
D I S S E RTAT I O N

submitted to the

Combined Faculties for the Natural Sciences and for Mathematics

of the Ruperto-Carola University of Heidelberg, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

M.Sc. Mitja Kleider

born in Hannover, Germany

Oral examination: November 14, 2017

N E U R O N C I R C U I T C H A R A C T E R I Z AT I O N I N A
N E U R O M O R P H I C S Y S T E M

referees:

Prof. Dr. Karlheinz Meier

Prof. Dr. Michael Hausmann

A B S T R A C T

Spiking neural networks can solve complex tasks in an event-based processing
strategy, inspired by the brain. One special kind of neuron model, the AdEx model,
allows to reproduce several types of firing patterns, which have been found in bio-
logical neurons and may be of functional importance. In this thesis we characterize
the analog neuron circuit implementation of this model within the full-custom
HICANN ASIC. As the central unit of the BrainScaleS accelerated neuromorphic
computing platform, it provides a tool to emulate large neural networks in short
time and helps to better understand the brain.

Characterization of the neuron circuits leads to calibration of each sub-circuit,
translating the desired AdEx model parameters to their corresponding HICANN
parameters for each individual neuron. Device mismatch in VLSI manufacturing
leads to expected variation from design parameters. These variations can be coun-
teracted by adjustable parameters within the circuits. A wafer-scale BrainScaleS
system contains over 1.9 · 105 neuron circuits with millions of parameters. Due to
the large scale of the system, methods need to be fully automated in a robust way.

Characterizations presented in this work are performed from transistor level sim-
ulation to wafer-scale hardware measurements. Our commissioning and calibration
efforts are enabling neural network experiments, including complex firing patterns
that are computationally expensive when implemented in traditional numerical
simulations.

Z U S A M M E N FA S S U N G

Vom Gehirn inspirierte spikende neuronale Netze sind trotz ihres Ereignis-basierten
Kommunikations-Ansatzes in der Lage, komplexe Aufgaben lösen. Ein spezielles
Neuronenmodell, das AdEx-Modell, kann verschiedene Feuermuster reproduzie-
ren, die in biologischen Neuronen beobachtet wurden und von funktionaler Be-
deutung sein könnten. In dieser Arbeit charakterisieren wir die Implementierung
dieses Modells durch die analogen Neuronen-Schaltungen des HICANN-ASICs.
Der HICANN stellt die zentrale Einheit des neuromorphen BrainScaleS-Systems
dar und erlaubt es, große neuronale Netze in kurzer Zeit zu emulieren.

Die Charakterisierung der Neuronen-Schaltungen führt zur Kalibration der ein-
zelnen Schaltungen, die für jedes einzelne Neuron gewünschte AdEx-Parameter
in entsprechende HICANN-Parameter übersetzt. Abweichungen der Eigenschaf-
ten der Bauelemente während des Herstellungsprozesses führen zu Abweichungen
von den Designparametern. Diese können durch einstellbare Parameter ausgegli-
chen werden. Ein Wafer-System enthält 1.9 · 105 Neuronenschaltungen mit Millio-
nen von Parametern. Aufgrund dieser Größe müssen die Methoden vollständig
automatisiert und robust sein.

Die in dieser Arbeit vorgestellten Charakterisierungen werden in Transistor-
Simulationen und Wafer-übergreifenden Hardware-Messungen durchgeführt. Un-
sere Bemühungen zur Inbetriebnahme und Kalibration erlauben es, Netzwerkexpe-
rimente durchzuführen, einschließlich komplexer Feuermuster, die in numerischer
Simulation viel Rechenaufwand erfordern.

v

C O N T E N T S

i introduction 1

1 neuromorphic computing 3

2 point neuron models 7

2.1 Hodgkin-Huxley Model . 8

2.2 Leaky Integrate-and-Fire Model . 9

2.3 Izhikevich Model . 9

2.4 Adaptive Leaky Integrate-and-Fire Model 10

2.5 Adaptive Exponential Leaky Integrate-and-Fire Model 10

ii brainscales system 13

3 brainscales system 15

4 hicann chip 17

4.1 Neuron Circuit . 17

4.1.1 Leakage Term . 18

4.1.2 Reset Mechanism . 20

4.1.3 Adaptation Term . 20

4.1.4 Exponential Term . 21

4.1.5 Current Input and Membrane Output 25

4.1.6 Synaptic Input and Layer 1 Routing 25

4.1.7 Spiking Mechanism and Interconnection 27

4.2 Neuron Parameters . 27

4.2.1 Time Constant Scaling and Digital Configuration 27

4.2.2 Floating Gate Memory . 28

4.2.3 Neuron Parameters . 29

4.2.4 Shared Parameters . 31

4.2.5 Parameter Translation . 32

4.3 Transistor-Level Simulation . 35

4.4 Mismatch and Nonlinearity . 36

4.5 Defect Information . 36

5 experimental setups 37

5.1 Demonstrator Setup . 37

5.1.1 System Emulator Board . 38

5.1.2 Virtex-5 FPGA PCB . 39

5.1.3 HICANN PCB . 39

5.2 Cube Setup . 40

5.2.1 Kintex-7 FPGA PCB . 41

5.3 Wafer Setup . 42

5.4 Analog Readout Module . 43

vii

viii contents

5.4.1 ADC Calibration . 45

6 control software 49

6.1 Executing Neural Network Experiments 50

6.2 Calibration Framework . 51

6.2.1 Core Concepts . 51

6.2.2 Hardware Interface . 53

6.2.3 Transformation Storage . 53

6.3 Methodology . 54

iii adex calibration 55

7 parameter estimation methods 57

7.1 Experimental Setup . 57

7.1.1 Hardware Measurements . 57

7.2 Disabling Terms . 58

7.3 Previous Work . 59

7.4 Output Buffer Offset . 59

7.5 Resting Potential . 62

7.6 Threshold Potential . 62

7.7 Reset Potential . 64

7.8 Membrane Time Constant . 66

7.8.1 ISI-based Method . 66

7.9 Stimulation-Based Method . 68

7.10 Refractory Period . 71

7.11 Adaptation Parameters . 72

7.11.1 ISI-Based Determination of the Coupling Parameter a 73

7.11.2 Determination of Coupling a in Analogy to Leakage Term . . 75

7.11.3 Determining Adaptation Parameters via Differential Equa-
tion Fitting . 76

7.11.4 Determining the STA Parameter b 78

7.12 Exponential Parameters . 80

7.12.1 General Considerations . 80

7.12.2 Previous Work . 84

7.12.3 Keeping VT Constant . 85

7.12.4 Determining ∆T . 87

7.12.5 Hardware Measurement of ∆T and VT 90

iv wafer calibration 97

8 wafer-scale lif calibration 99

v discussion 107

9 conclusion and outlook 109

9.1 Discussion of Methods . 109

9.2 Time Requirement of Calibration . 111

contents ix

9.3 Current And Future Network Experiments 113

vi appendix 115

a experiment duration 117

b parameter settings 119

b.1 Base Configuration . 119

b.2 Resting Potential . 119

b.3 Reset Potential . 120

b.4 Threshold Potential . 120

b.5 Refractory Period . 120

b.6 Membrane Time Constant . 120

bibliography 127

Part I

I N T R O D U C T I O N

1
N E U R O M O R P H I C C O M P U T I N G

The human brain is a powerful computation system (Piccinini and Bahar, 2013):
being energy efficient, robust against defects, and able to learn quickly, it has in-
spired new approaches to process information by copying aspects of its dynamics
and structure. Traditional computing separates memory and logic, while the hu-
man brain accomplishes both in a network consisting of roughly 1010 neurons and
1014 synaptic connections (Pakkenberg et al., 2003) between neurons. Connectivity
between units is high, at up to 104 incoming synapses per neuron. Boolean logic,
which is trading energy for precision, does not seem to be required to accomplish
information processing features of a brain. Although lots of data has been collected
on properties of neurons and their connectivity, the details of how the brain repre-
sents, memorizes and processes information are not yet fully understood.

Modern machine learning algorithms, especially artificial neuronal networks ini-
tially inspired by the brain, are able to perform increasingly complex tasks that
could previously only be performed by humans: image recognition, decision mak-
ing, driving cars, or winning the board game Go (Bojarski et al., 2016; Silver et al.,
2016) are just a few examples. As the number of everyday applications is grow-
ing and energy budget is limited, a new conceptual approach to computing is
required. Companies are already building specialized hardware to reduce power
consumption of their algorithms (Jouppi et al., 2017). However, there are still some
pronounced differences. The algorithms may even be better at specialized tasks
than a human, while the human brain is much more universal. In some cases, such
as playing Go, the human brain is able to learn from observing very few examples,
while artificial networks require way more training examples.

In order to better understand how the brain processes and stores information,
numerical simulations of neural networks on traditional hardware are a powerful
tool in the field of computational neuroscience. Several simplified neuron models
are introduced in chapter 2. Efficiently scaling such simulations to large networks
is a difficult task, communication can be the major bottleneck limiting parallel sim-
ulations (Migliore et al., 2006). The human brain excels at energy consumption of
about 20W (Drubach, 2000), compared to traditional computers based on the von
Neumann architecture. For example, Helias et al. (2012) simulated neural networks
based on a simplified neuron model on the K supercomputer, consuming approx-
imately 1010 times more energy than an equivalent sized part of the brain. Time
evolution in such simulations is about 103 times slower than biological time, al-
though methods have been developed to increase performance of such large-scale
simulations (Kunkel et al., 2013).

3

4 neuromorphic computing

There is an even more radical approach to casting aspects of brain computa-
tion into silicon, called neuromorphic computing. The idea to operate electronic
transistors similar to neurons was first established by Carver Mead (Mead, 1990;
Mead, 1989). Mead proposed to build very-large-scale integration (VLSI) systems
with analog circuits working similar to the nervous system of a biological brain,
emulating ion flow across the membrane of a neuron by electron flow through a
transistor. Originally the term neuromorphic computing was used for subthresh-
old analog electronics, today it is used in a much broader sense and also includes
purely digital and mixed-signal circuits.

There are many diverse examples for neuromorphic systems with different
goals, including sensors (Vanarse, Osseiran, and Rassau, 2016), winner-take-all
circuits (Indiveri, Chicca, and Douglas, 2009), and systems designed for large neu-
ral networks (Furber, 2016). One goal of such neuromorphic computing systems is
to perform tasks where the brain outperforms traditional computers, at similarly
low power consumption. Aside from the computing aspect in the interdisciplinary
field of brain-inspired computing, building such systems may also help the field
of neuroscience in exploring and understanding features of the brain such as rep-
resentation of information, computations, robustness to defects and learning. Due
to their neural network architecture, some systems also feature built-in robust-
ness (Kalampokis et al., 2003; Petrovici et al., 2016) and may be able to compensate
yield issues in modern chip manufacturing processes.

Compared to numerical integration of differential equations in computer sim-
ulations on super computers, the approach of building neuromorphic hardware
as simulation tools uses less energy. Neuromorphic systems that are designed for
large neural networks are aiming at simulation of these networks in real-time or
faster, after an initial configuration phase. Due to the neuromorphic architecture,
the speed just depends weakly, if at all, on the network size.

Many analog hardware implementations of spiking neurons exist today (Indiveri,
Linares-Barranco, et al., 2011). In this thesis we will work with the BrainScaleS
system, a large-scale neuromorphic system that uses an analog neuron model.
Apart from the BrainScaleS system, there are several other neuromorphic hardware
projects of similar scale, which have also been developed over similar time spans:
TrueNorth (Sawada et al., 2016), being developed by IBM, SpiNNaker (Furber,
Galluppi, et al., 2014), developed at the University of Manchester, and Neuro-
grid (Benjamin et al., 2014), developed at Stanford University. Their approaches
are complementary, each choosing a different compromise between flexibility, ac-
curacy, power consumption and detailed features of the supported neuron models:

The TrueNorth chip is designed as an application delivery platform for real-
time cognitive applications (Esser, Andreopoulos, et al., 2013). One chip consists
of 4096 cores of 256 digital integrate-and-fire neurons with 256 synaptic inputs
each (Cassidy et al., 2013). Chips can be interconnected for larger applications.
Incoming spike events are connected to selected neurons via a 256× 256 cross-bar.
Output events are connected to one other core, if several cores should be connected,

neuromorphic computing 5

identical neurons that receive the same input can be used to generate identical
output to each core. The hardware behaves deterministically and can be simulated
in software, which is required for off-line training. The idea is to provide a library
of cognitive modules which can be combined for a specific application (Amir et
al., 2013). A possible application for example is efficient image classification using
deep convolutional networks, processing more than 6000 frames per Joule (Esser,
Merolla, et al., 2016).

The SpiNNaker system is similar to a conventional supercomputer with several
optimizations towards simulation of neural networks in real time. The processors
are integer ARM969 cores originally developed for embedded applications. Com-
munication through a multicast packet router is optimized for large numbers of
very small data packets (Furber, 2016), typically single spikes. This approach al-
lows high scalability (Furber, Lester, et al., 2012) and energy efficiency compared
to conventional supercomputers while retaining some flexibility with respect to
neuron models, but with the restriction of integer operations.

The Neurogrid system is based on subthreshold analog circuits (Benjamin et al.,
2014). One board holds 16 Neurocore chips of 256× 256 neurons, emulating ion
channel activity in analog circuits. Spike communication and routing is digital.
The neurons implement a quadratic integrate-and-fire model with shared leaky
integrator dendritic circuits, operating in real time. Several parameters and the
synapses are shared, reducing the network modeling possibilities, but leading to
extremely low power consumption of less than two Watts for the whole board.

A possible application of neuromorphic real-time systems are small mobile
robots, especially when they are battery powered. Future applications of systems
that are able to process input faster than biological time are temporal data streams:
detecting patterns and making predicitions, analyzing large volumes of data, in the
areas of science, medicine, business, or civil services. Possible future industry ap-
plications of low power neuromorphic systems include mobile medical diagnostics,
analyzing Lidar data on an automobile and other tasks that require fast processing
of information from high-throughput sensors, because such systems need to re-
spond on a similar time scale as the physical system. In particular for applications
requiring high speeds, technology developed for the BrainScaleS system may be
suitable to be adapted towards such applications.

In the next chapter we will give an overview of neuron models that lead to the
neuron model emulated by the BrainScaleS system. In chapter 3 the BrainScaleS
system is introduced, followed by details on its central component, the High Input-
Count Analog Neural Network (HICANN) chip (chapter 4), experimental setups
(chapter 5) and their control software (chapter 6). Chapter 7 presents the methods
that have been developed to characterize the neuron circuits. The application of
these methods to a full wafer is shown in chapter 8, followed by a discussion of the
results in chapter 9.

2
P O I N T N E U R O N M O D E L S

A biological neuron can be roughly divided into three functional parts: dendrites,
soma and axon. The dendrites collect input signals, short electrical pulses, from
other neurons and transmit them to the soma. The soma generates an output signal
if the input exceeds a certain threshold. The output pulse, called action potential
or spike, is transmitted to other neurons via the axon. The junction between two
neurons is the synapse, where, most commonly the signal is transmitted chemically
between neurons via transmitter molecules. The sending cell is called presynaptic
neuron and the receiving cell is called postsynaptic neuron. A single neuron typi-
cally connects to 104 presynaptic neurons (Gerstner et al., 2014) in a neural network.
Action potentials of a given neuron always have roughly the same form. They are
essentially binary signals (Sterling and Laughlin, 2015), information is encoded in
the timing and number of spikes. The sequence of spikes from a single neuron is
called spike train. In some sense, one can view the brain itself as a mixed-signal
device: in contrast to the fast digital signalling via spikes, the signal processing
in neurons and synapses is an efficient analog chemical process. Usually it is not
possible to excite a second spike immediately after a spike, the neuron needs to
recover during a refractory period.

Like other cells, neurons have a cell membrane separating its interior from the ex-
tracellular space. The concentration of ions inside the cell differs from the outside.
This generates an electric potential over the membrane, the cell membrane poten-
tial. A typical neuron at rest, without any input, has a negative polarisation of about
−65mV . The potential changes with incoming spikes. If it increases, reducing (de-
polarizing) the negative polarization, the synapse is excitatory. If it decreases, the
synapse is inhibitory. The change from the resting potential caused by a spike at
the postsynaptic neuron is the post-synaptic potential (PSP). The dynamic range of
the membrane potential is in the order of tens of millivolts, whereas the resulting
action potential has an amplitude of about 100mV .

There are controversial discussions which level of detail is still relevant in or-
der to realize brain functionality. From the biologist point of view, details at the
molecular level are still important. A cognitive scientist might not even care about
action potentials. The field of machine learning in computer science is able to per-
form certain tasks as good or better than humans with fine-tuned artifical neural
networks, using very simple neuron models far from biology. However, these mod-
els might lack critical features to provide other functionality of an actual brain. In
the following we will introduce several models that lead to the physical model
implementation which is characterized in this thesis.

7

8 point neuron models

Cm

RL

El

RNa

ENa

RK

EK

Figure 2.1: Ion channels as modeled by the Hodgkin-Huxley model. The unspecific leakage
channel RL is time-independent. The conductances of the sodium and potas-
sium channels depend on activation and inactivation variables m, n, h.

2.1 hodgkin-huxley model

The conductance-based Hodgkin-Huxley neuron model consists of a set of non-
linear differential equations describing the membrane potential and the state of
several ion channels. Ion channels move charge in the form of ions through the
membrane. The membrane potential at which there is no net flow through one
type of ion channel is called its reversal potential or Nernst potential. In its origi-
nal form (Hodgkin and Huxley, 1952) the Hodgkin-Huxley neuron model describes
three types of ion channels: a sodium channel with resistance RNa and reversal po-
tential ENa, a potassium channel with resistance RK and reversal potential EK and
an unspecific channel with resistance RL and reversal potential El. This model has
later been extended by many additional types of ion channels after they have been
discovered. The unspecific leakage channel has a voltage-independent conductance
gL = 1

RL
.

The conductances of the voltage-gated sodium and potassium channels contain
time-dependent gating variables m(t), n(t) and h(t), each with its own differen-
tial equation. The resulting currents onto the membrane capacitance Cm cause a
change in the membrane potential Vm as

Cm
dVm

dt
= −ĝNam

3h (Vm − ENa) − ĝK n
4 (Vm − EK) − gL (Vm − EL) + I, (2.1)

with additional external current stimulus I. The terms containing the gating vari-
ables m, n and h are responsible for spike generation and will be replaced by a
reset mechanism in the next section.

The description of action potentials on the level of ion channels forms the ba-
sis for detailed biophysical neuron models. These models include varying sets of
additional ion channels, which have been discovered in electrophysiological ex-
periments. For example, spike-frequency adaptation is not present in the original
Hodgkin-Huxley model.

2.2 leaky integrate-and-fire model 9

2.2 leaky integrate-and-fire model

In a rough approximation, neuronal dynamics consist of integration of inputs and
a firing mechanism, replacing the coupled nonlinear differential equations from the
previous section by a reset condition. The class of neuron models describing action
potentials as events are called Integrate-and-Fire models (Gerstner et al., 2014).
Firing events are often defined as delta function at the time when the membrane
potential is crossing a threshold Vt. The other component is an equation describing
the evolution of the membrane potential Vm. The simplest model of this class is
the Leaky Integrate-and-Fire (LIF). In the absence of external current stimulus I or
synaptic input, the potential is at its resting value El. The cell membrane acts like
a capacitor Cm that is charged by a current stimulus. The charge will slowly leak
through the cell membrane with a conductance gL:

Cm
dVm

dt
= −gL(Vm − El) + I. (2.2)

The differential equation is complemented by a firing condition: the LIF model
introduces a non-continuous firing mechanism by defining a firing threshold Vt.
The neuron is firing when Vm crosses Vt from below and its membrane potential
is reset immediately to a reset potential Vreset:

Vm → Vreset. (2.3)

This approach also reduces computational complexity for computer simulations.
As this model is highly simplified, it can not reproduce many aspects of neu-

ronal dynamics, such as adaptation, bursting and inhibitory rebound. Two major
limitations of the basic LIF model are the linear integration of synaptic or external
stimulus current and the spiking mechanism that does not keep any memory of
previous spikes. If adaptation and refractoriness are added to the model, it is able
to predict biological spike times more accurately (Gerstner et al., 2014).

Refractoriness can be added by clamping the membrane potential to Vreset during
the refractory period τref after a spike at tspike:

Vm
(
tspike < t 6 tspike + τref

)
= Vreset. (2.4)

2.3 izhikevich model

Izhikevich proposed a quadratic integrate-and-fire model that reproduces spiking
and bursting behavior of neurons (Izhikevich, 2003):

dVm
dt

= c2 · Vm2 + c1 · Vm + c0 −w+ I, (2.5)

dw
dt

= a · (b · Vm −w), (2.6)

10 point neuron models

with a reset condition: if Vm > 30mV , set Vm = c and w = w+ d. The variables
Vm and w as well as the parameters a, b, c and d are dimensionless. The constants
c0, c1 and c2 in equation (2.5) were fitted to match recorded neuron dynamics. Vm
represents the membrane potential, w represents a recovery variable, accounting
for activation of the potassium ion current and inactivation of the sodium current.
a describes the recovery time scale, b the sensitivity of w to fluctuations of Vm. c
is the reset value of Vm, and d is a spike-triggered change of the recovery variable
w.

2.4 adaptive leaky integrate-and-fire model

The LIF model can be extended by adding an adaptation variable, similar to the
recovery variable in the Izhikevich model:

Cm
dVm

dt
= −gL(Vm − El) −w, (2.7)

τw
dw
dt

= a (Vm − El) −w. (2.8)

The firing condition remains as defined by the LIF model. For Spike-Triggered
Adaptation (STA) the adaptation current is increased by a constant value b at each
firing event:

w→ w+ b. (2.9)

2.5 adaptive exponential leaky integrate-and-fire model

Introduced by Brette and Gerstner (2005), the Adaptive Exponential Leaky Integrate-
and-Fire (AdEx) model extends the two-variable model from the previous section
by an exponential nonlinearity proposed in Fourcaud-Trocmé et al. (2003). The
resulting AdEx model is described by two differential equations:

Cm
dVm

dt
= −gL(Vm − El) + gL∆T exp

(
Vm − VT
∆T

)
−w+ I. (2.10)

And as before,

τw
dw
dt

= a (Vm − El) −w. (2.11)

The first equation describes the evolution of the membrane potential Vm on a mem-
brane capacity Cm. There are several current terms, beginning with a leakage cur-
rent through the leak conductance gL, pulling the membrane voltage towards the
resting potential El. The second term on the right hand side is the exponential
term with slope factor ∆T and exponential threshold VT . Third comes the adapta-
tion current w, its course is described by the second differential equation. Its time

2.5 adaptive exponential leaky integrate-and-fire model 11

evolution is described by the adaptation coupling conductance a and adaptation
time constant τw. The last term in equation (2.10) I is the sum of input currents,
which can be synaptic currents or external stimulus. The firing condition remains
as introduced in section 2.2. With the addition of the exponential term, in a purely
mathematical description the neuron would be firing at time tf when its membrane
potential Vm diverges towards infinity.

This model is able to reproduce several other neuron models. Removing the
adaptation variablew results in the exponential integrate-and-fire model (Fourcaud-
Trocmé et al., 2003). In the limit ∆T → 0, we obtain the adaptive LIF model. With-
out exponential term (∆T → 0) and by setting a = 0, there remains LIF with
STA as proposed in Treves (1993). Setting b = 0 results in subthreshold adapta-
tion (Richardson, Brunel, and Hakim, 2003).

There are many similarities to the Izhikevich model: the AdEx model remains
fast to simulate numerically, shows the same bifurcation patterns and a large vari-
ety of firing patterns. Quantitative fits to experimental data are better when using
the AdEx model (Naud et al., 2008). There are also a few differences between the
two models: while the Izhikevich model contains a quadratic voltage dependency,
the nonlinear dependency of the AdEx model is exponential. The resulting up-
swing of the action potential in the AdEx model is more realistic (Badel et al.,
2008). The AdEx model also remains linear in the subthreshold regime as observed
in experiments, while the Izhikevich model shows unrealistic nonlinearities (Badel
et al., 2008). The attenuation of high frequency inputs follows as 1

f in the AdEx
model, compared to 1

f2
in the Izhikevich model (Fourcaud-Trocmé et al., 2003).

In summary, the Adaptive Exponential Leaky Integrate-and-Fire (AdEx) model
is a good compromise between computational complexity and reproducibility of
firing characteristics which have been observed in biological experiments.

This model is implemented in the BrainScaleS system introduced in chapter 3.
The firing patterns presented in (Naud et al., 2008) have been reproduced using
this system in Schwartz (2013), Tran (2013), and Kiene (2014).

Part II

B R A I N S C A L E S S Y S T E M

3
B R A I N S C A L E S S Y S T E M

The neuromorphic hardware located in Heidelberg is called BrainScaleS. The
idea behind this large-scale system is that configurable synaptic connectivity and
weights as well as configurable individual neuron parameters provide the flexibil-
ity to realize various functionality in artificial neural circuits. Simulating learning
on traditional computing architectures takes a long time, even if it is possible to
provide the large amount of required energy. Our approach is to develop a new
computing architecture which is much faster at emulating neural networks than
traditional computing architectures and requiring less energy at the same time.

The central component of the BrainScaleS system is the full-custom, mixed-signal
HICANN chip, which is introduced in chapter 4. There are three key concepts:
each wafer module features a high neuron count without depending on external
connections, due to an architecture called wafer-scale integration (Schemmel, Fieres,
and Meier, 2008). In order to achieve higher bandwidths and use less energy in sig-
nal transmission compared to single chips being connected externally via a printed
circuit board (PCB), the silicon wafer used to manufacture HICANN chips side-by-
side is not cut into separate chips. 384 chips on the wafer are instead interconnected
by additional metal layers in a post-processing step and directly connected to a
main PCB using elastomeric connectors. The next concept is physical emulation: a
set of differential equations (section 2.5) is not solved numerically, but emulated by
a physical model implementation of the differential equations. This limits the sys-
tem to the physically implemented model equations, but allows for a very fast and
energy efficient time evolution (Schemmel, Fieres, and Meier, 2008). The choice of
conductances and capacitances allows the system to emulate the model 104 times
faster than real time, whereas computer simulations usually are slower than real
time. This acceleration allows to evolve network dynamics in experiments faster
than real-time and thus gain insights into processes that would take too much time
to simulate them numerically. The third key concept is learning being integrated
into the system, which also benefits from the accelerated time evolution. There is
already support for Short Term Plasticity (STP) (Schemmel, Grübl, et al., 2006; Bil-
laudelle, 2014) and Spike-Timing Dependent Plasticity (STDP) (Schemmel, Grübl,
et al., 2006; Nonnenmacher, 2015). The next generation of the system will contain
a plasticity processor to facilitate learning (Friedmann, Frémaux, et al., 2013; Fried-
mann, Schemmel, et al., 2016; Friedmann, 2013).

Apart from researching and designing circuits for energy-efficient realization of
new computing paradigms, the BrainScaleS system is intended as a tool for thereti-
cal neuroscientists. Access for early adopters is already available via the neuromor-
phic computing platform of the Human Brain Project (HBP). First proof of concept

15

16 brainscales system

networks have already been published (Schmitt et al., 2016). As simulation of a day
is compressed to seconds, the next generation of the BrainScaleS system will also
allow to observe learning over a larger time scale.

The physical emulation of the neuron dynamics is implemented by analog elec-
tronic circuits, detailed in the following chapters. Spike communication is real-
ized by transmitting binary information via digital circuits, and received by 4 bit
synapses (Millner, 2012; HBP SP9 partners, 2014). The system is highly config-
urable: each neuron has individual neuron parameters to control its behavior, the
synaptic connectivity can be reconfigured to implement arbitrary neural networks.
The synaptic connectivity is designed to be scalable, such that a single model neu-
ron can receive input from up to 104 sources.

4
H I C A N N C H I P

The HICANN mixed-signal Application Specific Integrated Circuit (ASIC) is the
central component of the BrainScaleS system. It implements the AdEx model in
full-custom analog circuits (Millner, 2012), which is discussed in section 4.1.

In addition, HICANN contains a digital part to configure and connect these ana-
log circuits. Communication with HICANN takes place via the Automated Repeat
reQuest (ARQ) protocol (Philipp, 2008; Karasenko, 2014). On chip the neural net-
work activity is transmitted digitally (Hartel, 2016; Jeltsch, 2014). The digital spikes
are then processed by the synaptic input circuits and converted to a current (sec-
tion 4.1.6).

