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SUMMARY 

Pancreatic stellate cells (PSCs) are generally quiescent in normal conditions, but during 

inflammation or cancer these cells are activated, differentiate to myofibroblast-like cells, 

proliferate, migrate and start secreting extracellular matrix protein, which are the main 

contributors to the stromal formation during the process of cancer. EP300 is an important 

transcription coactivator and plays an important role in the process of cell proliferation and 

differentiation. Thus, we hypothesize that targeting EP300 will affect the activation of PSCs 

and may influence the process of pancreatic cancer, especially for pancreatic ductal 

adenocarcinoma (PDAC). Transient specific small interfering RNA (SiRNA) knockdown of 

EP300 resulted in reduced expression of fibronectin (FN) and collagen I (Col-I) in activated 

PSCs. Stable knockdown of EP300 by CRISPR/Cas9 gRNA plasmid had the same effects. 

However, the migration of PSCs was increased. And we firstly showed that EP300 

manipulated cell migration through ERK pathway. Furthermore, EP300 down regulation in 

PSCs increased the proliferation effect PSCs had on pancreatic cancer cells and PSCs 

protected tumor cells from chemotherapy more. Together, the evidences draw the conclusion 

that EP300 is a tumor suppressor gene, its downregulation increases the migration of PSCs 

and PSCs becomes more supportive for pancreatic cancer cells, but that reduces the extra 

cellular matrix production of PSCs.  

High resistance to chemotherapy is a frustrating issue in treating pancreatic ductal 

adenocarcinoma. It is one reason for a 5-year survival rate of PDAC patients lower than 5%. 

In recent years, researcher showed that the tumor microenvironment might make a great 

contribution to the drug resistance of pancreatic cancer. PSCs are important cells that exist in 

the tumor stroma of pancreatic cancer. Gemcitabine is a nucleoside analog, which is currently 

used as the best standard treatment for pancreatic cancer patients. In the present study, I 

analyzed how PSCs will affect the drug resistance of different drug sensitive pancreatic 

cancer cell lines. My results for the first time showed that conditioned medium from PSCs 

promotes chemo-resistance of Bxpc-3 cells by up regulating RRM1 and RRM2, but has no 

influence on the drug sensitivity of Panc-1 and Miapaca-2 cells. In addition, I could show that 

factors that are <100kDa and produced by pancreatic stellate cells are responsible for the 

effects. These factors are heat insensitive, trypsin and proteinase K insensitive and cannot be 

degraded by nucleases either, but the exact factor has yet to be determined. 
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ZUSAMMENFASSUNG 

Pankreas Sternzellen (PSCs) befinden sich üblicherweise in einem ruhenden Zustand. 

Während einer Entzündung des Pankreas oder bei Auftreten von Krebs werden diese Zellen 

jedoch aktiviert. Sie differenzieren dann in Zellen, die sich durch myofibroblastäre 

Eigenschaften auszeichnen, proliferieren, Migration zeigen und beginnen, extrazelluläre 

Matrix-Proteine zu sezernieren. Sie leisten einen wesentlichen Beitrag zur Bildung des 

Stroma, das bei Pankreaskrebs und speziell dem duktalen Adenokarzinom des Pankreas 

(PDAC) stark ausgeprägt ist. Das Protein EP300 ist ein zentraler Co-Aktivator der 

Transkription und spielt eine wichtige Rolle im Prozess der Zellproliferation und 

Zelldifferenzierung. Deshalb hatten wir die Hypothese aufgestellt, dass eine Beeinflussung 

von EP300 auf die Aktivierung von PSCs und damit auf Pankreaskrebs einwirkt. Eine 

transiente Herunterregulierung von EP300 mittels spezifischer, kleiner, interferierender RNA 

(small interfering RNA; siRNA) Moleküle reduzierte die Expression von Fibronektin (FN) 

und Collagen I (Col-I) in aktivierten PSCs. Eine stabile Reduzierung der EP300 Expression 

mittels des CRISPR-Cas9 Systems zeigte den gleichen Effekt. Die Zellmigration wurde 

dagegen verstärkt. Ich konnte zeigen, dass der Mechanismus, mit dem EP300 die Migration 

beeinflusst, durch den ERK Stoffwechselweg erfolgt. Außerdem steigerte die Reduzierung der 

EP300 Menge in PSCs den Effekt auf die Zellproliferation in Pankreaskrebs, die von den 

PSCs ausgeht. Gleichzeitig schützten solch modifizierten PSCs den Tumor stärker vor 

Chemotherapie. In Kombination erlauben die Ergebnisse die Schlussfolgerung, dass EP300 

ein Tumorsuppressor-Gen darstellt. Eine reduzierte Expression führt zu mehr PSC Migration. 

Gleichzeitig unterstützen diese PSCs die Tumorzellen, während die Produktion der 

extrazellulären Matrix reduziert wird. 

 

Der hohe Grad an Resistenz gegenüber Chemotherapie ist eine der frustrierenden Facetten bei 

der Behandlung von duktalem Adenokarzinom des Pankreas (PDAC). Sie ist ein Grund, 

warum die 5-Jahres Überlebensrate mit etwa 5% der Patienten so gering ist. In den letzten 

Jahren konnte gezeigt werden, dass die Tumor-Mikroumgebung (tumor microenvironment) 

einen großen Beitrag zu dieser Resistenzausbildung leistet. PSCs sind eine wichtige 

Zellkomponente im Stroma von PDAC Tumorgeweben. Gemcitabin ist eine Nukleosid-

Analog, das zurzeit immer noch die Grundlage der Standardbehandlung von PDAC darstellt. 

In meiner Arbeit habe ich analysiert, wie PSCs für verschiedenen PDAC Zelllinien die 

Resistenz auf Chemotherapie beeinflussen. Meine Ergebnisse zeigen, dass Medium mit den 

sezernierten Molekülen (conditioned medium) von PSCs die Chemo-Resistenz der PDAC 

Zelllinie Bxpc-3 durch eine Regulation von RRM1 und RRM2 stärken. Im Gegensatz dazu 

hat es keinen Einfluss auf die Sensitivität der Zelllinien Panc-1 und Miapaca-2. Zusätzlich 

konnte ich zeigen, dass Faktoren einer Größe kleiner 100 kDa für den Effekt verantwortlich 

sind. Diese Faktoren konnten weder durch Hitze noch Verdau mit Trypsin und Proteinase K 

oder Nukleasen inaktiviert werden. 
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Part I:  Exploring the Functions of EP300 in Activated Pancreatic 

Stellate Cells 

1 Introduction 

1.1 Pancreas 

Pancreas is a glandular organ, located across the back of the abdomen, behind the stomach. It 

contains two types of glands: (1) Exocrine. The exocrine gland excretes various enzymes to 

digest different substances in food. (2) Endocrine. The endocrine gland secretes hormones 

into the blood, which controls the blood sugar levels throughout the day. These two functions 

are vital to the body’s survival [1]. 

1.1.1 Anatomy of the pancreas 

In humans, the pancreas weighs on average 80g and is about 15 to 20 cm long, which extends 

laterally and superiorly across the abdomen from the curve of the duodenum to the spleen. It 

composes of three regions. The head of the pancreas connects to the duodenum, which is the 

widest region of the organ. The body of the pancreas extends laterally toward the left. The 

tapered left side of the pancreas is referred as the tail region, which is near the spleen. As 

showed in Figure 1. 

The exocrine of the pancreas is composed of grape like cell clusters, which are called acini. 

When acinar cells are stimulated, they release enzyme-rich pancreatic juice into the ducts. 

Scattered through the sea of exocrine acini are small islands of endocrine cells, the islets of 

Langerhans. The hormones secreted by endocrine cells are important in glucose homeostasis. 

There are two main types of endocrine cells, alpha cells, which raise blood glucose levels, and 

beta cells, which lower blood glucose levels [2].  

1.1.2 Regulation of the pancreas 

There are two systems which can regulate the function of the pancreas: the autonomic nervous 

system (ANS) and the endocrine system. The sympathetic and the parasympathetic division in 

the ANS control the glucose levels in the blood. Sympathetic division stimulates alpha cells 

of the pancreas to release glucagon, which increases the glucose level in the blood. 

Parasympathetic division stimulates the release of insulin and pancreatic juice by the pancreas, 

to digest food and store glucose, which reduces the glucose level in the blood. The endocrines 
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system uses two hormones to regulate the digestive function of the pancreas. Secretin helps to 

maintain a neutral pH in the stomach. Cholecystokinin contributes to the digestion of large 

protein and lipid molecules that are difficult to break down [3]. 

 

Figure 1. The exocrine and the endocrine of pancreas. The pancreas has a head, a body and a tail. It delivers 

pancreatic juice to the duodenum through the pancreatic duct [4]. 

1.1.3 Common pancreatic problems 

Diabetes: Diabetes is a condition where the amount of sugar in the blood is too high, which is 

caused by the malfunction of the pancreas. The pancreas loses the ability to produce and 

release insulin, so the sugar level can’t be lowered in the blood. Diabetes patient will feel very 

thirsty, pass more urine than normal, lose weight and feel tired [5].  

Pancreatitis: The pancreas becomes inflamed and damaged by its own digestive chemicals. It 

can occur as acute painful attacks lasting a matter of days, or maybe a chronic condition that 

progresses over a period of years. Sometimes it will be life-threatening. Alcohol or gallstones 

can contribute to it, but the real cause of the most pancreatitis is unknown [6]. 
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1.2 Cancer 

Cancer is a disease caused by abnormal cell growth and it has the potential to spread to other 

parts of the body. It is one of the leading causes of death worldwide. For example, in 2014, 

cancer is responsible for 8.2 million deaths around the world [7]. The earliest written record 

in the history of cancer is from approximately 1600BC in Egyptian, which describes breast 

cancer [8]. However, till now, there is still no cure for most cancer. 

Actually, cancer is mainly a genetic disease, which is caused by changes in genes that control 

our cells functions, especially those related to cell growth and division. In general, they are 

three types of genes highly responsible for cancer, which are: proto-oncogenes, tumor 

suppressor genes and DNA repair genes. When proto-oncogenes are altered, they will become 

cancer-causing genes, which allow cells to grow and survive when they shouldn’t. When 

tumor suppressor genes are mutated, they will allow cells to divide without control. If DNA 

repair genes are changed, that will make cells become cancerous. In a word, some gene 

mutations cause cancer. 

They are many types of cancer, since it can start almost everywhere, such as leukemia, 

lymphoma, melanoma, carcinoma, brain cancer and so on. Many cancers form solid tumors, 

but some are not, for example, leukemia. For those that can form tumors, there are generally 

two types: malignant tumors and benign tumors. Benign tumors don’t invade or spread to 

nearby tissues, once removed, they usually don’t grow back. However, unlike benign tumor, 

malignant tumors can spread into or invade nearby tissues. By travelling through the blood or 

the lymph system, new tumors can be formed far from the original ones in benign tumor, 

which is life threatening. 

1.3 Pancreatic cancer  

Pancreatic cancer is the fourth leading cause of cancer-related death in both Europe and USA 

[9]. Despite many efforts have been put on it, the survive rate has not been improved in the 

past 30 years. Patients who diagnosed with pancreatic cancer will die within 6 months and the 

5 years survival rate is less than 5% [10]. This because it is often diagnosed at a late stage and 

it’s highly resistant to chemo and radiation therapy [11]. The most effective treatment for 

pancreatic cancer is surgery, however, only 20% of patients are suitable for surgery because 

when diagnosed it has already spread and 80% of patients after surgery suffer a relapse of the 

cancer [12]. For 2017, the American Cancer Society estimates that in the United States about 
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53,670 people will be diagnosed with pancreatic cancer and about 43,090 people will die of 

pancreatic cancer.  Hence, it is very urgent and important to study and research in the field of 

pancreatic cancer, hoping that it will improve the conditions of the patients and provide new 

insights to fight against it. 

1.3.1 Molecular biology of pancreatic cancer  

Currently, it’s still unknown what the exact causes of pancreatic cancer, but risk factors have 

been identified. Cigarette smoking, family history of pancreatic cancer, diabetes mellitus, 

heavy alcohol consumption (>60 mL ethanol/day) and history of pancreatitis are considered 

to be the most significant risk factors for pancreatic cancer [13, 14]. Scientists reported that 

25% of pancreatic cancer cases are related to smoking and pancreatic cancer developed 20 

years earlier in smokers than in nonsmokers [15, 16]. Researchers showed that inherited 

genetic variants contribute to at least 5%-10% of all pancreatic cancer cases [17-19]. The 

following genes with variants have been considered can increase the risk for pancreatic cancer 

in PDAC familial cases: BRCA1, BRCA2, PALB2, ATM, CDKN2A, APC, MLH1, PMS2, 

PRSS1 and STK11 [20]. Diabetes patients are also more likely to be diagnosed with 

pancreatic cancer [21].  

As mentioned before cancer is a gene related disease, so does pancreatic cancer. Scientists 

analyzed pancreatic tumor tissues and found that on average there are 63 genetic alterations 

relevant to tumor progression per sample [22]. Some gene mutations are present in almost all 

pancreatic samples. These genes include: KRAS, INK4A/ARF, SMAD4 and p53 [23-25]. 

KRAS is a GTPase that encoded by KRAS gene, it functions as a second messenger in growth 

factor receptor signaling pathways that stimulate the transition through the G1 phase of the 

cell division cycle. Approximately 90% of identified pancreatic cases have KRAS mutations 

[26]. When KRAS is mutated, it will impair the intrinsic GTPase activity resulting in a 

protein that is constitutively active in signal transduction, which will alter cell proliferation, 

survival and migration [27]. KRAS is considered as an oncogene in pancreatic cancer, and its 

mutation appears early during the process of pancreatic carcinoma [28]. Researchers have 

shown that KRAS is required for both the initiation and maintenance of pancreatic cancer in 

mice [29]. So KRAS could be the potential target for the therapeutic treatment of pancreatic 

cancer. 
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INK4A and ARF are two genes that are encoded in an overlapping region of the chromosome 

9. INK4A functions as an inhibitor of G1 cyclin-dependent kinase. The name of ARF implies 

that an alternate reading frame from INK4A encodes it. ARF family members encode small 

guanine nucleotide proteins and play a role in vesicular trafficking. These two genes are 

tumor suppressors and about 85% of pancreatic cancers are mutated in them [30]. Researches 

found that activated KRAS and INK4A/ARF deficiency cooperate to promote the 

development of pancreatic cancer [31]. ARF is found to be an activator of the p53 pathway, 

but it has p53-independent functions, such as inhibition of NF-κB activity, degradation of E2F 

and reducing the synthesis of ribosomal RNA [32]. Hence, when INK4A/ARF loss their 

function, many pathways will be influenced, cancer may begin to develop. 

SMAD4 is the number 4 protein of SMAD family, which functions as a signal transduction 

protein. This family plays a core role in the transforming growth factor-β (TGF-β) pathway, 

as shown in Figure 2. SMAD4 gene is found to be inactivated in about 55% of pancreatic 

cancers [33]. It is a tumor suppressor gene, its inactivation related to the development of 

pancreatic tumors. Normally, when TGF-β binds to their transmembrane receptors, after a 

series of phosphorylation, a SMAD4/SMAD complex transmit into the nucleus, binds to 

specific DNA sequence and activates gene transcription [34]. However, when SMAD4 is 

inactivated, many functions of TGF-β, such as growth suppression and apoptosis are no 

longer existed. Evidence showed that SMAD4 deficiency accelerates KRAS mediated 

pancreatic tumor development [35].  

p53 is a transcriptional activator, it plays an important role in cell cycle control and apoptosis. 

In a healthy cell, p53 protein level is low, however, when there is stress, such as DNA 

damage or hypoxia, it will be activated. p53 mainly has three functions: growth arrest, DNA 

repair and apoptosis. Over 50% of pancreatic tumors have p53 mutations [36, 37]. And in 

pancreatic cancer, p53 is often mutated in its DNA-binding domain, which will damage a lot 

of gene transcription, thus cells with abnormal DNAs remain growing. It’s a star molecule in 

cancer, over 50% of all human tumors have p53 mutations [38]. Unlike other tumor 

suppressors, research found that most of p53 mutations are missense mutations, but the reason 

for that remains unknown. 

Despite these most frequently mutated genes in pancreatic cancer, there are also other gene 

mutations found in PDAC, such as oncogenes: BRAF, AKT2, MYB and AIBI; tumor 
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suppressor genes: p21, p16/CDKN2A; genome maintenance genes: MLH, MSH2, BRCA2 

[27, 39], which we are not going to be discussed in details in this thesis. 

