬁlen = enﬁﬁl and 9;;1 = 9;-1-, we see that
¢ =0i;(1+ (A = Dexen)0; ' (A) = (14 (A = )8 ex8;e0)nr (A)-
If k # i and k # j then the elements ;; and e), commute and we get ¢ = ur(A)pur(A\)~" = 1.
If K =1 then 9§jei = z,e; and eit?;i = e;y;, by (@3), and so
c = 1+ A= Dayzeen)prN) ™" = (pr(d) = (A = Des)ur(\) ™

1_()\_1)€J(1+()\_1 —1)61)21— — €J:1+()\_1_1)€J:/,LJ()\)_1.

If k= j then 0;e; = yie; + Eio(j)e; and e;07, = z;e; + Eo1(j)es, by [@3), and so

¢ = (1+\=1)(yie; + Erolj)es)(wie; + Eor(j)ei)en)pur(X)
= () +A=1DEn(eien)ur(N) " =1+ (A= 1)En(jeie,. O

Let A and B be subgroups/subsets of a group G. The commutant [A, B] is the subgroup of G
generated by all the group commutators [a,b] = aba=1b~! where a € A and b € B. For an element
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g € G, let wy : x> grg~! be the inner automorphism of the group G determined by the element
g. We can easily verify that for all elements a1, as,b1,b2 € G,

[a1b1, azbs] = wq, ([b1, az2])wa,a, ([b1, b2])[a1, azlwa, ([a1, ba)). (52)

The normal subgroup £(S,_1,p). Consider the subgroup

ESnp) =[] Ex(Scr):(1+ppn);
[I|=2,IeJ(p)

of the group (1 + pp,)* = GLoo(Sn—1,p). By E0), the group (1 + pp,)* is the exact product of
sets,
(1 + ppn)* = 6n,2(p) Xex exact H UI Xex S(Sn—lup)' (53)
[1|=2,I1€J(p)
By the very definition, the subgroup £(S,—_1,p) is a normal subgroup of (1 4+ pp,)* (see the
definition of the map ¢y, ). There is the inclusion

which is obvious due to the fact that the image of each element 6;;(J) (where |J| = 3 and J € J(p))
under the map ¢, s is the direct product of two ‘diagonal’ matrices with entries in (commutative)
Laurent polynomial algebras, hence all the images commute.

Theorem 5.6 £(S,,—1,p) = Exo(Sn—1,p) = EL(Sp—1,p).

Proof. Recall that GLo (R, a)/Fx (R, a) is an abelian group for any ring R and ideal a of R, [2].
By (B3), Lemma B35 and (B4, the factor group (1 + ppy)*/E(S,—1,p) is abelian.

Let us show that E._(S,—1,p) C &€ := E(Sp—1,p). We have to show that 1+ pE;;(n) C S for
all ¢ £ j. Since

m

L+ pEi(n) =14 (piy + -+ +9i, ) Eij(n) = [[ (1 +pi, Bij(n),

v=1
it suffices to show that 1+ p,;, E;j(n) C € for all v = 1,...,m and i # j, but this is obvious since
14+pi,Eij(n) C Ex(Scr) €€

where I = {i,,n} (and so |I| =2 and I € J(p)), see the definition of .

To finish the proof of the theorem it suffices to show that £(S,,—1,p) C E. (Sp—1,p) (since then
the group E._(S,—1,p) is a normal subgroup of GLs(Sp—1,p) as GLoo(Sn—1,p)/E is an abelian
group and £ C E/_(S,—1,p); hence Exo(Sp-1,p) = E. (Sn-1,p) and E/._(S,—1,p) = £). By
Theorem 5.2,

g(Snfla IJ) = H EOO(SCI) ’ én,S(p)En,B(p) T én,nfl(p)ﬁn,nfl(p)-
[I|=2,I€J(p)

By Lemma 5.4 the inclusion £(S,—1,p) C E. (Sp—1,p) holds iff (:jnﬁs(p) C E. (Sp_1,p) for all
s=3,...,n—1iff ég}s(p), (:)E,L(p) CE (Sp-1,p)foralls=3,....,n— 1.