4.1 neuron circuit

The analog Dendritic Membrane Circuit (denmem) is the central subject of inves-
tigation in this work. In the following, we give an overview over the circuits rele-
vant for this thesis and explore in detail how to control their behavior. Figure 4.1
shows a simplified schematic. We are using the term denmem as established in
Millner (2012) instead of neuron, because a model neuron can consist of several
denmems. This circuit realizes the physical AdEx model implementation (equa-
tions (2.3) and (2.9) to (2.11)) with an electronic capacitor Cm for the membrane ca-
pacitance, which can be digitally configured to two values (section 4.2.1): a smaller
capacitance Csmallcap = 0.16 pF and a bigger capacitance Cbigcap = 2.16 pF. There
are individual circuits to implement the currents from each term in equation (2.10)
on the membrane capacitance: the leakage term (section 4.1.1), adaptation term
(section 4.1.3) and exponential term (section 4.1.4), as well as the reset mechanism
for equation (2.3) (section 4.1.2). This approach allows to observe the membrane
potential as a time-continuous quantity, a physical voltage.

In total, there are 512 denmems on a single HICANN chip. The membrane capaci-
tances of neighboring denmems can be interconnected up to a block of 64 denmems
to act as a single model neuron (Jeltsch, 2014). This can be used to achive a higher
number of available synaptic inputs (see section 4.1.7). The boundary of these
blocks of 64 denmems can not be shifted, smaller block sizes are possible within
these boundaries.

Further details on the design can be found in Millner (2012), where the full
denmem circuit is discussed in detail. One exception is the revised synaptic input
circuit, which has been discussed and characterized in Koke (2016).

There are two types of adjustable parameters in these circuits: 23 parameters are
shared by 128 or 256 denmems. They are also known as global parameters, intro-

17

18 hicann chip

CMembrane

Membrane

Exp

Adapt

In/Out

Leak

SynIn

SynIn

Reset

Input

Input

Spiking/
Connection

Neighbour-Neurons

Current-Input Membrane-Output

STDP/
Network

Spikes
VReset

Figure 4.1: Simplified schematic of the AdEx physical model implementation in a denmem
circuit (Millner, 2012). Most sub-circuits are introduced in this chapter. From
left to right there is the excitatory and inhibitory synaptic input circuit, the
membrane capacitance Cm, external current stimulus and membrane voltage
readout, leakage term, adaptation term, exponential term, reset mechanism
and spiking mechanism. The denmem can be interconnected with neighbor-
ing denmems for higher synaptic connectivity. The spiking mechanism is also
triggering the reset mechanism as well as Spike-Triggered Adaptation (STA).
Schematic from Millner et al. (2010).

duced in section 4.2.4. Another 22 parameters can be adjusted for each denmem
individually, known as neuron parameters (section 4.2.3).

4.1.1 Leakage Term

Several conductances in HICANN are implemented by an operational transcon-
ductance amplifier (OTA). This circuit has two voltage inputs and ideally outputs
a current proportional to the product of a conductance, which is controlled by a
biasing current, as well as the voltage difference at the inputs (Geiger and Sanchez-
Sinencio, 1985):

Iout ∝
√
Ibias · (V+ − V−) . (4.1)

The leakage conductance gL is implemented by a single OTA with bias current Igl

(figure 4.2). The resting potential El is connected to its positive input and its output
is connected to the membrane capacitance as well as the negative input, resulting
in a leakage current onto the membrane towards the equilibrium at El.

Ileak = −gL (Vm − El) ∝
√
Igl (El − Vm) . (4.2)

The real behavior of the OTA circuit implemented in HICANN has been simulated
in detail in previous works (Millner, 2012; Koke, 2016; Kiene, 2014). Figure 4.3

4.1 neuron circuit 19

−

+

Igl

gL

El

Vm

Figure 4.2: The leakage conductance gL is realized by an OTA with bias current Igl. The
positive input is connected to the resting potential El, the output is connected
to the membrane capacitance with voltage Vm as well as the negative input,
resulting in a leakage current onto the membrane towards the equilibrium at El
(adapted from Millner (2012)).

shows its characteristic curves for the conductance and the resulting output current
as a function of the differential voltage between its inputs. Due to saturation effects,
the OTA’s conductance depends on the voltage-difference at its inputs. Depending
on the network model this effect may be negligible. We can operate at small voltage

Figure 4.3: Characteristic curves of the OTA used in several HICANN circuits, obtained
from transistor level simulations. At the top, the conductance of the OTA is
plotted depending on the differential voltage at its inputs. The three line styles
depict three different bias current settings. At the bottom, the resulting current
output of the OTA is shown. The ideal conductance would be constant, result-
ing in a linear current. The actual conductance shows a dependency on the
voltage difference at the inputs with saturation at high differential voltage. In
order to avoid deviations from the AdEx model with constant conductance, the
parameter translation (section 4.2.5) and neuron configuration can be chosen to
avoid large differential voltages. From (Millner, 2012).

20 hicann chip

−

+

a
El

Vm

Igladapt

−

+

gw

Vw

Cw

Iradapt

Figure 4.4: Simplified schematic of the adaptation circuit. Adaptation in form of equa-
tions (4.3) and (4.7) is realized using two OTAs and a capacitor Cw. The ca-
pacitor is storing the state w as voltage Vw. The output of the conductance a,
with bias current Igladapt, is the adaptation current w. Vw is coupled to Vm via
the conductance gw (equation (4.7)), with bias current Iradapt.

differences by choosing an appropriate parameter translation (section 4.2.5) and
corresponding neuron parameters in order to remain close to the theoretical model.

4.1.2 Reset Mechanism

The theoretical model defines that if the membrane voltage crosses the spike thresh-
old, Vm is set to the reset potential Vreset. In physical emulation there is a current
pulling the membrane voltage Vm to the reset potential Vreset. Its strength is ad-
justable via global parameter Ireset. It is designed to be strong enough to dominate
in comparison to leakage and synaptic currents, resulting in an almost instanta-
neous reset. The duration during which the membrane is held at Vreset can be
adjusted via parameter Ipl, resulting in a refractory period τref. The reset is trig-
gered by a comparator with inputs Vm and Vt, which also triggers the emission of
a digital spike signal (see section 4.1.7).

4.1.3 Adaptation Term

On HICANN, the present value of the adaptation variable w is stored as voltage
Vw on a capacitor Cw = 2 pF (figure 4.4). The capacitances Cw of interconnected
denmems are not connected to each other. The adaptation current w onto the mem-

4.1 neuron circuit 21

brane in equation (2.10) is the output of an OTA, the conductance a, with El and
Vw at its input terminals. This gives the following relation:

w = a (Vw − El) , (4.3)

and its time-derivative

dw

dt
= a · dVw

dt
. (4.4)

Putting equations (4.3) and (4.4) into equation (2.11) gives

−�aτw
dVw

dt
= �a (Vw − El) −�a (Vm − El) (4.5)

⇔ −τw
dVw

dt
= (Vw − Vm) (4.6)

⇔ −Cw
dVw

dt
= gw (Vw − Vm) . (4.7)

In the last step, we have introduced another conductance gw to realize the time
constant τw = Cw

gw
. Equation (4.7) is also implemented by an OTA, very similar to

the leakage circuit.
Spike-Triggered Adaptation (STA) as defined in equation (2.9) is triggered by the

digital spike signal. The increase of current w by b can be expressed as a voltage
increase by Vb on Cw:

b = a · Vb = a · qb
Cw

, (4.8)

equation (2.9) becomes

Vw → Vw + Vb. (4.9)

The required charge qb flowing on the capacitor is added by enabling an adjustable
current Ifire during the digital firing pulse with pulse length tfire � τw and τm:

qb = tfire · Ifire. (4.10)

The bias current Ifire can be used to set the desired value for b. When the adaptation
term is reset, Vw is connected to Vm by a transistor not shown in figure 4.4. The
reset signal opens the transistor, circumventing gw and resulting in Vw = Vm. If
Vw is at the resting potential, equation (4.3) becomes w = 0. This concludes the
required level of detail to control the adaptation term. Additional details on this
realization and its limitations can be found in Millner (2012).

4.1.4 Exponential Term

The exponential term in equation (2.10) is an exponential current

Iexp = gL ·∆T exp
(
Vm − VT
∆T

)
(4.11)

22 hicann chip

−

+

R2 R1

OP

Mexp

Vm

Vexp

Vout

Figure 4.5: Simplified schematic of the exponential term. The transistor Mexp is operated
in its subthreshold regime to provide a current depending exponentially on
Vout −Vm. The threshold at which the OpAmp becomes active is determined by
its negative input V− and can be controlled by Vexp. The slope of the exponent
is controlled by the voltage divider consisting of an adjustable resistance R1 and
constant resistance R2. Adapted from (Millner, 2012).

with a threshold voltage VT and slope factor ∆T .
The exponential feedback was implemented by connecting the output of an

operational amplifier (OpAmp) to a transistor Mexp (figure 4.5) operated in its
subthreshold regime: its gate-to-source voltage is below the conducting threshold
voltage, VGS 6 Vth. This configuration results in a subthreshold leakage current

IDS = ID0 exp
(
VGS − Vth

n · ut

)
(4.12)

from drain to source which depends exponentially VGS (Allen and Holberg, 2002).
ID0 is a constant with a temperature dependency. The temperature is assumed to
be constant over time in local areas of the system. The constant n is called sub-
threshold swing parameter and characterizes the subthreshold slope of the transis-
tor (Millner, 2012; Hu, Liu, and Jin, 1998). ut = kB·T

q is the thermal voltage, with
Boltzmann constant kB, elementary charge q and temperature T .

In order to calculate VGS, we need to know the voltage Vout at the output of the
OpAmp. Assuming an ideal OpAmp, there is no current flowing through its input
terminals. Let us consider the current flowing from the OpAmp’s output to Vexp:

I1 =
Vout − Vexp

R1 + R2
. (4.13)

4.1 neuron circuit 23

The same current is flowing through R2, giving us the voltage at its negative termi-
nal V−:

V− = Vexp + R2 · I1

= Vexp + R2 ·
Vout − Vexp

R1 + R2

= Vexp + (Vout − Vexp) ·
R2

R1 + R2
. (4.14)

The OpAmp regulates its output Vout to equalize the voltages present at its input

terminals, such that V+
!
= V−. We can hence write

Vm = Vexp +
(
Vout − Vexp

)
· R2
R1 + R2

(4.15)

⇔ Vout =
(
Vm − Vexp

) R1 + R2
R2

+ Vexp. (4.16)

Now we can calculate VGS of Mexp:

VGS = Vout − Vm (4.17)

=
(
Vm − Vexp

) R1 + R2
R2

−
(
Vm − Vexp

) R2
R2

(4.18)

=
(
Vm − Vexp

) R1
R2

. (4.19)

By inserting equation (4.19) into equation (4.12), we obtain

IMexp ≡ IDS ≈ ID0 exp

((
Vm − Vexp

)
R1
R2

− Vth

n · ut

)
(4.20)

= α exp

(
Vm − Vexp

β
R1

)
(4.21)

for the current through Mexp, with two constants α = ID0 exp
(
−Vth
n·ut

)
and β =

R2 · n · ut. The adjustable resistance R1 in the voltage divider is realized with a
current mirror (figure 4.6). If M1 is in saturation, the total current through R1 is
adjustable as scaled mirror of the bias Irexp:

I1 ≈ (4+ 1) · Irexp = 5 · Irexp. (4.22)

Therefore R1 in the voltage divider is inversely proportional to Irexp, assuming
ohmic behavior. Due to its design, R1 does not behave like an ideal resistor, but also
has a dependency on the voltage difference. Correct behavior of the exponential
term is most relevant at Vm close to VT , where R1 behaves as intended. Combined
with saturation of the OpAmp, IMexp will decrease if Vm � VT (Millner, 2012). If
this saturation is occuring just before reaching the spiking threshold Vt, the effect

24 hicann chip

Irexp

M0M1

Vout

4:1

V-

R2

Vexp

Figure 4.6: Schematic of the voltage divider as part of the exponential circuit (figure 4.5).
The current through M1 is controlled via Irexp. Adapted from (Millner, 2012).

is negligible. In transistor level simulations at IMexp = 100nA the relation between
Irexp and ∆T is almost linear in the range of Irexp ≈100nA to 800nA, resulting in
∆T ≈ 3mV to 14mV (Millner, 2012). Larger values for Irexp in this configuration
lead to saturation of the OpAmp.

Comparing equation (4.21) to equation (4.11), we see that

∆T =
β

R1
. (4.23)

The factor gL∆T is determined by Vexp:

gL∆T exp
(
Vm − VT
∆T

)
!
= α exp

(
Vm − Vexp

β
R1

)
(4.24)

⇒ exp
(
Vm − VT − (Vm − Vexp)

∆T

)
=

α

gL∆T
(4.25)

Vexp − VT

∆T
= ln

(
α

gL∆T

)
(4.26)

Vexp = VT −∆T ln
(
gL∆T
α

)
. (4.27)

Note that gL represents the model’s leak conductance and is otherwise unrelated
to the OTA bias of the leakage term. From equation (4.27) we can see that the value
of Vexp required to achieve a fixed VT will decrease when ∆T is increased.

In summary, the exponential slope ∆T is proportional to Irexp. The exponential
threshold voltage VT depends on both Irexp and Vexp and is linear with Vexp at a
fixed Irexp.

4.1 neuron circuit 25

4.1.5 Current Input and Membrane Output

The denmem can be stimulated by a programmable current source, intended for
single neuron experiments. Amplitude configuration is stored in the floating gate
(FG) cell memory, allowing 129 discrete steps which can optionally be repeated
periodically. When connected to the membrane capacitor, the current stimulus line
introduces a non-negligible additional parasitic capacitance (Schmidt, 2014; Mill-
ner, 2012) which adds to Cm. It should only be connected to a single denmem at
the same time to avoid low impedance effects (Hartel, 2016).

This sub-circuit, denoted as In/Out in figure 4.1, also contains the circuitry to read
out the membrane voltage Vm. This feature is used to deduce circuit behavior from
voltage traces (chapter 7). A HICANN chip has two output amplifiers for simul-
taneous membrane voltage readout of two neurons, i. e. interconnected or single
denmems. Additionally, the two analog readout lines are shared by all HICANNs
on a reticle, limiting the simultaneous membrane voltage readout to two neurons
per reticle in multi-HICANN experiments or parallel calibration runs. The output
amplifier causes a systematic error by shifting the voltage by (4.5± 0.8)mV (Mill-
ner, 2012), which can be equalized by our software (section 7.4).

4.1.6 Synaptic Input and Layer 1 Routing

The synaptic inputs generate an exponentially shaped conductance trace between
a synaptic reversal potential Esyn and the membrane Vm. Digital spike signals are
routed over a continuous-time serial bus system, called Layer 1 (L1), using both on-
chip and post-processing lines for intra-wafer communication (Fieres, Schemmel,
and Meier, 2008). Both inputs, inhibitory and excitatory, can be activated by incom-
ing signals, generating current pulses Isyn arriving at the circuit in figure 4.7. The
neuron implementation in HICANN revision 4 has two different synaptic input
circuits, one for excitatory and one for inhibitory input. Their circuit parameters
are suffixed by “x” or “i”, respectively.

The two synaptic input circuits per denmem in the previous revision were iden-
tial. We have analyzed the previous implementation and provided possible work-
arounds for the raised issues in Schmidt (2014). These have been fixed in the new
synaptic input implementation of HICANN revision 4, which has been character-
ized in Koke (2016) and is not analyzed in this thesis.

The L1 network is not part of the denmem, but provides input to the synapse cir-
cuit. Spike events are transmitted as digital signals on the L1 network, with a 6 bit
event address (EA). Two of these bits are used to select a synapse driver. The other
four bits are matched by the individual synapses. For digital spike communication
between one or several HICANNs there are 256 vertical and 64 horizontal L1 buses,
which can be connected to each other via crossbar switches: a horizontal line can
be connected by crossbar switches to four vertical lines on the left and right side of
the chip each (Fieres, Schemmel, and Meier, 2008; HBP SP9 partners, 2014). Vertical

26 hicann chip

Vsyn
Vvconvoff

OTA1Isyn

C

Rsyntc

Iconv

IOTA1

OP

V
in

t

Vm

Vsyntc

Esyn

V1:3V1:1bias
generator

Figure 4.7: Schematic of the synaptic input circuit. Current pulses Isyn are integrated by
the OpAmp and decay exponentially in the RC circuit with time constant τsyn,
controlled by Vsyntc, towards Vsyn. The integrated voltage Vint generates a cur-
rent from the OTA, which controls the resistive element connecting Esyn to Vm.
In order to compensate an offset of Vint to Vsyn in the absence of input, an offset
to Vsyn can be added at the negative input of the OTA via Vconvoff. Schematic
adapted from Koke (2016).

L1 lines can be connected to synapse drivers, where one synapse driver can be fed
from 16 different vertical lines. Synapse drivers with configurable L1 address de-
coder can be connected to a vertical bus lane via a switch matrix. The signal from
the synapse driver is then scaled by Vgmax and the synaptic weight, resulting in a
current pulse Isyn to the connected synaptic input if the address is matching (Koke,
2016):

Isyn = Vgmax · gscale ·
w

gdiv
. (4.28)

One HICANN has a synapse array of 512× 220 horizontal and vertical synapses.
Compared to HICANN revision 2, four vertical synapse lines were removed, be-
cause the new synapse circuit in HICANN revision 4 required additional space.
The L1 network allows to reconfigure connectivity for each target experiment (sec-
tion 6.1).

At the chip boundaries, repeaters help to propagate the differential spike signal
to the neighbouring chip. L1 repeaters use delay-locked loops (DLLs) to align their
timing. These circuits need to be locked before an experiment and will stabilize
themselves by spike activity present during an experiment.

There are two mechanisms to inject additional spikes into the L1 bus during ex-
periments: spike events can be either sent from the FPGA Communication PCB
(FCP) (introduced in section 5.2.1) at user-defined times or generated by back-
ground generators inside HICANN. The eight background generators on a chip

4.2 neuron parameters 27

can be configured to emit periodic spike events or Poisson-distributed events. As
the pseudo-random number generator is periodic, the random events are not per-
fectly Poisson-distributed (Petrovici, 2015). In random mode, the target address is
restricted to 0 in HICANN revision 4. Because the repeaters require spike events
during an experiment to maintain their DLL lock (Ziegler, 2013), background gen-
erators are usually configured for periodic events on address 0.

4.1.7 Spiking Mechanism and Interconnection

In the chip’s layout, two neighboring neurons are combined in a pair and share
their spiking and connection circuit (Millner, 2012).

The connection circuit allows to connect the membrane capacitor to neighboring
denmems, forming a multi-denmem neuron with more synaptic inputs than a sin-
gle one. As the sum of currents increases linearly with the membrane capacitance,
the behavior remains identical to a single denmem as long as all denmems are
configured for identical behavior (Schmidt, 2014).

If the membrane potential of a denmem is higher than its firing threshold poten-
tial, a digital firing signal can be emitted with the denmem’s configured address
on the L1 bus. In case of interconnected denmems, only one denmem of the group
is configured to emit a spike signal (Jeltsch, 2014).

Addresses that are not associated with a background generator can be used to
identify spike times from up to 63 distinguishable denmems simultaneously in
calibration experiments. As long as the experiment does not require any synaptic
connectivity and DLL locking, address 0 could be used for this purpose as well.

4.2 neuron parameters

The denmem circuits feature many adjustable parameters, some of which have
been mentioned in the previous section. Here we will give an overview how they
are stored and which parameters can be configured to influence the individual
analog circuits.

4.2.1 Time Constant Scaling and Digital Configuration

The membrane time constant τm and adaptation time constant τw depend on the
conductances gl, a and gw. These are controlled by analog bias currents (compare
section 4.1). Analog parameters are stored in floating gate (FG) cells, which are
introduced in the next section.

On HICANN there are digital switches that rescale time constants by amplifying
the bias currents to cover a larger range of values for the time constants. Two bits
each for the bias currents Igl, Igladapt and Iradapt allow three different current mirror
scaling selections: slow, normal and fast. They can be set individually for each bias

28 hicann chip

current, resulting in current scaling of 1:1, 1:3 or 1:27. Each scaling is available once
for the upper and once for the lower two FG blocks, i. e. the first or second group
of 256 denmems each.

Additionally the membrane capacitance can be configured. The switch bigcap
enables or disables the connection of several capacitors to a larger membrane
capacitance. The small capacitance is 0.16 pF, enabling bigcap results in a sum of
Cm = 2.16 pF. The acceleration factor αacc of the physical emulation on hardware
compared to the model results from the relation between capacitances and conduc-
tances:

αacc =
CModel

gModel
· gHardware

CHardware
. (4.29)

The achievable conductance value ranges were chosen such that typical model
ranges can be reached at αacc = 104. This factor is used for parameter translation
in section 4.2.5.

Taking the conductances measured for the default capacitance (Cbigcap) as a ref-

erence, all conductances are scaled by gsmallcap = gbigcap ·
Csmallcap
Cbigcap

if the small ca-
pacitance is chosen. For higher accuracy, the actual conductances can be measured
again in separate experiments with Csmallcap.

The digital denmem configuration also allows to set the switches for membrane
voltage readout and current input (section 4.1.5).

4.2.2 Floating Gate Memory

The analog parameters are stored in floating gate (FG) cells (Millner, 2012; Hock,
2009; Srowig et al., 2007; Loock, 2006) .

There are two types of FG cells in HICANN: voltage cells and current cells, with
a programmable voltage range from 0V to 1.8V and a current range of 0µA to
2.5µA. The resulting value is programmed from a 10 bit Digital-to-Analog Con-
verter (DAC) reference output before an experiment run. A fully isolated Positive
Metal–Oxide–Semiconductor (PMOS) transistor gate is charged and discharged us-
ing Fowler-Nordheim-Tunneling (Lande et al., 1996). This requires a large program-
ming voltage of at least 10V . A more detailed description of this process is given
in Koke (2016), Hartel (2016), and Millner (2012). Additional parameters allow ad-
justing the FG controller’s behavior during programming.

The charge on the FG determines the cell’s output: in a voltage cell the FG tran-
sistor together with a biasing transistor forms a source follower, buffering the gate
voltage as the cell’s output. The output current of current cells is provided by a
current mirror. Several current parameters can be scaled by additional current mir-
rors (section 4.2.1). A current cell which is configured to 0 DAC will still output a
small current, which is estimated to range between 20nA and 50nA. By repeatedly
changing the charge stored in the FG from zero to a desired value, a trial-to-trial

4.2 neuron parameters 29

0.0

0.5

1.0

1.5

2.0

µ
I

[µ
A

]
Current cells

0.0

0.2

0.4

0.6

0.8

1.0

1.2

µ
V

[V
]

Voltage cells

0 100 200 300 400 500 600 700

digital value

0

80

σ
I

[n
A

]

0 100 200 300 400 500 600 700

digital value

0

8

σ
V

[m
V

]

Figure 4.8: Floating gate cell trial-to-trial variation. The top part shows the mean, the bot-
tom part shows the standard deviation of the current or voltage resulting from
repeatedly configuring identical digital settings of FG current and voltage cells
over 100 repetitions. Current cell precision decreases for higher currents, volt-
age cell precision shows a standard deviation between 5mV to 9mV over the
measurable range. Figure from (Koke, 2016).

variation in the order of several millivolts is observed for voltage cells (figure 4.8).
Current cells show a variation that is growing with the desired output current.

Physically, HICANN’s analog parameter storage is divided into four blocks of
129 · 24 FG cells. The first column of 24 parameters stores the shared parameters
(table 4.3). The other 128 columns store neuron parameters (table 4.2) for 128

denmems. Note that not all cells are used (compare table 4.1), leaving room for
future circuit improvements.

Table 4.1 provides an overview how analog parameters have been layouted to
connect to FG cells. The functionality of the parameters is described in sections 4.2.3
and 4.2.4.

4.2.3 Neuron Parameters

Neuron parameters, potentials and bias currents, can be configured for an individ-
ual denmem. This enables us to fine-tune each circuit to get as close to the desired
behavior as possible. The resulting precision is limited by the ability to deduce the
desired behavior from the accessible data (see section 4.1.5), as well as the precision
of setting a value (see section 4.2.2). Table 4.2 shows the available parameters and
their function. The parameters for 512 denmems are supplied by four different FG
blocks. The connection scheme is depicted in figure 4.9.

30 hicann chip

row type global parameter left denmem right denmem

0 voltage Vreset (left: even, - Esynx

right: odd blocks)

1 current IOPbias (intern. OP bias) Ibexp Iconvi

2 voltage Vdllres Vconvoffx Esyni

3 current Vbout (left), Vbexp (right) Iconvi Iconvx

4 voltage Vfac Vconvoffi Vexp

5 current Ibreset Ispikeamp Iintbbx

6 voltage Vdep El Vsynx

7 current Ibstim Ifire Iintbbi

8 voltage Vthigh Vsyni Vsyntci

9 current Vgmax<3> Igladapt Ipl

10 voltage Vtlow Vsyntci Vsyni

11 current Vgmax<0> Igl Igladapt

12 voltage Vclra (left), Vcrlc (right) Vt Vsyntcx

13 current Vgmax<1> Ipl Irexp

14 voltage Vstdf Vsyntcx Vt

15 current Vgmax<2> Iradapt Ibexp

16 voltage Vm Esynx El

17 current Vbstdf Iconvx Ispikeamp

18 voltage - Esyni Vconvoffi

19 current Vdtc Iintbbx Ifire

20 voltage - Vexp Vconvoffx

21 current Vbr Iintbbi Igl

22 voltage - Vsynx -

23 current Vccas, Vcbias Irexp Iradapt

Table 4.1: Correspondence of row in the floating gate array with global parameter (first
column) or neuron parameter (following 128 columns), adapted for HICANN re-
vision 4 from HBP SP9 partners (2014). There are four FG blocks in total, storing
parameters for 512 denmems. Even blocks are 0 and 2, odd blocks are 1 and 3.
The type of FG cell is alternating between voltage and current cell. Global current
parameters starting with the letter ’V’ are part of distributed current mirrors and
are usually matching the naming in the schematic.

4.2 neuron parameters 31

neuron parameter function

El leakage potential, section 4.1.1

Ipl refractory time bias, section 4.1.2

Igl leak conductance bias, section 4.1.1

Ifire adaptation current increase (b) bias, section 4.1.3

Igladapt adaptation conductance, section 4.1.3

Iradapt adaptation time constant, section 4.1.3

Vexp exponential threshold control, section 4.1.4

Ibexp Vexp buffer bias, section 4.1.4

Irexp exponential slope and threshold control, section 4.1.4

Vt spike threshold, section 4.1.7

Vsynx excitatory synaptic input reference voltage

Vsyni inhibitory synaptic input reference voltage

Iintbbx integrator bias in excitatory synaptic input

Iintbbi integrator bias in inhibitory synaptic input

Iconvx OTA bias in excitatory synaptic input

Iconvi OTA bias in inhibitory synaptic input

Vconvoffx excitatory synapse integrator offset

Vconvoffi inhibitory synapse integrator offset

Esynx excitatory synaptic reversal potential

Esyni inhibitory synaptic reversal potential

Vsyntcx excitatory synaptic time constant

Vsyntci inhibitory synaptic time constant

Ispikeamp spike threshold comparator bias, section 4.1.7

Table 4.2: Parameters which can be set for each individual denmem and the summary of
their function. Details on each parameter can be found in the corresponding
section or reference therein. Synaptic input parameters are shortly introduced in
section 4.1.6 and explained in detail in Koke (2016).

4.2.4 Shared Parameters

Global parameters of a FG block are shared between 128 denmems. The only shared
parameter directly present in equation (2.10) is Vreset. The fact that this parameter is
shared is utilized to determine a voltage readout offset in section 7.4. Other shared
parameters are used for STP (Billaudelle, 2014), STDP (Nonnenmacher, 2015), en-
ergy saving functionality or other biases. With the exception of STP calibration

32 hicann chip

0 1 2 3 ... 126 127 128 ... 255

FGBlock0 FGBlock1

256 ... 383 384 ... 511

FGBlock2 FGBlock3

Figure 4.9: Denmem coordinates for a single HICANN and associated FG block that sup-
plies neuron parameters to each denmem. Even blocks are left, odd blocks are
right. Blocks 0 and 1 supply the top half of denmems, 2 and 3 supply the bottom
half. These coordinates and terms are used in the software interface introduced
in chapter 6.

these parameters are usually not changed during calibration. Table 4.3 lists the
available shared parameters and their function.