 

Figure 2. The transforming growth beta (TGF-β) signaling pathway. TGF-β binds to type II TGF-β receptor 

(TβRII), inducing the association of TβRII and TβRI, which activate TβRI. TβRI then phosphorylates Smad2 or 

Smad3.  Activated Smad2 or Smad3 associates with Smad4 and then translocate to the nucleus to influence the 

target gene expression [40]. 

Besides genetic abnormalities, epigenetic aberrations have also been found in PDAC. There 

are mainly three epigenetic modifications that affect gene expression, which are DNA 

methylation, histone modification and microRNA expression. Studies showed that more than 

90% of pancreatic cancers have aberrantly methylated PENK. Other genes that are found 

highly methylated in pancreatic cancer are: SPARC, CDKN2A/p16 and CDH1 [41]. Mucins, 

which play important roles in carcinogenesis, found undergo histone alterations in pancreatic 

cancer [42]. MicroRNAs are some non-coding RNA molecules, which negatively regulate the 

expression of target genes. In PDAC, several miRNAs have been shown over expressed, such 

as miR-155, miR-222, miR-221 and miR-21 [43].  
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The core signaling pathways that are highly related pancreatic cancer have also been studied. 

Besides the commonly mentioned Hedgehog and Notch pathway, the Wnt/Notch signaling 

pathway, small GTPase-dependent signaling pathway and integrin signaling pathway also 

involved in pancreatic cancer [22]. 

1.3.2 Pancreatic desmoplasia 

Solid tumors are organ-like structures, they are not only consist of tumor cells but also contain 

immune cells, fibroblasts, lymphocytes, macrophages, bone marrow-derived inflammatory 

cells, blood vessels and extracellular matrix (ECM), which form a cellular environment called 

tumor microenvironment [44]. During cancer, the tumor and its microenvironment constantly 

interact with each other to promote the process of cancer. Researchers have showed that 

tumor microenvironment maybe the leading player in the initiation of carcinomas. Such as 

mutations in stromal cells that specifically regulate paracrine growth factor expression have 

been found initiated epithelial cancer [45, 46]. Cancer cells’ ability to invade and metastasize 

has also been shown influenced by tumor microenvironment [47, 48]. In addition, studies 

found that cancer cells promoted the form of the tumor microenvironment by releasing 

various extracellular signals, such as cytokines, hormones, growth factors and so on [49, 50]. 

Another problem caused by tumor environment is hypoxia. Most solid tumors contain some 

regions of hypoxia. These regions are deprived of oxygen and are likely to have a decreased 

supply of nutrients such as glucose and essential amino acids. Tumor cells in these regions 

have to undergo oxidative metabolism, which will lead to low interstitial pH or acidosis inside 

the tumor. The lower pH in the tumor microenvironment will influence the cytotoxicity of 

anticancer drugs [51]. Tumor hypoxia also activates angiogenesis and cell survival related 

genes, which may lead to a more aggressive tumor type [52, 53]. Such as, hypoxia stimulates 

the transcription of vascular endothelial growth factor (VEGF), transforming growth factor-β 

(TNF-β), platelet-derived growth factor-β (PDGF-β) and insulin-like growth factor, which 

promotes tumor growth [54]. In a word, tumor hypoxia in the microenvironment is strongly 

associated with tumor propagation and influences cancer treatment. 

Scientists mainly focused on cancer cells to fight against tumors and they achieved significant 

advances in colorectal cancer, lung cancer and melanoma [55]. Unfortunately, the same 

method wasn’t successful in pancreatic cancer. A peculiar hallmark of pancreatic cancer is the 

presence of high percent of reactive stroma that can cumulate up to 90% of the tumor mass, as 
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showed in Figure 3 [56, 57]. And in recent years, an accumulating body of evidence suggests 

that the highly reactive stroma of pancreatic microenvironment is one of the prime reasons of 

the tumor aggressiveness and resistance to therapy. Researcher found that this massive stroma 

contributes to an increase interstitial fluid pressure inside of the tumor [58] and causes 

hypoxia in the tumor [59],  which makes it more difficult to find a good therapy for PDAC. 

Therefore, targeting stroma could be a new way to fight against pancreatic cancer.  

 

Figure  3. Colocalization of collagen and αSMA staining in pancreatic cancer [60]. Stroma exists positive stain 

for collagen I and αSMA. 

The dense desmoplasia of pancreatic cancer is also formed by many kinds of cells, such as 

endothelial cells, leukocyte, macrophages, inflammatory cells, nerve fibers and marrow-

derived stem cells. Among them, there is one type of cell we just can’t ignore, pancreatic 

stellate cells (PSCs). PSCs are generally quiescent during normal physiology, but when in the 

event of inflammation or cancer these cells are activated, differentiate to myofibroblast-like 

cells, proliferate, migrate and start secreting extracellular matrix (ECM) proteins, which are 

the main contributors to pancreatic fibrosis during the course of pancreatitis and pancreatic 

cancer. The details of pancreatic stellate cells will be discussed below. 

1.3.2.1 Pancreatic stellate cells 

Pancreatic stellate cells were first observed in 1982 by using autofluorescence and electron 

microscopy [61]. Then Apte [62] and Bachem [63] isolated stellate cells from rat and human 

pancreas, the study of PSCs began to develop. Early studies of PSCs based on the knowledge 
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and experience gained from hepatic stellate cell, which were first described in 1876 by Karl 

von Kupffer [64]. Stellate cells have a star like shape and they are also present in other tissues, 

including the kidney and lung [65, 66]. 

PSCs are specific stroma cells of pancreatic cancer, they generally have two states: 

quiescence and activation. In health pancreas, stellate cells are quiescent, they are located at 

the basolateral aspect of acinar cells and constitute approximately 4% to 7% of pancreatic 

cells [67]. They are round shape and fat storing cells, can be identified by the presence of 

abundant vitamin A and the expression of cytoskeletal proteins such as glial acidic fibrillary 

protein (GAFP) and desmin [62, 63, 68, 69]. By secreting matrix degrading enzymes and 

inhibitors of these enzymes, PSCs play a crucial role in maintaining the regular ECM turnover 

during health [70]. A study in 2010 also demonstrated that PSCs might play a role in 

regulating enzyme secretion from acinar cells [71].  

During inflammatory or cancer, PSCs undergo various changes. They loss the vitamin A 

droplets, become myofibroblast-like cells, proliferate, migrate and produce extracellular 

matrix proteins such as collagen I, fibronectin, laminin, which make great contributions to the 

stoma formation in pancreatic cancer [72-76]. In addition, activated PSCs secrete cytokines, 

chemokines, which work as feedback loops making PSCs more activated [77-79]. What’s 

more, other neighboring cells in the microenvironment such as acini, tumor, immune cells and 

platelets, work in a paracrine manner, stimulating the activation of PSCs, which promotes 

desmoplasia further [80]. A lot of factors have been shown involved in the activation of PSCs, 

such as transforming growth factor (TGF)-β1, tumor necrosis factor (TNF) α, platelet-derived 

growth factor (PDGF), vascular endothelial growth (VEGF) factors, interleukin (IL)-1, IL-6, 

IL8, IL-10 [63, 76]. The most potent activators of PSCs are believed to be TGF-β1 and PDGF. 

TGF-β1 is a fibrogenic mediator that stimulates the ECM synthesis of activated PSCs [81, 82] 

and IL-1 and IL-6 were found to affect the activation of PSCs through the production of TGF-

β1 [83]. PDGF induces the proliferation and migration of PSCs [84, 85]. Besides factors 

mentioned above, there are other potential sources related to the activation of PSCs, such as 

pressure, oxidative stress, ethanol and its metabolites, as well as the composition changes in 

the ECM [82, 86, 87]. Figure 4 showed the mechanisms of pancreatic stellate cells activation. 

In recent years, several signaling pathways and molecules that are important in the process of 

PSCs activation have been identified, which are peroxisome proliferator activated receptor 
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gamma (PPARᵧ), protein kinase C (PKC), the JAK-STAT pathway, the PI3K-AKT pathway, 

Rho kinases and transcription factor nuclear factor-kappa B (NF-κB) and so on [88].  

 

Figure 4. Mechanisms of pancreatic stellate cells activation. Growth factors and pro-inflammatory cytokines 

released by PSCs and its neighboring cells all induce PSCs activation [89]. 

PPARᵧ, also known as the glitazone receptor, is mainly present in adipose tissue. It can 

regulate fatty acid storage and glucose metabolism [89-91]. Researchers showed that 

overexpression of PPARᵧ blocks the activation of pancreatic stellate cells and down regulation 

of PPARᵧ is associated with PSCs activation [92]. Protein kinase C is a family of protein 

kinase enzymes. They are known for their long-term activation: they remain activated after 

the original activation signal is gone. Angiotensin II has been found to be able to promote the 

proliferation of activated PSCs through a protein kinase C pathway [93]. The JAK-STAT 

signaling pathway is a pathway that can transmit information from extracellular chemical 

signals to the nucleus. The activation of JAK-STAT is related to the activation of PSCs. 

PDGF was found stimulated the proliferation of PSCs via JAK-STAT pathway [94]. The 

PI3K-AKT pathway is also involved in the regulation of PSCs. PDGF promotes the migration 
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of PSCs through PI3K-AKT pathway [95]. Rho kinases play a role in regulating the shape 

and movement of cells. Treating PSCs with Rho kinase inhibitors blocks the activation of 

freshly isolated PSCs in culture [81]. NF-κB is a protein complex that controls transcription 

of DNA, cytokine production and cell survival. Researchers found that activated PSCs 

express a variety of NF-κB responsive genes [96]. There are other pathway proteins relate to 

the activation of PSCs, such as activator protein-1 (AP-1), Smad proteins, Hypoxia-inducible 

factors (HIF-1), Reactive oxygen species and Indian hedgehog (IHH), we are not going to 

explain them in details here [97-101]. 

After activation, PSCs have two fates, if the injury is not that severe, PSCs will lose their 

active phenotype and become quiescent again. If the injury is severe and continuous, PSCs 

will remain active and pancreatic fibrosis will develop. Irreversible activation of PSCs will 

cause the composition changes of the extra cellular matrix, which means that collagen I will 

deposit and fibrosis begins. The origin of PSCs has also been studied. Researcher showed that 

bone marrow-derived progenitor cells contribute around 5% to the PSCs population [102]. 

Some studies proved that PSCs are derived from pancreas precursor [103]. The contribution 

of endothelial cells to the myofibroblast cell population in pancreatic cancer has also been 

reported [104]. 

1.3.2.2 Tumor stroma interactions 

Considering the large amount of stroma in pancreatic adenocarcinoma, the role it plays in the 

process of cancer just can’t be ignored. Researchers found that the interactions between PSCs 

and pancreatic cancer cells can influence the progression of pancreatic cancer. On the one 

hand, pancreatic cancer cells not only secrete different kinds of growth factors such as 

transforming growth factor-β1 (TGF-β1), platelet-derived growth factor (PDGF), Vascular 

endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which can 

activate PSCs and thus stimulate proliferation, migration and matrix synthesis of cultured 

PSCs [63, 74, 76, 80, 105], but also they can produce MMPs, which digest stroma and release 

stored growth factors in the stroma, aiding in the desmoplastic reaction in PDAC [106]. 

Besides these factors mentioned above, two secretory proteins: cyclo-oxygenase-2 and trefoil 

factor 1, which is up regulated by pancreatic cancer cells, have also been reported can 

promote the proliferation of PSCs [60, 107]. 



 

Introduction 

 12 

On the other hand, scientists noticed that pancreatic stellate cells are important in promoting 

pancreatic cancer cell proliferation, invasion and metastasis [80]. An in vitro study showed 

that pancreatic stellate cells promote proliferation and invasiveness of human pancreatic 

cancer cells via galectin-3 [108].  A three dimension in vitro research proved that pancreatic 

stellate cells increase the invasion and epithelial-mesenchymal transition of pancreatic cancer 

cells [109]. In a subcutaneous mouse model of pancreatic cancer, it has been shown that 

animals injected with both PSCs and pancreatic cancer cells grew much bigger tumor than 

animals injected with cancer cells alone [110]. In another orthotopic model of pancreatic 

cancer, injection of pancreatic cancer cells and PSCs together into the pancreas of mice, 

histology experiments verified that activated PSCs are related to fibrosis and co-injection 

experiment mouse demonstrated larger tumors and more local and distant metastases than 

mouse only injected with tumor cells alone [111]. In pancreatic cancer patients, researchers 

found that extensive fibroblastic cell proliferation correlates with poor disease outcome [112].  

PSCs also have been found to play a role in regulating epithelial-mesenchymal transition 

(EMT) and stemness of cancer cells. EMT is a well-known hallmark of highly invasive cancer 

cells. When cells go epithelial mesenchymal transition, they will lose their cell polarity and 

cell-cell connections, and begin to migrate and invade. Researchers showed that PSCs 

promote EMT in pancreatic cancer cells. Cancer cells grow with PSCs gaining a fibroblast-

like appearance and begin express mesenchymal markers, such as vimentin and zeb [113]. 

Stemness is the ability to self-renew and differentiates. Cancer stem cells have the ability to 

move to distant sites and retain their stemness properties and thus grow new tumors at these 

sites. Researchers found that PSCs enhance stem cell-like phenotypes in pancreatic cancer 

cells. Hamada [114] showed that when co-cultured pancreatic cancer cells with PSCs, the 

spheroid-forming ability of pancreatic cancer cells was increased and some stem cell related 

genes were expressed in cancer cells. Al-Assar [115] demonstrated that PSCs enhanced 

cancer stem cell phenotype and radio resistance of pancreatic cancer cells. 

1.3.2.3 Macrophages 

Macrophages are a type of white blood cell that engulfs and digests unwanted particles, such 

as cell debris, foreign substances, microbes, and so on, which is an important part of our 

immune system. Generally, macrophages can divide into two types: (1) classically activated 

macrophages or called M1 macrophages. It encourages inflammation and during acute 

infectious diseases it provides host protection against bacteria and viruses [116, 117]; (2) 
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alternatively activated macrophages or called M2 macrophages. It plays a key role in 

dampening inflammation, promotes wounding healing, fibrosis and tumorigenesis [118, 119]. 

Both M1 and M2 macrophages are existed in the pancreatic tumor microenvironment. These 

macrophages have been postulated as being involved in the process of cancer [120, 121]. Liu 

demonstrated that the migration and proliferation of pancreatic cancer cells were increased 

when co-culture of tumor associated macrophages with pancreatic cancer cells [122]. 

Macrophages also interact with pancreatic stellate cells. Shi showed that quiescent PSCs were 

activated when co-culture with macrophage cell lines and PSCs in turn increased the cytokine 

production of macrophages [123].  

1.4 Pancreatic cancer models 

In order to simulate the in vivo environment of pancreatic cancer, models have been built for 

a better understanding of the biology of pancreatic cancer. These models include: three-

dimensional in vitro models and in vivo mouse models. 

Three dimension (3D) models often consist of a matrix, which is composed of extracellular 

proteins such as collagen and basement membrane proteins, with the cells or tissue cultured 

on top or within the matrix [124]. It allows the study of cell-cell and cell-ECM interactions, in 

addition to the influence of the microenvironment on cells. At present time, the most widely 

used three dimension system is multicellular tumor spheroids [125]. Spheroids are aggregates 

of cells grown in suspension or embedded in a 3D matrix using 3D culture methods [126]. 

They can be used to study tumor growth and proliferation, invasion, matrix remodeling, 

immune interactions and drug screening [127]. Compared to 2D models, 3D models have 

many advantages. They make it possible to capture and quantify invasion, which is not 

possible in 2D culture. Also, in cancer, they provide a very good method to study how tumor 

microenvironment interacts with cancer cells. Besides, they resemble more closely the in vivo 

situation [124]. However, they also have their limitation, the matrix composition and stiffness 

will alter cellular response and the thickness of the matrix will affect the nutritional status of 

cells [128]. 

For in vivo mouse models, there are mainly three kinds: xenograft mouse models, carcinogen 

induced mouse models and genetically engineered mouse models, showed in Figure 5. 

Xenograft mouse model of pancreatic cancer is created by transplanting human pancreatic 

cancer cell lines under the skin of immune compromised nude mice. They can be used to 
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study cancer cell/host cell interactions and the efficacy of new anticancer drugs [129]. For 

these models, it is easy to measure tumor dimensions after resection. However, it’s impossible 

to study metastasis by using these models and they ignore the contribution of the host immune 

system in the tumor progress [130]. Orthotopic mouse models are a little bit more 

complicated. They generated by injecting cancer cell into the mouse pancreas. They can help 

to study the tumor in its native position but they are expensive and technically difficult. 