Fix an element 6 such that either 6 € ég}s(p) or f € ég}s(p), i.e. either 6 = 0,y (J')
or 6 = Opy),;(J), see [@J). In the second case, without less of generality we may assume that
m(J) € JNsupp(p), by changing, if necessary, the order in the set J (or simply by taking a suitable
element). In both cases, we can choose an element, say k € JNsupp(p), such that k& & {m/(J'), '},
in the first case, and k & {m(J),j}, in the second case. In both cases, we can write 6 = 6,;(J)
where k € J Nsupp(p) and k & {i,j}. As we have seen in Section [3]

9”((]) = ekHZJ(J\k) + 1-— Ck.
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By Theorem B35 6;;(J\k) € Ew (®l Lz S1(0) € GLe (®l 112 S1(1)). Under the algebra

monomorphism
n—1

( ® SI(Z)) — GLOO(Snflap)v a— era+ 1- €L,
1=1,l#k

the group of elementary matrices Fo (®l 11k S1(1)) is mapped into the group of p-elementary
matrices B! (S,—1,p) since e, € p. Therefore 0 € E/ (Sp—1,p). The proof of the theorem is
complete. [

Theorem 5.7 Let p be a nonzero idempotent prime ideal of the algebra S,,—1 and m = ht(p) be
its height. Then (below is the direct product of groups)

m

Ki(Sp-1,p) ~ H (0i; ({7, 4, n})) x H Utk.ny = Z(z) x K*™  ifm > 1.

{i>j|i,jEsupp(p)} k€supp(p)

{K*, ifm =1,

The group GLoo(Sn—1,p) is generated by the elements 0;; := 0;;({i,j,n}) (where i > j and i,j €
supp(p)) and the groups Eoo(Sp—1,p), Ugk,ny where k € supp(p). Moreover, each element a of the
group GLoo(Sp—1,p) is the unique product (the order is arbitrary)

a = H 9?]@- . H M{k,n}()\k) e (55)
{i>j|i,j€Esupp(p)} k€supp(p)

where n; € Z, A, € K* and e € Eoo(Sp—1,9).

Proof. The theorem follows from the equality (53])) and Theorem O

We can find effectively (in finitely many steps) the decomposition (B5]) (Corollary B9). For,
we introduce several explicit group homomorphisms.

Definition. For each nonempty subset I of {1,...,n} with s = |I| < n and for each element
Jj € CI, define the group homomorphism det; : (1+a, s)* — L, as the composition of the group
homomorphisms (see (I0))

det

(Tt ane) ™ T +5)° ™ (1+5,)° ~ GLoe(Ler) % L
|J|=s

where pr; is the projection map. Define the group homomorphism deg,, ; ; : (1+a,s)* — Z as the

deg,, .
composition of the group homomorphisms (1 + a, s)* detr Ly, —’ Z where degwj is the degree

in z; of monomial (deg, (A [;co; 27") = a; where A € K* and «; € Z).

Lemma 5.8 Letn >3 and s = 1,...,n— 1. Then for all subsets I and J of the set {1,...,n}
such that |I| =s, |J|=s+1 andn € J,

—1 if I =J\m(J),i=m(J),

degn,l,i(em(r]),j(‘])) = 1 ZfI = J\]al = ja
0 otherwise.

where i € CI and j € J\m(J).

Proof. The result follows at once from the equality 0,,(7); = (14 (Ym () — Desmn)) (1 + (x5 —
1)6(]\j). |:|
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Corollary 5.9 Given a product decomposition [53) for an element a € GLoo(Syp—1,p), we have

Nijg = degn,{i,n},j(a’)7
A = det{k)n}(a- H G;n”),

{i>j|i,j€supp(p)}

e = ( 11 05 T sy ) e

{i>j | i,jE€supp(p)} kesupp(p)
Proof. By Lemma [5.8] deg,, (; ,} j(a) = nij deg,, 1; ny,;(0i5) = ny;. Similarly,
det{kﬁn} (a . H 9;71”) = det{kﬁn} (M{k,n} ()\k)) = M.
{i>j|4,j€supp(p)}

The rest is obvious. O

Corollary 5.9 gives an effective criterion of whether an element a € GLoo(S,—1,p) is a product
of p-elementary matrices.

Corollary 5.10 Let a € GL(Sp—1,p). Then a € Exo(Sn—1,p) iff all ny; = and Ny = 1 iff
deg,, (;ny,j(a) =1 for all i > j such that i,j € supp(p), and dety, ny(a) =1 for all k € supp(p).
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