The association between shared parameters and FG blocks is different from the
connectivity for neuron parameters (figure 4.9). Even denmems are supplied by
even FG blocks, and blocks 0 and 1 connect to the top half, blocks 1 and 2 connect
to the bottom half. Figure 4.10 shows the connection scheme.

4.2.5 Parameter Translation

HICANN’s implementation of the AdEx model operates in a different parameter
range than found in biological neuron models. The model neuron parameters need
to be rescaled to the range that is realized by the physical model. Analog voltages
on HICANN range from 0V to 1.8V . The OTA and other circuits were designed for
a common mode of 0.9V . Therefore, the resting potential should be close to or a bit

0 1 2 3 ...

FGBlock0 FGBlock1

256 257 258 259 ...

FGBlock2 FGBlock3

Figure 4.10: Denmem coordinates for a single HICANN and associated FG block that sup-
plies shared parameters to each denmem. Connectivity for shared parame-
ters, including Vreset, is different than connectivity for neuron parameters (fig-
ure 4.9). Even denmems are supplied by even blocks, 0 and 1 connect to top, 2

and 3 connect to bottom denmems.

4.2 neuron parameters 33

shared parameter function

Ibreset reset current bias, section 4.1.2

Ibstim current stimulus bias, section 4.1.5

Vbexp (right only) Vexp buffer bias, section 4.1.4

Vbout (left only) neuron readout bias, section 4.1.5

Vbr STDP readout bias

Vbstdf STP bias

Vccas L1 input amplifier bias

Vclra (left only) acausal STDP accumulation rate

Vclrc (right only) causal STDP accumulation rate

Vdep STP depression mode offset

Vdllres L1 repeater DLL reset voltage

Vdtc STP recovery current control

Vfac STP facilitation mode offset

Vgmax0 max. synaptic conductance reference current (!) 0

Vgmax1 max. synaptic conductance reference current (!) 1

Vgmax2 max. synaptic conductance reference current (!) 2

Vgmax3 max. synaptic conductance reference current (!) 3

Vm causal STDP

Vreset reset potential, section 4.1.2

Vstdf Short Term Depression and Facilitation (STDF) reset voltage

Vthigh STDP readout comparison voltage

Vtlow STDP readout comparison voltage

int op bias FG cell internal amplifier bias

Table 4.3: Parameters which are shared between all denmems connected to one of the four
FG blocks. Two parameters appear on the left or right blocks only, they are con-
nected to denmems belonging to the opposite block as well. STDP related param-
eters are explained in Nonnenmacher (2015), STP / STDF related parameters are
explained in Billaudelle (2014).

below this value. Additionally, there is an upper limit for the membrane voltage
at approximately 1.2V by design. Rising above this voltage can lead to undefined
behavior and is avoided by setting the spiking threshold Vt 6 1.2V (Millner, 2012).
The maximum threshold Vt should be 1.1V to have a safety range for variation.
There is one voltage that was designed to be above this limit: the excitatory synaptic
reversal potential Esynx can go up to 1.8V .

34 hicann chip

The resting potential in biological neurons is typically −65mV with spike pulse
amplitudes of about 100mV (Gerstner et al., 2014), and an overall range from
−100mV to 0mV . Biological voltages from the AdEx model can be translated to
the hardware domain by introducing a scaling factor αV and offset δV :

VHardware = δV +αV · VBiology. (4.30)

The scaling factor αV results from the ratio of the dynamic voltage ranges:

αV =
∆VHardware

∆VBiology
. (4.31)

The offset δV is obtained by mapping any reference potential, Vt for example, from
the biological model to its hardware equivalent:

δV = Vref,Hardware −αV · Vref,Biology. (4.32)

These values should be chosen such that the membrane voltage will be near the
circuits’ operating point of 0.9V , the membrane voltage will stay below the maxi-
mum of 1.2V and the voltage range is limited to approximately 200mV around El
in order to avoid saturation of any OTA (section 4.1.1). If OTA saturation is accept-
able for a particular network model, the range around El can be larger. Decreasing
the voltage range further would increase the OTA’s linearity, but at the same time
would increase effects of readout noise (figure 5.8) and cross talk. As changing the
voltage scaling will also affect PSP heights, a different scaling changes the avail-
able range. Another aspect that needs to be considered is that Vreset is shared be-
tween 128 denmems. If a model requires different values of Vreset in a shared block,
individual denmem voltages can be shifted from the common Vreset by an addi-
tional offset δreset added to all potentials. The dynamics will remain unchanged
since potential differences are still the same. Choosing a dynamic hardware volt-
age range of (1.0V − 0.7V) = 0.2V , a biological dynamic range of 100mV and the
spike threshold at 1.0V and 0mV respectively as a reference, we get αV = 3 and
δV = 1.0V . Default values for the translation are αV = 10 and δV = 1.2V . They
can be overwritten if deviating membrane potential ranges are needed.

Since the equations are physically emulated in accelerated time (compare sec-
tion 4.2.1), biological time or real time is translated to hardware time by the accel-
eration factor αacc = 10

4:

tBiology = tHardware ·αacc. (4.33)

This way, for example, one year of neural network activity in biology can be emu-
lated in 60 · 24 · 365/104 ≈ 53 minutes on hardware.

The above scaling of time and voltage at constant capacitance Cm also results in

∆T , Hardware = ∆T , Biology ·αV , (4.34)

τHardware =
τBiology

αacc
for all time constants. (4.35)

4.3 transistor-level simulation 35

With a fixed acceleration factor we can calculate the scaling of conductances
from equation (4.29):

gHardware = αacc ·
CHardware

CBiology︸ ︷︷ ︸
=:αcond

·gBiology. (4.36)

If the inverse ratio of capacitances is equal to the acceleration factor (αcond = 1), the
conductances are equal in the physical hardware and biological model.

The conductance scaling also applies to adaptation term variables:

aHardware = αcond · aBiology, (4.37)

bHardware = αV ·αcond · bBiology. (4.38)

4.3 transistor-level simulation

The HICANN ASIC design can be simulated at transistor level, using the Spectre
Circuit Simulator (Cadence Design Systems, 2012) which is shipped in the chip de-
sign suite, Cadence Virtuoso. Necessary parameters for the transistor models (Hu,
Liu, and Jin, 1998) are provided by the chip manufacturer. In case of HICANN the
manufaturer is UMC.

During circut design, it is an important part of the design process to manually
execute simulations and change parameters. In a testbench design, the circuit un-
der investigation is connected to inputs such as ideal current and voltage sources.
Currents through nodes and voltages between nodes can be evaluated for given
static or time-dependent input values.

For full reproducibility the testbench needs to be saved together with all variable
input values. Therefore, we have developed an approach that allows to set the input
to our testbenches for HICANN components from a Python script. The Python
interface is realized by teststand (Billaudelle, 2017). Selected voltages and currents
are returned from the simulation for further analysis in the script. This approach
allows to build a testbench in Virtuoso, and to define simulations in a Python script.
This lowers the barrier to create reproducible simulation results and automated
benchmarks for experienced users of Cadence suite. At the same time this approach
allows anyone to run experiments using transistor level simulations for a prebuilt
testbench without detailed knowledge of the circuit design tools. Development of
algorithms for hardware characterization can start before the actual chip has been
manufactured, using such a prebuilt testbench.

We have integrated the simulation of a denmem testbench in the hardware ex-
periment software stack such that single denmem experiments can be run on a
transistor level simulation with the same Application Programming Interface (API)
as for single denmem experiments on actual hardware.

36 hicann chip

4.4 mismatch and nonlinearity

Mismatch causes time-independent random variations in physical quantities of
identically designed devices (Pelgrom, Duinmaijer, Welbers, et al., 1989), also re-
ferred to as fixed-pattern noise. This mismatch is the result of several random pro-
cesses which occur during fabrication of the complementary metal–oxide–semiconductor
(CMOS) devices. These variations are part of the transistor models (Hu, Liu, and
Jin, 1998). By using the upper and lower limits of variation in a worst-case anal-
ysis, digital circuits can be designed to not be affected, as digital logic defines a
valid range corresponding to a binary value. As soon as analog values matter, it
becomes more difficult: these time-independent variations of circuit design param-
eters lead to deviations in the resulting analog behavior compared to the ideal
design. Additionally there are nonlinear effects in components of the circuits due
to saturation (Razavi, 2001). There are several approaches to compensate for these
effects:

• Deviations are characterized and counteracted by a tunable parameter in the
circuit (circuit parameter calibration).

• Deviations are characterized and introduced in calculations using the analog
value (analysis calibration).

• The circuit is designed such that it counteracts the effects of its deviation
(self-calibration).

HICANN provides many parameters for circuit calibration, which is the central
topic in chapter 7. A simple example of analysis calibration is introduced in sec-
tion 5.4.1.

4.5 defect information

Single denmems or even whole HICANN chips might be classified as not func-
tional by our software. A defect can be a non-responding or misbehaving compo-
nent, for example a single denmem or an L1 repeater. We also classify a component
as not functional if a target parameter value required by our classification is outside
the achievable range.

In the BrainScaleS system we can route around non-functional components
when emulating networks on a wafer with minor defects. If a denmem or synapse
driver was classified as defect, it is not used and another one is used instead. If
a whole HICANN was classified as defect, spikes are routed in the L1 network
around this particular HICANN. Defect information of a wafer is stored in a defect
database (Klähn, 2013) by the hardware characterization routines (section 6.2). It
can be looked up by the mapping process (section 6.1) when placing and routing
neural networks to ignore denmems or other components.

5
E X P E R I M E N TA L S E T U P S

There are several types of experimental setups suitable to run experiments on
HICANN being introduced in this chapter, in chronological order. Several com-
ponents of the experiment platforms are re-used in later iterations. They are intro-
duced with the earliest setup that is using the particular component.

The Demonstrator Setup is the earliest experiment platform, designed to test
individual HICANN prototype chips and serving as a prototype platform before
scaling up to a full wafer. It provides up to 8 HICANNs with the required supply
voltages and contains the first variant of the FCP to communicate digitally with the
chip.

Two wafer systems as prototypes for the BrainScaleS system scale the features of
the Demonstrator Setup to a full wafer with 384 HICANNs.

Cube Setups are designed as test setups for an updated FCP and replace the
Demonstrator Setup for single chip experiments. They are also used to test wafers
that are not yet mounted in a full wafer system using a needle card to contact pads
on the wafer.

The final BrainScaleS system consists of 20 wafer modules built with the updated
FCP.

Each of these setups has been used to develop the software required for this
thesis, although earlier setups can be regarded as prototypes to develop the final
BrainScaleS system. The description of setups is held at the level of detail that
was required to operate the setups for this thesis. A more detailed description is
provided in the case that the information is not available in previous publications.
The most detailed description of the BrainScaleS system as being used in the HBP
neuromorphic platform can be found in HBP SP9 partners (2014).

Analog readout on all setup types is handled by the Analog Readout Module
(AnaRM), introduced in section 5.4.

5.1 demonstrator setup

The Demonstrator Setup – also informally named Vertical Setup by the vertical orien-
tation of its PCBs – was the first prototype setup for HICANN (Schemmel, Grübl,
et al., 2012; Millner, 2012; Schwartz, 2013). This type of setup was used to test the
single chip prototype versions of HICANN, produced as part of a Multi-Project
Wafer (MPW) before ordering a full wafer. Communication between a host com-
puter and HICANN is provided by the same FPGA Communication PCB (FCP) as
used for the prototype wafer setups (Thanasoulis, Partzsch, et al., 2012).

37

38 experimental setups

Due to its size and number of components, the Demonstrator Setup is more
portable than the larger wafer setup. Transportation to workshops or other demon-
stration purposes is possible (Schemmel, Grübl, et al., 2012). However, the setup
was not designed for frequent transportation. The stacked PCBs need to be dis-
assembled before transportation to avoid damage caused by vibration. HICANN
PCB and FCP connectors are rated for a low number of connection cycles.

The Demonstrator Setup consists of several PCBs:

• System Emulator Board (SEB) (labeled IBoard on silkscreen),

• FCP with Virtex-5 FPGA and 4 Digital Network Chips (DNCs),

• HICANN PCB,

• AnaRM or oscilloscope.

The components are also used in later experimental setups and will be intro-
duced in the following.

5.1.1 System Emulator Board

The System Emulator Board (SEB) as the central PCB of the Demonstrator setup
connects to the other PCBs via fine-pitch Samtec connectors and coaxial cables for
analog readout. There are four connectors for HICANN PCBs and one connector
for a Virtex-5 FPGA PCB. Its main purpose aside from connecting other PCBs is
providing supply voltages to one or multiple HICANNs. The Virtex-5 FPGA PCB
is powered by its own small power supply PCB.

A single HICANN can be powered using a linear or switching regulator for
the 1.8V supply. The SEB can hold 8 HICANNs in total, two each on up to four
HICANN PCBs. The populated linear regulators can not provide enough power to
several HICANNs, in this case switching regulators need to be used. The regulator
type is selectable via jumpers. Some SEBs in our inventory are populated with
just one of the two regulator types. SEBs assembled in 2015 (labeled as IB5-IB7)
for Cube Setups (section 5.2) contain both types. If the linear regulator should be
used, jumpers must be placed at the pins with silkscreen labels "SR ON" (actually
disabling the switching regulator) and "LDD ON" (enabling the linear regulator).
For the switching regulator selection both of these jumpers should be absent.

The linear regulator is still sufficient to power two HICANNs. Using more than
a single chip at the same time has not been neccessary during this thesis, as the
wafer systems became available for multi-HICANN experiments.

Supply voltages (table 5.1) are set by configuring a DAC via I2C. Before first
operation, regulator circuits need to be adjusted towards the configured voltage
using the corresponding potentiometer. The multiplexers for two analog readout
connectors are also set via I2C. On Demonstrator Setups, the required commands
are being sent from the Virtex-5 FPGA PCB.

5.1 demonstrator setup 39

voltage function comment

VDD5 for level shifter to 12V domain should be ≈ VDD11

2 , usually 5.5V

VDD11 FG programming voltage (section 4.2.2) up to ≈ 12.5V (VDD12 in other places)

VDD33 LVDS supply for high-speed (HS) interface 3.3V

VDD25 FG source follower supply 2.5V

VDD HICANN digital supply 1.8V

VDDA HICANN analog supply 1.8V

VOH L1 high potential usually 1.1V

VOL L1 low potential usually 0.9V

VDDBUS synapse line driver supply ≈ 1.1V , power saving feature

VDDDNC HICANN DNC interface supply same source as VDD

VDDADNC HICANN DNC interface analog supply same source as VDDA

VBIASLVDS common mode for HS link 1.25V , usually supplied by DNC/FCP

Table 5.1: Supply voltages provided by the SEB to a HICANN PCB. HICANN DNC inter-
face supply voltages have separate lines to allow measuring their current towards
the chip separately on the SEB. In some places, VDD11 is called VDD12: it can
be set between 10V to 12.5V . All voltages are generated from an external supply
of 13.8V . There are switching regulators for 6V (source for VDD5), 3.3V and
1.8V . Other voltages are generated from these voltages using linear regulators.
The voltage drop through the source follower transistor supplied by VDD25 is
≈ 0.6V , leaving a margin (2.5V − 0.6V = 1.9V) for output voltages up to 1.8V .

5.1.2 Virtex-5 FPGA PCB

The main task of the Virtex-5 FPGA PCB is communication to HICANN (Scholze
et al., 2011; Thanasoulis, Vogginger, et al., 2014; Müller, 2014). This includes config-
uring HICANN as well as sending and receiving spikes. Besides a Virtex-5 FPGA,
the PCB contains four custom DNCs (Dresden, 2010; Dresden, 2008) to communi-
cate to a group of 8 HICANNs each. Such a group is called reticle and yielded from
the possible area of exposure during the wafer manufacturing process, which fits
8 HICANNs. The board is connected via ethernet to a host computer running our
control software.

One Virtex-5 FPGA PCB is replaced by four Kintex-7 FPGA PCBs, called FPGA
Communication PCB (HBP SP9 partners, 2014), to reduce cost and complexity. This
replacement is described in section 5.2.1.

5.1.3 HICANN PCB

Up to four HICANN PCBs can be attached to the SEB. Each can hold up to two
HICANNs and has no further function. A close-up photo of this PCB without bond-

40 experimental setups

Figure 5.1: Left: Single HICANN on HICANN PCB without bonding wires. Supply volt-
age lines are accessible on the large pads. Right: Bonded HICANNs below the
labeled caps are lined up for testing.

ing wires is shown in figure 5.1. For commissioning of the HICANN revision 4

prototype chips, one or two HICANN chips are wire bonded to a HICANN PCB.
After testing the PCB for short circuits and measuring the resistance to ground of
all available pads (table 5.1), the PCB is mounted on the SEB to perform exper-
iments on the bonded chips. Bonding HICANN revision 4 in-house with a F&K
Delvotek 6400 aluminum wire bonding machine resulted in a low yield of func-
tional chips, which was solved by external bonding with a F&S Bondtec 5610 with
gold ball head. In order to protect the chips and wires from dust, light and acciden-
tal mechanical stresses, both chips on a HICANN PCB are covered by a 3d printed
cap. An alternative is a so-called glob top, an expoxy blob covering chip and wires.
This approach has been used for the predecessor of HICANN with the drawback
that the wires are not accessible to correct bonding issues afterwards. Additionally
it was not clear if the mechanical stress during hardening of the epoxy worsens
weak bonding wire connections. Therefore, in the testing phase, a removable cap
is the preferred solution.

Two HICANNs on the same PCB can be connected to each other via L1 con-
nections if the corresponding pads are bonded. The connection layout is different
to the wafer postprocessing and would require adapted software support in the
Hardware Abstraction Layer (HAL). We limited our experiments on this type of
setup to run on a single HICANN. Due to the universality of the implementation,
the same experiments can run on a wafer setup (section 5.3) as well.

5.2 cube setup

The Cube Setup with a new central PCB, labeled cube-io, was originally designed
for prototyping and testing the Kintex-7 FCPs (see below). One cube-io connects
to two SEBs, four Kintex-7 FCPs1 and one frontend PCB holding several jacks for

1 One FCP connects to one of each SEB, the other two FCPs are not connected to HICANNs.

5.2 cube setup 41

Figure 5.2: Cube Setup consisting of cube-io board in the center, with four FCPs mounted
perpendicular and two SEBs left and right, holding one HICANN PCB each.
AnaRMs are placed on top (cut off) and connected each to the trigger output of
the central PCB as well as the two analog outputs of the SEB.

FPGA connectivity, including ethernet. As it allows to connect two SEBs to one
FPGA PCB each, a total number of 2 · 8 HICANNs can be attached to a single Cube
Setup.

This type of setup has replaced the Demonstrator Setup (section 5.1) for single-
chip experiments. We built three Cube Setups – with PCBs and mechanical struc-
tures provided by TU Dresden – for evaluation of HICANN revision 4, which were
used for HICANN experiments until the HICANN revision 4 wafer systems were
completed. The setups are also used for wafer testing (figure 5.3) and connecting
the first embedded wafer prototype (Güttler, 2017), a HICANN revision 2 wafer
embedded inside a PCB.

5.2.1 Kintex-7 FPGA PCB

In the Kintex-7 FCP, the DNC became part of the FPGA design. Therefore, one FCP
connects to one reticle on a wafer, i. e. 8 HICANNs, or up to four HICANN PCBs
in case of the Cube Setup.

The design was ported from the Virtex-5 design and developed further from
there (Müller, 2014). I2C functionality to set voltages on the SEB and configure the
analog multiplexer as part of the previous design was dropped in this new design
because the wafer system does not require this functionality. Supply voltages of
the wafer setups are set by a Raspberry Pi (Hellenbrand, 2013). Similarly, we also
realized setting the SEB voltages and analog multiplexer configuration on Cube
Setups using a Raspberry Pi.

42 experimental setups

Figure 5.3: Cube setup connected to needle card inside a wafer probing machine. The nee-
dle card is positioned to contact a single HICANN of a wafer without postpro-
cessing. This HICANN can then be accessed as if it was mounted to the SEB.
Photo by Andreas Grübl.

5.3 wafer setup

The first two wafer setup prototypes were built for 12 Virtex-5 FPGA PCBs (sec-
tion 5.1.2) each. The final BrainScaleS system is built with 48 Kintex-7 FCPs (sec-
tion 5.2.1).

On a wafer, 8 HICANNs are grouped into one reticle (figure 5.4). The physi-
cal dimensions of a single HICANN prototype chip, 5mm · 10mm, were prede-
termined by the block size of the MPW production. For wafer manufacture, the
maximum area of exposure in this process is slightly above 2 cm · 2 cm. This area
fits 8 HICANNs, removing edge structures and adding L1 interconnections be-
tween HICANNs on the reticle. A full wafer consists of 48 reticles, giving a total
of 384 HICANNs per wafer. Connections for power supply, HS link, JTAG to each
HICANN and L1 interconnection lines between reticles are added in a postprocess-
ing step for wafer-scale integration (Husmann and Zoglauer, 2010; Güttler, 2017;
Mauch, 2016).

Every system features 384 · 2/8 = 96 simultaneous analog readouts. The mini-
mum required number of AnaRMs (with 8 channels each) to connect all 96 lines is
96/8 = 12, limiting the possible simultaneous analog readouts to 12.

Supply voltages are provided by two PCBs named PowerIt and AuxPWR (Sterzen-
bach, 2014), similar to the SEB but designed for larger scale. An explosion drawing
of a single wafer module is depicted in figure 5.5. Currently there are 20 assembled
BrainScaleS systems. They were made accessible as part of the neuromorphic plat-
form in the Human Brain Project (HBP) under the name Neuromorphic Physical
Model version 1 (NM-PM1).

5.4 analog readout module 43

Figure 5.4: Left: Close-up of a single reticle, consisting of 8 HICANNs. Right: HICANN
revision 4 wafer with postprocessing layer, adding connections for power, L1,
and HS link. Photos by Andreas Grübl.

5.4 analog readout module

Part of each setup is a custom Analog Readout Module (AnaRM) to digitize the
membrane voltage of individual denmems. Analog voltage output from HICANN
ranges between 0 and 1.8V . After 50Ω termination and pre-amplification the sig-
nal is sampled by the Analog-to-Digital Converter (ADC) chip ADS6125 on the
AnaRM, which is able to convert analog voltage from 0V to 2V to a 12 bit digi-
tal value. The clock frequency can be up to 125MHz. A detailed analysis of this
chip’s performance can be found in Epp (2016). We are operating the ADC at
96MHz because there is already a clock generator for Universal Serial Bus (USB)
at 48MHz = 96MHz/2 present in the Spartan 6 field-programmable gate array

Figure 5.5: Explosion drawing of the components making up a wafer module. Below the
actual wafer we see the 48 FCPs, communicating to one reticle each. AnaRMs
(not in the drawing) are connected to the MainPCB by shielded ribbon cables.
From (HBP SP9 partners, 2014), where each component is explained in detail.

44 experimental setups

Figure 5.6: Rendering of the NM-PM1 machine. Racks are holding 20 wafer modules, 5

AnaRM crates consisting of 12 modules each, network switches, a compute
cluster and disk storage. The bottom sketch shows how data is exchanged:
HICANNs are communicating to FCPs, which have an ethernet link to a com-
pute cluster. AnaRMs are connected via USB to a host computer and can be
read from the compute cluster as well. From HBP SP9 partners (2014).

(FPGA), using less energy than a separate clock generator for 125MHz. The volt-
age range from 0V to 0.9V after termination is covered by 11 bits. The ADC clock
and HICANN clock are not synchronized and need to be re-aligned in software
before analog traces can be compared to spike timestamps.

One module consists of the Flyspi FPGA PCB, which also contains the ADC,
and the Analog Frontend PCB (AnaFP). The AnaFP features a multiplexer chain to
select one of 8 channels. This channel is connected to a 50Ω termination and a pre-
amplifier to match the ADC’s input voltage range (HBP SP9 partners, 2014). An
earlier version of the AnaRM has been tested in Gorel (2013), the current version
has been analyzed in Epp (2016). The transformation of raw values to voltages and
its calibration has been explained in section 5.4.1.

One AnaRM is sufficient to connect both analog outputs of the SEB, as long as
they are not needed simultaneously. The total number of analog outputs on a wafer

5.4 analog readout module 45

Figure 5.7: Crate holding 12 AnaRMs connected to 3 USB hubs for power and data trans-
mission. The crate also contains 4 Raspberry Pis, controlling one wafer module
each.

system is two per reticle, i. e. 384/8 · 2. Each AnaRM has 8 channels. If we need
to connect all analog outputs of a full wafer to an AnaRM channel, for example
for denmem characterization, 384/8 · 2/8 = 12 AnaRM are required. Part of the
BrainScaleS system are crates of 12 AnaRMs (figure 5.7), which can be attached to
one wafer.

In an integration test for the AnaRM, two floating gate cell voltages are connected
to both analog outputs for each HICANN. From the resulting trace of one assum-
ably constant voltage, we determine the standard deviation σ and the peak-to-peak
differences of traces (figure 5.8).

5.4.1 ADC Calibration

Before we can use analog voltage traces from any AnaRM, each board needs one
initial calibration. The XILINX Spartan 6 FPGA on the AnaRM stores raw ADC
samples in memory, which can then be read out via USB. The function mapping
each raw value to a voltage has the form

Vsource = c0 + c1 · u+ c2 · u2, (5.1)

with raw digital values u ∈ [0, 4096] and typical coefficients specified as c0 = 2.0V ,
c1 = −6.6 · 10−4 V , c2 = 5.7 · 10−9 V (HBP SP9 partners, 2014).

We connect all eight multiplexed channels to a voltage source, a Keithley 2635

source meter, in series with a 50Ω resistor to match the expected termination of
the HICANN analog output to perform the initial calibration. The measured ter-
mination in HICANN is actually 41Ω to 44Ω (Koke, 2016). We measure the raw
digital value for several input voltages for each channel. The calibration curve is

46 experimental setups

0 5 10 15 20 25 30

σ/peak-to-peak [ms]

98

23

σ

peak-to-peak

Figure 5.8: Readout noise statistics. In an integration test for the AnaRM, two floating gate
cell voltages are connected to both analog outputs for each HICANN. From the
resulting trace of one assumably constant voltage, we determine the standard
deviation σ and the differences from highest to lowest value (peak-to-peak) of
traces for 240 HICANNs on Wafer 21 with module W_G06. The results are
similar to those published in Koke, 2016 for a different wafer.

a least squares fit to equation (5.1). More advanced functions have been investi-
gated (Gorel, 2013) but equation (5.1) turned out to be sufficient. The actual dis-
tribution over 85 calibrated AnaRMs with 8 channels each is shown in figure 5.9.

Similar ADC boards like the Red Pitaya (Epp, 2016) store their coefficients on the
board. Coefficients for AnaRM are stored externally with the corresponding serial
number and loaded by the measurement software.

5.4 analog readout module 47

2.0 2.1
c0 [V]

0.1

0.2

0.3

0.4

ra
ti

o

-6.7 -6.6
c1 / 10−4 [V]

0.1

0.2

0.3

0.4

ra
ti

o

4.0 6.0 8.0
c2 / 10−9 [V]

0.1

0.2

0.3

0.4

ra
ti

o

A B C

Figure 5.9: Distribution of actual ADC calibration coefficients for equation (5.1) near the
typical values c0 = 2.0V , c1 = −6.6 · 10−4 V , c2 = 5.7 · 10−9 V specified in (HBP
SP9 partners, 2014) over 85 calibrated AnaRMs with 8 channels each (85 ·8 = 680
values). The outliers around c2 = 7.5 · 10−9 V are all 8 channels belonging to the
same board with serial number B201258.

6
C O N T R O L S O F T WA R E

Configuring the various components of the BrainScaleS system requires many in-
dividual software components, most of which are hidden for an experimenter who
wants to emulate neural networks.

Each BrainScaleS system and its components are controlled by host computers,
which communicate with the system’s FCPs via Ethernet (Müller, 2014). Addition-
ally the supply voltages are set and monitored via I2C on a Raspberry Pi (Hellen-
brand, 2013). The AnaRM trace data can be read from their USB host via Ethernet
as well.