Carcinogen induced models are generated by treating mice with certain chemicals that will 

lead to pancreatic cancer. Such as intraperitoneal injection of N-nitrosobis(2-oxopropyl)amine 

in hamsters [131]. Since about 70% of human tumors are induced by carcinogens, chemically 

induced models are of particular value. These models can be used to assess risk factors and 

find possible preventive and therapeutic methods for cancer [132]. However, these 

carcinogens also affect other organs, so the usage is limited. As mentioned above, pancreatic 

cancer is a gene related disease, so using genetically engineered mouse models to mimic 

relevant genetic mutations in pancreatic cancer is an invaluable tool to study cancer. And 

compared to xenograft tumors, genetically engineered mouse models are considered as an 

even closer approximation of human disease conditions [133]. 

 

Figure 5. Mouse models of pancreatic cancer: genetically engineered models and xenograft models are currently 

considered to best recapitulate the human pancreatic adenocarcinoma [134]. 
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1.5 EP300 

EP300 is short for E1A-associated protein p300. It is a large size protein and has a molecular 

weight of about 300 kDa. This protein is commonly expressed in human tissues and highly 

evolutionary conserved and present in many organisms including flies, worms and plants. It is 

a nuclear protein and mainly has three different functions: (1) Acetylation of histones tails. 

EP300 can acetylate promoter nucleosomal histones resulting in chromatin remodeling and 

relaxation, thus increase accessibility of the DNA to regulators. (2) Acetylation of other target 

proteins. EP300 can acetylate transcriptional factors such as E2F, HMGI and HNF4, 

modulating their activity and causing either positive or negative effect on transcription. (3) 

RNA Polymerase II stabilization. EP300 can work as a bridge to link the DNA-bound 

transcription factors to the basal transcription machinery [135]. 

Besides the functions mentioned above, EP300 also involves in a lot of biological processes, 

such as proliferation, cell cycle regulation, apoptosis and differentiation [136-138]. Evidences 

showed that EP300 activity is required for G1/S transition [139, 140]. Down regulation of 

EP300 inhibits apoptosis, which is possible by damaging the p53-mediated response to DNA 

damage [141]. Furthermore, EP300 is often found mutated or in a truncated form in various 

human tumors, such as colorectal cancer, gastric cancer, ovarian cancer, breast cancer and 

pancreatic cancer [142-144]. Research showed that lower expression of EP300 in colon 

carcinoma cells induces these cells to go epithelial mesenchymal transition [145]. And EP300 

proved to be a tumor suppressor gene in metaplastic breast cancer [146]. EP300 has also been 

implicated in embryonic development. It is showed that EP300 and CBP knockouts are early 

embryonic lethal and these two genes are essential for mammalian cell proliferation and 

development [147]. 

The crystal structure of human EP300 has been well studied. It mainly has three catalytic 

cores: bromodomain, CH2 region and HAT domain.  The CH2 region includes a PHD domain 

and a RING domain, showed in Figure 6 [148]. Mutations that inactivate the HAT domain are 

found in various cancers [149], mutations in the PHD domain are found in Rubinstein-Taybi 

syndrome [150]. Cancer-related mutations in the RING domain has been found lead to an 

increase in EP300 histone acetyltransferase activity [148]. Studying the core structure of 

EP300 and understanding the difference between different disease-related EP300 mutations 

may have important implications for pharmacological targeting. 
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Figure 6. Domain architecture of EP300. The bromodomain, RING and PHD domains are shown in yellow, 

green and red, respectively. The N and C subdomains of HAT domain are shown in blue and gray, respectively 

[148]. The author of this thesis modified the picture. 

1.6 Aim of the study 

As mentioned above, EP300 is an important transcription coactivator and participates in 

regulating cell proliferation, differentiation and apoptosis. Moreover, it has been found 

mutated in pancreatic cancer. Additionally, in PDAC, PSCs change from quiescent cells to 

active cells, they differentiate to myofibroblast-like cells, begin to proliferate and migrate. 

Therefore, we hypothesized that targeting EP300 may affect the activation of PSCs and 

influence the communications between PSCs and pancreatic cancer cells. Hence, we are going 

to explore the gene functions of EP300 in PSCs in the current study. 
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2 Materials and Methods 

2.1 Materials 

Table 1 Cell lines 

Cell lines Resources 

 

Immortalized PSCs 

 

 

A gift from Ralf Jesnowski [69], Mannheim Univerisity 

Hospital 

Bxpc-3 Authentificated by DKFZ, Heidelberg, Germany 

Panc-1 Authentificated by DKFZ, Heidelberg, Germany 

 

Table 2 Antibodies 

Product Company Catalogue Number 

AKT antibody Cell signaling 9272 

Anti-mouse IgG(H+L) Peroxidase Biozol VEC-PI-2000 

Anti-rabbit IgG(H+L) Peroxidase Biozol VEC-PI-1000 

Col-I antibody Abcam Ab34710 

EP300 antibody Abcam Ab3164 

ERK1/2 antibody Cell Signaling 9102 

Fibronectin antibody Sigma Aldrich F3648 

GAPDH Sigma-Aldrich G9295 

pAKT antibody Abcam Ab81283 

Phopho-ERK 1/2 antibody Cell Signaling 4307 

pSTAT3 antibody Abcam Ab76315 

STAT3 antibody Cell signaling 8768 

α smooth muscle actin antibody Acris 14395-1-AP 
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Table 3 Kits 

Product Company Catalogue Number 

BCA Protein Assay Kit Thermo Scientific 23225 

Fast SYBR
®
 Green Master Mix Thermo Scientific 4385612 

Go Taq Green Master Mix Promega M7122 

Immobilon western chemiluminescent HRP 

substrate  

Millipore WBKLS0500 

RevertAid First strand cDNA synthesis kit Life technology K1622 

QIAquick
® 

Gel extraction
 
kit Qiagen 28704 

DNeasy Blood & Tissue Kit Qiagen 69504 

 

Table 4 Reagents  

Product Company Catalogue 

Number 

1,2-Bis (dimethylamino) ethane(TEMED) Roth 2367 

12-Maltoside Sigma-Aldrich D4641 

Accutase Sigma-Aldrich A6964 

Acrylamid-stammlösung 30% Rotiphor 12623 

Agarose Sigma-Aldrich A9539 

Albumin from bovine serum Sigma-Aldrich A2153 

Ammoniumpersulfate (APS) Sigma-Aldrich A3678 

ASB-14 Sigma-Aldrich A1346 

Benzonase nuclease Merck 70746-4 

Bicine Sigma-Aldrich B3876 

C646>98%(HPLC), 5mg The Geyer SML0002 

Chloroform Sigma-Aldrich 288306 

DMEM Life Technologies 41965062 

DMSO Genaxxon Bioscience M6323.0100 

DNA Gel loading dye(6×) Thermo Sicentific R0611 

DPBS Life Technologies 14040174 

Ethanol, absolute Sigma-Aldrich 24102 
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Ethylenediaminetetraacetic acid disodium salt 

dihydrate (EDTA.2Na) 

Sigma-Aldrich E5134 

FBS Life Technologies 10500064 

Gemcitabine Biomol Cay11690-10 

Generuler Low range DNA Ladder, ready to 

use 

Life Technology SM1193 

Glycerol Sigma-Aldrich G5516 

Glycine for electrophoresis Sigma-Aldrich G8898 

Glycogen, RNA grade Fisher Scientific R0511 

Halt
TM

 Protease and Phosphatase inhibitor Thermo Sceintific 78443 

Hydrochloric acid (HCl), 37% VWR international 85848.290 

IMDM (with phenol red) Life Technologies 21980065 

IMDM (without phenol red) Life Technologies 21056023 

Isopropanol Sigma-Aldrich W292907 

Laemmli Sample Buffer 4× Bio-Rad Laboratories 161-0747 

LightCycler 480 Multiwell Plate 384,white Roche 04729749001 

Methanol Sigma-Aldrich 322415 

Millex-GP, 0.22µm filter EMD Millipore SLGP033RS 

Mission predesigned siRNA Sigma-Aldrich PDSIRNA2D 

Na-cholate Sigma-Aldrich C6445 

Nonfat dry milk Bio-Rad Laboratories 170-6404 

NP-40 Sigma 74385 

Nuclease-free water Life Technologies AM9939 

PBS Life Technologies 10010056 

PepGREEN DNA/RNA dye VWR 37-5010 

Pen/Strep Life Technologies 15140122 

PMSF Cell Signaling  8553 

Ponceau S solution Serva 33427.01 

Positive control siRNA Sigma-Aldrich PDsiRNAPC2D 

Prosie Quadcolor protein marker4.6-300kda Biozym 830537 

Resazurin  Fisher Scientific 10684882 

Restore Plus western blot stripping buffer Life Technologies 46430 

RNase ZAP
TM

 Sigma R2020-250ml 
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RNaseOUT
TM

 Ribonuclease inhibitor Invitrogen 10777-019 

siRNA transfection reagent, X-treme Roche 04476093001 

Sodium Acetate Solutaion 3M Life Technologies R1181 

Sodium Chloride (NaCl) Sigma-Aldrich S9888 

Sodium dodecyl sulfate(SDS) Sigma-Aldrich 71725 

Sodium hydroxide Fisher Scientific 11958484 

Spectra Multicolor Broad Range Protein 

Ladder 

Life Technologies 26634 

T7 Endonuclease 1 NEB M0302S 

TMB Liquid substrate system for ELISA Sigma-Aldrich T0440 

Triton X-100 Sigma-Aldrich T8787 

Trizma
® 

Base Sigma-Aldrich T1503 

Trizma
® 

HCL Sigma-Aldrich T3253 

Trizol Reagent Invitrogen 15596-0108 

Trypsin (0.05%) Life Technologies 25300062 

Tween
® 

 20 Sigma-Aldrich P2287 

U0126 Abcam Ab120241 

X-treme GENE HP DNA transfection reagent Roche 06366244001 

 

Table 5 Buffers and Solutions 

Name         Composition 

1×TBST 100ml  10×TBS,  1ml Tween 20, dilute it in 900 H2O  

10%APS 1gAPS, 10ml H2O 

10%SDS 10g SDS, 100ml H2O 

10× Laemmli running buffer 30g Tris base, 10g SDS, 144g Glycin ,  1L H2O 

10×TBS 31.52g Tris HCl, 80g NaCl, add 900ml H2O, adjust pH to 7.6, 

then fill the bottle to 1L  

 

4×Loading buffer for western 

(10ml) 

2.0ml 1M Tris-HCl, 4.0ml 100% glycerol,  

1.0ml 0.5M EDTA, 8mg bromophenol blue  

0.8g SDS, 0.4ml 14.7 M β-mercaptoethanol 
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5% Milk 10g fat skim milk powder and solve it in 200ml TBST 

Anode I buffer 36.4g Tris base, 200ml Methanol, fill it up to 1L with H2O 

Anode II buffer 3g Tris base, 200ml Methanol, fill it up to 1L with H2O 

Cathode buffer 3g Tris base, 5.2g 6-aminocaproic acid, 200ml Methanol, fill 

it up to 1L with H2O 

Lysis buffer (10ml) NP-40(20%) 500µl, Na-cholate (10%) 1000µl,  

ASB-14 (5%) 1000µl, 12-Maltoside(2.5%) 1000µl, 

Glycerol(99%) 2000µl, Bicine (0.5M, pH 8.5) 1000µl 

NaCl(1.50M) 1000µl, EDTA.2Na(0.02M) 1000µl 

PMSF(200mM) 50µl, Pro&Phosph inbihitor 100µl 

Benzonase 4µl, dH2O 1346µl 

 

PBST 1×(1L) 8g NaCl, 0.2g KCl, 1.44g NaHPO4, 0.24g KH2PO4 

1ml Tween 20, adjust pH to 7.4 

 

Sammel Buffer 47.28g TrisHCl in 200ml dH2O, adjust pH to 6.6 with NaOH 

TBE Buffer 10×(1 L) 108g Tris, 55g Boric acid, 40 ml 0.5M Na2EDTA, pH 8 

Trenn Buffer 36.33g Tris.Base in 200ml dH2O, adjust pH to 8.8 with HCL 

Western wet transfer buffer 3g Tris Base, 14.4g Glycine, 1gSDS, 800ml H2O, 200ml 

methanol 

 

 

Table 6 Materials 

Product Company Catalogue Number 

8 strip PCR tubes (0.2ml) Life Technologies AM12230 

Adhesive PCR seal Biozyme 600208 

Amicon
® 

Ultra-0.5ml Centrifugal Filters 

Ultracel
®

 -3K 

Merck Millipore UFC500396 

Cell culture flasks 175cm DKFZ Lager 12649 

Cell culture flasks 25cm DKFZ Lager 13640 

Cell culture flasks 75cm DKFZ Lager 12667 

Cell culture plates-6 well DKFZ Lager 657160 

Cell culture plates-96 well DKFZ Lager 655180 
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Cell Scraper, 39cm Neolab 100128121 

Cell Scraper, small 24cm Neolab 100128120 

Cover slips, square 0.22×0.22 mm Carlroth H87 

Cryovials, 1ml Greiner 123263 

Cryovials, 2ml Greiner 121261 

Eppendorf safe lock micro centrifuge tubes 

(0.5ml, 1.5ml and 2ml) 

Eppendorf 0030121594/ 

0030121597/ 

0030121570 

Filter tips 1000µl Biozym 701281 

Filter tips 20 µl Biozym 701221 

Filter tips 200 µl Biozym 701261 

Fisherbrand
TM 

Graduated Cylinders  

100,250ml, 1000ml 

Fisher scientific S63458 

S63459 

S63461 

Fisherbrand
TM

 Reusable Galss Media Bottles 

with Cap, 100ml, 250ml, 1000ml 

Fisher scientific FB800100 

FB800250 

FB8001000 

Flacon tube 15ml DKFZ Lager 14258 

Flacon tube 50ml  DKFZ Lager 12633 

GE Healthcare 3mm CHR blotting paper sheets 

46×57 cm 

GE Healthcare 3030917 

Gloves, Latex medical examination BM11228-PF-AV Blossom 

Gloves, Nitril Freeform SE FFS-700 Microflex 

HTS Transwell-96 system, 8µm Sigma-Aldrich CLS3374 

Light Cycler
®
 480 Multiwell plate 384, white Roche 04729749001 

Millex GS Filter, steril, 0.22μm Millipore SLGS033SS 

Mycoplasma ExS Spray Promo Cell PK-CC91-5051 

Nitrocellulose membrane 0.45µm GE Healthcare GE10600007 

Pasteur pipettes  230mm DKFZ Lager 12908 

PVDF membrane 0.45µm Merck Milipore IPFL10100 

Reservors,25ml Fisher Scientific 11475748 

Serological Pipettes 10ml DKFZ Lager 14301 
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Serological Pipettes 25ml DKFZ Lager 14302 

Serological Pipettes 5ml DKFZ Lager 14300 

 

Table 7 Equipments 

Name Manufacturer 

CO2 Water Jacketed incubator Thermo Life Science 

Electronic Balances, Kern 434,440-45 Kern & Sohn GmbH 

Fluostar Galaxy plate reader MTX Lab System 

Gilson Pipetman P1000 single channel pipette Gilson 

Gilson Pipetman P2 single channel pipette Gilson 

Gilson Pipetman P20 single channel pipette Gilson 

Gilson Pipetman P200 single channel pipette Gilson 

Ice maker Scotsman 

LAS-4000 mini Fujifilm Corporation 

Light Cycler system Roche 

Microwave oven Bosch 

Mini-PROTEAN Tetra Vertical Electrophoresis cell 

for Mini precast gels  

Biorad 

Nanodrop Spectrophotometer N1000 Thermo Scientific, USA 

PCR Thermocycler PTC200 MJ research BioRad, USA 

PH-Meter MP230 Mettler Toledo Mettler Toledo, Germany 

Power scanner Tecan 

Spectrafuge 3-1810 Centrifuge NeoLab 

Sterilgrad Hood Class II  Type A/B s The Baker Company 

TE 70 Semi-dry transfer unit   Amersham Bioscience 

TKA MilliQ water supply Millipore 

Vi cell XR cell viability analyzer, cell counter Beckman Coulter 

Vortex Mixer Neolad 

Water Bath Grant Instruments 

WILOVERT 30, Microscope Helmut Hund GmbH 

Heating Block Grant Instrument 

Microcomputer electrophoresis power supply Renner GmbH 
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Orbital Shaker Fröbel Instruments  

Mr. Frosty
TM

 Freezing Containers Thermo Fisher scientific 

 

2.2 Method 

2.2.1 Cell culture 

Immortalized human pancreatic stellate cells were a gift from Ralf Jesnowski[69]. Bxpc-3 and 

Panc-1 used in this article were authentificated by DKFZ internal service. All cell lines were 

cultured on 175 cm
2
 flasks in IMDM medium containing 10% fatal bovine serum, 50 

units/mL penicillin and 50µg/mL streptomycin at 37 °C with 5% CO2. Cells were separated 

every two days at a ratio of 1:5 and tested for mycoplasma contamination every month.  