The preparation of a network experiment involves several layers of software (fig-
ure 6.1):

• A high level network description is written by the experimenter in PyNN, a
Python package for simulator-independent specification of neuronal network
models (Davison et al., 2008; Brüderle, Müller, et al., 2009). The PyNN imple-
mentation for the BrainScaleS system is called PyHMF.

• The network is mapped onto one or multiple HICANNs and their available
connectivity options by our mapping software, marocco (section 6.1). For each
analog circuit, the mapping software is applying the individual neuron’s char-
acteristic functions from a database, which was created by our calibration
framework for experiments (cake) (section 6.2).

• The mapping result is applied to our hardware interfaces, StHAL and HALbe
(section 6.2.2).

• HALbe communicates via the ARQ communication layer to FCPs, which com-
municate to HICANN. Spikes are transmitted back in the opposite direction.

• FCPs or HALbe trigger AnaRM measurements, analog traces are read back
via HALbe.

Python bindings for each software layer written in C++ are generated automati-
cally (Koke, 2016). These bindings lower the barrier to use the full software stack
for beginners and speed up prototyping of new ideas. The calibration framework is
written entirely in Python, allowing to take advantage of scientific toolkits such as
numpy (Walt, Colbert, and Varoquaux, 2011), scipy (Jones, Oliphant, Peterson, et al.,
2001–) and pandas (McKinney, 2010; McKinney, 2012) for data processing as well
as matplotlib (Hunter, 2007) and Jupyter (Perez and Granger, 2007) for visualization,
quick evaluation and organization.

49

50 control software

defect database (redman)

FCP

AnaRM

calibration database (calibtic)StHAL

HALbe

Mapping (marocco)

PyNN

calibration framework (cake)

HICANN

Hardware

Software

Figure 6.1: Flow of information through the software layers and hardware communication
involved in a neural network experiment. Arrows indicate data being provided
to another layer. A neural network described in PyNN is mapped to the Brain-
ScaleS system by the mapping tool marocco, which configures HICANNs via
their corresponding FCP through the stateful (StHAL) and stateless (HALbe)
hardware interface. Mismatch correction data and defect information were gen-
erated earlier by the calibration framework (cake) and stored in databases (cal-
ibtic and redman, respectively). This information is used during the mapping
process. After the experiment, analog traces from the AnaRMs and spike events
from HICANNs/FCPs are reported back up to the PyNN interface.

6.1 executing neural network experiments

A common interface to define neural networks – called PyNN (Davison et al., 2008;
Brüderle, Petrovici, et al., 2011) – has been developed to allow running the same
network definition on any simulator backend supporting this interface and the
chosen features.

The default level of abstraction in PyNN is a population of neurons. It is also
possible to select or modify a subset of a population or a combination of several
populations or subsets. Synaptic connectivity between populations is defined with
the type of connection. One-to-one connects each neuron in a population to one

6.2 calibration framework 51

neuron in another population. There are also one-to-N, N-to-one and all-to-all con-
nections. Additionally there are probabilistic connections with constant or distance
dependent probability, the latter requires to add a spatial position to each neuron.

Our implementation of the PyNN interface, PyHMF, supports LIF and AdEx
neurons. The available parameter range for physical emulation is given by the
chosen transformation (section 4.2.5) and the range and precision that is available
from the electrical circuits. The maximum number of synapses is determined by the
number of physical synaptic input lines and their connectivity options. During the
design phase, parameter ranges, bandwidths and number of synapses have been
estimated from available biological data and network models. A short overview
intended for modelers has been created as living document (Müller et al., 2014). If
it turns out that essential parameter ranges are not covered by the physical model,
it might be possible to include the required values in future designs. An analysis of
parameter range requirements and benchmarks can be found in (Müller, 2017). In
the long term, we expect the advantage of accelerated time and – in future versions
– learning in accelerated time to be essential for gaining insights into biological
learning processes at a large scale in finite time.

The neural network experiment described in PyNN is mapped to hardware com-
ponents by the mapping tool marocco. Based on the hierarchical model description
of a neural network, neurons and L1 connectivity is placed on the BrainScaleS
system while taking physical constraints into account. The marocco API allows to
manually select which HICANN should be used to place populations. Model neu-
rons consist of one or several interconnected denmems, depending on the required
number of synaptic input connections. The last step during the mapping process
is the parameter translation described in section 4.2.5. Analog circuit parameters
are chosen according to the characterization created by the calibration framework
introduced in the following section.

6.2 calibration framework

The main task of the calibration framework for experiments (cake), is to charac-
terize individual components and provide the gained information to the mapping
process.

6.2.1 Core Concepts

There are two types of information on the circuit behavior we can obtain: mem-
brane voltage traces and spike timestamps. Parameters like time constants or con-
ductances can not be directly measured, but can be deduced from the voltage trace
to a certain extend. The methods are discussed in detail in chapter 7.

There are two membrane voltage outputs per HICANN (section 4.1.5), which
means for a wafer setup, 96 outputs are available simultaneously. With the cur-
rently available AnaRM, 12 voltage traces could be read out simultaneously as

52 control software

only one of 8 channels can be recorded at the same time (section 5.3). This will
change with the successor of the current AnaRM, called Ananas, which is still
under development (Ilmberger, 2017).

For debugging purposes, additional voltages can be read out: the output voltage
for any floating gate cell, fire signal and voltage of the DLL lock in the synapse
driver for one synapse driver on each half of HICANN (HBP SP9 partners, 2014).
These voltages are not used for neuron circuit calibration, but have proven very
useful in the commissioning phase.

The calibration framework is built in a modular fashion. This way we avoid
code duplication and provide options for customization of existing methods. The
general approach is as follows:

1. Generate an experiment with custom configuration and steps that change
parameters.

2. Record ADC and/or spike data.

3. Run analysis for each step and denmem.

4. Merge step results to obtain calibration curve.

Experiments consisting of several parameter sweep steps are planned by an exper-
iment builder module. It can be customized for each method, basic customization
would be a different trace analysis routine, but also allows special functionality like
an initial measurement to determine the Inter-Spike Interval (ISI) with zero refrac-
tory period at a given parameter set for refractory period calibration (section 7.10).
The experiment can be repeated to average out trial-to-trial variation, the duration
of the analog measurement can be adjusted if longer measurements are required,
for example for adaptation. A sweep step usually changes only the parameter that
is characterized. Other parameters can be updated simulateously, for example if
they depend on the sweeped parameter’s value. We can also change the speedup
configuration (section 4.2.1) between steps.

All experiment steps and repetitions planned by the experiment builder module
are stored on disk, allowing to resume experiments after they were interrupted.
This also allows to reconstruct the experiment configuration after the experiment
has finished. Optionally, the recorded analog traces can be stored for further anal-
ysis. Traces which have already been analyzed by the framework are not stored by
default as this would require large amounts of disk space and increase the total
runtime. The analyzer module chosen for an experiment can deduce a single or
several quantities from a membrane voltage trace, for example:

• mean and standard deviation,

• absolute minimum and maximum value,

• minimum and maximum values averaged over multiple intervals to reduce
noise effects,

6.2 calibration framework 53

• baseline of a trace (requires non-zero refractory period),

• ISI or spike frequency and amplitude,

• slopes of rising and falling edge.

It is trivial to add additional or derived analyzers providing additional information.
These quantities are then interpreted by a calibrator module, which fits an appropri-
ate function mapping the desired model parameter to the corresponding hardware
configuration value. The calibrator module also defines a value range (domain)
over which the function is valid. This is used to limit electronic parameters to
the range that the circuit was designed for. The application of this functionality is
demonstrated in chapter 7.

6.2.2 Hardware Interface

The calibration framework uses same hardware abstraction layers that are also used
by the mapping tool. Additionally it is possible to use transistor level simulation
instead (section 4.3). The Hardware Abstraction Layer Backend (HALbe) provides
low-level access, performing the required bit formatting and communication. This
level is also suitable for early testing and debugging purposes. The Stateful Hard-
ware Abstraction Layer (StHAL) builds on top of HALbe, remembering the state
that already has been configured (Koke, 2016). It also provides higher level func-
tionality for tasks like analog voltage readout. As the BrainScaleS system consists of
many identical components such as HICANNs or denmems, there is a well-defined
coordinate system to address a single unit (Jeltsch, 2014).

The early proof-of-concept implementation of a calibration framework (Schwartz,
2013) was still based on the first evaluation scripts for HICANN. Hardware com-
munication in cake is based entirely on StHAL. This makes the transition from
a single HICANN to wafer-scale or even multi-system calibration runs straightfor-
ward: iterate over coordinates and spawn jobs to the job queue. As long as resource
dependencies are properly managed (Müller, 2014), this already provides sufficient
parallelism. The hardware abstraction allowed us to run on all types of setups
(chapter 5) by just changing the coordinate configuration, including the embedded
wafer prototype (Güttler, 2017).

6.2.3 Transformation Storage

As discussed in section 4.1, several neuron circuit parameters can be adjusted to
achieve the corresponding AdEx model parameter behavior. Their relation is deter-
mined by the calibration framework and stored as transformations in a database.
This information is stored in a type-safe binary format which is written by the
calibration framework to avoid user error and increase performance.

54 control software

The result provided by the calibration framework is a lookup from desired ana-
log behavior to programmable discrete 10 bit floating gate parameters. A unified
software interface for both calibration and mapping (calibtic) allows to apply these
transformations to a model neuron with parameters defined in PyNN, resulting in
hardware parameters that will lead to the desired model behavior.

The next chapter presents how these transformations are obtained for each indi-
vidual circuit.

6.3 methodology

We have contributed to establish a workflow that supports maintenance of a system
at the scale and complexity of the BrainScaleS system in the long term, with a few
central points:

• Establishing unit tests and integration tests, code review and style guidance,
leading to higher code quality (McIntosh et al., 2014), stability and robustness,
as well as readability, and thereby improving collaboration.

• Improved readability of code, documentation and specification, leading to
lower chance of remaining errors and higher chance of future improve-
ments (Fowler and Beck, 1999).

• Improved verbosity on all software layers to increase usability, especially for
students and external users who are new to the field. It also allows experi-
enced users to figure out what is going on faster, increasing productivity and
reducing mistakes.

• Documentation and visualisation of understood and/or corrected errors
helps to deal with similar occurrences in the future and is a valuable resource
for newcomers.

• The simulation workflow described in section 4.3 makes it easier to create
reproducible simulations directly combined with analysis of the results.

As this result is often not mentioned explicitly, we want to emphasize its impor-
tance. The overall usability and readability has already enabled many students to
contribute (Pilz, 2016; Kungl, 2016; Epp, 2016; Friedrich, 2015; Alevi, 2015; Nonnen-
macher, 2015; Schmidt, 2014; Billaudelle, 2014; Tran, 2013; Klähn, 2013; Pape, 2013;
Ziegler, 2013). Thanks to thorough code review the code quality is not reduced
by lesser experienced or rushed contributors while all contributors learn how to
improve their work at the same time.

While the above points may not be scientifically rewarding, I consider them es-
sential for the long term success of a project at this scale. This leads us from the
software overview to its application: In the following we use the calibration frame-
work to characterize analog behavior of single denmems, providing the foundation
for network experiments.

Part III

A D E X C A L I B R AT I O N

7
PA R A M E T E R E S T I M AT I O N M E T H O D S

Before network experiments can be emulated on the BrainScaleS system, we need
to know which neuron circuit parameter settings will result in the desired model
parameters.

The methods developed to characterize each sub-circuit are introduced in this
chapter. We evaluate the presented methods both in transistor level simulations
(section 4.3) and hardware measurements, if applicable.

7.1 experimental setup

In order to characterize the circuits, we typically sweep over a range of values of the
circuit parameter corresponding to the desired model parameter (section 4.1) and
analyze the resulting behavior. The resulting transformation, mapping the model
parameter in the scaled hardware domain (compare section 4.2.5) to the required
analog parameter, is known as calibration function. The calibration function of
the ideal denmem without variation, obtained from transistor level simulations, is
called ideal calibration. It can be used as an approximation as long as the actual
circuit behavior of an individual denmem, affected by mismatch, has not been
characterized. Each denmem needs to be characterized individually to be able to
configure the observable model parameters as close to their desired value as possi-
ble.

We expect the error of an observable to consist of a systematic error and a statis-
tical error, dominated by the trial-to-trial variation of the FG cell output:

σ2 = σ2tt + σ
2
sys (7.1)

Increasing the number of points will increase both precision and experiment
duration. If the number of points is small, the offset of a single point due to trial-
to-trial variation of the corresponding floating gate (FG) cell output will have more
impact on the resulting linear regression fit.

7.1.1 Hardware Measurements

Compared to transistor level simulations, hardware measurements require more
advanced algorithms due to additional effects such as readout noise (figure 5.8) or
trial-to-trial variation (figure 4.8). FG current cells are expected to provide an out-
put current above 0A when configured to 0, estimated at 20nA to 50nA. We take
the resulting effects into consideration for the presented methods. In our transistor
level simulations the FG cells are replaced by ideal current and voltage sources.

57

58 parameter estimation methods

The minimum output current is configurable and set to 50nA by default. Several
methods depend on a well-known configuration, adding a dependency on param-
eters being calibrated before the method can be used. When the parameter value
is used in a calculation to determine another parameter, the error on this parame-
ter impacts the precision at which we can determine the dependent parameter via
error propagation. Such dependencies also specify the order of execution. For ex-
ample, membrane time constant calibration requires knowing the values of Vt and
Vreset. Calibrating these parameters earlier allows to set the parameters to a desired
value, up to the precision of trial-to-trial variation plus systematic error. Methods
presented in this chapter are presented in the order of typical execution during a
full calibration run, an order that does not have dependencies on later methods.

As writing new values to the floating gate cells requires the largest amount of
time, i. e. between 15 and 30 seconds depending on the floating gate controller
settings, we configure all 512 denmems at once and only switch the analog output
configuration between measurements of individual denmems.

7.2 disabling terms

When we analyze any term, we want to minimize the currents from other terms.
The synaptic input, adaptation term and exponential term are typically disabled in
each method as long as they are not currently being characterized. The parameters
required to disable the terms are listed in table 7.1

Setting Iconv to 0nA disables the OTA in the synaptic circuit. As the current does
not actually reach zero (see section 4.2.2), we additionally set the maximum offset
potential Vconvoff to make sure the voltage difference at the OTA inputs is negative,
also resulting in zero current output. The reversal potentials Esyn will have no
effect in this setting, choosing them close to the resting potential would lead to
smaller effects even if the resistor was enabled. Due to their non-symmetric design
in HICANN revision 4 the excitatory potential must be above El, the inhibitory
potential must be below El. The synaptic time constant plays no role in disabled
synaptic inputs.

Disabling the adaptation current onto the membrane is achieved by turning off
the OTA for the conductance a, which will minimize w in equation (4.3). The con-
ductance bias Igladapt is set to digital 0, resulting in the smallest possible conduc-
tance close to zero. The conductance bias Iradapt is set to maximum conductance,
such that the voltage Vw follows Vm quickly, leading to no differential voltage at
the OTA for a when Vm is at El. The other mechanism that is increasing w is the
increase by b in equation (2.9), which is disabled by setting Ifire to zero.

Simulations investigating how to disable the exponential current have been per-
formed in Stöckel (2014). The OpAmp bias Ibexp in figure 4.5 is set to 0, minimizing
its output current. The threshold at which the exponential term becomes active is
controlled by Vexp. Setting it to maximum voltage effectively disables the exponen-
tial term.

7.3 previous work 59

synaptic input adaptation term exponential term

parameter value parameter value parameter value

Iconvx/i 0nA Igladapt 0nA Vexp 1.8V

Vconvoffx/i 1.8V Iradapt 2500nA Ibexp 0nA

Esynx slightly above El Ifire 0nA

Esyni slightly below El

Vsyntcx/i any

Table 7.1: Parameter values to disable synaptic input, adaptation term and exponential
term.

7.3 previous work

Some of the methods have been presented for Spikey (Brüderle, 2009; Pfeil, 2015),
the predecessor of HICANN: ADC calibration (section 5.4.1), analog output calibra-
tion (section 7.4), membrane time constant calibration (section 7.8) and refractory
period calibration (section 7.10). Building on this work, early methods for HICANN
have been presented in Schwartz (2013) and ported to the calibration framework
(section 6.2) by the author. When applying the methods to hardware measurements,
they usually required modifications to cope with the effects introduced above. Ad-
ditional methods and enhancements have been developed and refined for the previ-
ous chip revision, HICANN revision 2, and were published in Schmidt (2014). The
latest implementation has several other contributors, especially Dominik Schmidt,
Christoph Koke and Sebastian Schmitt, and more recently Alexander Kugele. An
evaluation of the differential equation fitting based method to determine the adap-
taion coupling parameter a and time constant τw has been performed in Friedrich
(2015). Previously unpublished methods in this work are the full characterization
of the adaptation and exponential term. The presented methods are integrated in
our system software such that they can be applied to any experimental setup. They
are built in a configurable manner, allowing to quickly make changes or build a
custom calibration tailored to optimize for short measurement duration or high
precision.

7.4 output buffer offset

Output buffer offset calibration is required before analyzing any other membrane
voltage traces because the variation of the membrane voltage readout buffer (sec-
tion 4.1.5) is causing a fixed voltage offset for each denmem. The following method
has been introduced in Millner (2012). We want to determine the output offset from
the actual potential of each individual denmem. All 64 interconnectable denmems
are connected, we measure their common membrane voltage while keeping them

60 parameter estimation methods

0 10 20 30 40 50 60
0.74

0.76

0.78

0.80

0.82

0.84
V
o
u
t

[V
]

Measurement, DAC value 500

Corrected

0 10 20 30 40 50 60
neuron

0.94

0.96

0.98

1.00

1.02

1.04

V
o
u
t

[V
]

Measurement, DAC value 650

Corrected

Figure 7.1: Output buffer offset as published in Millner (2012). The mean output voltage
of all denmems is independent from the denmem position for El ≈ 0.9V
(500 DAC), but measured values show a position dependency for lower or
higher El configurations, which is not present in our measurements (figure 7.2)
on the current system.

at the resting potential. Assuming that the resistance of the interconnection is neg-
ligible, and the output buffer offsets are distributed symmetrically around zero,
we can measure the voltage on each denmem and determine the offset from the
mean. According to Millner (2012), the mean is independent from the denmem po-
sition for El ≈ 0.9V , but measured values showed a position dependent value for
lower or higher voltages (figure 7.1). One possible explanation (Millner, 2012) is a
position dependent variation of the leakage OTAs due to the manufacturing pro-
cess. These OTAs are calibrated after offset calibration. Another explanation would
be a supply voltage drop on the power rail (Millner, 2012). The first cause can be
avoided by using another common voltage of the interconnected denmems that
can be measured: Vreset as a global parameter is shared by every fourth denmem
of the interconnected rectangular block. We are analyzing the baseline of a trace
when denmems are configured with a resting potential above the spike threshold
and long refractory period. This method works equally well (Schmidt, 2014).

However, this undesired position dependency could not be observed with the
current system: We measure the output buffer offset at three different values of
El, 0.7V , 0.9V and 1.1V , interconnecting a each block of 64 denmems. El is not
calibrated yet, the average is expected to deviate from the target values. We do not

7.4 output buffer offset 61

1.00

1.02

1.04

1.06

corrected readout

measured

0.82

0.84

0.86

0.88

〈V
m
〉 [

V
]

0 10 20 30 40 50 60

interconnected denmem

0.64

0.66

0.68

0.70

Figure 7.2: Exemplary output buffer offset measurement for one block of 64 interconnected
denmems at different uncalibrated resting potentials El = 0.7V (bottom), 0.9V
(middle), 1.1V (top). Measured offsets (gray error bars) are averaged from
10 repetitions, the error bars show the standard deviation. The black line shows
a corrected readout potential for each denmem from a single repetition, which
shows only very small variations. In contrast to the measurement presented
in Millner, 2012 we do not observe a denmem position-dependency for resting
potentials lower or higher than 0.9V .

observe any denmem position dependency (see figure 7.2), therefore no further
workaround is required. We still calibrate the output buffer offset at the operating
point of 0.9V in the default configuration.

62 parameter estimation methods

0.0 10.0 20.0 30.0 40.0

t [µs]

0.5

0.6

0.7

0.8

0.9

1.0
V
m

[V
]

Figure 7.3: Exemplary membrane voltage traces for El calibration. Shown are 12 different
target values from 0.5V to 1.1V . All traces show readout noise, which is av-
eraged out when calculating the mean membrane voltage. Several traces show
additional periodic readout noise peaks, probably caused by switching regula-
tors in the system. During previous improvements in the BrainScaleS system,
the noise has been reduced further.

7.5 resting potential

After the output buffer offset is compensated, we can calibrate the resting poten-
tial El for each denmem. We configure the denmem to receive no current from the
synaptic inputs and keep the resting potential below the spike threshold. Adapta-
tion and exponential term are disabled as well (see section 7.2). Without any in-
put, the membrane potential stays at Vrest = El. The measured membrane voltage
trace (figure 7.3) shows readout noise that we assume is not present on the mem-
brane capacitance itself. The averaged voltage is the measured resting potential. It
shows a linear dependency on the configured DAC value (figure 7.4). In order to in-
crease precision, due to the linear depence we can either measure additional DAC
values or increase the number of repetitions for each value. Trial-to-trial variation of
the floating gate output will result in a non-compensable spread of approximately
5mV to 10mV (figure 4.8).

7.6 threshold potential

The spike threshold potential Vt can be determined from any spiking membrane
voltage trace. A simple way to get a denmem to spike without involving the current
stimulus or the synaptic input, which is not calibrated at this point, is to set the

7.6 threshold potential 63

300 350 400 450 500 550 600 650
El [DAC]

0.5

0.6

0.7

0.8

0.9

1.0

1.1

V
re

st
[V

]

Figure 7.4: Resulting resting potential for different DAC settings of El. In this example,
each step was measured with 10 repetitions, the resulting trial-to-trial variation
is depicted as individual points. The transformation from desired resting po-
tential to required El setting, resulting from a linear regression fit, is shown as
solid line. Its start and end mark the target domain between 0.5V and 1.1V and
corresponding DAC settings.

resting potential above the threshold potential. Other terms remain disabled as in
the resting potential calibration.

The membrane voltage trace is subject to readout noise (see figure 7.5), which can
add to the maximum at a spike. Therefore we can not directly use the maximum
value of the trace as the spike threshold. This would yield a value which is too
high, as at several spikes the noise adds to the maximum. We instead detect all
peaks and average the maximum voltages at each peak to cancel out the readout
noise. Because the maximum of other peaks is reduced by the noise, we expect the
average maximum to be closer to the real Vt. The resulting threshold is depicted
in figure 7.5. Here you can also see that we chose no refractory time and a fast
membrane time constant in order to collect as many spikes as possible in any
recording interval.

In this method we neglegted that the ADC sample does not always lie exactly on
the peak, adding a systematic error. We estimate this error εt by assuming a linear
slope of the membrane potential rising from Vreset to Vt:

εt =
Vt − Vreset

TISI
·∆t (7.2)

with a time interval between two samples of ∆t = 1
fADC

. With Vt − Vreset = 200mV ,
TISI = 1.5µs and fADC = 96MHz we get εt = 1.39mV . Choosing a longer mem-
brane time constant, resulting in a longer ISI, will increase the probability that the

64 parameter estimation methods

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t [µs]

0.75

0.80

0.85

0.90

0.95
V
m

[V
]

Figure 7.5: Exemplary section of a Vt calibration trace. The actual recording duration is
longer (100µs). As the membrane voltage trace is subject to readout noise, we
detect all peaks and average the maximum voltages at each peak. The resulting
threshold is plotted as dashed line. To average over as many spikes as possible
in any recording interval, we chose no refractory time and a fast membrane
time constant.

maximum ADC sample of a single spike is close to the actual peak and reduce the
systematic error.

There is a linear dependency from the configured DAC value to the resulting
threshold voltage (figure 7.6). The measured points are chosen to lie within the
expected range of configurable threshold voltages. The resulting transformation
is stored without domain boundaries, however the maximum threshold should
remain below 1.2V (compare section 4.2.5).

7.7 reset potential

The reset potential Vreset could be determined in a similar manner as the threshold
potential: Our analyzer provides the mean over each minimum voltage following
a peak. For a non-zero refractory period the reset potential is present over many
ADC samples. Taking readout noise into account, using the minimum voltage dur-
ing the refractory period after each spike introduces a systematic error: After av-
eraging over each spike the result is shifted down in the order of the standard de-
viation of readout noise (lower line in figure 7.7). This systematic error is avoided
by determining the baseline of the voltage trace after a spike instead (upper line in
figure 7.7).

As Vreset is a parameter shared by all denmems of a FG block, the measured
values of all denmems in a block are averaged for a point in figure 7.8.

7.7 reset potential 65

350 400 450 500 550 600 650
Vt [DAC]

0.6

0.7

0.8

0.9

1.0

1.1

th
re

sh
ol

d
[V

]

Figure 7.6: Exemplary Vt calibration result. The spike thresholds resulting from several
Vt setting steps are used for linear regression. In this example only a few steps
were configured with a single repetition to achieve a short experiment duration.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t [µs]

0.6

0.7

0.8

0.9

V
m

[V
]

Figure 7.7: Exemplary Vreset calibration traces for different Vreset and Vt configurations.
The refractory period is set to its maximum value in order to record many
samples at Vreset. Using the minimum voltage during the refractory period after
each spike introduces a systematic error due to readout noise: When averaging
over the minimum after each spike, the result is lower than the reset potential
(lower line). Determining the baseline of the voltage trace following a spike and
averaging over all baselines following the spikes yields the desired result (upper
line).

66 parameter estimation methods

250 300 350 400 450 500
Vreset setting [DAC]

0.4

0.5

0.6

0.7

0.8

m
ea

su
re

d
V

re
se

t
[V

]

Figure 7.8: The measured Vreset, determined by finding the baseline, is averaged over the
128 denmems sharing Vreset. It shows a linear relation to its digital setting. The
standard deviation between 128 denmems of 3.5mV to 7mV is not visible as it
is smaller than the plotted dots.

7.8 membrane time constant

The membrane time constant τm is given by the chosen membrane capacitance Cm,
which can have two different values, the bias current Igl of the leakage OTA (sec-
tion 4.1.1), as well as the current mirror setting for bias current amplification (sec-
tion 4.2.1).

7.8.1 ISI-based Method

There is a straightforward method to determine τm which has been used in
Schwartz (2013): The resting potential El is set above the spike threshold Vt, re-
fractory period, adaptation and exponential term are disabled. Equation (2.10)
simplifies to

τm
dVm

dt
= −(Vm − El). (7.3)

As the membrane voltage rises from the reset potential towards the resting poten-
tial, it will reach the spike threshold and trigger a spike (figure 7.9). The resulting
periodic spike frequency f = 1

TISI
is measured. Without refractory period, the solu-

tion to (7.3) in this case is

τm = TISI · ln
(
Vreset − El
Vt − El

)−1

(7.4)

with boundary conditions V(0) = Vreset and V(TISI) = Vt.

7.8 membrane time constant 67

0.0 5.0 10.0 15.0 20.0 25.0 30.0

t [µs]

0.68

0.70

0.72

0.74

0.76

0.78

0.80

V
m

[V
]

Igl = 1023 DAC

Igl = 20 DAC

Figure 7.9: Transistor level simulations of two different membrane time constants. The rest-
ing potential El is set above the spike threshold Vt, refractory period, adapta-
tion and exponential term are disabled. The membrane voltage raises from the
reset potential towards the resting potential, until it triggers a spike at the spike
threshold. Leakage conductance Igl settings were chosen to show the slowest
and fastest ideally possible membrane time constant, assuming that the smallest
possible current cell output is ≈ 50nA, i.e. 20 DAC. Although both simulations
were executed with the same target duration, our testbench is designed to stop
the simulation after a configurable number of spikes, which is 10 by default.
This will save computation time, as the time resolution of the transistor level
simulation is increased during a spike.

The resulting membrane time constants when sweeping over Igl in transistor
level simulations of an ideal denmem, for normal speedup setting and big mem-
brane capacitance, are shown in figure 7.10. From the OTA characteristics we ex-
pect that gL ∝

√
Igl (Millner, 2012), resulting in Igl ∝ 1

τm2
. Both the simulated and

measured time constants deviate from this form. It was found that adding a term
Igl ∝ 1

τm
compensates these deviations, resulting in a curve of the shape

Igl =
c1
τm

+
c2
τm2

. (7.5)

Although this method works well in simulation, it depends on knowing the val-
ues of Vreset, Vt and El. In simulation they are directly accessible. For the hardware
measurement these potentials are calibrated before measuring the time constant
and therefore can be configured to the desired value. However, they depend lin-
early on the output of FG voltage cells, which are subject to non-negligible trial-
to-trial variation of approximately 4mV . Vreset and Vt can be measured from the
voltage trace, but El is not directly visible with this method. Neglegting errors on

68 parameter estimation methods

1.0

2.0

3.0

4.0

5.0

τ m
[µ

s]

τm
Igl = c1

τm
+ c2
τm2

0 200 400 600 800 1000

Igl [DAC]

0.0

0.2

∆
τ m τ m

Figure 7.10: Fit of equation (7.5) to Igl as function of τm, obtained from the ISI via
equation (7.4) while sweeping Igl in transistor level simulations of an ideal
denmem. The inverse relation Igl(τm) is the calibration curve with coefficients
c1 ≈ 100.12DAC · µs, c2 ≈ 220.26DAC · µs2.

Vreset and Vt, we estimate the error cause by trial-to-trial variation of El by Gaus-
sian error propagation of equation (7.4):

∆τm

τm
= ln

(
Vreset − El
Vt − El

)−1
Vreset − Vt

(Vreset − El)(El − Vt)
·∆El. (7.6)

With the values we used above, Vreset = 0.74V , Vt = 0.77V and El = 0.8V , an
error of 1% on El in equation (7.6) results in an error of 19% in τm. The error can
be reduced by choosing a smaller El, for example El = 0.7V , Vt = 0.65V and
Vreset = 0.6V already reduces the error in τm to 10% at an error of 1% on El.

7.9 stimulation-based method

We have developed an alternative method, presented in Schmidt (2014), to circum-
vent this issue: we stimulate the denmem with a periodic current pulse to raise the
membrane voltage without triggering a spike. The denmem is configured such that
Vt is above El. After the current pulse stops, the membrane voltage decays towards
the resting potential (figure 7.11). We determine the time constant by fitting the
falling flank, where the current input is off. At the raising flank, the current input
is present and the trace could be subject to non-constant current input. The OTA
conductance for a configured bias current should be constant, as required by the

7.9 stimulation-based method 69

0.0 5.0 10.0 15.0 20.0 25.0 30.0

t [µs]

0.90

0.92

0.94

0.96

0.98

V
m

[V
]

Figure 7.11: Simulated current stimulus on a single AdEx neuron, using NEST (Gewaltig
and Diesmann, 2007). The rectangular current pulse, active from 5µs to 20µs,
raises the membrane voltage without triggering a spike. After the current pulse
ends, the membrane voltage decays towards the resting potential.

100.0 150.0 200.0 250.0 300.0

t [µs]

0.750

0.775

0.800

0.825

0.850

0.875

V
m

[V
]

Igl = 41 DAC

Igl = 327 DAC

Figure 7.12: Exemplary traces recorded during Igl calibration. A periodic current stimulus
is raising the membrane voltage, revealing the effective membrane time con-
stant τm. To reduce the noise in these periodic traces we average over one
stimulus period, resulting in a considerably less noisy trace in figure 7.13.

70 parameter estimation methods

0.0 20.0 40.0 60.0 80.0

t [µs]

0.76

0.78

0.80

0.82

0.84
V
m

[V
]

Igl = 41 DAC

Igl = 327 DAC

Figure 7.13: Traces recorded during Igl calibration after averaging over the stimulation pe-
riod. For the current stimulus, 129 stimulation pulse amplitude values are
being iterated and held over the configured pulse length, from 1 to 16 clock
cycles of the slow clock. This clock results from dividing the PLL frequency by
four, fslow = fPLL

4 . At maximum pulse length and fPLL = 100MHz the resulting
stimulation period is Tstim = 129 · 16/fslow = 82.56µs.

AdEx model. We choose a configuration which keeps the voltage difference from
resting potential to membrane potential with current stimulus below 150mV . This
way we avoid OTA saturation and keep it in an almost constant regime (compare
figure 4.3).

The traces (figure 7.12) are still subject to noise. The selected constant current
stimulus results in a raised membrane voltage of almost 150mV for slow mem-
brane time constants, but the dominating leakage term at fast membrane time con-
stants results in relatively small changes of membrane voltage for larger Igl. Aver-
aging over one stimulus period reduces the noise in these periodic traces. This re-
quires another prior measurement: The AnaRM sampling rate of nominal 96MHz
and configured HICANN clock of nominal 100MHz are independent from each
other, slight variations on each frequency require a correction factor when match-
ing time of ADC samples with the current stimulus period. The corresponding
correction factor is determined by comparing spikes at a known interval to the
recorded ADC trace: we stimulate the synapse driver debug output with spikes
from a background generator at 100MHz and record approximately 2000 spikes
from this output with the AnaRM. By comparing the measured ISI to the expected
one, we calculate the correction factor between HICANN and AnaRM clocks. This
method and its significance for averaging has been introduced in Koke (2016) for
PSPs. The trace of one averaged current pulse stimulation period, obtained from
averaging figure 7.12, is shown in figure 7.13.

7.10 refractory period 71

50 100 150 200 250 300

Igl [DAC]

1.0

2.0

3.0

4.0

5.0

τ m
[µ

s]

Figure 7.14: Exemplary Igl calibration for a single denmem. The membrane time constants
are obtained by fitting the decaying membrane potential after a rectangular
current stimulus for different values of Igl. The straight line shows a fit of
equation (7.5) to Igl as function of τm. The domain is defined as the minimum
and maximum time constants that could be observed (dashed lines).

As before, the resulting membrane time constants for different values of Igl are
fitted to equation (7.5) to obtain the individual calibration curve for each denmem.
An example is shown in figure 7.14.

7.10 refractory period

The relation between bias current Ipl and the resulting refractory period τref is
determined by configuring the denmem to spike periodically (El > Vt) without
adaptation (table 7.1) and sweeping over Ipl. We first measure the resulting ISI for
our default configuration (see appendix B for details) without refractory period, i. e.
Ipl = 1023DAC, as reference. We then sweep Ipl and subtract the reference ISI from
the ISI with the current Ipl setting to calculate the refractory period. The recording
time is chosen such that at least 10 spikes are recorded for the longest refractory
period. This method works under the assumption that the refractory period is
actually zero in the first measurement. Transistor level simulations showed that
duration of the reset current at Ipl = 1023DAC is approximately 50ns.

The ISI is obtained by detecting spikes from the membrane voltage trace, for
example in figure 7.15. This method also allows to use digital spike timestamps in
the future. Digital timestamps are not supported (yet) in our testbench interface for
transistor level simulations and did not work reliably on the FCP when they were
initially evaluated before this method was implemented. However, the method can
be switched to use spike timestamps easily.

72 parameter estimation methods

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t [µs]

0.50

0.55

0.60

0.65

0.70

0.75
V
m

[V
]

Figure 7.15: Exemplary membrane voltage trace during refractory time calibration. To cal-
culate the refractory time, the ISI at zero refractory period is subtracted from
the ISI of this trace. Currently this method is still based on the membrane
voltage trace, but it allows to use spike timestamps instead in the future.

Once the resulting refractory period for multiple Ipl is known, we can fit the
calibration function Ipl = 1

c0+c1·τref
to the points (figure 7.16). As this function

is most sensitive for small Ipl, we collect more points in this area. Trial-to-trial
variation has a large impact for long refractory periods, i. e. small Ipl. We configure
a larger number of repetitions for this method compared to other methods with
linear parameter dependency to minimize the non-linear effect during calibration.
In our configuration optimized for speed, the number of repetitions is still 4, while
other methods run at a single repetition.

7.11 adaptation parameters

There are three adjustable parameters of the adapation term (compare section 4.1.3):
the adaptation coupling a as conductance of the corresponding OTA via Igladapt, the
adaptation time constant τw resulting from the current onto Cw through the OTA
gw, which is controlled via Iradapt, and b as voltage increase Vb, controlled via
Ifire. The value of the dynamic adaptation variable w is stored as voltage Vw on
Cw. As this voltage is not directly accessible, we need some theoretical considera-
tions to extract the adaptation current w from the accessible information, either the
membrane voltage trace, or spike timestamps.

7.11 adaptation parameters 73

10 20 30 40 50 60 70 80

Ipl [DAC]

0.0

1.0

2.0

3.0

4.0

5.0

τ r
ef

[µ
s]

Figure 7.16: Ipl calibration curve. The transformation has the shape Ipl =
1

c0+c1·τref
. There-

fore the effect of trial-to-trial variation has most impact for small values of Ipl.
Each step of Ipl was measured with 4 repetitions. Assuming a Gaussian dis-
tribution of the resulting current cell output due to trial-to-trial variation, the
resulting points are distributed in a convolution with the nonlinear transfor-
mation of the circuit.

7.11.1 ISI-Based Determination of the Coupling Parameter a

Assuming that the exponential term can be disabled completely and in the absence
of additional currents I = 0,

Cm
dVm

dt
= −gL(Vm − El) + gL∆T exp

(
Vm − VT
∆T

)
−w+ I, (2.10)

becomes

Cm
dVm

dt
= −gL(Vm − El) −w. (7.7)

We disable Spike-Triggered Adaptation (STA) by setting b = 0. If the adaptation
current is decaying instantaneously, setting τw = 0 in

τw
dw
dt

= a (Vm − El) −w. (2.11)

gives the equilibrium

w = a (Vm − El) (7.8)

74 parameter estimation methods

and equation (7.7) becomes

Cm
dVm

dt
= −gL(Vm − El) − a (Vm − El) (7.9)

⇔ τm
dVm

dt
= −

(
1+

a

gL

)
· (Vm − El) (7.10)

⇔ τm

1+ a
gL︸ ︷︷ ︸

τeff

dVm
dt

= −(Vm − El) (7.11)

with an effective time constant

τeff =
τm

1+ a
gL

. (7.12)

Similar to equation (7.3) we can calculate the expected ISI:

TISI = τeff · ln
(
Vreset − El
Vt − El

)
(7.13)

⇔ τeff = TISI · ln
(
Vreset − El
Vt − El

)−1

(7.14)

and calculate a with equation (7.12):

1+
a

gL
=
τm

TISI
· ln
(
Vt − El
Vreset − El

)
(7.15)

⇔ a = gL ·
τm

TISI
· ln
(
Vt − El
Vreset − El

)
− gL (7.16)

=
Cm

TISI
· ln
(
Vt − El
Vreset − El

)
−
Cm

τm
. (7.17)

Similar to the membrane time constant calibration, El is not directly visible in the
trace. Its error due to trial-to-trial variation has a large impact on the precision of a
(see section 7.8). In contrast to the error discussion section 7.8, here we additionally
need to consider the error of τm for error propagation. If the trial-to-trial variation
can be lowered significantly in the future, this method may become viable as it
only depends on digital spikes as long as the other parameters of equation (7.17)
are already known. Based on the experience of ISI-based membrane time constant
calibration, we do not use this method but instead use the method presented in the
following.

7.11 adaptation parameters 75

0 200 400 600 800 1000

Igladapt [DAC]

0.0

2.0

4.0

6.0

8.0

τ a
[µ

s]

Igl = 0nA

Igl = 50nA

Figure 7.17: Calibration curve for Igladapt, using the method of charging the membrance ca-
pacitance through a, in analogy to the leakage term (section 7.11.2), by setting
El > Vt in transistor level simulations of an ideal denmem. The time constant
τa was determined for simulations with Igl = 0nA and Igl = 50nA to evaluate
the effect of non-zero output of a current cell that is configured to 0DAC. Lines
show the fit results to Igladapt = c1

τa
+ c2
τa2

. Deviations for non-zero Igl have
most influence on large time constants. This is caused by the current through
gL at Igl > 0. For Igl = 0nA, c1 = 139.43DAC · µs and c2 = 117.65DAC · µs2.
For Igl = 50nA, c1 = 82.33DAC · µs and c2 = 151.38DAC · µs2.

7.11.2 Determination of Coupling a in Analogy to Leakage Term

We can disable the leakage OTA for gL to avoid the combination of both conduc-
tances, then equation (7.9) becomes

Cm
dVm

dt
= −a (Vm − El) (7.18)

⇔ τa
dVm

dt
= −(Vm − El) , (7.19)

which is equation (7.3) with a and τa = Cm
a replacing gl and τm. In this config-

uration we can measure the membrane time constant τa to determine a with the
methods described in section 7.8. Similar to the simulations for the membrane time
constant, we run transistor simulations of an ideal denmem with two different set-
tings for Igl. The simulations are typically set up such that currents from floating
gate cells are non-zero even when the digital configuration is 0DAC. We expect
the actual floating gate cells to deliver a non-zero current at the lowest setting and
try to consider this effect in simulation. Figure 7.17 also shows simulation results
for Igl = 0nA to highlight the difference. Resulting coefficients and domain bound-
aries are listed in table 7.2. Although the OTAs for gL and a are identical in the

76 parameter estimation methods

ideal denmem, the coefficients slightly deviate from the ideal membrane time con-
stant calibration coefficients. One cause might be that the adaptation circuit also has
the OTA gw, which is configured to maximum conductance at Iradapt = 2500nA.
It could be circumvented by enabling the adaptation reset, which connects Vw to
Vm (section 4.1.3). Unfortunately this reset can not be triggered individually, but
is connected to the full denmem reset, which also pulls the membrane potential
to Vreset. A future revision of HICANN could allow to trigger the adaptation reset
independently.

adaptation OTA leakage OTA

Igl = 0nA Igl = 50nA Igladapt = 50nA

min. τ [µs] 0.42 0.43 0.52

max. τ [µs] 8.91 4.87 5.37

max. conductance [µS] 5.14 5.02 4.15

min. conductance [µS] 0.24 0.44 0.40

c1 [DAC · µs] 139.43 82.33 100.12

c2 [DAC · µs2] 117.65 151.38 220.26

Table 7.2: Resulting domain and coefficients for Igladapt calibration from transistor level
simulations with the leakage OTA turned off (Igl = 0nA) and not completely
turned off (figure 7.17). The last column is the ideal calibration result of the
leakage OTA (figure 7.10) for comparison.

7.11.3 Determining Adaptation Parameters via Differential Equation Fitting

The methods presented in sections 7.11.1 and 7.11.2 are based on the assumption
that the adaptation time constant τw = 0. However, we expect that at the maximum
Iradapt = 1023DAC, the conductance gw is finite and the resulting τw > 0. To eval-
uate the effect of a non-zero τw, we compare NEST simulations of the AdEx model
at τw = 0 and a small τw = 5µs to measurements at maximum Iradapt, i. e. smallest
possible τw in figure 7.18. We see that the overshoot at the edges of the current
stimulus is present in hardware measurements both at fast and normal current
mirror settings for Iradapt, which shows that τw > 0. The methods in sections 7.11.1
and 7.11.2, which are based on the assumption τw = 0, can only serve as a rough
approximation.

Based on the evaluation in Friedrich (2015), which also investigated an analytical
approach, we have developed an alternative method to determine a and τw: similar
to the membrane time constant calibration, the denmem is stimulated by a periodic
current stimulus and the decaying part is fitted to a model. In this case the model
consists of equations (2.11) and (7.7) with adaptation enabled and τw > 0. The
adaptation current w or its hardware representation Vw is not directly measurable

7.11 adaptation parameters 77

0.0 20.0 40.0 60.0 80.0 100.0

t [µs]

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

V
m

[V
]

a

τw = 0µs

0.0 20.0 40.0 60.0 80.0 100.0

t [µs]

a

τw = 5µs

0.0 20.0 40.0 60.0 80.0

t [µs]

0.76

0.78

0.80

0.82

0.84

0.86

0.88

V
m

[V
]

Igladapt

max. Iradapt, speedup fast

0.0 20.0 40.0 60.0 80.0

t [µs]

Igladapt

max. Iradapt, speedup normal

Figure 7.18: Evaluation of setting τw → 0 for determination of a. On the top left, we
show NEST simulations with current stimulus active from 10µs to 40µs. a
is sweeped from 0µS to 4µS. El = 0.7V , Vt = 1V , τm = 5µs, Cm = 2.16 pF,
∆T = 0, τw = 0, b = 0. On the top right, τw = 5µs. At the bottom, hardware
measurements averaged over the stimulation period with similar configura-
tion are shown: El = 0.8V , Vt = 1V , Igl = 0, Iradapt = 2500nA. Igladapt is
sweeped from 100nA to 800nA. On the bottom left, the speedup setting for
Iradapt is fast, choosing the smallest τw possible. On the right it is set to normal.
We see that in both cases the effect of τw > 0 is still present. The individual
experiments were not triggered at the same time, but overlayed by detecting
the raising edge, which did not align them perfectly. We can also observe the
trial-to-trial variation of El.

78 parameter estimation methods

in hardware experiments. As the membrane time constant is subject to trial-to-trial
variation, we include it in the fit. The periodic trace is averaged over the stimulus
period and smoothed using a linear Savitzky-Golay filter of window size 3. Start
and end of the current stimulus are estimated using edge detection, time is shifted
such that the rectangular stimulus does not cross the periodic boundary of the
stimulation period Tstim, resulting in Vm(0) = Vm(Tstim) = El (compare figure 7.18).
The initial condition is Vm(0) = El and w0 ≡ w(0) = 0 as the membrane potential
remains at El sufficiently long for w to decay. We fit the parameters a, τw and τm,
as well as the amplitude of the rectangular current stimulus Istim. All parameters
are constrained to not exceed their expected maximum value by a factor of two.
The initial guess for each parameter is set close to the expected value. In case of a
and τw we use the ideal calibration obtained from transistor level simulation for
an inital guess. The membrane time constant τm is known by previous calibration
with the uncertainty of trial-to-trial variation. An example fit is pictured in the
top left of figure 7.19. The remaining plots in figure 7.19 show the fit results when
sweeping Igladapt. The time constants τm and τw are expected to be constant within
trial-to-trial variation. The deviations of τw for small values of Igladapt can be ex-
plained by the fact that the adaptation coupling to the membrane potential is small
in this case, making the influence of τw less distinct. The fitted membrane time
constant τm shows a slight trend upwards, which is probably caused by the down-
ward trend of Istim. The current stimulus amplitude is also expected to be constant.
However, we see that it decreases in the fit result with increasing Igladapt. An expla-
nation for this is that the stimulation response is decreasing with increasing Igladapt

(compare figure 7.18), which leads to incorrect fit results. It would certainly be pre-
ferrable to fix the stimulus amplitude to its actual value during the fit. The current
stimulus is difficult to characterize individually, because the leakage current and
adaptation current are not disabled entirely at Igl = Igladapt = 0DAC, as we have
shown for the OTA responsible for τw. Another uncertainty is the parasitic capac-
itance of the current stimulus line, which we characterized in (Schmidt, 2014) and
assume Cm = 3.3 pF as long as the current stimulus line is connected. The result-
ing conductance a follows the expected shape of the characteristic transformation
Igladapt = c1 · a+ c2 · a2. It may be possible to set τw to its average value above
Igladapt = 500DAC and Istim to a constant value, for example the average over all
fits, in an iterative second characterization. Initial attempts of this approach showed
no significant change in the resulting values of a.

This method is used to determine both τw and a from the membrane potential
in hardware experiments.

7.11.4 Determining the STA Parameter b

Considering the results of the previous sections, we have developed a more accu-
rate method to determine the relation between Ifire and b that is only available in
transistor level simulation. If Vw can be connected to the analog output in a fu-

7.11 adaptation parameters 79

0.0 20.0 40.0

t [µs]

0.880

0.885

0.890

0.895

0.900

0.905

V
m

[V
]

0 250 500 750 1000

Igladapt [DAC]

100

110

120

130

I s
ti

m
[n

A
]

0 250 500 750 1000

Igladapt [DAC]

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

τ
[µ

s]

τw
τm

0 250 500 750 1000

Igladapt [DAC]

0.0

1.0

2.0

3.0

4.0

5.0

a
[µ

S]

Figure 7.19: Exemplary visualization of the differential equation based fit method to deter-
mine a and τw from a membrane voltage trace. The denmem is stimulated
by a periodic rectangular current stimulus. τw is set to a small value, i. e.
Iradapt = 2500nA in the normal current mirror setting. The top left shows
an exemplary fit at Igladapt = 211DAC. The periodic trace is averaged over the
stimulus period and smoothed using a linear Savitzky-Golay filter of window
size 3. Start and end of current stimulus are estimated using edge detection,
time is shifted such that the stimulus is not crossing the periodic boundaries.
Sweeping Igladapt we fit each resulting trace. The remaining plots show all fit-
ted variables as functions of Igladapt: the stimulus amplitude is shown in the
top right, the time constants τm and τw in the bottom left. These parame-
ters are expected to be constant, the time constants will vary in the range of
trial-to-trial variation. However, we see that there is an upwards trend of τm to-
wards the configured value of 1µs for increasing Igladapt. The adaptation time
constant τw can not be determined reliably for Igladapt < 250DAC. The con-
stant stimulus amplitude can not be reliably determined from the decreasing
membrane response at increasing Igladapt by the fit. The adaptation coupling
a is actually changed by Igladapt and follows the expected characteristic curve
Igladapt = c1 · a+ c2 · a2, plotted as solid line with fitted coefficients c1 and
c2. Deviations from the curve correspond to deviations of τw from a constant
value, τw ≈ 2µs. Since Igladapt(a = 0) = 0, small values of Igladapt could be
omitted.

80 parameter estimation methods

ture revision of the chip, the method can be applied to a measurement using this
feature.

The leakage potential El is set above the spiking threshold Vt to achieve con-
tinuous spiking. a is set to a small value. This avoids fully charging Cw as it is
discharged through a. Additionally it shows that the method could work if we can
not set a to zero. The denmem reset connects Vw to Vm and pulls Vm to Vreset.
Therefore Vw is initially at Vreset. The raising membrane voltage causes Vw to rise
as well through gw (equation (4.7)), during the refractory period Vw decays. For
non-zero Ifire, Vw is increased by Vb at each spike through STA (figure 7.20). We get
the spike times from the increase of a spike counter that we added to the testbench.
The position of this timestamp is not exactly at the beginning of the steep increase
of Vw, therefore we analyze an interval around a spike time tspike ± 0.2µs. The
value of Vb is determined by calculating the increase of Vw. Vw is rising steeply
over several samples, we drop differences between samples below 0.16mV to cut
off the contribution of gw and calculate the accumulated Vb. This adds a system-
atic error as the remaining samples also contain an unknown contribution through
gw. The resulting Vb is plotted for the sweeped configuration of Ifire, averaged
over all spikes (figure 7.20). The standard deviation increases with Ifire, but re-
mains below 0.1mV . We fit a linear function Vb = c0 + c1 · Ifire with coefficients
c0 = 1.99 · 10−5 V and c1 = 9.34 · 10−4 V/DAC. From equations (4.8) and (4.10) we
expect that Vb ∝ Ifire. The offset c0 is probably caused by the systematic error. b
can be calculated via equation (4.8):

b = a · Vb. (4.8)

7.12 exponential parameters

In the AdEx model, the exponential term is controlled by two parameters: the
threshold voltage VT defines the onset of the exponential upswing, the slope factor
∆T controls the duration between crossing of the exponential threshold VT and
reaching the spike threshold Vt of an action potential. The behavior of the expo-
nential term circuit can be influenced by two denmem parameters: Vexp controls VT

and Irexp affects both VT and ∆T (see section 4.1.4). In each of the methods in this
chapter the adaptation term remains disabled (table 7.1).

7.12.1 General Considerations

Because the threshold VT(Vexp, Irexp) is affected by both analog parameters, VT as
function of Vexp needs to be characterized for fixed values of Irexp. It is natural to
calibrate ∆T first.

7.12 exponential parameters 81

0.0 20.0 40.0 60.0

t [µs]

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

vo
lt

ag
e

[V
]

Vm
Vw

0 250 500 750 1000
Ifire [DAC]

0.000

0.005

0.010

0.015

0.020

V
b

[V
]

Figure 7.20: Transistor level simulations to analyze the effect of Ifire. Left: Membrane volt-
age Vm (grey) and adaptation voltage Vw for Ifire = 1023DAC. The lower line
shows Vw at Ifire = 0 for comparison. a is set to a small value. El is set above
Vt to achieve continuous spiking. After the reset, Vw is at Vreset. The raising
membrane voltage causes Vw to raise as well, during the refractory period it
decays. We observe STA for non-zero Ifire, Vw is increased by Vb. The value of
Vb is determined by calculating the increase of Vw around a spike time tspike.
Vw is increased over several samples, we drop differences below 0.16mV to
cut off the contribution of gw and accumulate samples. This adds a systematic
error as the remaining samples also contain an unknown contribution through
gw. The resulting Vb is plotted for the sweeped configuration of Ifire on the
right, averaged over all spikes. The standard deviation increases with Ifire, but
remains below 0.1mV .

Let us have a look at the AdEx model behavior depending on VT and ∆T . With-
out external currents and disabled adaptation, equation (2.10) becomes

Cm
dVm

dt
= −gL(Vm − El) + gL∆T exp

(
Vm − VT
∆T

)
⇔ Cm

gL︸︷︷︸
τm

dVm
dt

+ (Vm − El) = ∆T exp
(
Vm − VT
∆T

)
(7.20)

82 parameter estimation methods

12.0 13.0 14.0 15.0 16.0 17.0 18.0

t [µs]

0.5

0.6

0.7

0.8

0.9

1.0
V
m

[V
]

Figure 7.21: Numerical simulation of equation (7.20) with parameters El = 0.8V , τm =

30µs, Vreset = 0.5V , Vt = 1.0V , VT = 0.6V . Eight curves with equidistant
∆T in the range from 3mV (most left) to 14mV (most right) show how the
exponential rise is delayed by choosing larger ∆T .

The exponential term is strongest for small ∆T . VT defines the membrane voltage
close to which the exponential term becomes non-negligible: with a relevant cur-
rent from the exponential term defined as gL · Vmin,

∆T exp
(
Vm − VT
∆T

)
> Vmin (7.21)

⇒ exp
(
Vm − VT
∆T

)
>
Vmin

∆T
(7.22)

⇒ Vm − VT
∆T

> ln
(
Vmin

∆T

)
(7.23)

⇒ Vm > VT +∆T · ln
(
Vmin

∆T

)
(7.24)

⇒ Vm ' VT , (7.25)

if Vmin is in same the order of magnitude as ∆T .
The slope factor ∆T in the denominator delays the exponential current by requir-

ing a larger voltage difference to achieve the same current at larger ∆T . This effect
is depicted in figure 7.21.

One observable that will change both with VT or ∆T is the resulting Inter-Spike
Interval (ISI). We numerically simulate a range of VT and ∆T to plot how the ISI
depends on these parameters. From NEST simulations, with model parameters as
listed in table 7.3, we determine the ISI resulting from different configurations of VT
and ∆T . This parameter dependency is plotted in figure 7.22. As we would expect
from the model, the onset of the exponential rise has a strong influence on the

7.12 exponential parameters 83

VT [V] 0.60.70.80.91.0 ∆ T
[m

V]
0.0

2.5
5.0

7.5
10.0

IS
I

[µ
s]

25.0

75.0

125.0

175.0

0.0 2.5 5.0 7.5 10.0
∆T [mV]

25.0

75.0

125.0

175.0

IS
I

[µ
s]

0.6 0.7 0.8 0.9 1.0
VT [V]

Figure 7.22: Numerical simulation to explore how the ISI depends on VT and ∆T with
model parameters as listed in table 7.3. The top visualization shows both de-
pendencies at the same time. The bottom left plot shows the depency on ∆T in
a separate line for each VT . Different colors were chosen to be able to differen-
tiate between lines, every second value is not shown. We observe that the ISI
is slightly larger for larger ∆T at a fixed VT . On the bottom right we see the
dependency on VT with semi-transparent lines for each ∆T . With increasing
VT the ISI is increasing as well. Saturation begins close to VT = 1.0V because
the spike threshold is Vt = 1V .

84 parameter estimation methods

AdEx parameter PyNN variable PyNN value effective value

Cm cm 2.16e-3 2.16 pF

El v_rest 1100 1.1V

Vt v_spike 1000 1.0V

Vreset v_reset 500 0.5V

a a 0.0 0nA

b b 0.0 0nA

τm tau_m 0.1 100µs

τref tau_refrac 0.0 0ms

τw tau_w 0.01 10µs

∆T delta_T sweeped

VT v_thresh sweeped

Table 7.3: PyNN parameter values used for the exponential term evaluation in figure 7.22.

resulting ISI. The delayed rise caused by larger ∆T slightly increases the resulting
ISI. There is no one-to-one mapping from an ISI to a unique combination of VT and
∆T . At a given ISI the difference between the smallest and largest matching VT is
up to 41mV for the simulated parameters. This means that we can not calibrate VT
by analyzing the ISI without prior knowledge of ∆T .