For sub-culturing of these cells, when cells reached 80%-90% confluence, removed the old 

medium and washed the flask twice with PBS, then added 1ml of 0.05% trypsin per flask. 

Incubating them at 37 °C for 5-10min, once the cells were detached, medium containing 10% 

FBS was used to inactivate trypsin. Then cells were separated at the ratio mentioned before. 

For storage of cells, when cells reached 80-90% confluence, cells were detached as mentioned 

above. The cell suspension was centrifuged at 1500 rpm for 5 minutes and cell pellet was 

collected. The pellets were subsequently re-suspended in a cryoprotectant containing 60% 

FBS, 30% complete medium and 10% DMSO. One ml of cell suspension (around 1×10
6 

cells) 

was added to each cryovial. The vials were placed in a Mr. Frosty and stored at -80 °C for 1-2 

days, prior to being transferred to liquid nitrogen tank for long term storage. When recovering 

cells from liquid nitrogen tank, cells were thawed in a 37 °C water bath as quickly as possible. 

Then cell suspensions were transferred to a 15ml falcon tube containing pre-warmed complete 

medium, centrifuged and the supernatant was removed. Complete medium was used to 

resuspend the cells and cells were transferred into a culture flask for recovering. 

For counting of cells, cells were detached and well mixed. Then 500μl of cell suspension was 

put into the 4ml sample cup and counted by the Vi Cell counter. 

2.2.2 siRNA transfection 

PSCs were seeding on a 6-well plate 24 hours before transfection (1×10
5
/well), making sure 

that the cell confluence would reach 50%-60% at the time of transfection. Cells were treated 

with a mixture of 100nM EP300 siRNA (SASI_Hs01_00052818, sigma aldrich) and 20 µL X-
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tremeGENE siRNA transfection reagent (Roche Diagnostics) in a volume of 2 mL according 

to the manufacturer’s protocol. Scramble siRNA control was purchased from Santa Cruz. 

Seven hours after transfection, medium was changed to full growth medium. Cells were 

harvested 24 hours post transfection for real time quantitative PCR and 48 hours post 

transfection for western blot. For supernatant collection, cells were grown for 48 hours after 

transfection, serum free for 48 hours and then the media were collected. 

2.2.3 CRISPR/Cas9 gRNA transfection 

A commercial CRISPR plasmid pGS-gRNA-Cas9-Puro with gRNA sequence: 

TTTGCCGGGGTACAATAGG specifically targeting EP300 was bought from the company 

GenScript. The same plasmid with scramble gRNA sequence was served as control. Cells 

were seeded at 6-well plate 24 hours before transfection, making sure that they would reach 

80%-90% confluence at the time of transfection. X-tremeGene HP DNA transfection reagent 

were used according to the manufacturer’s instruction. Briefly 2µg plasmid and 8µL 

transfection reagent in a total volume of 2 mL were added in each well. 72 hours post 

transfection, cells were selected with 1µg/mL puromycin for approximately 14 days. Every 3 

days, fresh medium with puromycin was added. Surviving cells were pooled. T7 

endonuclease I assay (T7E1) was used to detect Cas9 induced mutations, western blot was 

used to check the protein expression. For supernatant collection, cells were seeding in a 

75cm
2
 flask for 24 hours, so they could reach 80-90% confluence, then serum free for 48 

hours and the media were collected. 

2.2.4 T7E1 assay 

Genomic DNA was extract from the stable knockdown cell lines by using a DNA extraction 

kit. A fragment of approximately 900bp was amplified from genomic DNA with the primer 

mentioned below. The PCR products were then purified on a 1.5% agarose gel and extracted 

by using a gel extraction kit. After that, 400ng purified DNA was denatured at 95 °C for 5 

minutes and slowly reannealed. Last, 1µL (10U) T7 endo I (NEB) enzyme was added and 

incubated at 37°C for 15min. The reaction was stopped by adding EDTA, and the digestion 

product was immediately run on a 1.5% agarose gel.  

2.2.5 C646 treatment 
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Normal PSCs were grown in a T75 flask (2.5×10
5
/flask), 24 hours later when the confluence 

of the cell would reach 80%-90%, serum free overnight.  Then cells were treated with 20µM 

C646 in serum free medium for 24 hours or 48 hours. Serum free medium was used since 

C646 was inhibited by serum. No longer treating time was done, because when cells were 

treating with C646 in serum free medium for 72h, they lose the viability. Cells treated with 

20μM DMSO were served as control, since C646 was dissolved in DMSO. 

2.2.6 Quantitative real time PCR (qRT-PCR) 

24 hours after siRNA transfection, the knockdown efficiency and gene expression of αSMA, 

FN and Col-I by PSCs were quantified with RT-PCR. Total RNA was extracted using Trizol 

reagent (Invitrogen). Briefly, 1ml of Trizol reagent was added to each well of the 6-well plate 

to lysis cells. Subsequently, RNA was separated with chloroform and precipitated out of the 

aqueous fraction with isopropanol and glycogen. 70% ethanol was used to wash the pellet 

twice. Then the pellet was dried and resuspended in water. RNA concentration was measured 

with Nano drop and 500 ng of RNA was used for the reverse transcription. cDNA synthesis 

was performed with a kit and following the instructor’s protocol. Quantitative real time PCR 

was performed using Light Cycler system (Roche) and Fast Sybr green (Life technology). All 

things were done according to the manufacturer’s protocol. HPRT1 was served as the control 

gene. The primer, reaction system and program used for real time PCR were as follows: 

Table 8 Primer 

Gene   Primer 

 

EP300 

 

 

Forward primer: 5’-GCAGTGTGCCAAACCAGATG-3’ 

Reverse primer: 5’-GGGTTTGCCGGGGTACAATA-3’    (105bp) 

 

αSMA Forward primer:5’- GAGGGAAGGTCCTAACAGCC-3’ 

Reverse primer:5’- TAGTCCCGGGGATAGGCAAA-3’ 

 

FN Forward primer:5’- GTCGGAGAAACGTGGGAGAA-3’ 

Reverse primer:5- GAAGTGCAAGTGATGCGTCC-3’ 

 

Col-I Forward primer: 5’-GCTCTTGCAACATCTCCCCT-3’ 

Reverse primer:  5’-CCTTCCTGACTCTCCTCCGA-3’ 

 

EP300  Forward primer: 5’- CTGCTACTGTGAATGAGACAGA-3’ 

Reverse primer: 5’- AGAACCAGGCAAAAACGCAC-3’      (867bp) 
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Hprt1 Bought from Qiagen   

Product: Hs_HPRT1_1_SG QuantiTect Primer Assay 

Product no.249900 

Cat.no. QT00059066 

 

Table 9 Reaction system used for realtime PCR 

Gene  1× run (μL) 

 

αSMA 

FN 

Col-I 

EP300 

cDNA 1 

Forward primer (10μM) 0.2 

Reverse primer(10μM) 0.2 

Sybr Green Master Mix 2× 5 

Nuclease-free water 3.6 

Total Volume 10 

 

Gene  1× run (μL) 

 

 

Hprt1 

cDNA 1 

Primer (10μM) 1 

Sybr Green Master Mix 2× 5 

Nuclease-free water 3 

Total Volume 10 

 

Table10 Program used for real time PCR 

Step Temperature (°C) Duration Cycles 

Polymerase activation 95 20 second Hold 

Denature 95 3 second  

40 Anneal/Extend 60 30 second 

 

2.2.7 Western blot 

For isolation of protein, cells in culture were washed three times with ice-cold PBS and lysed 

on ice with lysis buffer prepared by ourselves with freshly added PMSF for 30min. Cells were 

subsequently collected in a 1.5ml Eppendorf tube by scraping with a cell Scraper. Then the 
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liquid was resuspended with a syringe for 20 times and centrifuged at 15,000 g, 4 °C for 20 

minutes. The supernatant was transferred to a second labled Eppendorf tube and protein 

concentration was determined with a BCA kit according to the manufacturer’s instructions. If 

the proteins were not to be used immediately, samples were stored at -80 °C. 

For western analysis, certain amounts of proteins (5-10μg) with loading dye were boiled at 

95 °C for 5 minutes and loaded onto SDS-PAGE gels. Samples were run in the running buffer 

for 10min, 75V constant, then 90min, 135V constant (12% gel). The transfer of proteins from 

the gel to a Nitrocellulose membrane was carried out by a semidry transfer system. A 

sandwich model was made by soaking CHR blotting paper in Anode buffers I, Anode buffer 

II and Cathode buffer with membrane and gel. The semidry electrophoretic transfer was 

carried out for 60 minutes at 35V, 500mA. Then Membranes were blocked in 5% non-fat 

milk in Tris-buffered saline (TBS, 10 mM Tris, 10 mM NaCl) for 1h at room temperature. 

Subsequently washed and incubated with first antibody overnight at 4°C. Immunodetections 

were done with the corresponding secondary antibodies. ECL (Roche) and ImageQuant LAS 

4000 mini was used for visualization. The densitometric analysis was done by using Image J 

software. 

For large molecular weight proteins, such as FN, Col-I and EP300, 6% SDS-PAGE gel and 

PVDF membrane were used. The transfer of these proteins to PVDF membrane was done by 

using a wet-transfer system. And the wet electrophoretic transfer was carried out at room 

temperature for 4 hours at 150mA, 45V. For Col-I, the western was done at native condition. 

All the other steps were the same as mentioned above. 

For stripping, membranes were put into the stripping buffer for 10 minutes at room 

temperature, washed with PBS three times and blocked with 5% milk for 60 minutes before 

incubating with another primary antibody. 

The primary antibodies and the dilution ratios used were GAPDH (Sigma, 1:5000), EP300 

(Abcam, 1:500), αSMA (Acris, 1:1000), FN (Sigma, 1:500), α-tubulin (Sigma, 1:5000), 

pAKT (Abcam, 1:5000) , AKT(Cell signaling, 1:1000), pSTAT3 (Abcam, 1:100000), 

STAT3α (Cell signaling, 1:1000), pERK1/2(Cell signaling, 1:3000), ERK (Cell 

singaling,1:3000). The secondary antibodies used were HRP-conjugated goat-anti-rabbit 

(Vector, 1:5000), horse-anti-mouse (Vector, 1:5000). 
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2.2.8 ELISA Assay 

Col-I and FN are secreted protein, in order to analyze the secretion of them, the supernatant 

was collected as showed before. Subsequently, the media was condensed with Amicon Ultra-

10 centrifugal filter (Merck Millipore, MA, USA) and ELISA assay was performed to test the 

secretion of Col-I and FN. Results was normalized to cell numbers. Briefly, condensed media 

were coated in a 96 well microtiter plate ( Immunoplates MaxiSorp C 96, invritogen, ) at 4°C 

overnight, then wells were blocked with 3% BSA for 1 hours,  after washing three times with 

PBST, first antibody was incubated, then HRP conjugated secondary antibody was incubated. 

At Last TMB liquid were added to each well and signal was detected at 370 nm with a plate 

reader. 

2.2.9 Cells cultured on coverslips 

The 0.22×0.22 mm glass coverslips were soaked in 70% ethanol for at least 2 hours before 

using. Then one coverslip was placed over the bottom of each well of the 6-well plate with 

clean tweezer. After that, open the lid of the 6-well plate and put it into the cell culture hood, 

air dry for 30 minutes with the UV light on. Subsequently, stable EP300 down regulation cells 

and control group cells were seeded onto the coverslips at a concentration of 5×10
4
 for 48 

hours before the morphology was checked. 

2.2.10 Proliferation assay 

Stable EP300 knockdown PSCs and corresponding control PSCs were seeded in 96-well 

plates at 4×10
3 

per well.  24 hours later, serum free overnight, and fresh complete medium 

was added.  Then at the time point 24 h, 48 h, 72h, the proliferation of the cells was tested by 

resazurin assay. For conditioned medium treatment, 8×10
3
 Bxpc-3 or Panc-1 cells were 

seeding in 96 well plates, 24 hours later, serum free overnight, and conditioned medium were 

added. Then at the time point of 72h, the proliferation of the cells was tested by resazurin 

assay. Briefly, resazurin solution was added to each well, and make sure the final 

concentration of resazurin is 20µg/mL. Then the plates were incubated at 37°C for 2 hours 

and the fluorescence was recorded using FLUOstar Galaxy system. Ex=544 nm, Em=590 nm. 

2.2.11 Drug cytotoxicity assay 

The same number of cells was seeded and the same treatments were done as proliferation 

assay. It’s just that after serum free overnight, different concentrations of gemcitabine were 
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added to the cells in complete medium. 72 hours later, cell numbers were tested by resazurin 

assay as described above. For medium treatment drug sensitivity assay, complete medium was 

changed to conditioned medium during the experiment. All the other steps were the same. 

2.2.12 Migration assay  

HTS Transwell-96 well plate (Corning) with a pore size of 8 µm was used to do the migration 

assay.  Briefly, 1.2×10
4 

PSCs were added in serum-free medium in the upper layer. The lower 

layer was filled with complete medium, 48 hours later, cells on the bottom surface of the 

upper layer were detached and counted using resazurin assay. In the inhibitor treatment 

experiment, both the upper layer and the lower layer contains 20 µM DMSO or 20 µM U0126 

during the whole experiment. 

2.2.13 Conditioned media collection 

Control PSCs and stable EP300 knockdown PSCs were grown to 70% to 80% confluence in 

175 cm
2
 flasks in IMDM/10%FBS.  Then the media were changed to serum free IMDM and 

cells were cultured for 48h. Media were collected, centrifuged at 3,000 for 15min, condensed 

by Amicon Ultra centrifugal filter and protein concentration was tested by BCA kit. Then 

they were aliquoted and store at -80 °C until use. The same protein concentration media from 

control PSCs and stable EP300 knockdown PSCs were used for medium treatment assay. 

2.3 Statistic analysis 

All experiments were done three or more times. Data were shown as mean ± standard error 

mean. Two-tailed Student’s t test was used to make comparisons between different groups. 

Significant difference was defined differently based on different experiments. Statistical 

analysis was done using Excel.  
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3 Results 

3.1 siRNA transient knockdown of EP300  

To study the gene functions of EP300, siRNA was used knockdown EP300 in PSCs. 24 hours 

post transfection, quantitative RT-PCR results showed that the mRNA expression of EP300 

was reduced by 77.7%±0.04% compared to control (Fig. 7A). Western result verified that the 

protein expression of EP300 was reduced correspondently 48 hours after transfection (Fig. 

7B).   

 

Figure 7. siRNA transient knockdown of EP300. A.24 hours after knockdown, cells were collected and qRT-

PCR was used to analyze EP300 gene expression.  Hprt1 was used as control. The data represented the mean and 

SD of three independent experiments,*, P<0.05; B. 48 hours after knockdown, EP300 protein expression of 

PSCs was analyzed by western blot, GAPDH was served as loading control. 

3.2 Transient knockdown of EP300 affects the expression of PSCs’ activation markers 

To determine the activation status of PSCs after EP300 knockdown, the expression of α SMA, 

FN and Col-I, which were activation markers of PSCs, were studied in both mRNA and 

protein levels. FBS activates PSCs and PSCs were cultured in complete medium during the 

whole experiment, therefore PSCs were in an activation stimulation environment during the 

whole process. And, mRNA was collected 24 hours post knockdown and protein was 

collected 48 hours post knockdown. The expression of αSMA didn’t change in both mRNA 

and protein levels. FN was down regulated in both levels (Fig. 8A, Fig. 8B). However, Col-I 

expression was increased at mRNA level, but reduced at the protein level. For the western 

results of Col-I, the antibody showed two major bands, the lower bands were 170 kDa for pro-

collagen and the upper bands were 270 kDa for the dimer. 
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Figure 8. Effects of EP300 down regulation on the expression of activation markers of PSCs. A.24 hours after 

knockdown, cells were collected and qRT-PCR was used to analyze specific gene expression.  Hprt1 was used as 

control. The data represented the mean and SD of three independent experiments,*, P<0.05; **, P<0.01. B. 48 

hours after knockdown, selected protein expression of PSCs was analyzed by western blot, GAPDH was served 

as loading control.  

3.3 Transient knockdown of EP300 reduces the secretion of FN and Col-I by PSCs 

Since that FN and Col-I are extracellular matrix proteins secreted by activated PSCs, Elisa 

was used to analyze the protien expression levels of them in the conditioned medium. And the 

results showed that there were less amount of Col-I and FN in the experiment group’s 

conditioned medium (CM) than in the control group’s CM. Statistically, Col-I secreation was 

decreased by 50% ±0.05% (Fig. 9A),  FN secreation was reduced by 32%±0.03% (Fig. 9B) 

 

Figure 9. Transient knockdown of EP300 reduces the secretion of FN and Col-I by PSCs. 48 hours after 

knockdown, cells were cultured in serum-free medium for another 48 hours and the condioned medium was 

collected and condensed, subsequently, ELISA was used to analyze the secretion of Col-I and FN by PSCs. 

Results was normalized to cell numbers. Figure A and B respectivey showed the ELISA assay results of Col-I 

and FN.*,P<0.05. 
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3.4 Generation of EP300 stable knockdown cell lines 

CRISPR/Cas9 gRNA was used to generate stable EP300 knockdown cell lines and scramble 

gRNA plasmid transfected cells were served as control. After antibiotic selection, stable 

knockdown cell line and corresponding control cell line were generated. Figure 10A was the 

result of T7 endonuclease I (T7E1) assay, which showed that there was cleavage in the DNA 

sequence in gRNA treated cells, so our targeting was successful. Figure 10B showed that 

EP300 protein expression was highly down regulated in gRNA treated group. 

 

Figure 10. Generation of EP300 stable knockdown cell lines. A. After antibiotic selection, cells were cultured 

for 24h, then the genome DNA was extracted for T7E1 assay. PCR products of target regions are shown by 

black arrowhead. Colored arrowheads indicate cleaved products by Cas9. B. Cells were cultured for 48h, then 

lysis buffer was used to collect protein from them, western results showed that EP300 was downregulated. 

3.5 Stable EP300 knockdown inhibits FN and Col-I synthesis by PSCs 

After obtaining EP300 stable knockdown cell lines, cell lysis and conditioned medium were 

collected to test FN and Col-I expression inside and outside the cells. Same results were 

obtained as transient knockdown, compared to the control, both the synthesis and the 

secretion of FN and Col-I was reduced in the EP300 down regulation group. Figure 11A 

showed the western results of cell lysis, FN and Col-I expression was declined significantly. 

For the western results of Col-I, as mentioned before, the lower bands were for pro-collagen 

and the upper bands were for the dimer. Figure 11B showed the ELISA results of the 

conditioned media, Col-I secretion was decreased by 47%±0.07% and FN secretion was 

reduced by 25%±0.03% statistically compared to the control. 
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Figure 11. Stable EP300 knock down inhibits FN and Col-I synthesis by PSCs. A. EP300 downregulation PSCs 

and corresponding control PSCs were grown for 48 hours, then cell lysis was collected, subsequently, specific 

protein expression of PSCs were tested by western blot. The results showed that FN and Col-I expression was 

downregulation when EP300 is knockdown. B. For medium collection, cells were seeding in a 6-well plate for 

24 hours, so they could reach 80%-90% confluence, then serum free for 48 hours before media collection. Media 

was condensed by Ultra filter from Merck Millipore before used for ELISA assay and results were normalized to 

cell number.  *, P<0.05. 

3.6 EP300 downregulation induces phenotype changes in PSCs 

After seeding stable EP300 downregulation cells and corresponding control cells on glass 

cover slips for 48 hours, cell morphology was observed.  A number of cells in the EP300 

down regulation PSCs showed exactly fibroblast cell morphology, thin, long and spindle like 

with expanded cytoplasm, as indicated in Figure 12B with red arrow. However, in the control 

group, most of the PSCs were round shape like and tend to grow together, as showed in 

Figure 12A with blue arrow. We randomly selected 10 different fields of visions in both 

groups, took pictures and counted cells in them. The EP300 downregulation group has 

16.7%±3.3% of cells possess a myofibroblast-like morphology, but in the control group only 

5.4%±0.3% of cells were fibroblast-like (Fig. 12C). 
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Figure 12. The morphology changes of pancreatic stellate cells. Control PSCs and stable EP300 knockdown 

PSCs were grew separately on glass slides for 48 hours, then cell morphology were observed. A.The 

morphology of control PSCs. Cells were round shape like and tend to grow together, as showed with blue arrow. 

B. The morphology of EP300 knockdown PSCs. Some cells showed fibroblast-like shape, thin, long with 

expanded cytoplasm, as indicated with red arrow. Original magnification 200×. C. Ten different fields of visions 

were randomly selected in both groups and cells were calculated. The percent of cells that possess 

myofibroblast-like phenotype in each group were showed. *, P<0.01. 

3.7 EP300 down regulation doesn’t affect the proliferation of PSCs 

To determine whether EP300 knockdown will influence the proliferation of PSCs. The 

proliferation of stable EP300 knockdown cells and corresponding control group cells were 

tested at 24h, 48h and 72h by resazurin assay. Figure 13 showed that EP300 knockdown had 

no influence on the proliferation of PSCs. 



 

Results 

 36 

 

Figure 13. EP300 knockdown doesn’t affect the proliferation of PSCs. The stable EP300 down regulation cell 

line and corresponding control cell line were cultured in 96 well plates. Cell proliferation was tested at time 

point 24h, 48h and 72h by resazurin assay. The data represented the mean and SD of three independent 

experiments performed in 8 replicates.   

3.8 EP300 down regulation increases the drug sensitivity of PSCs  

To study the drug sensitivity of cells after knockdown, stable EP300 down regulation cells 

and control group cells were treated with different concentrations of gemcitabine for 72 hours. 

As showed in Figure 14: at the concentration of 0.01µM, 60.1%±0.02% of the cells were still 

alive in the control group after drug treatment. However, only 34.3%±0.02% cells were still 

alive in the knockdown group. At the concentration of 0.1µM, 43.2%±0.01% of the cells were 

still alive in the control group, but only 28.8%±0.01% of the cells were alive in the 

experiment group. 

 

Figure 14. EP300 knockdown increases the drug sensitivity of PSCs. Control group and knockdown group cells 

were treated with different concentrations of gemcitabine for 72h in complete medium, and then the cell 
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numbers were tested by resazurin assay. These data represented the mean and SD of three independent 

experiments performed in 8 replicates.*, P<0.01. 

3.9 EP300 down regulation promotes PSCs migration  

When PSCs are activated, they will begin to migrate and promote the migration of pancreatic 

cancer cells simultaneously [75, 151]. Hence, after obtaining the stable knockdown PSCs, to 

investigate the modulation of metastasis by EP300, the migration of the PSCs was studied 

using trans-well plates. Results showed that EP300 down regulation increases PSCs migration 

significantly. Around a 3.5 fold increment in migration was observed. 

 

Figure 15. EP300 down regulation promotes cell migration significantly. Cells were seeded in a 96 trans-well 

plates according to the protocol, 48 hours later, cells that migrated through the membrane were counted. As 

shown above, EP300 down regulation increased the migration of PSCs more than 3.5 fold compared to the 

control. *, P< 0.05. 

3.10 EP300 promotes the migration of PSCs through activation of ERK pathway 

Totally, there are three pathways that are highly related to cell migration, which are PI3K 

pathway, JAK-STAT pathway and ERK pathway. To find out which pathway is related to 

EP300 induced migration, the activation status of the three pathways were tested. The 

expression of functional protein phospho-STAT (p-STAT) of JAK-STAT pathway was 

reduced (Figure 16A) compared to the control group and the expression of functional protein 

phospho-AKT (p-AKT) of PI3K-AKT pathway was not changed compared to the control 

(Figure 16B). Activation of ERK pathway is the result of phosphorylation of ERK1 and 

EKR2 (ERK1/2) on their serine and threonine residues by MAP kinase kinase. Figure 16C 

showed that EP300 down regulation led to phosphorylation of ERK1/2 even to 48 hours. 

EP300 chemical inhibitor C646 got the same effects (Fig.16D). However, 48h treatment with 
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C646 made the cells express less total ERK1/2, which means that the inhibitor is toxic to the 

cells in long time treatment. 
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Figure 16. EP300 downregulation induces migration of PSCs through ERK pathway. A. Stable EP300 

knockdown cell line and control group cell line were cultured for 24h or 48h. Then total cell lysates were 

collected. The functional protein expression of JAK-STAT pathway was checked by western blot and the result 

were quantified by densitometry. B. Same experiment was done as in Figure 16A, except that the functional 

protein expression of PI3K-AKT pathway was checked. C. Stable EP300 knockdown cell line and control group 

cell line were cultured for 12h, 24h, 36h or 48h. Then total cell lysates were collected. The activation of ERK1/2 

was determined by western blotting. And densitometry was used to quantify the relative expression of pERK1/2. 

D. Results from EP300 down regulation were also verified by treating normal PSCs with inhibitor C646 at the 

concentration of 20µM for different time points. The relative expression of pERK1/2 was quantified by 

densitometry. *, P< 0.05, n≥3. 
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3.11 EKR pathway is required for EP300 induced migration 

In order to find out whether EKR pathway is essential for EP300 induced migration, a 

chemical inhibitor-U0126 was used in the current experiment. U0126, a highly selective 

inhibitor for both EKR1 and ERK2, can block the activation of EKR pathway. As showed in 

Figure 17, when cells were treated with U0126, the migration of EP300 down regulated group 

was decreased dramatically to the control level. 

 

Figure 17. ERK pathway is required for EP300 induced migration of PSCs. U0126 blocks activation of ERK1/2.  

Cells were treated with 20µM DMSO or 20µM U0126 during the migration assay, 48 hours later, cells that 

migrated through the membrane were counted. *, P<0.01, n≥3. 

3.12 EP300 down regulation increases the proliferation effect PSCs have on pancreatic 

cancer cells 

To determine whether reduced expression of EP300 in PSCs will affect the proliferation 

effect PSCs have on pancreatic cancer cells, conditioned medium (CM) was collected from 

control group PSCs and EP300 knockdown PSCs to treat pancreatic cancer cells. At 72h, CM 

from control group PSCs increased the proliferation of Bxpc-3 cells by 33%±8% compared to 

serum free (SF) medium, however, CM from EP300 knockdown PSCs increased the 

proliferation of Bxpc-3 cells by 57%±6% compared to SF medium (Figure 18A). For Panc-1 

cells, the increment in proliferation by CM from control group is 62%±6%, by CM from 

EP300 knockdown group is 89%±5% compared to SF medium (Figure 18B).  
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Figure 18. EP300 down regulation increases the proliferation effect PSCs have on pancreatic cancer cells. 

Conditioned medium from control group PSCs (CM) and EP300 knockdown PSCs were collected and used for 

the treatment for pancreatic cancer cells.  After 72 hours treatment with CM, the proliferation of pancreatic 

cancer cells was tested by resazurin test. A, showed the results of Bxpc-3 cells, B showed the results of Panc-1 

cells. *, P<0.01; **, P<0.001; n≥3.  

3.13 EP300 down regulation in PSCs inhibits effects of chemotherapy on tumor cells 

In order to study whether EP300 down regulation in PSCs will influence the chemotherapy on 

tumor cells, Bxpc-3 and Panc-1 cells were treated with different concentration of gemcitabine 

for 72 hours, together with serum free medium, or conditioned medium (CM) from control 

PSCs or conditioned medium from EP300 knockdown PSCs. For Bxpc-3, cells treated with 

knockdown CM were more drug resistant than cells treated with control group CM. For Panc-

1, there was no significant difference between different treatment groups. 
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Figure 19. EP300 down regulation in PSCs inhibits effects of chemotherapy on tumor cells. Bxpc-3 and panc-1 

were treated with different concentration of gemcitabine for 72 hours, together with serum free medium (SF) or 

conditioned medium (CM) from control group PSCs or conditioned medium from knockdown PSCs, then cell 

proliferation was tested. *, P<0.05, n≥3. 
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4 Discussions 

The activation of PSCs is a phenomenon that can’t be ignored in pancreatic ductal 

adenocarcinoma, which makes a great contribution to the stroma formation in this cancer. 

Researchers have found that growth factors, cytokines, such as TNFα, TGFβ, PDGF, 

interleukin 1, interleukin 6 [63, 76, 84, 152-154], ethanol and oxidant stress [86] can activate 

pancreatic stellate cells. However, little research has been done on how a gene will influence 

the activation of PSCs. PSCs’ activation process involves proliferation, migration, enhanced 

production of extracellular matrix proteins and a phenotypic transition towards myfibroblasts. 

EP300, as mentioned above, is a histone acetyltransferases and plays a very important role in 

regulating cell proliferation and differentiation and it has been implicated in cancer. So in this 

article, we explored how EP300 down regulation will affect the activation of PSCs and how 

that will influence the communications between PSCs and pancreatic cancer cells. 

As mentioned before, activated PSCs are the main contributor to the stroma formation in 

pancreatic cancer. Since when PSCs were activated, it began to excrete ECM proteins, 

including FN, Col-I and so on [152]. These ECM proteins were also the activation makers of 

PSCs. Another important activation maker of PSCs is α SMA [153]. Transient knockdown of 

EP300 resulted in less synthesis of FN and Col-I in PSCs, but α SMA expression was not 

changing. And the expression of FN reduced in both mRNA and protein levels, however, Col-

I expression increased in mRNA level, decreased in protein level, it is possible that some 

miRNA working in the translation process of Col-I. Since EP300 lower expression has no 

influence on the expression of α SMA, it is unreasonable to say that EP300 knockdown 

deactivate PSCs. The conclusion we could draw from the results is that EP300 down 

regulation reduces the ECM synthesis of PSCs. And further ELISA experiments verified that 

the secretion of FN and Col-1 were also decreased in the conditioned medium when EP300 is 

knockdown. 

CRISPR/Cas9 is a gene editing technique that can target and modify DNA with extremely 

high accuracy. It can be used to generate knock-out cells or animals. To better understand the 

role of EP300 in activated PSCs, this technique was used to intervene in the expression of 

EP300. After antibiotic selection, T7E1 assay result showed that there was cleavage on the 

genome DNA, so targeting was successful. However, western results showed that there was 

still some protein left in the experiment group. It is possible that this is a heterozygous 
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knockout. Similarly, Wang [155] used CRISPR/Cas9 to mediate heterozygous knockout of 

the gene CHD8, there were still CHD8 proteins left in the knockout groups. Shetty [156] 

revealed the same western result for heterozygous knockout of the gene CDH8. It is also 

possible that EP300 is essential for the survival of cells, so EP300 knockout cells couldn’t be 

obtained. As showed by previous study, EP300 and CBP knockouts are early embryonic 

lethal [147]. Since down regulation of EP300 is enough to study of the gene functions of 

EP300, and during all the following experiments in this article, the lower expression of EP300 

was always existed in the knockdown group, so no further experiment was done to clarify this 

problem. The reduced ECM synthesis was also proved in stable EP300 down regulation cell 

lines. 

We accidentally seeded control group PSCs and EP300 knockdown PSCs on glass cover slips 

and find that EP300 knockdown PSCs possess more percent of fibroblast-like cells than the 

control group. It has long been known that the behavior of Hepatic stellate cells (HSCs) is 

influenced by the interaction between HSCs and matrix components [157]. For example, 

Sohara [158] showed that hepatic stellate cells were de-activated by growth on matrigel. PSCs 

and HSCs have a lot in common. Jesnowski [69] found that immortalized PSCs could be 

deactivated by matrigel and N-acetylcysteine. In the current study, cells were seeded on glass, 

an unfavorable basement substrate, which will also interact with the cells. Current results of 

morphological changes indirectly proved that EP300 knockdown PSCs were more active. 

Absence of EP300 induces cellular phenotypic changes has been shown before, Krubasik 

[159] found that colon carcinoma cell lines loss of EP300 obtained aggressive cancer 

phenotypes. 