7.12.2 Previous Work

One method to deduce the value of VT has been previously proposed (Schwartz,
2013). It is using the resulting ISI of a periodically spiking trace in comparison
to numerical simulations of the model. In the measurements Irexp is set to a low
constant value to achieve a sharp spike. El is set above Vt to generate periodic
spikes. The effective value of the exponential threshold VT is explored for values
ranging between Vreset and Vt. Sweeping over Vexp, we measure the resulting ISI.
It is compared to the spike frequency obtained from numerical simulations of the
differential equations.

Simulating the AdEx model over and over again for each denmem to map the
ISI to a matching VT is computationally expensive and can be replaced by a lookup
table, similar to the visualization shown in the previous section, generated once for
the set of model parameters by inital numerical simulations. However, as we have
seen in the general considerations, the value of ∆T must be known for this method
to work. Setting Irexp to a constant value will result in a still unknown value of
∆T that varies between denmems due to fixed-pattern noise. Therefore we need to
characterize ∆T first by sweeping Irexp. At the same time we need to avoid shifting
VT , which also depends on Irexp, because VT needs to remain below Vt to be able to

7.12 exponential parameters 85

observe the exponential term. In the hardware measurements we will also see that
VT needs to remain sufficiently above Vreset to avoid triggering another exponential
upswing after a spike, even before the reset potential has been reached.

7.12.3 Keeping VT Constant

Characterization of the relation between Irexp and ∆T requires to set VT , which
depends on both Irexp and Vexp, to a value that does not change while sweeping
Irexp. We will calculate the value of Vexp required to come close to the desired
VT even without calibration, using the dependency that we found in section 4.1.4,
equation (4.27):

Vexp = VT −∆T ln
(
gL∆T
α

)
. (4.27)

In order to get an estimation of the temperature-dependent α, we simulate just the
exponential circuit in a separate testbench. We record IMexp and R1 = Vout−V−

I1
and

fit the constants α and β to equation (4.21)

IMexp = α exp

(
Vm − Vexp

β
R1

)
(4.21)

while sweeping over Vm. The result is shown in figure 7.23. In this figure we are
able to observe the saturation behavior that has been described in (Millner, 2012)
for membrane voltages further above the exponential threshold. Saturation effects
also occur for Irexp > 800nA. Temperature, choice of Irexp and manual choice of the
fitting range all influence the resulting value of α, depending on these choices we
got results from 2 · 10−2 nA to 12 · 10−2 nA. However, the result from figure 7.23,
α ≈ 5.59 · 10−2 nA, has been sufficient to set Vexp close to the desired VT :

Vexp = VT −∆T ln
(

gL∆T

5.59 · 10−2 nA

)
. (7.26)

It may also be possible to look up the Berkeley Short-channel IGFET Model
(BSIM) transistor model and its parameters for the subthreshold current IMexp that
is used by the spectre simulator. As a quicker alternative method to determine α,
we simulate the current-voltage characteristic of Mexp and fit it to equation (4.12)
in the form

IMexp = α · exp(VGS · const). (7.27)

The resulting curves are shown in figure 7.24 with fitted coefficients α as listed in
section 7.12.3.

Now that we know α, we can use equation (4.27) to calculate the required Vexp

for a given VT and ∆T . As we do not know the relation between Irexp and ∆T yet, we

86 parameter estimation methods

0.4 0.6 0.8 1.0 1.2
Vm [V]

0

500

1000

1500

2000

2500

3000

3500
I M

ex
p

[n
A

]

0.60 0.65 0.70 0.75
Vm [V]

Figure 7.23: Exponential current IMexp (solid line) obtained from transistor level simula-
tions of the exponential circuit with parameters Ivbexpb = 2500nA, Ibexpb =

2500nA, Vexp = 0.2V , Irexp = 800nA, simulated at T = 50 ◦C. As re-
ported in (Millner, 2012), saturation of the OpAmp causes a deviation from
the exponential shape until the current onto the membrane is even decreas-
ing for Vm � VT . The right plot shows an enlargement of the range with
exponential shape. The dashed line is a fit to equation (4.21), resulting in
α ≈ 5.59 · 10−2 nA, β ≈ 5.66 · 103 V Ω. These values strongly depend on the
chosen fitting range, which was limited to Vm < 0.685V in this case to avoid
the saturation regime.

0.300 0.325 0.350 0.375 0.400 0.425 0.450 0.475 0.500
VGS [V]

0.0

1.0

2.0

3.0

4.0

5.0

I M
ex

p
[µ

A
]

Figure 7.24: Voltage-current characteristic of Mexp. VGS was sweeped from 0V to 0.5V for
different temperatures between 35 ◦C and 65 ◦C. Every 10th point from the
simulation is plotted, the lines show the fit result to equation (7.27). Resulting
coefficients α are listed in section 7.12.3.

7.12 exponential parameters 87

T [◦C] α [A]

35 1.80 · 10−11

40 2.38 · 10−11

45 3.11 · 10−11

50 4.03 · 10−11

55 5.20 · 10−11

60 6.65 · 10−11

65 8.46 · 10−11

Table 7.4: Resulting coefficients α when fitting the voltage-current characteristic of Mexp to
equation (7.27) (see figure 7.24) at different temperatures T . The voltage-current
characteristic was obtained from transistor level simulations of a testbench for
the transistor Mexp, gate and source were connected as in the exponential circuit.

first use a rough estimate for ∆T (Irexp) based on previously published results (Mill-
ner, 2012). The method that was used in (Millner, 2012) for these results is not
suitable for hardware experiments because it calculated ∆T using currents inside
the circuit that are only accessible in simulation. This estimated relation between
Irexp and ∆T can be replaced by the ideal denmem characterization for ∆T (Irexp),
described in the next section. However, this characterization already requires to
change Vexp together with Irexp to keep VT constant. The rough estimate for Vexp

that was used to determine ∆T (Irexp) for the first time is

Vexp ≈ VT − 1.64 · 10−4
V

nA
· Irexp (7.28)

for 100nA 6 Irexp 6 800nA. At Irexp = 500nA, this estimate only results in a shift
of approximately 10mV . The simulated traces still showed VT shifting upwards
with increasing Irexp. After finding ∆T (Irexp), as described in the following, we
use the result with equation (4.27) instead. Because the first characterization of
∆T (Irexp) still uses this approximation, we perform a second characterization run
afterwards to re-fine itself.

7.12.4 Determining ∆T

We investigate the dependency of ∆T on Irexp in the linear range, Irexp ≈ 100nA
to 800nA, as introduced in section 4.1.4. From numerical simulations of the AdEx
model, using the range of ∆T given in (Millner, 2012), we expect that increasing
∆T will cause a visible delay of the exponential rise, as depicted in figure 7.21. We
require a method to determine ∆T from the membrane voltage trace instead of
calculating it from voltages and currents that are only accessible in transistor level
simulation.

88 parameter estimation methods

Analyzing a membrane voltage trace, we use numerical differentiation with equa-
tion (7.20) for an approximation of ∆T (Schwartz, 2013):

τm
∆Vm

∆t
+ (Vm − El) = ∆T exp

(
Vm − VT
∆T

)
(7.29)

⇒ ln
(
τm
∆Vm

∆t
+ (Vm − El)

)
︸ ︷︷ ︸

=: ξ

= ln(∆T) +
Vm − VT
∆T

. (7.30)

Because of the term ln(∆T), equation (7.30) is limited to ∆T > 0. ∆T and VT are both
constant, ∆T is the slope of a linear function ξ(Vm), as shown in figure 7.25. The
approximation is restricted to small ∆Vm and requires a non-negligible influence
of the exponential term, i. e. Vm close to or above VT . From equation (7.30) we can
calculate both ∆T and VT : we plot ξ(Vm) and fit the linear function

ξ = y0 + y1 · Vm. (7.31)

Comparing to equation (7.30),

y0 + y1 · Vm = ln(∆T) +
Vm − VT
∆T

(7.32)

⇒ y1 =
1

∆T
and y0 = ln(∆T) −

VT
∆T

. (7.33)

We can calculate ∆T = 1
y1

, and also calculate VT :

VT = y1
−1 ·

(
ln
(
y1

−1
)
− y0

)
. (7.34)

We first evaluate this method with a membrane voltage trace generated by nu-
merical simulation of the AdEx model to verify it. Once confirmed, we can continue
evaluating the method with transistor level simulations of the denmem and ulti-
mately with measurements on the actual chip. Usually we would choose the NEST
simulator (Gewaltig and Diesmann, 2007) for AdEx model simulations in order
to increase reproducibility. However, the NEST simulation data for this method
contained simulation artifacts, probably caused by the unusually small timestep
compared to the biological time domain. For this reason we chose to implement
our own simulation code to generate clean data, which runs fast as it is limited to
this simple task. The result of this analysis is shown in figure 7.25. The slope of the
fitted curve is 1

∆T
, the result is close to the actual value over the simulated range

from 2mV to 14mV .
Next, we apply this method to transistor level simulations of an ideal denmem

without variation. While sweeping Irexp, we set Vexp according to equation (4.27).
Here the refractory period is set to a non-zero value, because we observed that
the exponential rise had been triggered during the reset in simulations at zero
refractory period. The range of Irexp was limited from 100nA to 800nA, below and
above this range we get undesired behavior of the circuit. The resulting curves in

7.12 exponential parameters 89

0.0 50.0 100.0 150.0 200.0

t [µs]

0.60

0.65

0.70

0.75

V
m

[V
]

0.60 0.65 0.70 0.75
Vm [V]

−8

−6

−4

−2

0

2

4

ξ

2.0 6.0 10.0 14.0
actual ∆T

2.0

6.0

10.0

14.0

fi
tt

ed
∆
T

Figure 7.25: Evaluation of the method to determine ∆T from ξ(Vm) with numerical sim-
ulation data. Top: Numerically simulated membrane voltage Vm for equa-
tion (7.20) with parameters τm = 100µs, El = 0.8V , Vreset = 0.6V , Vt = 1.0V ,
∆T = 4mV , VT = 0.65V and a timestep of 0.1µs. Bottom left: Analysis of the
trace using equation (7.30). The slope is fitted for voltages above VT for ξ < −1.
Its inverse gives a good approximation to the configured ∆T ≈ 4.08mV . Above
ξ = −1, ∆Vm becomes too large and the approximation to dVm

dt does not hold
anymore. At the bottom right we apply the method to several values of ∆T in
the expected range.

90 parameter estimation methods

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

t [µs]

0.5

0.6

0.7

0.8

0.9

1.0
V
m

[V
]

Figure 7.26: Membrane voltage traces from transistor level simulations for different values
of ∆T . Irexp is set to equidistant target values from 100nA to 800nA, just a
subset has been plotted for clearness. The method uses calibrated values for
El = 0.8V , Vt = 1.0V , Vreset = 0.5V , τm(Igl) = 30µs. The refractory period
was configured to be non-zero without calibration, Ipl = 2000nA, to avoid
activating the exponential raise during the reset. Vexp was calculated using
equation (4.27) with target VT = 0.6. This result looks qualitatively similar
to the numerical AdEx model simulation in figure 7.21. One reason for the
quantitative differences is the effective value of VT .

figure 7.26 are qualitatively similar to the numerical AdEx model simulations in
figure 7.21.

Using equation (7.34), we see that VT is shifting from 0.6mV to 0.7mV for the
simulations shown in figures 7.26 and 7.27. In these simulations, Vexp was calcu-
lated using equation (7.26), in the first iteration with equation (7.28) and in several
following iterations with the result itself, equation (7.35), to improve the coefficients
because VT is changing less.

The resulting ideal denmem calibration function is

∆T = 6.23 · 10−3 mV
nA
· Irexp + 2.58mV . (7.35)

7.12.5 Hardware Measurement of ∆T and VT

For the hardware measurements sweeping Irexp, we are calculating the required
Vexp(Irexp,VT) via equation (7.26) with equation (7.35) to keep VT constant. The
voltage difference ∆Vm between two membrane voltage samples above VT , where
the rise is extremely fast, is too large to apply the method from the previous section.
While transistor level simulations are reducing the time step due to increasing cur-
rent near VT , the AnaRM sampling rate is fixed and the resultion is not sufficient

7.12 exponential parameters 91

0.6 0.8 1.0
Vm [V]

−2

0

2

4

ξ

200 400 600 800

Irexp [nA]

3.0

4.0

5.0

6.0

7.0

∆
T

[m
V

]

Figure 7.27: Application of the method used to determine ∆T via ξ(Vm) to transistor level
simulation data. Left: Exemplary visualization of ξ(Vm) at Irexp = 100nA. The
linear relation between Vm and 1

∆T
above VT ≈ 0.6, as given by equation (7.30),

is present in a short range until saturation sets in. We fit the range of −0.1 <
ξ < 2.5 to determine ∆T . Depending on Irexp, this range is between 7mV and
21mV wide and typically wider for larger Irexp. On the right the resulting ∆T
is plotted in the usable range of Irexp = 100nA to 800nA. In this range the
ideal neuron shows a linear dependency ∆T = 6.23µV/nA · Irexp + 2.58mV .

for the requirement of small ∆Vm. Combined with the readout noise, the region
we want to fit is not recognizable in figure 7.28. The low number of samples in
the interval above VT , but before saturation sets in, does not allow smoothing. Two
example traces are shown in figure 7.29. In the second configuration, we observe
that the reset current is not strong enough to pull the membrane potential towards
Vreset. This effect was also visible in transistor level simulation at very short refrac-
tory periods. It can be avoided by choosing a longer refractory period or moving
VT further above Vreset. This effect is strongest for small Irexp, resulting in small ∆T ,
and larger Ipl, resulting in a short refractory period τref. Small Irexp will allow less
current from the OpAmp to flow towards the Vexp buffer.

In order to get more samples of a spike, resulting in a smaller ∆Vm, we perform
spike triggered averaging by shifting all samples before a spike by the correspond-
ing digital spike timestamp tspike. The resulting single ISI with more samples in
figure 7.30 shows the typical readout noise, but also some jitter in the time axis.
One cause is that the spike timestamp is binned to the FCP clock. In transistor
level simulation we have seen that the exponential regime is approximately 20mV
wide. As saturation of the exponential term sets in shortly after the membrane po-
tential crossed VT , the steep spike can be described by a linear function. We only
consider a short window before the exponential term becomes non-negligible, there

92 parameter estimation methods

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Vm [V]

−6

−4

−2

0

2

4
ξ

Figure 7.28: Application of the method to determine ∆T via ξ(Vm) to an AnaRM trace. In
contrast to transistor level simulations (figure 7.27), the effects due to noise are
dominating below VT = 0.7V . The saturation regime shortly after VT looks
similar to the simulation. The resolution in the range of interest around VT is
not high enough due to the sampling rate of the AnaRM. The resulting ∆Vm
is too large to apply the approximation used for ξ: before a spike |∆Vm| <

10mV in a combination of noise and leakage current, during a spike 10mV <
∆Vm < 60mV . Additionally the range around Vm ≈ VT before saturation
of approximately 20mV does not yield enough data points. In the transistor
level simulations this was not an issue because the time resolution is increased
when currents grow larger. In the presented measurement, Irexp = 100nA,
El = 0.8V , VT = 0.7V , τm = 10µs, Vt = 1V , Vreset = 0.6V and Ipl = 20nA.

the raising membrane potential due to the leakage term can also be approximated
by a linear function. Then we can fit the piece-wise linear function

Vm(t) =


v0 + k1 · t t 6 t0

v0 + k1 · t0 + k2 · (t− t0) t0 6 t 6 t1

v0 + k1 · t0 + k2 · (t1 − t0) + k3 · (t− t1) t1 6 t

(7.36)

with k1,k2 > 0 and k3 < 0 to this section of the ISI close to the spike (figure 7.30.
This way we can also estimate the exponential threshold, which should be close to
t0. The resulting ISI and coefficients k2 for a sweep of Irexp are plotted in figure 7.31.
The membrane potential at which the exponential term becomes strong enough to
be visible can be estimated as Vm(t0). We will interpret it as VT . The slope of the
quickly raising membrane potential, k2 in equation (7.36), can be used to tune the
desired delay of a spike. If the behavior close to VT is most relevant, we recommend
to use the ideal calibration from transistor level simulations to choose Irexp for a
desired ∆T .

7.12 exponential parameters 93

0.0 2.0 4.0 6.0 8.0 10.0

t [µs]

0.6

0.7

0.8

0.9

1.0

V
m

[V
]

0.0 2.0 4.0 6.0 8.0 10.0

t [µs]

0.70

0.75

0.80

0.85

0.90

0.95

1.00

V
m

[V
]

Figure 7.29: Membrane voltage traces used to characterize the exponential term. Lines
show interpolation between the measured samples, helping to recognize the
spikes, which are actually going up to Vt = 1V . Small crosses at 1V mark
digital spike timestamps. Common parameters are Ipl = 100nA, Vt = 1.0V ,
Vreset = 0.6V , τm = 10µs, Irexp = 100nA. At the top El = 0.8V , VT = 0.7V . At
the bottom El = 0.7V , VT = 0.65V . In this case we observe that the denmem is
not spiking during the refractory period, but immediately afterwards. The re-
set potential is not reached, the reset current is not able to suppress the current
from the exponential term at such small Irexp, when VT is close to Vreset.

94 parameter estimation methods

-6.0 -4.0 -2.0 0.0

t − tspike [µs]

0.6

0.7

0.8

0.9

1.0

V
m

[V
]

-0.5 -0.4 -0.3 -0.2 -0.1 0.0

t − tspike [µs]

-2.0 -1.5 -1.0 -0.5 0.0

t − tspike [µs]

0.6

0.7

0.8

0.9

1.0

V
m

[V
]

Figure 7.30: Scatterplot of the membrane potential over a single ISI, for many spikes with
time shifted by the corresponding tspike. The variation of t is probably caused
by the binning of the digital timestamp to a FCP clock cycle. The top left
shows the full ISI of 6.27µs. The top right shows an enlargement of the spike.
Due to saturation effects, Vm(t) seems to be linear even when the exponen-
tial term provides the dominating current. We fit a piece-wise linear function,
equation (7.36), as depicted at the bottom, to get the slope k2 of the spike.

7.12 exponential parameters 95

200 400 600 800

Irexp [nA]

4.5

5.0

5.5

6.0

IS
I

[µ
s]

200 400 600 800

Irexp [nA]

3.8

3.9

4.0

4.1

4.2

k 2
[V
/µ

s]

200 400 600 800

Irexp [nA]

0.63

0.64

0.65

0.66

0.67

V
ex

p
[V

]

200 400 600 800

Irexp [nA]

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

V
T

[V
]

Figure 7.31: Left: Mean ISI over many spikes, the error bar shows the standard deviation.
The ISI depends on the chosen combination of El, Vt, Vreset, τm, τref, as well
as ∆T (Irexp). VT is kept constant by adjusting Vexp. There is a trend towards
longer ISIs for larger Irexp, showing that it is possible to delay the exponential
spike. Right: Coefficient k2 of equation (7.36) for several Irexp. Above Irexp =

400nA, there seems to be a linear relation.

Part IV

WA F E R C A L I B R AT I O N

8
WA F E R - S C A L E L I F C A L I B R AT I O N

We apply the methods presented in the previous chapter to a full wafer mod-
ule. The software was designed such that an arbitrary HICANN can be selected
to perform the calibration experiments on. Generated result data is attributed to
each specific wafer and HICANN. AnaRMs and FCPs are shared between several
HICANNs, such that experiments requiring the same resource need to run in suc-
cession, while other experiments can run in parallel. These resource dependencies
are represented as resources in the Slurm Workload Manager, a scheduler that
is typically used by computer clusters for resource management. This approach
allows to submit experiments for all HICANNs to the job queue at once: 12 ex-
periments requiring different AnaRMs will run immediately while the other ex-
periments are queued until the resources become available. Additional effort is
required to manage the generated data, evaluate errors that occur during exper-
iments and resume experiments that were aborted due to temporary communi-
cation errors. Managing and analyzing wafer-scale calibration data is an ongoing
effort, updated and improved results will probably be published in Kugele (2017).

In the experiments, we first apply an ideal calibration – typically obtained from
transistor level simulation of an ideal denmem – to each denmem and measure
the resulting observable. This approach allows us to obtain a usable basic con-
figuration without calibration, which is expected to show higher variation. Next
we generate individual calibration data for each denmem. We expect being able
to reduce variation by using the individual parameter transformations, and the
characterization data contains the parameter ranges which can be reached by an
individual denmem. Using the calibration data, we configure the parameters for a
post-calibration characterization, taking the individual variation into account. Mea-
suring each observable once for validation does not reflect the deviations caused
by trial-to-trial variation of the FG cells. In order to include this distribution, each
measurement is repeated four times. The potentials El, Vt and Vreset have a linear
transformation function and are expected to show the least variation. Other pa-
rameters are designed with a nonlinear transformation from control parameter to
observable. For example, variation of the refractory period τref is expected to be
strongest for long refractory periods. Due to the nonlinear transformation, the dis-
tribution will not follow a Gaussian distribution, assuming that the variation of the
circuits is normally distributed. In general, reducing the results to quantities like
mean µ and standard deviation σ is not sufficient to represent the true parameter
distribution. There are many very different distributions that would yield the same
µ and σ, therefore we need to provide the full information by providing the full
distribution. For example, two equally large peaks of values at µ+ δ and µ− δ still

99

100 wafer-scale lif calibration

result in an average of µ. A single outlier very far from many values at the same
point will result in a large σ. For the purpose of quick estimations it is still useful
to provide sensible numbers summarizing the information. It makes sense to dis-
card extreme outliers, for example by only considering 95% of the values closest
to the maximum of the distribution. For the means µ and standard deviations σ
presented in the following, we consider 99% of the values, selected symmetrically
around the maximum.

Data has been collected for 150 HICANNs on the wafer module WMOD G06. Dig-
ital communication with the missing HICANNs failed in three independent runs.
The main reason is that this module has been assembled with lower pressure on
the elastomeric connectors for debugging purposes, causing unreliable connections
to some reticles. We plot the distribution of all measurements, including multiple
trials, for each parameter for both the ideal denmem calibration and the individual
calibration.

Deviation of the potentials are mainly caused by DC-offsets in active components.
The active component is a comparator in case of the threshold potential Vt, the leak-
age OTA in case of the leakage potential El and a voltage buffer for Vreset. These
offsets can be corrected using a linear transformation. Figure 8.1 shows the distri-
bution of the reset potential Vreset before and after calibration. Figure 8.2 shows
the distribution of the spike threshold Vt, figure 8.3 shows the distribution of the
resting potential El. In previous measurements (Schmidt, 2014; Koke, 2016) on
single chips we have shown that the standard deviation of the potentials can be
reduced close to the trial-to-trial variation of the voltage cells, to about σ ≈ 4mV ,
in case of Koke (2016) this result was obtained from one HICANN on the same
wafer module. In wafer-scale calibration on this wafer module we observe that this
reduction can also be achieved for 99% of all evaluated denmems. Inspection of the
data reveals that about 0.6% of the calibrated denmems miss their target potential
by more than 50mV . The affected denmems can be blacklisted, however it may be
worthwhile to inspect them manually in the future.

In order to be able to measure time constants before calibration, we apply the
transformation function found for the ideal denmem in transistor level simulation.
For the refractory period we observe that the maximum of the distribution with tar-
get 1µs is significantly smaller than the target value (figure 8.4). This has not been
the case in previous evaluations (Schmidt, 2014), which were using more than four
repetitions during calibration and may hint that this number of repetitions is too
low. For the membrane time constant (figure 8.5) we see that the ideal transforma-
tion does not yield a good configuration for two of the target time constants. The
reason is that the function that was present in the software at the time the data has
been recorded was incorrect. In the meantime, the coefficients have been changed
to the results obtained in this thesis. We can also see that the distribution is not
represented by a normal distribution due to the nonlinear transformation from FG
value to conductance and resulting time constant. The distribution is broader for

wafer-scale lif calibration 101

large time constants, which require small bias currents. In this case the effect of
trial-to-trial variation is strongest.

0.6 0.7 0.8
Vreset [V]

0

20000

40000

60000

80000

100000

120000

co
u

nt

0.6 0.7 0.8
Vreset [V]

before calibration after calibration

target [V] µ [V] σ [V] µ [V] σ [V]

0.6 0.585 0.017 0.600 0.008

0.7 0.680 0.017 0.701 0.007

0.8 0.774 0.018 0.802 0.008

Figure 8.1: Distribution of the reset potential Vreset before (left) and after calibration (right)
for 150 HICANNs. Each denmem was evaluated four times in order to capture
the distribution caused by trial-to-trial variation. Calibration reduces the spread
of the distribution and shifts the mean towards the target value. The standard
deviation does not reach the standard deviation caused by trial-to-trial variation,
because the parameter is shared between 128 denmems.

102 wafer-scale lif calibration

0.9 1.0 1.1 1.2
Vt [V]

0

50000

100000

150000

200000

250000

co
u

nt

0.8 0.9 1.0 1.1 1.2
Vt [V]

before calibration after calibration

target [V] µ [V] σ [V] µ [V] σ [V]

0.9 0.872 0.022 0.901 0.004

1.0 0.963 0.022 1.002 0.004

1.1 1.058 0.022 1.104 0.004

Figure 8.2: Distribution of the threshold potential Vt before (left) and after calibration
(right) for 150 HICANNs. Each denmem was evaluated four times in order
to capture the distribution caused by trial-to-trial variation. Calibration reduces
the spread of the distribution and shifts the mean towards the target value.
The standard deviation is close to the standard deviation caused by trial-to-trial
variation.

wafer-scale lif calibration 103

0.7 0.8 0.9
El [V]

0

25000

50000

75000

100000

125000

150000

175000

co
u

nt

0.7 0.8 0.9 1.0
El [V]

before calibration after calibration

target [V] µ [V] σ [V] µ [V] σ [V]

0.7 0.668 0.025 0.701 0.008

0.8 0.759 0.025 0.802 0.006

0.9 0.850 0.025 0.902 0.007

Figure 8.3: Distribution of the resting potential El before (left) and after calibration (right)
for 150 HICANNs. Each denmem was evaluated four times in order to capture
the distribution caused by trial-to-trial variation. Calibration reduces the spread
of the distribution and shifts the mean towards the target value. The distribution
after calibration is coarser than the distribution of Vt due to leakage currents
from other terms, which can not be entirely disabled and are also subject to
variation.

104 wafer-scale lif calibration

0.0 0.5 1.0 1.5 2.0
τref [µs]

0

20000

40000

60000

80000

100000

120000

co
u

nt

0.0 0.5 1.0 1.5 2.0
τref [µs]

before calibration after calibration

target [µs] µ [µs] σ [µs] µ [µs] σ [µs]

0.1 0.072 0.062 0.139 0.071

0.5 0.513 0.302 0.434 0.097

1.0 1.168 0.721 0.823 0.162

Figure 8.4: Distribution of the refractory period τref before (left) and after calibration (right)
for 150 HICANNs. Each denmem was evaluated four times in order to capture
the distribution caused by trial-to-trial variation. The distribution gets broader
for larger refractory periods. Calibration reduces the spread of the distribution.
In this case the mean does not reach the target values. The calibration function
is not optimal, and the number of repetitions during calibration may be too low.
Improving the refractory period calibration is currently under investigation.

wafer-scale lif calibration 105

0.0 2.0 4.0 6.0
τm [µs]

0

20000

40000

60000

80000

co
u

nt

0.0 2.0 4.0 6.0
τm [µs]

before calibration after calibration

target [µs] µ [µs] σ [µs] µ [µs] σ [µs]

1.0 1.927 0.640 1.242 0.255

3.0 n/a n/a 2.894 0.364

5.0 n/a n/a 4.727 1.189

Figure 8.5: Distribution of the membrane time constant τm(Igl) before (left) and after cal-
ibration (right) for 150 HICANNs. Each denmem was evaluated four times in
order to capture the distribution caused by trial-to-trial variation. The transla-
tion function that was used to determine the setting without calibration does
not yield correct configuration for two of the evaluated time constants. Calibra-
tion leads to a better translation function, reduces the spread of the distribution
and shifts the mean towards the target value. The distribution gets broader for
larger time constants and is skewed due to the nonlinear transformation.