The expression of EP300 influences cell proliferation has been studied before. For example, 

researchers found that lower expression of EP300 reduced the proliferation of dental pulp 

cells [160], acute myeloid leukemia cells [161] and prostate cancer cells[162].  Despite that, it 

is also found EP300 knockdown inhibits apoptosis in human breast cancer cells [141]. In the 

present study, we showed that EP300 down regulation has no effect on the proliferation of 

PSCs. Scientists have proved that same gene can play very different roles in the cell [163]. 

PSCs are not regular cells, they changes from a quiescent fat storing cells to a highly 

proliferate cells during cancer, so EP300 down regulation doesn’t affect the proliferation of 

PSCs is reasonable. 
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Another observation in the current study was that EP300 lower expression increased the drug 

sensitivity of PSCs. Similarly, Bourguignon [164] found that up regulation of EP300 was 

related to chemo-resistance in breast cancer.  And Ono[165] clarified that EP300 inhibition 

enhanced the effect of gemcitabine through E2F1 activation in pancreatic cancer.  

What’s more, how EP300 down regulation affectes the migration of PSCs was studied. In 

previous studies, Mees [166] investigated genetic and epigenetic data found that EP300 is a 

miRNA regulated metastasis suppressor gene in pancreatic ductal adenocarcinoma. Zhou [167] 

studied breast cancer and verified that by targeting EP300, miR-106b ~25 cluster increased 

motility and invasion of these cancer cells. Krubasik [159] found that down regulation of 

EP300 in colon carcinoma cell lines increased their migration. In the present study, our results 

showed that lower expression of EP300 significantly increased the migration of PSCs. And to 

elucidate the mechanisms involved, three pathways were studied: PI3K pathway, JAK-STAT 

pathway and ERK pathway, which were verified by formal studies highly related to cell 

migration [168-172]. The results showed that EP300 lower expression activates ERK pathway. 

And treating PSCs with C646, a chemical inhibitor of EP300, has the same effects within 48h. 

Except that at the time point of 48 hours, C646 has begun to show toxic effects on cells. 

Furthermore, inhibition of ERK with U0126 abolished EP300-induced migration. These 

evidences for the first time showed that EP300 could manipulate cell migration through ERK 

pathway. 

Finally, how EP300 down regulation in PSCs will affect the communications between PSCs 

and pancreatic cancer cells was analyzed. In the formal study, Hwang [110] found that 

conditioned medium from PSCs increased the proliferation, migration and invasion of 

pancreatic cancer cells. Vonlaufen [111] proved that a significant interaction between PSCs 

and pancreatic stellate cell is existed and pancreatic cancer cells recruit stromal cells to build 

an environment that promotes cancer progression. In this article, we showed that lower the 

expression of EP300 in PSCs increases the proliferation effect PSCs have on pancreatic 

cancer cells, which means that EP300 down regulation makes PSCs more active and more 

supportive for pancreatic cancer cells. 

At last, how lower expression of EP300 in PSCs will influence the effects of chemotherapy on 

pancreatic cancer cells were examined. Conditioned media from PSCs have been proved to be 

able to reduce pancreatic cancer cell sensitivity to gemcitabine and radiation therapy [111]. 

And in an orthotopic model of pancreatic cancer, it has been shown that animals injected with 
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both PSC and PDAC cells were more resistant to radiation and gemcitabine treatment than 

animals injected with PDAC cells alone [110]. Our study showed that conditioned media from 

PSCs can protect Bxpc-3 cells from chemotherapy, and when EP300 is knockdown in PSCs 

the effect is much higher. However, for Panc-1 cells, conditioned media from control PSCs 

and EP300 knockdown PSCs have no influence on the drug sensitivity of Panc-1 cells. Why 

there is a difference between different pancreatic cancer cell lines need further study. 

In conclusion, this study demonstrated evidence that down regulation of EP300 increases the 

activation of PSCs and makes PSCs are more supportive for pancreatic cancer cells, but it 

reduces the ECM synthesis by PSCs. Moreover, we firstly showed that EP300 manipulated 

cell migration through ERK pathway. And our results support the concept that targeting 

stromal cells can influence the interactions between stromal cells and pancreatic cancer cells, 

which may become an important therapeutic approach in pancreatic cancer. 
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Part II: Pancreatic Stellate Cells and Drug Resistance in 

Pancreatic Cancer 

1 Introduction 

1.1 Pancreatic cancer 

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy and ranked the 

fourth leading cause of cancer-related death in both Europe and USA [1]. It is associated with 

its rapid tumor progression and metastasis [2, 3], it’s highly resistant to both chemo and 

radiation therapy [4, 5]. For 2017, it is predicted that 87,400 people will dye of pancreatic 

cancer in the European countries and 44,090 people will dye of pancreatic cancer in the USA 

[6, 7]. Despite so many years have passed, the survival rate of pancreatic cancer has not 

improved and no cure treatment has been found. As an increasing number of people in the 

Europe have been diagnosed with pancreatic cancer (showed in Figure 1) and most of them 

die within 6 months, it is very crucial to find efficient ways to fight against it.   

 

Figure 1. Age-standardized EU male and female cancer mortality rate trends in quinquennia from 1970- 1974 to 

2005-2009 plus the year 2012 and predicted rates for 2017 with 95% prediction intervals. Pancreas (triangles) in 

both men and women [6]. 
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1.2 Treatments for cancer  

Cancer treatments vary between different hospitals and different patients, which is largely 

based on experience. Generally, there are three types of treatment: surgery, radiotherapy and 

drugs. These treatments may be used alone or in combination. Surgery treatment usually 

applies for early stage patients and specific cancer types. For example, it is the mainstream 

treatment for primary stage liver cancer patients and the survival rate has improved a lot after 

surgery, sometimes ever curable [8]. Radiotherapy is the most utilized treatment for cancer, 

and there exist a suggestion that nearly 50% of all cancer patients should do radiation [9]. 

Indeed, almost all types of cancer could receive radiation therapy, such as breast cancer, lung 

cancer, melanoma, lymphoma, stomach cancer, colon cancer and so on. Drug treatment 

contains chemotherapy, which intend to use drugs to destroy cancer cells but not to damage 

healthy cells. These used drugs usually intervene the DNA synthesis, replication or 

transcription process of the cancer cells, such as Mercaptopurine, Melphalan and Cispaltin. 

Then how do the treatments mentioned above work on PDAC? In the past ten years, 

pancreatic surgery has improved a lot. The surgery process is safe and after surgery the 

morbidity and mortality rates are the same as other gastrointestinal cancer [10]. However, 

since it is hard to diagnosed pancreatic cancer in the early stage, only 20% of the patients are 

suitable for surgery, and the prognosis of pancreatic cancer has not changed for decades, the 

overall survival rate of PDAC has not improved. Chemoradiation therapy is commonly 

chosen for cancer, when the tumor is unresectable. However, pancreatic cancer is highly 

resistant to traditional chemo and radiation therapy, which makes it more difficult to cure. 

Right now, the standard treatment for pancreatic cancer patients is drug treatment, the use of 

gemcitabine, which has modest benefit and the overall survival rate has not improved much 

after the treatment [11, 12]. Therefore, it is urgent to overcome the drug resistant problem in 

pancreatic cancer and find new therapies for it. 

1.3 Mechanisms of drug resistance in cancer 

The concept of drug resistance comes from antibiotics. After scientist Alexander Fleming 

discovered penicillin in 1928, penicillin was used to treated infections [13]. But as years pass 

by, the effect of penicillin was reduced on some patients, and scientist found out that it is 

because bacteria developed drug resistance to penicillin. Since then the same drug resistance 

problem began to occur in other diseases, such as cancer. Resistance to treatment is a 
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frustration issue and a lot of factors contribute to that. In cancer, patients can become drug 

resistant for general two reasons：(1) Host factors, such as poor absorption, low tolerance, or 

rapid metabolism of a drug; (2) Gene mutations in cancer cells, some gene alterations may 

cause cells insensitive to drugs [14]. In the following paragraph, we will discuss the biological 

mechanisms of drug resistance in cancer. 

1.3.1 Multidrug resistance proteins and drug resistance in cancer 

In the field of drug resistance, multidrug resistance proteins are famous, which play important 

roles in transport drugs out of the cell. Generally, there are two subfamilies of them: (1) 

Multidrug resistance protein (MDR) family, it consists of MDR1 and MDR2 or alternative 

names ABCB1 and ABCB2; (2) Multidrug resistance-associated protein (MRP) family, it has 

6 members: MRP1, MRP2, MRP3, MRP4, MRP5 and MRP6 or alternative names ABCC1, 

ABCC2, ABCC3, ABCC4, ABCC5 and ABCC6 [15]. They are all the members of human 

ATP-binding cassette (ABC) transporters and expressed in the epithelial cells of the liver and 

the intestine [16]. Normally, they pump harmful molecules out of cell to protect the body. 

However, when treating cancer patients with drugs, the expression of them will cause poor 

clinical outcome. For example, MDR1 and MRP1 have been found highly expressed in many 

drug resistance cancers [17, 18]. And treatment with doxorubicin in lung cancer has been 

discovered highly activated MDR1 expression [19]. In addition, high-level expression of 

multidrug resistance-associated protein 1 has been found associated with poor clinical 

outcome in neuroblastoma [20]. 

               

Figure 2. Model of substrate transported by multidrug resistance protein. A. The magenta substrate enters the 

membrane and moves in the transporter. B. The yellow ATP binding to the transporter and causes a structure 
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change of it. The magenta substrate was pumped out of the membrane by the transporter [21]. 

1.3.2 Gene mutations and drug resistance in cancer 

Drug resistance is still a major problem existed in cancer chemotherapy. Scientist found that 

certain gene mutations are related to chemo-resistance in cancer. For instance, a clinical 

research showed that leukemia patients with p53 gene mutations are more resistant to 

chemotherapy than those without p53 mutations [22]. In leukemia, clinical resistance to drug 

therapy was found to be caused by BCR-ABL gene mutation or amplification [23]. In breast 

cancer, specific p53 mutations were found related to resistance to doxorubicin [24]. In lung 

cancer, researcher showed that T790M mutation in EGFR kinase can cause drug resistance 

[25] and mutations in KRAS are related to drug resistance to gefitinib and erbotinib [26]. 

1.3.3 Epigenetic modifications and drug resistance in cancer 

There are mainly two types of epigenetic modifications: DNA methylation and histone 

modification. DNA methylation is important for the development of human beings. It often 

happens at the GC rich area by adding methyl group to cytosine. When the CpG-rich 

promoter is highly methylated, the transcriptional initiation of the gene will be stopped. DNA 

methylation plays an important role in tissue-specific gene expression and this epigenetic 

methylation patters on DNA are inheritable [27-29]. Histone modification includes acetylation 

and methylation. It can regulate the expression of genes by changing the structure of 

chromatin [30]. During cancer, these normal epigenetic modification patters mentioned above 

are disrupted, which will cause the highly expression of oncogenes by low methylation or the 

silence of tumor suppress genes by high methylation. Furthermore, it is found that these 

epigenetic changes are associated with drug resistance in cancer. For example, Kantharidis 

[31] showed that the acquired drug resistance in leukemia is related to altered methylation of 

human MDR1 gene. Chen [32] discovered that chemo-sensitivity to temozolomide is 

regulated by DNA methylation and histone acetylation in melanoma. A study of Steele [33] 

found that drug sensitivity was improved by inhibiting DNA methylation and histone 

acetylation together in ovarian cancer. 

1.3.4 Epithelial-mesenchymal transition (EMT) and drug resistance in cancer 

Epithelial-mesenchymal transition is an important process during embrogenesis. In cancer, it 

plays a crucial role in tumor invasion and metastasis. When cancer cells go through EMT, 

they will lose their cell-cell contacts and begin to migrate and invade, their morphology may 
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also change. In lung cancer, scientist showed that the acquired gefitinib resistance in cancer 

cells is highly associated with EMT process and when EMT process is reversed, the 

sensitivity to gefitinib is restored [34]. In liver cancer, researcher found that 

microRNA216a/217 induces EMT of cancer cells, which promote drug resistance of these 

cells [35]. In bladder cancer, EMT was showed to regulate drug resistance and muscle 

invasion /metastasis in this cancer [36]. Furthermore, Saxena [37] found that EMT contributes 

to drug resistance by up regulating ABC transporters. 

1.3.5 Cancer stem cells and drug resistance in cancer 

Stem cells are cells that can produce more stem cells and generate mature cells of certain 

types [38]. In human beings, they generally have two types: embryonic stem cells and adult 

stem cells, which function as a repair system. The concept of cancer stem cells started in the 

1990s [39] and gradually accepted worldwide and began to influence the research area of 

cancer. In tumor tissue, cancer stem cells only possess a very small part, around 0.1%-1%, 

and it varies among different tumors [40, 41]. There exists a hypothesis that it’s cancer stem 

cells that make cancer difficult to cure and it is believed that chemotherapy only kills most of 

the tumor cells, but leaves cancer stem cells along. Since stem cells have the ability to self-

renew and differentiate, cancer relapses [42]. As normal tissue stem cells are drug resistant, 

which is related to MDR transporters and detoxifying enzymes [43], it is reasonable to think 

that cancer stem cells are drug resistant and maybe with the same mechanisms. Liu [44] 

showed that cancer stem cells in glioblastoma are chemo-resistance. Ma [45] found that by 

expression of survival pathways, hepatocellular carcinoma cancer stem cells are drug 

resistant. Fillmore [46] discovered that breast cancer stem cells are resistant to chemotherapy. 

So, in the future, maybe targeting cancer stem cells could be a new therapy to fight against 

cancer. 

1.4 Strategies to fight against drug resistance in cancer  

There are generally two ways to overcome MDR caused drug resistance problem in cancer: 

First, develop anticancer drugs that don’t bind to ABC transporter, such as antimetabolites (5-

fluorouracil) [47]; Second, find nontoxic ABC transporter inhibitors. Till now, three 

generations of MDR inhibitors have been developed. The first generation inhibitor, such as 

verapamil, has unacceptable toxicity. The second-generation inhibitor, such as valspodar, has 

unwanted interactions with other proteins. The most promising inhibitor right now is the 
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third-generation inhibitor, such as tariquidar XR9576, which has high specificity and has 

shown promise in clinical trials [48]. 

Another common strategy to overcome drug resistance problem in cancer is the using of 

combined therapy. Different drugs may have different metabolisms and mechanisms of action, 

therefore using two different drugs together may result in synergistic effect. For example, in 

colorectal cancer, combined treatment of irinotecan and fluorouracil increased the survival of 

the patients [49]. In breast cancer, trastuzumab and docetaxel combined treatment has better 

effect in terms of survival rate, response rate and response duration compared to docetaxel 

treatment alone [50]. Combine treatment also has been shown to have superior effect in 

ovarian cancer [51]. However, sometimes, using two drugs simultaneously may result in 

antagonism, so it is important to choose the combination of the drugs. 

1.5 Mechanisms of drug resistance in pancreatic cancer 

In pancreatic cancer, the drug resistance problem can also impute to multidrug resistance 

proteins, gene mutations, EMT and pancreatic stem cells. For example, multidrug resistance 

proteins have been found expressed in pancreatic cancer [52]. The BRCA2 gene mutation has 

been shown related to drug resistance in pancreatic adenocarcinoma [53]. EMT has been 

proved made a contribution to drug resistance in pancreatic cancer [54]. Pancreatic stem cells 

have verified play a role in the acquisition of drug resistance in pancreatic adenocarcinoma 

[55]. Despite these common mechanisms, there are other mechanisms exist in pancreatic 

cancer that are related to drug resistance. 

1.5.1 Signaling pathways and drug resistance in pancreatic cancer 

Scientist found that abnormal regulation of certain signaling pathways is related to drug 

resistance problem in pancreatic cancer. For example, Arlt [56] showed that activation of NF-

κB confers resistance against gemcitabine in pancreatic cancer. NF-κB is an important 

regulator in control cell proliferation and cell survival in healthy cells. In cancer, the 

activation of NF-κB will stop cancer cells from apoptosis. PI3K/AKT pathway also has been 

found associated with drug resistance problem in pancreatic cancer [57]. And inhibition the 

activation of PI3K/AKT pathway increased the drug sensitivity of pancreatic carcinoma cells 

[58]. 
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1.5.2 Pancreatic stellate cells and drug resistance in pancreatic cancer 

In pancreatic cancer, for many years, researches have been focused on cancer cells to deal 

with the problem, which have largely failed. In recent decades, there has been a growing 

number of data suggest that tumor microenvironment plays an important role in the process of 

pancreatic cancer, and PDAC is especially stroma rich [59-63]. Pancreatic stellate cells 

(PSCs), which are activated during chronic pancreatitis and cancer, were found to produce 

extracellular matrix (ECM) proteins that comprise the pancreatic tumor stroma [64]. Both in 

vitro and in vivo evidence proved that pancreatic stellate cells play an important role in the 

process of the development of pancreatic cancer [65]. 