Part V

D I S C U S S I O N

9
C O N C L U S I O N A N D O U T L O O K

With this thesis we have provided methods for the neuron circuit characterization
of HICANN both in transistor level simulations and wafer-scale hardware mea-
surements. At the same time we were able to contribute to the overall usability and
stability of the platform: the calibration framework operates at the same abstraction
level as the mapping software (compare figure 6.1) and depends on many features
of the underlaying software. While it certainly does not replace fine-grained unit
testing of all components, developing the calibration framework has also served as
an integration test for the software layers below, as well as most of the hardware
functionality. During the debugging process this has also lead to development of
additional unit tests in several layers.

The experience and challenges that we faced during calibration of the denmem
circuits served as input for the next generation chip and the overall system design:
much faster programming time and significantly lower trial-to-trial variation of
analog parameters have been implemented in a capacitive memory (Hock, 2014)
for the next generation system, which significantly increases the experiment rate
and reduces variation. The noise that we observe on the analog outputs will be
reduced as well (Ilmberger, 2017). Being able to measure quantities besides the
membrane voltage and disconnect individual circuits to be able to measure or use
a subset of circuits (Aamir et al., 2016) allows more precise characterization meth-
ods (Stradmann, 2016).

For the current system we were able to provide a general-purpose calibration
that is already being used for experiments. As proposed in Schmidt (2014), the
transformation functions have been changed to map from desired observable to
the required FG setting, while providing a domain of target values which can be
reached by a particular denmem. This approach allows the mapping software to
choose suitable denmems for parameters at the edge of the achievable range.

Additional work is still required on fine-tuning of the calibration configuration
for a desired trade-off between accuracy and measuring time. The desired accuracy
has not been fully specified so far, while parameter ranges and functional test
cases have been assembled in Müller (2017). The configurability of the calibration
framework allows to adapt such settings to fulfil the requirements.

9.1 discussion of methods

The immediate results of each method have been discussed in their corresponding
section. In the following, we present ideas how to further improve specific methods.

109

110 conclusion and outlook

spike threshold The spike threshold calibration works very reliably already.
We chose a short membrane time constant in order to record as many spikes as
possible in any recording interval. However, this may introduce a systematic error
because the largest sample during a spike is not neccessarily sampled at the peak.
A long membrane time constant increases the probability that an ADC sample
is close to the actual spike threshold. At the same time a longer membrane time
constant requires a longer recording period to be able to average over the same
number of spikes.

membrane time constant We are using a constant current stimulus that
will not raise the membrane potential more than 150mV above the resting poten-
tial for the slowest configured time constant. This leads to a very small voltage
raise at faster time constants. Instead, we could use a larger stimulus in measure-
ments with faster time constants. The automated choice of the stimulus amplitude
for a particular denmem could also be improved: currently the evaluation of the
response begins at a small stimulus, which is increased until the resulting raise
in membrane potential is above 150mV . The highest amplitude before the last
increase is chosen for this denmem. Instead, we could for example implement a
half-interval search.

We could also allow the current stimulus to raise the membrane potential more
than 150mV , while avoiding to raise above Vt or 1.1V . In order to avoid fitting
in the OTA saturation regime, we could only consider the part below Vm = El +

150mV in the fitting routine.
Although the parasitic capacitance added by the stimulus line can not be mea-

sured accurately, there is a way to measure the decaying part of the trace without
parasitic capacitance: instead of configuring a rectangular current stimulus, the am-
plitude can be configured to remain constant. The stimulus of a denmem is then
disabled by disabling the switch that connects the current stimulus to this denmem.
This method will be possible once the playback memory based configuration is sup-
ported by the FCP.

refractory period During calibration of the refractory period, trial-to-trial
variations of the parameters Vt, El, Igl and Vreset add a systematic error due to the
resulting variation of the rise time. This influence could be removed by detecting
the rise time and subtracting it from the ISI. However, this detection may add a sys-
tematic error in the same order of magnitude. In the presented method we assume
that the smallest refractory period is actually zero and the reset is instantaneous.
Transistor level simulations and inspection of ADC samples during the reset sug-
gest that the shortest time between crossing the spike threshold and the membrane
potential beginning to rise again from Vreset is approximately 50ns. This could be
analyzed more thouroughly and be considered when measuring the reference ISI.

9.2 time requirement of calibration 111

The nonlinear mapping from floating gate configuration to refractory time makes
it difficult to accurately set long refractory periods. This will be changed in the next
generation chip by making the release of the reset current a digital feature.

adaptation The leakage potential El is connected to both the leakage OTA and
the adaptation OTA. Variation will cause different offsets in each OTA, which can
not be compensated and lead to different effective potentials. As suggested by Mill-
ner (2012), an offset compensation, similar to the one found in the synaptic input
circuit, could be added to the adaptation OTA, controlled by the remaining unused
voltage cell. Being able to measure Vw would greatly improve calibration options.
The membrane capacitance interconnectivity could be extended to interconnect Cw
as well.

exponential term As we have seen in transistor level simulation, the mem-
brane voltage range at which the current from the exponential term depends ex-
ponentially on the membrane potential is very small. Saturation leads to a strong
linear dependency shortly after the exponential regime. We have seen in previous
works (Millner, 2012; Schwartz, 2013; Tran, 2013) that this implementation still al-
lows to reproduce spike patterns that require an exponential term.

By using the subthreshold current of a transistor, the circuit design introduces a
strong temperature dependency, making it important to characterize the circuit at
the actual temperature during operation. At the current stage of system assembly,
the operating temperature still depends on the number of reticles that are powered
and their configuration. The final configuration and climate control are still under
development. We have discussed the temperature dependence with the analog de-
signers of the next generation chip, which will probably implement a design that
is more robust against temperature changes.

9.2 time requirement of calibration

We have shown that scaling the calibration from a single HICANN to wafer-scale
characterization is already possible. One remaining goal is to optimize the configu-
ration with regard to the overall experiment duration of the calibration, as well as
the accuracy of the characterization.

The parameters that affect the experiment duration are currently based on expe-
rience. For the fastet possible calibration at acceptable precision we could define
a required minimum precision of each parameter and find the number of steps
accordingly to achieve this precision.

As long as the transformation from digital setting to resulting observable is lin-
ear, having twice as many repetitions of each step is expected to give the same
accuracy as twice the number of steps. For parameters with nonlinear transforma-
tion from digital setting to resulting observable, several repetitions become more
important, as the error caused by trial-to-trial variation follows the nonlinear trans-

112 conclusion and outlook

formation. More points are required close to the diverging region of the transfor-
mation function.

It may be possible to find shared configurations that can be evaluated in several
calibration methods, while requiring just a single experiment. For example, the
reset and threshold potential could be measured at the same time. We evaluated
this option for the previous chip revision and discarded it due to restrictions of the
synaptic input circuit, which has been replaced in the meantime.

A renewed characterization of the analog parameter storage may also be worth-
while. For example, we are currently rewriting all parameters during configuration.
The FG controller allows to update a parameter row individually, which would
speed up parameter changes and avoid trial-to-trial variation of unchanged param-
eters. However, the cross-talk effects during row-wise reconfiguration still need to
be characterized.

Contributions to the overall duration caused by data transfer are expected to
be reduced with a replacement for the AnaRM, called Analog Network Attached
Sampling unit (ANANAS), that is still under development (Ilmberger, 2017). This
module allows to transmit data via Gigabit Ethernet, significantly increasing trans-
fer speed. The maximum sampling rate will be reduced to 32.5MSs−1, resulting
in less data for a given experiment duration. Noise is expected to be reduced by an
anti-aliasing low-pass filter on the module. This will reduce the need to record long
traces that can be used for averaging. Experiments that only require a low sampling
rate can be parallelized further by using the slow ADCs on the ANANAS. The par-
allel readout of denmems is going to require adapted software support. Combined
with parallel configuration of several HICANNs on a reticle this will also lead to a
faster wafer-calibration.

After re-evaluation of spike timestamp reliability, the ISI-based methods could
be adapted to purely rely on spike timestamps instead of voltage traces, which
allows to measure several denmems simultaneously with different addresses.

Another approach to reduce the amount of data being transferred would be to
perform some of the data analysis currently performed in software directly on
the FPGA of the AnaRM. However, this approach requires significant additional
development effort.

An important new FCP feature will be the support of modifying digital chip con-
figuration during an experiment run. In that case a configuration change is stored
in Playback Memory (PbMem) (Pilz, 2016) with a timestamp and will be sent to
HICANN at that time. Several steps during the measurement, for example switch-
ing the analog output between denmems, are currently being performed with com-
munication between host computer and FCP. As soon as the playback memory can
be used to buffer these commands (Pilz, 2016), the steps can be performed with-
out communication to the host, further reducing the configuration time. Changing
FG parameters during the experiment is excluded as changing their value does
not happen instantaneously. Being able to change digital configuration during the
experiment is expected to speed up our measurement routines, as many measure-

9.3 current and future network experiments 113

ments just require switching the analog output to another denmem before aquiring
a new ADC trace.

9.3 current and future network experiments

This thesis contributed significantly to the success of several neural network exper-
iments performed on the current system (Schmitt et al., 2016; Klähn, 2017; Kungl,
2016; Alevi, 2015; Kugele, 2017). The next generation of the BrainScaleS system,
which will be particularly interesting due to its advanced learning capabilities, is
currently being developed and includes many improvements, often inspired by the
experiences gained while commissioning and calibrating the existing hardware.

Part VI

A P P E N D I X

A
E X P E R I M E N T D U R AT I O N

In the following, we will give a rough estimate how long an experiment will take.
An experiment, sweeping a single parameter on one HICANN, is a series of

several sweep steps. Each step consists of configuration, AnaRM recording and
transfer of the recorded data via USB 2.0 for each denmem and analysis of the
recorded data.

The exact numbers depend on the configured number of steps and repetitions
as well as the recording time required for the method. They will vary between
methods and depend on the selected compromise between accuracy and duration.
For this rough estimation we choose an average of 8 steps and 4 repetitions at a
recording time of 100µs. Chip configuration, dominated by the runtime of the FG
controller, would take

15 s configuration time

× 8 steps

× 4 repetitions

480 s total configuration time.

The recording takes

100µs recording of one denmem

× 512 denmems

× 8 steps

× 4 repetitions

3.2ms total recording time.

Several methods require longer recording of each denmem, for example when us-
ing the current stimulus: one stimulus period at a pulse length of 16, operating at
100MHz, takes

(16 · 129) · (100/4MHz)−1 = 82.56µs.

As we need to average over multiple periods to reduce the readout noise, the
recording time of a single denmem can be in the order of milliseconds when the cur-
rent stimulus is required by the method. Recording of a PSP requires 12ms (Koke,
2016).

The recording time itself is very short, however the recorded amount of data
affects the transfer duration. We calculate the transfer of the recorded data at an
AnaRM transfer rate of 300MiB s−1 (Koke, 2016):

117

118 experiment duration

12 bit sample size

× 96MSs−1 sample rate

× 100µs recording time

× 8 steps

× 512 denmems

/ 300MiB s−1 transfer rate

0.79 s total transfer time.

At a long recording time of 12ms, the corresponding transfer time is 94.37 s.
The total experiment duration in this rough estimate is

480 s total configuration time

+ 3.2ms total recording time

+ 0.79 s total transfer time

≈ 480.79 s typical experiment duration.

In this example, the configuration time is the dominating part of the total duration.
At longer recording times, the data transfer time becomes relevant as well.

Calibration of one HICANN requires roughly this experiment duration, multi-
plied by the number of calibrated parameters. 12 HICANNs can be calibrated in
parallel, resulting in a total expected duration of

480 s typical experiment duration

× 23 parameters

× 384 HICANNs

/ 12 in parallel

= 353 280 s ≈ 4days full wafer calibration.

This estimate does not take the time for data analysis into account, because in
practice this contribution is much smaller than the other factors listed below. Data
analysis is already performed in parallel for several denmems on the available
processor cores. If other contributions to the overall duration can be reduced sig-
nificantly in the future, the analysis could be adapted to run in parallel to the
experiments.

The configuration we are currently using for wafer calibration does not include
all parameters. Additionally several HICANNs are excluded due to communica-
tion issues. The total duration of our current wafer calibration configuration is
approximately 2-4 days.

B
PA R A M E T E R S E T T I N G S

In this chapter we provide typical settings which are used during calibration. There
is a base configuration, which is common between all experiments. These settings
are changed by non-default parameter settings for a specific experiment. During
the experiment, one or multiple parameters are changed in each step in order to
determine the parameter dependence of the observable.

b.1 base configuration

This default configuration is used as the basis for every experiment. Deviating
settings can be defined in the experiment configuration to override these settings.

Neuron parameters:

Ibreset = 1023 DAC Ibstim = 1023 DAC Vbexp = 2.500µA Vbout = 0.750µA

Vbr = 0 DAC Vbstdf = 0 DAC Vccas = 800 DAC Vclra = 0 DAC

Vclrc = 0 DAC Vdep = 0 DAC Vdllres = 200 DAC Vdtc = 0 DAC

Vfac = 0 DAC Vgmax0 = 0.080V Vgmax1 = 0.080V Vgmax2 = 0.080V

Vgmax3 = 0.080V Vm = 0 DAC Vreset = 0.500V Vstdf = 0 DAC

Vthigh = 0 DAC Vtlow = 0 DAC int_op_bias = 1023 DAC

Shared parameters:

El = 0.800V Esyni = 0.600V Esynx = 1.300V Ibexp = 2.500µA

Iconvi = 0.625µA Iconvx = 0.625µA Ifire = 0.000µA Igl = 1.000µA

Igladapt = 0.000µA Iintbbi = 2.000µA Iintbbx = 2.000µA Ipl = 2.000µA

Iradapt = 2.500µA Irexp = 2.500µA Ispikeamp = 2.000µA Vconvoffi = 1.800V

Vconvoffx = 1.800V Vexp = 1.800V Vsyni = 0.900V Vsyntci = 1.420V

Vsyntcx = 1.420V Vsynx = 0.900V Vt = 1.000V

b.2 resting potential

The following parameters are used in a typical calibration of the resting potential
El.

Step parameters: El = 0.7V , 0.8V and 0.9V
Non-default parameters: Vreset = 0.9V (calibrated), Vt = 1.2V (calibrated), Iconvi = 0µA,

Iconvx = 0µA

119

120 parameter settings

b.3 reset potential

Step parameters: El = 0.90V , 1.00V , 1.10V and 1.20V Vreset = 0.50V , 0.60V , 0.70V
and 0.80V Vt = 0.70V , 0.80V , 0.90V and 1.00V

Non-default parameters: Ipl = 0.020µA, Iconvi = 0.000µA, Iconvx = 0.000µA,
Igl = 1.100µA

b.4 threshold potential

Step parameters: El = 0.90V , 1.00V , 1.10V , 1.20V and 1.30V Vreset = 0.50V , 0.60V ,
0.70V , 0.80V and 0.90V Vt = 0.70V , 0.80V , 0.90V , 1.00V and 1.10V

Non-default parameters: Iconvi = 0.000µA, Iconvx = 0.000µA, Igl = 1.500µA

b.5 refractory period

Step parameters: Ipl = 10.00DAC, 15.00DAC, 20.00DAC, 30.00DAC, 40.00DAC,
60.00DAC and 80.00DAC

Non-default parameters: El = 1.200V , Esyni = 0.800V (calibrated), Esynx = 1.200V ,
Vt = 0.800V , Vreset = 0.500V (calibrated)

b.6 membrane time constant

Step parameters: Igl = 0.10µA, 0.20µA, 0.30µA, 0.40µA, 0.50µA, 0.60µA, 0.70µA
and 0.80µA

Non-default parameters: El = 0.800V (calibrated), Esyni = 0.600V (calibrated),
Esynx = 1.300V , Vt = 1.200V , Vconvoffi = 1.800V (calibrated), Vreset = 0.200V (cali-
brated), Iconvi = 0.000µA, Vconvoffx = 1.800V (calibrated), Iconvx = 0.000µA

L I S T O F F I G U R E S

Figure 2.1 Hodgkin-Huxley model circuit 8

Figure 4.1 Simplified schematic of the denmem circuit 18

Figure 4.2 Leakage conductance OTA . 19

Figure 4.3 OTA characteristic curves . 19

Figure 4.4 Adaptation circuit . 20

Figure 4.5 Exponential term schematic 22

Figure 4.6 Voltage divider in exponential term 24

Figure 4.7 Schematic of the synaptic input 26

Figure 4.8 Floating gate variation . 29

Figure 4.9 Floating gate block assignment 32

Figure 4.10 Floating gate block assignment (shared parameter) 32

Figure 5.1 HICANN PCB . 40

Figure 5.2 Cube Setup . 41

Figure 5.3 Wafer prober . 42

Figure 5.4 Reticle and postprocessing . 43

Figure 5.5 Wafer module explosion drawing 43

Figure 5.6 NM-PM1 . 44

Figure 5.7 AnaRM crate . 45

Figure 5.8 Readout noise statistics . 46

Figure 6.1 Software layers involved in a neural network experiment . . 50

Figure 7.1 Output buffer offset position dependency 60

Figure 7.2 Output buffer offset calibration 61

Figure 7.5 Vt calibration trace . 64

Figure 7.6 Vt calibration result . 65

Figure 7.8 Vreset calibration . 66

Figure 7.9 Transistor-level simulation of extreme membrane time con-
stants . 67

Figure 7.10 Ideal Igl calibration curve . 68

Figure 7.11 NEST current stimulus example 69

Figure 7.12 Igl calibration traces . 69

Figure 7.13 Averaged Igl calibration traces 70

Figure 7.14 Igl calibration . 71

Figure 7.16 Ipl calibration curve. 73

Figure 7.17 Ideal Igladapt calibration curve 75

Figure 7.18 Evaluating τw → 0 . 77

Figure 7.19 Fitting adaptation parameters to the differential equations . 79

Figure 7.20 Vb as a function of Ifire . 81

Figure 7.21 Exponential rise depending on ∆T 82

121

Figure 7.22 Exponential parameter exploration 83

Figure 7.23 Exponential current simulation 86

Figure 7.24 Voltage-current characteristic of Mexp 86

Figure 7.25 Method to determine ∆T . 89

Figure 7.26 Exponential raise depending on Irexp 90

Figure 7.27 Determining ∆T (Irexp) . 91

Figure 7.28 Hardware measurement of ξ(Vm) 92

Figure 7.29 Irexp characterization traces 93

Figure 7.30 Exponential spike measurement 94

Figure 7.31 Quantities deduced from exponential spikes 95

Figure 8.1 Vreset wafer distribution . 101

Figure 8.2 Vt wafer distribution . 102

Figure 8.3 El wafer distribution . 103

Figure 8.4 τref wafer distribution . 104

Figure 8.5 τm wafer distribution . 105

L I S T O F TA B L E S

Table 4.1 FG cell parameter correspondence 30

Table 4.2 Denmem parameters . 31

Table 4.3 Shared parameters . 33

Table 5.1 SEB supply voltages . 39

Table 7.1 Disabling terms . 59

Table 7.2 Igladapt calibration coefficients 76

Table 7.3 PyNN parameters for exponential term evaluation 84

Table 7.4 IMexp temperature dependency 87

122

A C R O N Y M S

ADC Analog-to-Digital Converter

AdEx Adaptive Exponential Leaky Integrate-and-Fire

AnaFP Analog Frontend PCB

ANANAS Analog Network Attached Sampling unit

AnaRM Analog Readout Module

API Application Programming Interface

ARQ Automated Repeat reQuest

ASIC Application Specific Integrated Circuit

BSIM Berkeley Short-channel IGFET Model

cake calibration framework for experiments

CMOS complementary metal–oxide–semiconductor

DAC Digital-to-Analog Converter

DLL delay-locked loop

DNC Digital Network Chip

denmem Dendritic Membrane Circuit

EA event address

FCP FPGA Communication PCB

FG floating gate

FPGA field-programmable gate array

HAL Hardware Abstraction Layer

HALbe Hardware Abstraction Layer Backend

HBP Human Brain Project

HICANN High Input-Count Analog Neural Network

HS high-speed

123

124 acronyms

ISI Inter-Spike Interval

L1 Layer 1

LIF Leaky Integrate-and-Fire

LVDS low voltage differential signal

MPW Multi-Project Wafer

NM-PM1 Neuromorphic Physical Model version 1

OpAmp operational amplifier

OTA operational transconductance amplifier

PbMem Playback Memory

PCB printed circuit board

PMOS Positive Metal–Oxide–Semiconductor

PSP post-synaptic potential

SEB System Emulator Board

STA Spike-Triggered Adaptation

STDF Short Term Depression and Facilitation

STDP Spike-Timing Dependent Plasticity

STP Short Term Plasticity

StHAL Stateful Hardware Abstraction Layer

USB Universal Serial Bus

VLSI very-large-scale integration

A C K N O W L E D G M E N T S

First of all, I would like to express my gratitude to Prof. Meier for giving me
the opportunity to be part of his group and work on this thesis. I am also grate-
ful towards my second referee Prof. Hausmann, as well as Prof. Fischer and Prof.
Bartelmann for being part of my examination commitee and agreeing to review my
work without hesitation.

Sincere thanks are also given to Johannes Schemmel, Andreas Grübl and the
Visions group for the countless interesting discussions and their willingness to
answer many questions on my side. Christoph Koke, Sebastian Schmitt, Andreas
Hartel, Sebastian Billaudelle and Mihai Petrovici for proofreading and discussions.

Special thanks also go to my students Dominik Schmidt, Arno Friedrich, Denis
Alevi and all other contributors doing their best in developing or improving the
current and next generation of the BrainScaleS system.

Last, but not least, I am very grateful for the support by Anne and my family
during this time.

125

B I B L I O G R A P H Y

Aamir, Syed Ahmed, Paul Müller, Andreas Hartel, Johannes Schemmel, and Karl-
heinz Meier (2016). “A highly tunable 65-nm CMOS LIF neuron for a large-
scale neuromorphic system.” In: Proceedings of IEEE European Solid-State Circuits
Conference (ESSCIRC) (cit. on p. 109).

Alevi, Denis (2015). Investigating Competitive Dynamics in a Recurrent Neural Network
on Neuromorphic Hardware. Bachelor thesis (cit. on pp. 54, 113).

Allen, P. E. and D. R. Holberg (2002). CMOS Analog Circuit Design. 198 Madison
Avenue, New York: Oxford University Press, Inc. isbn: 0-19-511644-5 (cit. on
p. 22).

Amir, Arnon, Pallab Datta, William P Risk, Andrew S Cassidy, Jeffrey A Kus-
nitz, S.K. Esser, Alexander Andreopoulos, Theodore M Wong, Myron Flick-
ner, Rodrigo Alvarez-Icaza, et al. (2013). “Cognitive computing programming
paradigm: a corelet language for composing networks of neurosynaptic cores.”
In: Neural Networks (IJCNN), The 2013 International Joint Conference on. IEEE,
pp. 1–10 (cit. on p. 5).

Badel, Laurent, Sandrine Lefort, Romain Brette, Carl C. H. Petersen, Wulfram Ger-
stner, and Magnus J. E. Richardson (2008). “Dynamic I-V Curves Are Reliable
Predictors of Naturalistic Pyramidal-Neuron Voltage Traces.” In: Journal of Neu-
rophysiology 99.2, pp. 656–666. issn: 0022-3077. doi: 10.1152/jn.01107.2007.
eprint: http://jn.physiology.org/content/99/2/656.full.pdf. url: http:
//jn.physiology.org/content/99/2/656 (cit. on p. 11).

Benjamin, Ben Varkey, Peiran Gao, Emmett McQuinn, Swadesh Choudhary, Anand
R Chandrasekaran, Jean-Marie Bussat, Rodrigo Alvarez-Icaza, John V Arthur,
Paul A Merolla, and Kwabena Boahen (2014). “Neurogrid: A mixed-analog-
digital multichip system for large-scale neural simulations.” In: Proceedings of
the IEEE 102.5, pp. 699–716 (cit. on pp. 4, 5).

Billaudelle, Sebastian (2014). Characterisation and Calibration of Short Term Plasticity
on a Neuromorphic Hardware Chip. Bachelor thesis (cit. on pp. 15, 31, 33, 54).

— (2017). “Design and Implementation of a Short Term Plasticity Circuit for a 65

nm Neuromorphic Hardware System.” MA thesis. Ruprecht-Karls-Universität
Heidelberg (cit. on p. 35).

Bojarski, Mariusz et al. (2016). “End to End Learning for Self-Driving Cars.” In:
CoRR abs/1604.07316. url: http://arxiv.org/abs/1604.07316 (cit. on p. 3).

Brette, R. and W. Gerstner (2005). “Adaptive Exponential Integrate-and-Fire Model
as an Effective Description of Neuronal Activity.” In: J. Neurophysiol. 94, pp. 3637–
3642. doi: NA (cit. on p. 10).

127

https://doi.org/10.1152/jn.01107.2007
http://jn.physiology.org/content/99/2/656.full.pdf
http://jn.physiology.org/content/99/2/656
http://jn.physiology.org/content/99/2/656
http://arxiv.org/abs/1604.07316
https://doi.org/NA

128 Bibliography

Brüderle, Daniel (2009). “Neuroscientific Modeling with a Mixed-Signal VLSI
Hardware System.” PhD thesis. Ruprecht-Karls-Universität Heidelberg (cit. on
p. 59).

Brüderle, Daniel, Eric Müller, Andrew Davison, Eilif Muller, Johannes Schemmel,
and Karlheinz Meier (2009). “Establishing a Novel Modeling Tool: A Python-
based Interface for a Neuromorphic Hardware System.” In: Front. Neuroinform.
3.17 (cit. on p. 49).

Brüderle, Daniel, Mihai A. Petrovici, et al. (2011). “A comprehensive workflow
for general-purpose neural modeling with highly configurable neuromorphic
hardware systems.” In: Biological Cybernetics 104 (4), pp. 263–296. issn: 0340-
1200. url: http://dx.doi.org/10.1007/s00422-011-0435-9 (cit. on p. 50).

Cadence Design Systems, Inc (2012). Virtuoso Multi-Mode Simulation. www.cadence.com
(cit. on p. 35).

Cassidy, Andrew S, Paul Merolla, John V Arthur, S.K. Esser, Bryan Jackson, Ro-
drigo Alvarez-Icaza, Pallab Datta, Jun Sawada, Theodore M Wong, Vitaly
Feldman, et al. (2013). “Cognitive computing building block: A versatile and
efficient digital neuron model for neurosynaptic cores.” In: Neural Networks
(IJCNN), The 2013 International Joint Conference on. IEEE, pp. 1–10 (cit. on p. 4).

Davison, A. P., D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Per-
rinet, and P. Yger (2008). “PyNN: a common interface for neuronal network
simulators.” In: Front. Neuroinform. 2.11 (cit. on pp. 49, 50).

Dresden, TU (2008). DNC Specification. FACETS project internal documentation (cit.
on p. 39).

— (2010). Design the final digital network ASIC. FACETS Deliverable D7-8 (cit. on
p. 39).

Drubach, Daniel (2000). The Brain Explained. Prentice Hall Health. isbn: 9780137961948

(cit. on p. 3).
Epp, Bernard (2016). Charakterisierung und Vergleich von zwei ADC-Modulen für das

Brainscales Hardware System. Bachelor thesis (cit. on pp. 43, 44, 46, 54).
Esser, S.K., Alexander Andreopoulos, Rathinakumar Appuswamy, Pallab Datta,

Davis Barch, Arnon Amir, John Arthur, Andrew Cassidy, Myron Flickner, Paul
Merolla, et al. (2013). “Cognitive computing systems: Algorithms and applica-
tions for networks of neurosynaptic cores.” In: Neural Networks (IJCNN), The
2013 International Joint Conference on. IEEE, pp. 1–10 (cit. on p. 4).

Esser, S.K., Paul A Merolla, John V Arthur, Andrew S Cassidy, Rathinakumar
Appuswamy, Alexander Andreopoulos, David J Berg, Jeffrey L McKinstry,
Timothy Melano, Davis R Barch, et al. (2016). “Convolutional networks for
fast, energy-efficient neuromorphic computing.” In: Proceedings of the National
Academy of Sciences, p. 201604850 (cit. on p. 5).