 

Figure 3. Drug resistance pathways in pancreatic cancer [66]. 

Furthermore, studies have shown that pancreatic stellate cells are highly related to the chemo-

resistance of pancreatic cancer. In an orthotopic model of pancreatic cancer, it has been shown 

that animals injected with both PSC and PDAC cells were more resistant to radiation and 

gemcitabine treatment than animals injected with PDAC cells alone [67]. And there is a 

hypothesis indicate that the role of PSC is to function as a barrier preventing chemo-drugs to 

be delivered to the tumor core [66]. Researchers found that the extensive fibrosis produced by 

PSCs result in significant intratumoural hypoxia and a self-perpetuating hypoxia-fibrosis 

cycle, which limits the drug delivery to tumor cells [68-71]. Conditioned media from PSCs 

have been proved to reduce pancreatic cancer cell sensitivity to gemcitabine and radiation 
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therapy [65]. The secretions of PSCs also have been shown to be able to decrease H2O2-

induced apoptosis and increase survival of pancreatic cancer cells, which makes cancer cells 

more drug resistant [72]. However, no study has ever been done on how PSCs will affect the 

drug sensitivity of different drug sensitive cancer cell lines and the mechanisms of how PSCs 

protect tumor cells from chemotherapy.             

1.6 Gemcitabine and pancreatic cancer 

The high resistance to chemotherapy of pancreatic cancer is really a frustration issue, which 

makes it more difficult to deal with. Right now, gemcitabine is the most effective drug that 

works on pancreatic adenocarcinoma and it is used as a standard treatment. As an analogue to 

cytosine, gemcitabine is incorporated into the DNA to block it from replication, which results 

in cell death. It was first synthesized by Eli Lilly Company in 1980s and approved by the 

FDA for the treatment for patients in 1996 [73]. However, the life quality of the patients and 

the survival rate of the patients have not improved much even after gemcitabine treatment, it 

has some success but the response rates are still low [74]. 

 

Figure 4. Structure of gemcitabine and cytosine 

The mechanisms of gemcitabine resistance have been well studied since it is the only 

effective drug for pancreatic adenocarcinoma. To understand the mechanism of gemcitabine 

resistance, we need to know the metabolism of gemcitabine. Generally, gemcitabine needs to 

go through 10 steps to work inside of the cell. The first step is transporting across the 

membrane, the second step is phosphorylating by enzyme and so on and the last step is imbed 

into DNA or RNA. Each step can influence the efficiency of gemcitabine. For example, the 
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first step, there are mainly two types of nucleoside transporters that are related to gemcitabine 

transport: the sodium-dependent type or concentrative type (CNT) and the sodium-

independent type or equilibrative type (ENT). The expression of human ENT1 has been 

demonstrated to associate with the survival time of the patients under gemcitabine treatment 

[75, 76]. And overexpression of human ENT1 increases gemcitabine response in pancreatic 

cancer [77]. 

Besides the nucleoside transporters mentioned above, some enzyme activities in between have 

also been proved highly related to gemcitabine resistance: (1) Downregulation of 

deoxycytidine kinase (dCK). dCK plays a pivotal role in gemcitabine activation, after entering 

of the cells, dCK phosphorylates gemcitabine to its monophosphate. (2) Up regulation of 

cytidine deaminase (CDA). Gemcitabine can be effectively inactivated by activation of CDA. 

(3) Up regulation of ribonucleotide reductase, ribonucleotide reductase plays a role in the 

synthesis of DNA. Ribonucleotide reductase consists of two subunits: M1 and M2, together 

these two subunits form an active heterodimer [78-80]. 

 

Figure 5. Metabolism and mechanisms of action of gemcitabine; 1: transprot across the cell membrane, 2: 

phosphorylation of gemcitabine by dCK and TK2, 3: deamination of gemcitabine by dCDA, 4: deamination of 

gemcitabine by dCMP-deaminase, 5: inhibition of thymidylate synthase by dFdUMP, 6:inhibition of 

ribonucleotide reductase by dFdCDP, 7: accumulation of the triphophate dFdCTP, 8: incorporation into DNA and 

RNA, 9: inhibition of CTP-synthase by dFdCTP, and 10: dephosphorylaton by 5’-nucleotidase [81] . 
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1.7 Aim of the study 

As mentioned above, PSC plays a very import role in pancreatic cancer’s drug resistance. 

However, no study has ever been done on how PSCs will affect the drug sensitivity of 

different pancreatic cancer cell lines and the exact mechanisms of how PSCs protect tumor 

cells from chemotherapy. That’s the problem what we are going to solve in the current study. 
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2 Materials and Methods 

2.1 Materials 

Table 1 Cell lines 

 

Cell lines Resources 

 

Immortalized PSCs 

 

 

A gift from Ralf Jesnowski [82] , Mannheim Univerisity 

Hospital 

Bxpc-3 Authentificated by DKFZ, Heidelberg, Germany 

Panc-1 Authentificated by DKFZ, Heidelberg, Germany 

Miapaca-2 Authentificated by DKFZ, Heidelberg, Germany 

 

 

Table 2 Antibodies 

 

Product Company Catalogue Number 

Anti-mouse IgG(H+L) Peroxidase Biozol VEC-PI-2000 

Anti-rabbit IgG(H+L) Peroxidase Biozol VEC-PI-1000 

GAPDH Sigma-Aldrich G9295 

RRM1 Abcam Ab137114 

RRM2 Abcam Ab57673 

 

 

Table 3 Kits 

 

Product Company Catalogue Number 

Caspase-Glo 3/7® Assay Promega G8091 

Fast SYBR® Green Master Mix Thermo Scientific 4385612 

Immobilon western chemiluminescent 

HRP substrate 

Millipore WBKLS0500 

RevertAid First strand cDNA synthesis kit Life Technology K1622 

BCA Protein Assay Kit Thermo Scientific 23225 
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Table 4 Reagents 

 

Product Company Catalogue Number 

Chloroform Sigma-Aldrich 288306 

DNase  Thermo scientific EN0523 

Gemcitabine Biomol Cay11690-10 

Isopropanol Sigma-Aldrich W292907 

Lipofectamine 2000 Transfection Reagent Life Technologies 11668027 

Nuclease-free Water Life Technologies AM9939 

Proteinase K Life Technologies EO0419 

Resazurin Fisher Scientific 10684882 

RNase A Life Technologies EN0531 

Spectra Multicolor Broad Range Protein 

Ladder 

Life Technologies 26634 

TRIzol Reagent Invitrogen 15596-018 

Trypsin type I from soybean Sigma T8003 

Trypsin inhibitor type I from soybean Sigma T6522 

RIPA buffer The Geyer 89900 

 

Table 5 Materials 

 

Product Company Catalogue Number 

96 well plate, white (LumiNunc), F96 Fisher Scientific 10072151 

Amicon
® 

Ultra-0.5ml Centrifugal Filters 

Ultracel
®
 -100K 

Merck Millipore UFC510024 

Amicon
® 

Ultra-0.5ml Centrifugal Filters 

Ultracel
®
 -10K 

Merck Millipore UFC505096 

Amicon
® 

Ultra-0.5ml Centrifugal Filters 

Ultracel
®
 -3K 

Merck Millipore UFC500396 

Amicon
® 

Ultra-0.5ml Centrifugal Filters 

Ultracel
®
 -50K 

Merck Millipore UFC505024 

Cell culture plates- 96 well (transparent) DKFZ Lager 655180 

Light Cycler
®
 480 Multiwell plate 384, 

white 

Roche 04729749001 
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Cell culture plates-6 well (transparent) DKFZ Lager 657160 

Nitrocellulose membrane 0.45µm GE Healthcare GE10600007 

Open-Top Polyallomer centrifuge tubes Scientific service S5030 

 

 

Table 6 Equipments 

 

Name Manufacturer 

NeoBlock1  NEOLAB 

Fluostar Galaxy Plate Reader MTX Lab System 

Mithras LB 940 Multimode Microplate Reader Berthold Technologies 

Sigma 2K15 Micro-centrifuge M&S Labor GERATZ GMBH 

Eppendorf centrifuge 5810R Eppendorf 

Infinite® M200 Microplate Reader 

 

Tecan 

Roller mixers, RS-TR05 Phoenix Instrument 

Beckman L8-M Ultracentriguge Beckman 

Beckmann Rotor SW41Ti 

 
Beckman 

  

2.2 Method 

2.2.1 Cell lines and culture conditions 

Human pancreatic cancer cell lines Panc-1, Miapaca-2 and Bxpc-3 were obtained from 

commercial providers prior to this study. They were all authenticated by DKFZ in-house 

service and tested mycoplasma free before and after the experiments. Immortalized human 

pancreatic stellate cells (PSCs) were a gift from Ralf Jesnowski [82]. They were all routinely 

cultured in IMDM complete medium containing 10% fetal bovine serum, 50 units/mL 

penicillin and 50μg/mL streptomycin at 37 °C with 5% CO2, except Miapaca-2 cultured in 

DMEM complete medium.  
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2.2.2 Gemcitabine cytotoxicity assay 

Analysis of cell growth was used to determine sensitivity of different cell lines to gemcitabine 

in vitro. Briefly, cells were seeded in 96 well plates at 5×10
3
 per well, 24 hours later, serum 

free overnight and then different concentrations of gemcitabine was added. Cells were treated 

with gemcitabine in complete medium for 72h. After that, cell viability was assessed using 

resazurin test.  According to the protocol, resazurin solution was added to each well and make 

sure the final concentration of resazurin is 20µg/ml. Then the plates were incubated at 37°C 

for 2 hours and the fluorescence was recorded using FLUOstar Galaxy system. Ex=544 nm, 

Em=590 nm. The relative viable cells were defined as gemcitabine treated group divided by 

control group.  

2.2.3 Conditioned medium collection  

PSCs were grown in a 175cm
2
 flask to 70%-80% confluence, then the medium were changed 

to serum free IMDM and cells were cultured for another 48h. Medium were collected, 

centrifuged at 3,000×g for 15min and then the supernatant was collected, aliquoted and stored 

at -80 °C until use. 

2.2.3 Apoptosis assay 

Apoptosis of pancreatic cancer cells were tested by commercial Caspase-Glo3/7 Assay kit 

according to the manufacturer’s protocol. Briefly, Bxpc-3, Miapaca-2 and Panc-1 cells were 

seeded in 96-well plates at 8×10
3
 per well, 24 hours later, serum free overnight. Then the cells 

were treated with the following four conditions for 72 hours: a. serum free (SF); b. serum free 

and gemcitabine (SF+G); c. conditioned medium (CM); d. conditioned medium and 

gemcitabine (CM+G). After that, 100µl of Caspase-Glo3/7 Reagent was added to each well. 

The plates were gently mixed on a plate shaker for 30min at room temperature, and a Mithras 

LB940 plate reader was used to measure the luminescence of each sample. 

2.2.4 siRNA transfection 

Two RRM1 siRNAs and two RRM2 siRNAs were bought from Qiagen. Scramble siRNA 

control was purchased from Santa Cruz. Transfection of siRNA was carried out with 

Lipofectamine 2000 according to the manufacturer’s protocol. Briefly, Bxpc-3 cells were 

seeded in a 6 well plate for 24 hours before the transfection, so that they would reach 60%-70% 

confluence when do the transfection. Then 50nM siRNA and 5 µL Lipofectamine 2000 were 
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added to each well, 7 hours later, medium was changed to normal medium. mRNA was 

collected 24 hours post transfection, protein was collected 48 hours after transfection. For 

drug sensitivity assay, cells were collected 48 hours later and seeded in a 96 well plate for 

gemcitabine treatment. The information about the siRNAs used were listed below. 

Table 7 siRNA Information 

 

Product name Target sequence Catalog No. Company 

Hs_RRM1_7  CAGGGCCCATACGAAACCTAT SI03071355 Qiagen 

Hs_RRM1_6 CAGCTACATTGCTGGGACTAA SI03067904 Qiagen 

Hs_RRM2_4 CGGGATTAAACAGTCCTTTAA SI00020790 Qiagen 

Hs_RRM2_3 CACACCATGAATTGTCCGTAA SI00020783 Qiagen 

2.2.5 Real time PCR 

Total RNA was extracted from the cells using Trizol reagent, then 1µg RNA was reverse 

transcribed to cDNA using a commercial reverse transcription kit. Quantitative real time PCR 

were done by using Fast Sybr green and Light Cycler systems, according to the 

manufacturer’s instruction. The primer used were as follows: 

Table 8 Primers 

 

Gene   Primer 

 

RRM1 

 

Forward primer: 5’-CCACTAGCTGCGATGCATGT-3’ 

Reverse primer: 5’-TAGTTCCACTGTGGTGACCC-3’ 

 

RRM2 Forward primer: 5’-CCCTGACTATGCTATCCTGGC-3’ 

Reverse primer: 5’-CCAATGTTGACTTGGCCACC-3’ 

 

Hprt1 Bought from Qiagen   

Product: Hs_HPRT1_1_SG QuantiTect Primer Assay 

Product no.249900 

Cat.no. QT00059066 
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2.2.6 Western blot 

Whole cell lysates were harvested by using RIPA buffer containing protease and phosphatase 

inhibitors. Protein concentration was quantified by BCA kit. 10µg protein was denatured and 

loaded in 12% SDS-PAGE gel and transferred to nitrocellulose membrane. Subsequently, 

membranes were blocked in 5% non-fat milk in Tris-buffered saline (TBS, 10 mM Tris, 10 

mM NaCl) for 1h at room temperature. Then washed and incubated with first antibody 

overnight at 4°C. Secondary antibody conjugated with horseradish peroxidase was incubated 

with the membrane for 1 hour at room temperature. Immunodetections were done with ECL 

(Millipore, US) detection reagent and visualizations were performed by ImageQuant LAS 

4000 mini (Fujifilm Corporation, Japan). 

The primary antibodies used were GAPDH (Sigma, 1:5000), RRM1 (Abcam, 1:10000), 

RRM2 (Abcam, 1:1000). The secondary antibodies used were HRP-conjugated goat-anti-

rabbit (Vector, 1:5000), horse-anti-mouse (Vector, 1:5000). 

2.2.7 Conditioned medium treatment 

In order to find out what in the conditioned medium (CM) is responsible for PSCs-induced 

drug resistance in Bxpc-3 cells, different enzymes were used to digest certain substances in 

the CM. The enzymes and treatment conditions were listed below. For proteinase K treatment, 

CM was incubated with 200µg/ml proteinase K at 37°C for 1 hour. Then certain inhibitor was 

added to neutralize the enzyme. For trypsin treatment, CM was incubated with 200µg/ml 

trypsin at 37°C for 1 hour. Thereafter, it was treated with 400 µg/ml soybean trypsin inhibitor 

at 37°C for 30 min to eliminate the enzyme activity. For heat inactivation, CM was boiled at 

100°C for 2 hour. To eliminate RNAs or DNAs, CM was treated with 100 µg/ml RNase A at 

37°C for 4 hour or 2 U/µL DNase I at 37°C for 4 hour.  

To get rid of exosomes, conditioned media were centrifuged for several steps. First, CM were 

transferred to 50 ml polypropylene centrifuge tubes, centrifuged at 3000 ×g, 4°C for 30min. 

Then the supernatant was transferred to ultracentrifugation tubes, centrifuged at 10,000 ×g 

(7,500 rpm at SW-28), 4°C for 60 min. Thereafter, the supernatant was transferred to new 

ultracentrifugation tubes, centrifuged at 100,000 ×g (28,000 rpm at SW-41), 4°C for 90 min 

and the supernatant was collected. 

Finally, to obtain different fractions of the conditioned medium, the aliquots of the CM were 
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filtered by using Amicon
® 

Ultra-0.5ml Centrifugal filter-3K, Amicon
® 

Ultra-0.5ml 

Centrifugal filter-10K, Amicon
® 

Ultra-0.5ml Centrifugal filter-30K, Amicon
® 

Ultra-0.5ml 

Centrifugal filter-50K and Amicon
® 

Ultra-0.5ml Centrifugal filter-100K. Briefly, according to 

the manufacturer’s instruction, Amicon
® 

Ultra-0.5 devices were inserted into the micro 

centrifuge tubes. Then 500 µl of the conditioned medium was added into each filter. The 

capped filters were spin at 14,000 ×g for 5 min. Subsequently, the Amicon
® 

Ultra-0.5 devices 

were reverse inserted into new micro centrifuge tubes, centrifuged at 1,000 ×g for 2 min. Both 

the media in the filter and out of the filter were collected. Finally, the fractions were 

reconstituted in their original volume-0.5ml by adding serum free media to make sure that 

they have same concentration of active factors. In this way, the fractions we finally got were: 

fractions containing low molecular weight substances (< 3kDa, < 10kDa, < 30kDa, <50kDa, 

<100kDa) and fractions containing high molecular weight substances (> 3kDa, >10kDa, > 

30kDa, >50kDa, >100kDa).  After treatment or fraction, all the media were stored at -80°C 

until use. 
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3 Results 

3.1 Drug sensitivity of different cell lines 

To determine the drug sensitivity, different human pancreatic carcinoma cell lines Bxpc-3, 

Panc-1, Miapaca-2 and PSCs were treated with various concentrations (0.01-100µM) of 

gemcitabine for 72h in complete medium. As shown in Figure 6, for Panc-1, after 

gemcitabine treatment around 65% of the cells was still alive even at the highest 

concentration of gemcitabine. For PSCs, around 48% of the cells were still alive after high 

concentration of gemcitabine treatment. For Miapaca-2, around 35% of the cells were still 

alive after treatment with gemcitabine at the concentration of 100μM. However, with the cell 

line Bxpc-3, only around 10% of the cells were still alive after drug treatment. 

 

Figure 6. Dose-dependent effects of gemcitabine. PSCs and different pancreatic cancer cell lines were treated 

with gemcitabine for 72h in complete medium. Then the viability of cells was detected by resazurin test. Data 

expresses the mean percentage of viable cells of 3 independent experiments. 

3.2 Conditioned medium from PSCs induces drug resistance in Bxpc-3 cells 

In order to find out how PSCs will affect the drug sensitivity of different pancreatic cancer 

cell lines, pancreatic cancer cells were treated with conditioned medium from PSCs together 

with gemcitabine. Results from drug treatment showed that PSCs induce resistance to 

gemcitabine in Bxpc-3 cells, but not in Miapaca-2 cells or Panc-1 cells. As showed in Figure 

7, when Bxpc-3 cells were treated with conditioned medium (CM) and gemcitabine together, 
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more percent of cells were alive compared to the control. For Miapaca-2 and Panc-1, there 

was no difference between control group and conditioned medium treatment group.  

 

Figure 7. Effects of PSCs-CM on the drug sensitivity of different cancer cell lines. The results showed the 

sensitivity of Bxpc-3, Panc-1 and Miapaca-2 cells to gemcitabine in two different conditions: serum free medium 

(SF) and conditioned medium (CM). Cells were treated for 72h. The data represented the mean and SD of three 

independent experiments performed in 8 replicates. *, P<0.001. 

3.3 PSCs secretions don’t reduce gemcitabine-induced apoptosis in pancreatic cancer 

cells 

The apoptosis of pancreatic cancer cells were tested under different treatments by Caspase-

Glo3/7 assay.  As shown in Figure 8A and Figure 8C, no apoptosis differences were observed 

between serum free medium plus gemcitabine (SF+G) treatment groups and conditioned 

medium plus gemcitabine treatments (CM+G) groups both in Bxpc-3 and Panc-1 cells. For 

Miapaca-2 cells, the apoptosis was even increased in CM+ G group (Figure 8B).  
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Figure 8. PSCs secretions don’t reduce gemcitabine-induced apoptosis in pancreatic cancer cells. Pancreatic 

cancer cells were treated with the following conditions for 72 hours: a. serum free (SF); b. serum free and 

gemcitabine (SF+G); c. conditioned medium (CM); d. conditioned medium and gemcitabine (CM+G). Then the 

apoptosis of cells was analyzed by caspase3/7 activity kit. Relative apoptosis of Bxpc-3, Miapaca-2, and Panc1 

treated with the upper conditions were shown separated in A, B, C. The data represented the mean and SD of 

three independent experiments performed in 8 replicates. *, P<0.05.  

3.4 Conditioned medium from PSCs increases RRM1 and RRM2 expression in Bxpc-3 

cells 

As mentioned before, several mechanisms are responsible for drug resistance to gemcitabine, 

such as (1) downregulation of deoxycytidine kinase (dCK), (2) upregulation of cytidine 

deaminase (CDA), (3) upregulation of ribonucleotide reductases, including RRM1 and RRM2. 

Our results showed that conditioned medium from pancreatic stellate cells increased RRM1 

and RRM2 protein expression in Bxpc-3 cells under gemcitabine treatment. 
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Figure 9. Conditioned medium from PSCs increases RRM1 and RRM2 expression in Bxpc3 cells.72 hours after 

the treatment, cell lysate was collected and western blot was used to test the RRM1 and RRM2 protein 

expression in SF+G treated group and CM+G treated group. 

3.5 RMM1 overexpression is required for PSCs-induced drug resistance in Bxpc-3 cells 

To determine whether PSCs-induced drug resistance in Bxpc-3 cells requires the 

overexpression of RRM1, two different siRNAs were used to knock down RRM1 in Bxpc-3 

cells. These two siRNAs reduced RRM1 mRNA expression to 16% and 19% in Bxpc-3 cells, 

respectively compared to control (Figure 10A). The results subsequently led to reduce protein 

expression in Bxpc-3 (Figure 10B). Moreover, drug sensitivity assay results showed that 

PSCs-induced drug resistance in Bxpc-3 cells was no longer existed after RRM1 knock down 

in Bxpc-3 (Figure 10C).  

 

Figure 10. RMM1 overexpression is required for PSCs-induced drug resistance in Bxpc-3 cells. Bxpc-3 cells 

were transfected with control or two different RRM1 siRNAs (50nM) for 24h before determine mRNA 

expression of RRM1 (A), and 48h before determine protein expression of RRM1 (B). C.48 hours after Bxpc-3 

cells transfected with siRNA, cells were serum free overnight and treated with serum free medium or 

conditioned medium for 72h with or without gemcitabine. Then cell viability was tested by resazurin assay. *, 

P<0.05. 
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3.6 RMM2 overexpression plays a role in PSCs-induced drug resistance in Bxpc-3 cells 

To determine whether RRM2 also plays a part in PSCs-induced drug resistance in Bxpc-3 

cells, two different siRNAs were used to knock down RRM2 in Bxpc-3 cells. After 

transfection, the mRNA expressions of RRM2 were reduced to 22% and 25% in Bxpc-3, 

compared to control (Figure 11A). As a consequence, RRM2 protein expression levels were 

decreased (Figure 11B). However, the drug treatment assay results showed that PSCs-induced 

drug resistance in Bxpc-3 was only partially affected by down-regulation of RRM2 in Bxpc-3 

(Figure 11C).  

 

Figure 11. RRM2 overexpression plays a role in PSCs-induced drug resistance in Bxpc-3 cells. Bxpc-3 cells 

were transfected with control or two different RRM2 siRNAs (50nM) for 24h before determine mRNA 

expression of RRM1 (A), and 48h before determine protein expression of RRM1 (B). C.48 hours after Bxpc-3 

cells transfected with siRNA, cells were serum free overnight and treated with serum free medium or 

conditioned medium for 72h with or without gemcitabine. Then cell viability was tested by resazurin assay. All 

experiment were performed in triplicates, and data expressed as mean±SD. **, P<0.001, *, P<0.05. 

3.7 Factor in the conditioned medium is insensitive to enzyme treatments and heat 

inactivation 

In order to find out what in the conditioned medium is responsible for PSCs-induced drug 

resistance in Bxpc-3 cells, conditioned medium was treated with proteinase K, Trypsin, Rnase 

A, or Dnase I before the treatment for Bxpc-3 cells. However, the induced drug resistance 
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effects were still there even after enzyme treatments. And, when conditioned medium was 

boiled at 100°C for 2 hours, the effect was even much higher. Furthermore, when using 

ultracentrifugation to get rid of exosomes, the effect was still there. 

 

Figure 12. Factor in the conditioned medium is insensitive to enzyme treatments and heat inactivation. 

Conditioned media from PSCs were incubated with proteinase K (200µg/mL, 1h, 37°C), trypsin (200µg/mL, 1h, 

37°C), RnaseA (100µg/mL, 4h, 37°C), Dnase I (2U/µl, 4h, 37°C) or heat inactivation (100°C, 2h), the induced 

drug resistance effect of conditioned medium was not reversed. And, when using ultracentrifugation to get rid of 

the exosomes, the effect was still existed. 

3.8 Proteins that have a molecular weight smaller than 100 kDa in the conditioned 

medium are responsible for PSCs-induced drug resistance in Bxpc-3 cells 

To study which fraction in the conditioned medium makes contribution to PSCs-induced drug 

resistance in Bxpc-3 cells, CM was fractioned using Amicon
® 

Ultra-0.5ml Centrifugal filter 

by their molecular weight difference. Totally, 10 different fractions were obtained. These 

fractions were reconstituted in their original volume and used to treat Bxpc-3 cells under 

gemcitabine treatment. As showed in Figure 13, when Bxpc-3 cells were grown in SF 

medium, 0.1μM gemcitabine can kill around 80% of the cells. However, when treated Bxpc-3 

with CM from PSCs, the same concentration of the drug can only kill around 57% of the cells. 

When Bxpc-3 cells were treated with < 3kDa, >3kDa, < 10kDa, >10kDa, < 30kDa, > 30kDa, 

<50kDa and >50kDa fractions, conditioned medium induced drug resistance effects were still 

existed. But, when treated by >100kDa fraction, the CM induced drug resistance effect in 

Bxpc-3 cells was disappeared.  And <100kDa fraction still has the effect. 
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Figure 13. Proteins that have a molecular weight smaller than 100kDa in the conditioned medium are 

responsible for PSCs-induced drug resistance in Bxpc-3. Conditioned medium was fractioned by their molecular 

difference and then used to treat Bxpc-3 cells. Among all the 10 fractions, >100kDa fraction loss the ability to 

induce drug resistance in Bxpc-3 cells. *, P<0.05. 
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4 Discussion 

As mentioned above, patients diagnosed with pancreatic cancer will die within 6 months and 

the survival time of them has not been improved for nearly 40 years. This is due to that 

pancreatic cancer is highly resistant to chemo and radiation therapy. Currently, gemcitabine 

seems to be the most effective drug for pancreatic cancer patients, however, its efficacy is 

limited [73]. The importance of the tumor microenvironment to tumor progression has been 

recognized in recent years and the extensive tumor stromal has been postulated by researchers 

influences tumor response to chemotherapy in pancreatic cancer [60, 83]. However, the 

precise mechanism involved, particularly, how pancreatic stellate cells influence the drug 

sensitivity of pancreatic cancer cells has not been elucidated. In the current study, we chose 

three different drug sensitive pancreatic cancer cell lines, and tested how PSCs will influence 

the chemo-resistance of them. 

There are plenty of pancreatic cancer cell lines exist in the research field of PDAC, Panc-1, 

Miapaca-2 and Bxpc-3 were chose in the current study due to their different drug sensitivity. 

Previous studies have verified that these three cell lines response differently to gemcitabine 

treatment. Such as, Pan [84] proved that Panc-1 and Miapaca-2 are gemcitabine resistant cell 

lines and Bxpc-3 is gemcitabine sensitive cell line. Moreover, Duxbury [85]  found that Panc-

1 and Miapaca-2 cells are more drug resistant than Bxpc-3 cells since their higher expression 

of RRM2. In the current study, same results were obtained, we showed that Panc-1 is the most 

gemcitabine resistant cell line, Miapaca-2 cells are gemcitabine resistant and Bxpc-3 cells are 

gemcitabine sensitive. Besides that, by treating highly activated PSCs with different 

concentration of gemcitabine, we found that activated PSCs are also gemcitabine resistant. 

Stroma influences the drug resistance of pancreatic cancer cells has been shown before. For 

example, Miyamoto [61] found that extracelluar matrix proteins in the stroma are responsible 

for acquired drug resistance of pancreatic cancer cells. Olive [68] discovered that depletion of 

tumor stroma increases the drug response in pancreatic cancer. Hwang [66] confirmed that 

PSCs protect pancreatic cancer cells from chemo and radiation therapy. In our study, we 

observed that PSCs reduce the drug sensitivity of Bxpc-3 cells, but not Panc-1 and Miapaca-2 

cells. That explains why even drug sensitive pancreatic cancer cell lines exist, still no 

pancreatic cancer is curable by drug treatment. It also gives a clue for future personalized 

medicine in the field of pancreatic cancer, targeting PSCs may not work on all patients.  
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Numerous studies have proved that PSC play a crucial role in promoting pancreatic cancer 

cell proliferation [86, 87]. However, no study has shown how PSCs influence the apoptosis of 

pancreatic cancer cells. From our results, we found that conditioned medium from PSCs 

surprisingly increases the apoptosis of all three pancreatic cancer cell lines.  And, when 

treated with gemcitabine, CM from PSCs showed on influence on gemcitabine induced 

apoptosis in Panc-1 and Bxpc-3 cells, but it promote the apoptosis of Miapaca-2 cells. 

Interactions between cells are complicate. Cells may support each other and oppose each 

other at the same time. In the current study, for Miapaca-2 cells, even though PSC enhances 

the apoptosis of them, it has no influence on the drug sensitivity of them. It is possible that the 

induced proliferation effect of PSCs neutralized the apoptosis effect it has on Miapaca-2 cells.  

Since PSCs induce drug resistance in Bxpc-3 cells, the potential mechanism was studied. 

Multiple studies have shown that RRM1 and RRM2 are highly associated with gemcitabine 

resistance. Such as, Fujita [88] found that mRNA expression levels of RRM1 and RRM2 are 

related to gemcitabine sensitivity of patients with pancreatic cancer. Akita [89] discovered 

that after total pancreas resection, patients who can benefit from gemcitabine treatment have 

low expression levels of RRM1. By knocking down RRM2 in several pancreatic cancer cell 

lines, Duxbury [90] found that RRM2 lower expression reduces the invasiveness and 

gemcitabine chemoresistance of pancreatic cancer cells. In the current study, our results for 

the first time showed that conditioned medium from PSCs promotes the drug resistance of 

Bxpc-3 cells through up regulating RRM1 and RRM2. 

Substances exist in the conditioned medium are diverse and plenty, such as, growth factors, 

cytokines, RNA, DNA, biological molecules, exosomes and so on. In an effort to identify 

what in the conditioned medium causes PSCs-induced drug resistance in Bxpc-3 cells, 

conditioned medium was treated with various enzymes. However, the results showed that 

these factors, which we are interested in, are not sensitive to enzyme treatments or heat 

inactivation. Similarly, Jandu [91] studied factors from the conditioned medium of epithelial 

cells and found that those factors that have influences were resistant to proteinase K, trypsin 

and heat treatment. As explained in the article, “proteins can be heat inactivation resistant and 

protease treatment may leave smaller protein behind, the exact molecular identity of the factor 

requires further experiments”. But, Collins’s [92] work about neurite outgrowth verified that 

the influences of heart-cell conditioned medium on neuron is due to some trypsin sensitive 
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factors which bound to the culture substratum. In the current study, we also get rid of the 

influence of the exosomes, but the effect was still there. 

In order to further identify the characteristics of these factors in the conditioned medium, we 

separated the medium according to molecular weight. Totally 10 fractions were obtained, this 

is the first study showed that <100kDa factors are responsible for the PSCs-induced drug 

resistance effect in Bxpc-3 cells. The influence of PSCs’ conditioned medium on the drug 

resistance of Bxpc3-cells maybe is a combined effect, multiple factors make contributions to 

that, so it is difficult to identify one specific substance causative for that. Likewise, Liu [93] 

found that high molecular fractions (>100kDa) from the conditioned medium of human 

oviductal cells improve the development of mouse embryo, but no specific substance was 

identified. Watanabe [94] discovered that >50kDa fractions in the conditioned medium of rat 

epithelial cells increase the growth of neurons, still no particular factor was mentioned. 

In conclusion, our experimental results firstly demonstrated that conditioned medium from 

pancreatic stellate cells promote the drug resistance of Bxpc-3 cells through up-regulating 

RRM1 and RRM2 expression in Bxpc-3, but have no influence on the drug resistance of 

Miapaca-2 cells and Panc-1 cells. Furthermore, we showed the <100kDa factors produced by 

pancreatic stellate cells are responsible for the effects. And these factors are heat insensitive, 

trypsin and proteinase K insensitive, but the exact factor is yet to be determined. 
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