Fieres, J., J. Schemmel, and K. Meier (2008). “Realizing Biological Spiking Network
Models in a Configurable Wafer-Scale Hardware System.” In: Proceedings of the
2008 International Joint Conference on Neural Networks (IJCNN) (cit. on p. 25).

http://dx.doi.org/10.1007/s00422-011-0435-9

Bibliography 129

Fourcaud-Trocmé, Nicolas, David Hansel, Carl Van Vreeswijk, and Nicolas Brunel
(2003). “How spike generation mechanisms determine the neuronal response
to fluctuating inputs.” In: Journal of Neuroscience 23.37, pp. 11628–11640 (cit. on
pp. 10, 11).

Fowler, Martin and Kent Beck (1999). Refactoring: improving the design of existing code.
Addison-Wesley Professional (cit. on p. 54).

Friedmann, S., J. Schemmel, A. Grübl, A. Hartel, M. Hock, and K. Meier (2016).
“Demonstrating Hybrid Learning in a Flexible Neuromorphic Hardware Sys-
tem.” In: IEEE Transactions on Biomedical Circuits and Systems PP.99, pp. 1–15.
issn: 1932-4545. doi: 10.1109/TBCAS.2016.2579164 (cit. on p. 15).

Friedmann, Simon (2013). “A New Approach to Learning in Neuromorphic Hard-
ware.” PhD thesis. Ruprecht-Karls-Universität Heidelberg (cit. on p. 15).

Friedmann, Simon, Nicolas Frémaux, Johannes Schemmel, Wulfram Gerstner, and
Karlheinz Meier (2013). “Reward-based learning under hardware constraints —
using a RISC processor embedded in a neuromorphic substrate.” In: Frontiers
in Neuroscience 7, p. 160. issn: 1662-453X. doi: 10.3389/fnins.2013.00160.
url: http://journal.frontiersin.org/article/10.3389/fnins.2013.00160
(cit. on p. 15).

Friedrich, Arno (2015). Charakterisierung von Adaption auf neuromorpher Hardware.
Bachelor thesis (cit. on pp. 54, 59, 76).

Furber, S. B., F. Galluppi, S. Temple, and L. A. Plana (2014). “The SpiNNaker
Project.” In: Proceedings of the IEEE 102.5, pp. 652–665. issn: 0018-9219. doi:
10.1109/JPROC.2014.2304638 (cit. on p. 4).

Furber, Steve (2016). “Large-scale neuromorphic computing systems.” In: Journal of
neural engineering 13.5, p. 051001 (cit. on pp. 4, 5).

Furber, Steve B., David R. Lester, Luis A. Plana, Jim D. Garside, Eustace Painkras,
Steve Temple, and Andrew D. Brown (2012). “Overview of the SpiNNaker Sys-
tem Architecture.” In: IEEE Transactions on Computers 99.PrePrints. issn: 0018-
9340. doi: http://doi.ieeecomputersociety.org/10.1109/TC.2012.142 (cit.
on p. 5).

Geiger, Randall L and Edgar Sanchez-Sinencio (1985). “Active filter design using
operational transconductance amplifiers: a tutorial.” In: IEEE Circuits and De-
vices Magazine 1.2, pp. 20–32 (cit. on p. 18).

Gerstner, Wulfram, Werner Kistler, Richard Naud, and Liam Paninski (2014). Neu-
ronal Dynamics. Cambridge University Press (cit. on pp. 7, 9, 34).

Gewaltig, Marc-Oliver and Markus Diesmann (2007). “NEST (NEural Simulation
Tool).” In: Scholarpedia 2.4, p. 1430. doi: 10.4249/scholarpedia.1430 (cit. on
pp. 69, 88).

Gorel, Alexander (2013). Integration einer automatisierten analogen und erweiterbaren
Testumgebung zur Validierung und Überwachung von Hardware und Software Frame-
works. Bachelor thesis (cit. on pp. 44, 46).

https://doi.org/10.1109/TBCAS.2016.2579164
https://doi.org/10.3389/fnins.2013.00160
http://journal.frontiersin.org/article/10.3389/fnins.2013.00160
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/TC.2012.142
https://doi.org/10.4249/scholarpedia.1430

130 Bibliography

Güttler, Maurice (2017). “Achieving a Higher Integration Level of Neuromorphic
Hardware using Wafer Embedding.” PhD thesis. Ruprecht-Karls-Universität
Heidelberg (cit. on pp. 41, 42, 53).

Hartel, Andreas (2016). “Implementation and Characterization of Mixed-Signal
Neuromorphic ASICs.” PhD thesis. Ruprecht-Karls-Universität Heidelberg (cit.
on pp. 17, 25, 28).

HBP SP9 partners (2014). Neuromorphic Platform Specification. Human Brain Project
(cit. on pp. 16, 25, 30, 37, 39, 43–45, 47, 52).

Helias, Moritz, Susanne Kunkel, Gen Masumoto, Jun Igarashi, Jochen Martin Ep-
pler, Shin Ishii, Tomoki Fukai, Abigail Morrison, and Markus Diesmann (2012).
“Supercomputers ready for use as discovery machines for neuroscience.” In:
Frontiers in Neuroinformatics 6.26. issn: 1662-5196. doi: 10.3389/fninf.2012.
00026. url: http://www.frontiersin.org/neuroinformatics/10.3389/fninf.
2012.00026/abstract (cit. on p. 3).

Hellenbrand, Markus (2013). A Raspberry Pi controlling neuromorphic hardware. Bach-
elor thesis (cit. on pp. 41, 49).

Hock, Matthias (2009). Test of Components for a Wafer-Scale Neuromorphic Hardware
System. Diploma thesis, University of Heidelberg, HD-KIP-09-37, http://www.
kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=1935 (cit. on
p. 28).

— (2014). “Modern Semiconductor Technologies for Neuromorphic Hardware.”
PhD thesis. Ruprecht-Karls-Universität Heidelberg (cit. on p. 109).

Hodgkin, Alan Lloyd and Andrew F. Huxley (1952). “A quantitative description of
membrane current and its application to conduction and excitation in nerve.”
In: J Physiol 117.4, pp. 500–544. issn: 0022-3751. url: http://view.ncbi.nlm.
nih.gov/pubmed/12991237 (cit. on p. 8).

Hu, Chenming, Weidong Liu, and Xiaodong Jin (1998). The BSIM3v3.2 MOSFET
Model (cit. on pp. 22, 35, 36).

Hunter, J. D. (2007). “Matplotlib: A 2D graphics environment.” In: Computing In
Science & Engineering 9.3, pp. 90–95. doi: 10.1109/MCSE.2007.55 (cit. on p. 49).

Husmann, Dan and Holger Zoglauer (2010). A Wafer-Scale-Integration System(WSI).
FACETS project internal documentation (cit. on p. 42).

Ilmberger, Joscha (2017). “Development of a digitizer for the BrainScaleS neuromor-
phic hardware system.” MA thesis. Ruprecht-Karls-Universität Heidelberg (cit.
on pp. 52, 109, 112).

Indiveri, G., E. Chicca, and R. Douglas (2009). “Artificial cognitive systems: From
VLSI networks of spiking neurons to neuromorphic cognition.” In: Cognitive
Computation 1.2, pp. 119–127 (cit. on p. 4).

Indiveri, Giacomo, Bernabé Linares-Barranco, Tara Julia Hamilton, André Van
Schaik, Ralph Etienne-Cummings, Tobi Delbruck, Shih-Chii Liu, Piotr Dudek,
Philipp Häfliger, Sylvie Renaud, et al. (2011). “Neuromorphic silicon neuron
circuits.” In: Frontiers in neuroscience 5 (cit. on p. 4).

https://doi.org/10.3389/fninf.2012.00026
https://doi.org/10.3389/fninf.2012.00026
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2012.00026/abstract
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2012.00026/abstract
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=1935
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=1935
http://view.ncbi.nlm.nih.gov/pubmed/12991237
http://view.ncbi.nlm.nih.gov/pubmed/12991237
https://doi.org/10.1109/MCSE.2007.55

Bibliography 131

Izhikevich, Eugene M. (2003). “Simple Model of Spiking Neurons.” In: IEEE Trans-
actions on Neural Networks 14, pp. 1569–1572. eprint: http://www.izhikevich.
org/publications/spkes.pdf. url: http://www.izhikevich.org/publications/
spikes.htm (cit. on p. 9).

Jeltsch, Sebastian (2014). “A Scalable Workflow for a Configurable Neuromorphic
Platform.” PhD thesis. Universität Heidelberg (cit. on pp. 17, 27, 53).

Jones, Eric, Travis Oliphant, Pearu Peterson, et al. (2001–). SciPy: Open source scien-
tific tools for Python. [Online; accessed 2017-01-17]. url: http://www.scipy.org/
(cit. on p. 49).

Jouppi, Norman P. et al. (2017). “In-Datacenter Performance Analysis of a Tensor
Processing Unit.” In: CoRR abs/1704.04760. url: http://arxiv.org/abs/1704.
04760 (cit. on p. 3).

Kalampokis, Alkiviadis, Christos Kotsavasiloglou, Panos Argyrakis, and Stavros
Baloyannis (2003). “Robustness in biological neural networks.” In: Physica A:
Statistical Mechanics and its Applications 317, pp. 581–590. issn: 0378-4371. doi:
10.1016/S0378-4371(02)01340-7 (cit. on p. 4).

Karasenko, Vitali (2014). “A communication infrastructure for a neuromorphic sys-
tem.” MA thesis (cit. on p. 17).

Kiene, Gerd (2014). Internship Report (cit. on pp. 11, 18).
Klähn, Johann (2013). Untersuchung und Management von Synapsendefektverteilun-

gen in einem großskaligen neuromorphen Hardwaresystem. Bachelor thesis (cit. on
pp. 36, 54).

— (2017). “Training Functional Networks on Large-Scale Neuromorphic Hard-
ware.” MA thesis. Ruprecht-Karls-Universität Heidelberg (cit. on p. 113).

Koke, Christoph (2016). “Device Variability in Synapses of Neuromorphic Cir-
cuits.” PhD thesis. Ruprecht-Karls-Universität Heidelberg (cit. on pp. 17, 18,
25, 26, 28, 29, 31, 45, 46, 49, 53, 70, 100, 117).

Kugele, Alexander (2017). In preparation. MA thesis. Ruprecht-Karls-Universität
Heidelberg (cit. on pp. 99, 113).

Kungl, Akos (2016). “Sampling with leaky integrate-and-fire neurons on the HI-
CANNv4 neuromorphic chip.” MA thesis. Ruprecht-Karls-Universität Heidel-
berg (cit. on pp. 54, 113).

Kunkel, Susanne, Gen Masumoto, Tomoki Fukai, Jochen Martin Eppler, Hans Ekke-
hard Plesser, Jun Igarashi, Markus Diesmann, Abigail Morrison, Maximilian
Schmidt, Moritz Helias, et al. (2013). “Supercomputers ready for use as dis-
covery machines for neuroscience.” In: 10th Meeting of the German Neuroscience
Society. FZJ-2013-03827. Computational and Systems Neuroscience (cit. on p. 3).

Lande, T.S., H. Ranjbar, M. Ismail, and Y. Berg (1996). “An analog floating-gate
memory in a standard digital technology.” In: Microelectronics for Neural Net-
works, 1996., Proceedings of Fifth International Conference on, pp. 271–276. doi:
10.1109/MNNFS.1996.493802 (cit. on p. 28).

http://www.izhikevich.org/publications/spkes.pdf
http://www.izhikevich.org/publications/spkes.pdf
http://www.izhikevich.org/publications/spikes.htm
http://www.izhikevich.org/publications/spikes.htm
http://www.scipy.org/
http://arxiv.org/abs/1704.04760
http://arxiv.org/abs/1704.04760
https://doi.org/10.1016/S0378-4371(02)01340-7
https://doi.org/10.1109/MNNFS.1996.493802

132 Bibliography

Loock, Jan-Peter (2006). Evaluierung eines Floating Gate Analogspeichers für Neuronale
Netze in Single-Poly UMC 180nm CMOS-Prozess. Diploma thesis (English), Uni-
versity of Heidelberg, HD-KIP-06-47 (cit. on p. 28).

Mauch, Christian (2016). “Commissioning of a Neuromorphic Computing Plat-
form.” Master thesis. Ruprecht-Karls-Universität Heidelberg (cit. on p. 42).

McIntosh, Shane, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan (2014).
“The impact of code review coverage and code review participation on soft-
ware quality: A case study of the qt, vtk, and itk projects.” In: Proceedings of
the 11th Working Conference on Mining Software Repositories. ACM, pp. 192–201

(cit. on p. 54).
McKinney, Wes (2010). “Data Structures for Statistical Computing in Python.” In:

Proceedings of the 9th Python in Science Conference. Ed. by Stéfan van der Walt
and Jarrod Millman, pp. 51–56 (cit. on p. 49).

— (2012). Python for data analysis: Data wrangling with Pandas, NumPy, and IPython.
" O’Reilly Media, Inc." (cit. on p. 49).

Mead, C. A. (1989). Analog VLSI and Neural Systems. Reading, MA: Addison Wesley
(cit. on p. 4).

Mead, Carver (1990). “Neuromorphic electronic systems.” In: Proceedings of the IEEE
78.10, pp. 1629–1636 (cit. on p. 4).

Migliore, Michele, C Cannia, William W Lytton, Henry Markram, and Michael
L Hines (2006). “Parallel network simulations with NEURON.” In: Journal of
computational neuroscience 21.2, pp. 119–129 (cit. on p. 3).

Millner, Sebastian (2012). “Development of a Multi-Compartment Neuron Model
Emulation.” PhD thesis. Ruprecht-Karls University Heidelberg. url: http://
www.ub.uni-heidelberg.de/archiv/13979 (cit. on pp. 16–19, 21–25, 27, 28, 33,
37, 59–61, 67, 85–87, 111).

Millner, Sebastian, Andreas Grübl, Karlheinz Meier, Johannes Schemmel, and
Marc-Olivier Schwartz (2010). “A VLSI Implementation of the Adaptive Expo-
nential Integrate-and-Fire Neuron Model.” In: Advances in Neural Information
Processing Systems 23. Ed. by J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S.
Zemel, and A. Culotta, pp. 1642–1650 (cit. on p. 18).

Müller, Eric Christian (2014). “Novel Operation Modes of Accelerated Neuromor-
phic Hardware.” HD-KIP 14-98. PhD thesis. Ruprecht-Karls-Universität Hei-
delberg. url: http://www.kip.uni-heidelberg.de/Veroeffentlichungen/
details.php?id=3112 (cit. on pp. 39, 41, 49, 53).

Müller, Paul (2017). Modeling and Verification for a Scalable Neuromorphic Sub-
strate. PhD thesis. Ruprecht-Karls-Universität Heidelberg (cit. on pp. 51, 109).

Müller, Paul, Sebastian Schmitt, Bernhard Vogginger, and Johannes Schemmel
(2014). Simplified Parameter Variation Model of the HMF Wafer System. BrainScaleS
internal document. last change 2014-12-18 (cit. on p. 51).

Naud, Richard, Nicolas Marcille, Claudia Clopath, and Wulfram Gerstner (2008).
“Firing patterns in the adaptive exponential integrate-and-fire model.” In: Bi-

http://www.ub.uni-heidelberg.de/archiv/13979
http://www.ub.uni-heidelberg.de/archiv/13979
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3112
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3112

Bibliography 133

ological Cybernetics 99.4, pp. 335–347. doi: 10.1007/s00422-008-0264-7. url:
http://dx.doi.org/10.1007/s00422-008-0264-7 (cit. on p. 11).

Nonnenmacher, Tobias (2015). “Characterization of Spike-Timing Dependent Plas-
ticity in Neuromorphic Hardware.” MA thesis. Ruprecht-Karls-Universität Hei-
delberg (cit. on pp. 15, 31, 33, 54).

Pakkenberg, Bente, Dorte Pelvig, Lisbeth Marner, Mads J Bundgaard, Hans Jørgen
G Gundersen, Jens R Nyengaard, and Lisbeth Regeur (2003). “Aging and the
human neocortex.” In: Experimental gerontology 38.1, pp. 95–99 (cit. on p. 3).

Pape, Constantin (2013). Vergleich der Executable System Specification mit neuromor-
pher Hardware über eine gemeinsame Bedienungsschnittstelle. Bachelor thesis (cit.
on p. 54).

Pelgrom, Marcel J.M., Aad C.J. Duinmaijer, Anton P.G. Welbers, et al. (1989).
“Matching properties of MOS transistors.” In: IEEE Journal of solid-state circuits
24.5, pp. 1433–1439. doi: 10.1016/0168-9002(91)90167-O (cit. on p. 36).

Perez, F. and B. E. Granger (2007). “IPython: A System for Interactive Scientific
Computing.” In: Computing in Science Engineering 9.3, pp. 21–29. issn: 1521-
9615. doi: 10.1109/MCSE.2007.53 (cit. on p. 49).

Petrovici, Mihai A. (2015). “Function vs. Substrate: Theory and Models for Neuro-
morphic Hardware.” PhD thesis (cit. on p. 27).

Petrovici, Mihai A., Anna Schroeder, Oliver Breitwieser, Andreas Grübl, Johannes
Schemmel, and Karlheinz Meier (2016). “Robustness from structure: fast infer-
ence on a neuromorphic device with hierarchical LIF networks.” In: arXiv (cit.
on p. 4).

Pfeil, Thomas (2015). “Exploring the potential of brain-inspired computing.” PhD
thesis. Ruprecht-Karls-Universität Heidelberg (cit. on p. 59).

Philipp, Stefan (2008). “Design and Implementation of a Multi-Class Network Ar-
chitecture for Hardware Neural Networks.” PhD thesis. Ruprecht-Karls Uni-
versität Heidelberg (cit. on p. 17).

Piccinini, Gualtiero and Sonya Bahar (2013). “Neural computation and the com-
putational theory of cognition.” In: Cognitive science 37.3, pp. 453–488 (cit. on
p. 3).

Pilz, Lukas (2016). Towards Fast Iterative Learning On The BrainScaleS Neuromorphic
Hardware System. Bachelor thesis (cit. on pp. 54, 112).

Razavi, Behzad (2001). Design of analog CMOS integrated circuits. International ed.
McGraw-Hill, p. 684. isbn: 0-07-118839-8 (cit. on p. 36).

Richardson, Magnus J. E., Nicolas Brunel, and Vincent Hakim (2003). “From
Subthreshold to Firing-Rate Resonance.” In: Journal of Neurophysiology 89.5,
pp. 2538–2554. issn: 0022-3077. doi: 10.1152/jn.00955.2002. eprint: http:
//jn.physiology.org/content/89/5/2538.full.pdf. url: http://jn.

physiology.org/content/89/5/2538 (cit. on p. 11).
Sawada, J. et al. (2016). “TrueNorth Ecosystem for Brain-Inspired Computing: Scal-

able Systems, Software, and Applications.” In: SC16: International Conference for

https://doi.org/10.1007/s00422-008-0264-7
http://dx.doi.org/10.1007/s00422-008-0264-7
https://doi.org/10.1016/0168-9002(91)90167-O
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1152/jn.00955.2002
http://jn.physiology.org/content/89/5/2538.full.pdf
http://jn.physiology.org/content/89/5/2538.full.pdf
http://jn.physiology.org/content/89/5/2538
http://jn.physiology.org/content/89/5/2538

134 Bibliography

High Performance Computing, Networking, Storage and Analysis, pp. 130–141. doi:
10.1109/SC.2016.11 (cit. on p. 4).

Schemmel, J., J. Fieres, and K. Meier (2008). “Wafer-Scale Integration of Analog
Neural Networks.” In: Proceedings of the 2008 International Joint Conference on
Neural Networks (IJCNN) (cit. on p. 15).

Schemmel, J., A. Grübl, et al. (2012). “Live demonstration: A scaled-down version
of the BrainScaleS wafer-scale neuromorphic system.” In: Proceedings of the 2012
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 702–702. doi:
10.1109/ISCAS.2012.6272131 (cit. on pp. 37, 38).

Schemmel, J., A. Grübl, K. Meier, and E. Muller (2006). “Implementing Synaptic
Plasticity in a VLSI Spiking Neural Network Model.” In: Proceedings of the 2006
International Joint Conference on Neural Networks (IJCNN). IEEE Press (cit. on
p. 15).

Schmidt, Dominik (2014). “Automated Characterization of a Wafer-Scale Neuro-
morphic Hardware System.” MA thesis. Ruprecht-Karls-Universität Heidel-
berg (cit. on pp. 25, 27, 54, 59, 60, 68, 78, 100, 109).

Schmitt, Sebastian et al. (2016). “Classification With Deep Neural Networks on an
Accelerated Analog Neuromorphic System.” In: arXiv (cit. on pp. 16, 113).

Scholze, S., H. Eisenreich, S. Höppner, G. Ellguth, S. Henker, M. Ander, S. Hänzsche,
J. Partzsch, C. Mayr, and R. Schüffny (2011). “A 32 GBit/s Communication
SoC for a Waferscale Neuromorphic System.” In: Integration, the VLSI Journal.
in press. doi: 10.1016/j.vlsi.2011.05.003 (cit. on p. 39).

Schwartz, Marc-Olivier (2013). “Reproducing Biologically Realistic Regimes on a
Highly-Accelerated Neuromorphic Hardware System.” PhD thesis. Universität
Heidelberg (cit. on pp. 11, 37, 53, 59, 66, 84, 88, 111).

Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, et al. (2016). “Mastering the game of Go with deep
neural networks and tree search.” In: Nature 529.7587, pp. 484–489 (cit. on p. 3).

Srowig, André, Jan-Peter Loock, Karlheinz Meier, Johannes Schemmel, Holger
Eisenreich, Georg Ellguth, and René Schüffny (2007). “Analog Floating Gate
Memory in a 0.18 µm Single-Poly CMOS Process.” In: FACETS internal docu-
mentation (cit. on p. 28).

Sterling, Peter and Simon Laughlin (2015). Principles of neural design. MIT Press (cit.
on p. 7).

Sterzenbach, Lars (2014). Entwicklung einer selbstüberwachenden Spannungsversorgung
für ein auf Wafer-Ebene integriertes neuromorphes Hardware-System. Bachelor the-
sis (German), University of Heidelberg (cit. on p. 42).

Stöckel, David (2014). Measuring the Leakage Current Module Characteristic of the HI-
CANN Neuron Circuit. Internship report (cit. on p. 58).

Stradmann, Yannik (2016). “Characterization and Calibration of a Mixed-Signal
Leaky Integrate and Fire Neuron on HICANN-DLS.” Bachelor thesis. Ruprecht-
Karls-Universität Heidelberg (cit. on p. 109).

https://doi.org/10.1109/SC.2016.11
https://doi.org/10.1109/ISCAS.2012.6272131
https://doi.org/10.1016/j.vlsi.2011.05.003

Bibliography 135

Thanasoulis, V., J. Partzsch, S. Hartmann, C. Mayr, and R. Schüffny (2012). “Ded-
icated FPGA communication architecture and design for a large-scale neu-
romorphic system.” In: 2012 19th IEEE International Conference on Electronics,
Circuits, and Systems (ICECS 2012), pp. 877–880. doi: 10.1109/ICECS.2012.
6463548 (cit. on p. 37).

Thanasoulis, Vasilis, Bernhard Vogginger, Johannes Partzsch, and René Schuffny
(2014). “A pulse communication flow ready for accelerated neuromorphic ex-
periments.” In: Circuits and Systems (ISCAS), 2014 IEEE International Symposium
on, pp. 265–268. doi: 10.1109/ISCAS.2014.6865116 (cit. on p. 39).

Tran, Binh (2013). Demonstrationsexperimente auf neuromorpher Hardware. Bachelor
thesis (cit. on pp. 11, 54, 111).

Treves, Alessandro (1993). “Mean-field analysis of neuronal spike dynamics.” In:
Network: Computation in Neural Systems 4.3, pp. 259–284. doi: 10.1088/0954-
898X_4_3_002 (cit. on p. 11).

Vanarse, Anup, Adam Osseiran, and Alexander Rassau (2016). “A review of cur-
rent neuromorphic approaches for vision, auditory, and olfactory sensors.” In:
Frontiers in neuroscience 10 (cit. on p. 4).

Walt, S. van der, S. C. Colbert, and G. Varoquaux (2011). “The NumPy Array: A
Structure for Efficient Numerical Computation.” In: Computing in Science Engi-
neering 13.2, pp. 22–30. issn: 1521-9615. doi: 10.1109/MCSE.2011.37 (cit. on
p. 49).

Ziegler, Simon (2013). Optimierung der physikalischen Signalübertragung auf neuromor-
pher Hardware. Bachelor thesis (cit. on pp. 27, 54).

https://doi.org/10.1109/ICECS.2012.6463548
https://doi.org/10.1109/ICECS.2012.6463548
https://doi.org/10.1109/ISCAS.2014.6865116
https://doi.org/10.1088/0954-898X_4_3_002
https://doi.org/10.1088/0954-898X_4_3_002
https://doi.org/10.1109/MCSE.2011.37

S TAT E M E N T O F O R I G I N A L I T Y

I certify that this thesis and the research to which it refers, are the product of my
own work. Any ideas or quotations from the work of other people, published or
otherwise, are fully acknowledged in accordance with the standard referencing
practices of the discipline.

Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 28.08.2017

.......................................
(signature)

	Abstract
	Zusammenfassung
	Contents
	Introduction
	1 Neuromorphic Computing
	2 Point Neuron Models
	2.1 Hodgkin-Huxley Model
	2.2 Leaky Integrate-and-Fire Model
	2.3 Izhikevich Model
	2.4 Adaptive Leaky Integrate-and-Fire Model
	2.5 Adaptive Exponential Leaky Integrate-and-Fire Model

	BrainScaleS System
	3 BrainScaleS System
	4 HICANN Chip
	4.1 Neuron Circuit
	4.1.1 Leakage Term
	4.1.2 Reset Mechanism
	4.1.3 Adaptation Term
	4.1.4 Exponential Term
	4.1.5 Current Input and Membrane Output
	4.1.6 Synaptic Input and Layer 1 Routing
	4.1.7 Spiking Mechanism and Interconnection

	4.2 Neuron Parameters
	4.2.1 Time Constant Scaling and Digital Configuration
	4.2.2 Floating Gate Memory
	4.2.3 Neuron Parameters
	4.2.4 Shared Parameters
	4.2.5 Parameter Translation

	4.3 Transistor-Level Simulation
	4.4 Mismatch and Nonlinearity
	4.5 Defect Information

	5 Experimental Setups
	5.1 Demonstrator Setup
	5.1.1 System Emulator Board
	5.1.2 Virtex-5 FPGA PCB
	5.1.3 HICANN PCB

	5.2 Cube Setup
	5.2.1 Kintex-7 FPGA PCB

	5.3 Wafer Setup
	5.4 Analog Readout Module
	5.4.1 ADC Calibration

	6 Control Software
	6.1 Executing Neural Network Experiments
	6.2 Calibration Framework
	6.2.1 Core Concepts
	6.2.2 Hardware Interface
	6.2.3 Transformation Storage

	6.3 Methodology

	AdEx Calibration
	7 Parameter Estimation Methods
	7.1 Experimental Setup
	7.1.1 Hardware Measurements

	7.2 Disabling Terms
	7.3 Previous Work
	7.4 Output Buffer Offset
	7.5 Resting Potential
	7.6 Threshold Potential
	7.7 Reset Potential
	7.8 Membrane Time Constant
	7.8.1 ISI-based Method

	7.9 Stimulation-Based Method
	7.10 Refractory Period
	7.11 Adaptation Parameters
	7.11.1 ISI-Based Determination of the Coupling Parameter a
	7.11.2 Determination of Coupling a in Analogy to Leakage Term
	7.11.3 Determining Adaptation Parameters via Differential Equation Fitting
	7.11.4 Determining the STA Parameter b

	7.12 Exponential Parameters
	7.12.1 General Considerations
	7.12.2 Previous Work
	7.12.3 Keeping VT Constant
	7.12.4 Determining T
	7.12.5 Hardware Measurement of T and VT

	Wafer Calibration
	8 Wafer-scale LIF Calibration

	Discussion
	9 Conclusion and Outlook
	9.1 Discussion of Methods
	9.2 Time Requirement of Calibration
	9.3 Current And Future Network Experiments

	Appendix
	A Experiment Duration
	B Parameter settings
	B.1 Base Configuration
	B.2 Resting Potential
	B.3 Reset Potential
	B.4 Threshold Potential
	B.5 Refractory Period
	B.6 Membrane Time Constant
	List of Figures
	List of Tables
	Acronyms
	Acknowledgments

	Bibliography

